
A Branch and Price Algorithm for the Heterogeneous
Fleet Multi-depot Multi-trip Vehicle Routing

Problem with Time Windows

Munise Kübra Şahin
ORSTAT, Faculty of Economics and Business, KU Leuven, 3000 Leuven, Belgium. munisekubra.sahin@kuleuven.be

Hande Yaman
ORSTAT, Faculty of Economics and Business, KU Leuven, 3000 Leuven, Belgium. hande.yaman@kuleuven.be

The multi-trip vehicle routing problem (MTVRP) extends the well-known VRP by allowing vehicles to

perform several trips in a workday. The motivation arises from the new challenges in city logistics that

push companies to use smaller and cleaner vehicles such as cargo bikes. With the integration of small

vehicles into the fleet, many companies start to operate with a heterogeneous fleet and use multi depots

located in the city centers to reload the small vehicles. Inspired by these new challenges the companies face,

we study the heterogeneous fleet multi-depot MTVRP with time windows under shared depot resources

where small and large vehicles have different travel times in certain areas. We formulate this problem using

workday variables and propose a branch and price algorithm that exhibits an enhanced performance by a

new heuristic algorithm based on the reduction in the graph size. The proposed algorithm introduces a new

way to compute the completion bounds using the iterative structure of the state-space augmenting algorithm

and eliminates the need for solving a separate relaxation. We conduct experiments on modified small and

medium-size instances from Solomon’s benchmark set. The results of our computational experiments show

that the proposed algorithm is very effective and can solve instances with up to 40 customers, three depots

and two types of vehicles.

Key words : multi-trip vehicle routing; multi-depot vehicle routing; heterogeneous fleet; time windows;

branch and price

1. Introduction

The United Nations estimates that two out of three people will live in urban areas by 2050.

Worldwide, nearly one out of seven customers was an online shopper in 2019 (Vision Monday,

2021). This ratio is expected to increase substantially with the effect of the Covid-19 pandemic on

the customers’ buying behaviours. The upward trend in urban population density and the growth

of e-commerce result in significant increase in urban freight demand causing more congestion and

pollution and making freight distribution a significant challenge in city logistics. Many countries

have implemented pull and push measures to cope with the negative effects of freight vehicles on

the quality of life in urban areas. Push measures, such as defining restricted zones where large

vehicles are prohibited during busy hours, discourage the use of large vehicles. Pull measures,

1

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
2

such as improving bicycle infrastructure (Pucher, Dill, and Handy, 2010), promote cycling by

improving the convenience of bicycle use. Five main principles have been proposed for bicycle

infrastructure planning (Groot, 2007), among which directness is the most relevant one to our

work. The directness principle aims to provide as direct a route as possible with fewer traffic lights

and intersections with sidewalks to keep the travel time by bike shorter than by car. With this

aim, some European cities such as Copenhagen and Antwerp have constructed bicycle bridges to

provide short-cuts for bikers. These measures and incentives drove companies such as UPS, DHL

and FedEx to deploy more sustainable vehicles such as cargo bikes for last-mile deliveries. Besides

the new roads constructed to encourage sustainable mobility, these vehicles can also use the narrow

streets common in European cities as short-cuts and spend less time searching for a parking space.

However, cargo bikes do not provide an all-embracing solution to the delivery companies due to

their limited speed on larger roads and their low load capacity compared to traditional vehicles.

Hence most delivery companies using cargo bikes operate with a heterogeneous fleet to make use

of the compatibility of different vehicle types to different routes. With the integration of small

vehicles to the fleet, obliging vehicles to perform at most one route, as in the traditional setting

of the VRP, leads to an oversized fleet and inefficient utilization of workdays (Cattaruzza et al.,

2014). Relaxation of this assumption for a heterogeneous fleet and allowing vehicles to perform

several trips per day, results in a heterogeneous fleet multi-trip VRP (HFMTVRP).

Multi-trip VRP (MTVRP)’s relevance to city logistics has captured the attention of researchers,

especially in the last decades. However, to the best of our knowledge, all currently available exact

methods are for problems with a single depot and a homogeneous fleet. A single depot setting

requires a depot with a large capacity to satisfy the customers’ demand, and the depots with large

capacities are typically located outside the city. As small vehicles visit the depot several times per

day and have lower speed limits, time spent driving from and to a depot increases travel time more

compared to the case of larger vehicles and single trips. Avoiding these long intermediate trips to

a depot is crucial for delivery companies as the last-mile costs constitute between 13% and 75%

of total logistic costs (Gevaers et al., 2009), and last-mile deliveries are subject to tight deadlines

to maintain the customers’ satisfaction. Therefore, companies use several micro-depots located in

urban centers to replenish the vehicles (Boysen, Fedtke, and Schwerdfeger, 2020). For example,

DHL, one of the most experienced companies in using electric vehicles, has already implemented a

pilot project in Utrecht and Frankfurt to reduce the effect of multi-trips on the travel cost. In this

project, special containers designed for cargo bikes are loaded onto the customized trailers at the

main depot. The company’s vans bring these trailers to the city center, where each container is

loaded onto a cargo bike for the last-mile deliveries. Cargo bikes use these trailers to reload during

the day and return the empty containers at the end of the day.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
3

Motivated by these exciting changes, we study a heterogeneous fleet multi-depot MTVRP with

time windows. We plan delivery routes for companies that own multiple micro-depots and a het-

erogeneous fleet of small and large vehicles and that operate in a city where the directness of roads

are different for bikes and cars in certain areas. The routes should be planned so that the demand

of each customer is delivered within its time window by one vehicle. We consider different travel

times for different types of vehicles to capture the effect of the physical city structures and the

compatibility of vehicle types to these structures. Vehicles have capacities and their working time

is limited by the duration of a workday. We assume that vehicles are unlimited in number and can

be used by incurring a fixed cost for a workday. We define the capacities of the depots in terms

of containers. This definition of depot capacities is inspired by real-life applications and makes the

problem easier to model. To avoid long trips back to a depot, we allow vehicles to start and end their

workdays at different depots. However, to be in line with the multi-depot literature, we impose that

the number of vehicles that return to a depot at the end of the workday is the same as the number

of those that started their workday at this depot. This assumption allows the same schedule to

be used the next day if needed and ensures that the depots have enough capacity for the empty

containers. With the increasing number of companies integrating small vehicles and micro-depots

into their operations and the cities investing in bike-friendly infrastructures, we believe that this is

a comprehensive and realistic setting for the MTVRP. Even though the resulting problem is very

complex, it is worth the effort since the routes produced can be rather different from the routes

of the problem with a homogeneous fleet. An example based on instance C202 with 30 customers

and two depots derived from Solomon (1987) is given in Figure 1. This figure depicts the optimal

solutions with a homogeneous fleet of large vehicles, of small vehicles and a heterogeneous fleet.

The circles and rectangles represent the customers and depots, respectively. The green area is the

urban center and small vehicles can use the short-cuts to visit the nodes in this area. The dashed

lines represent the workdays of large vehicles, while the solid lines represent the workdays of small

vehicles. The number of vehicles in the optimal solution is the same for each problem. The optimal

value of the first problem is 378, whereas it reduces to 357 when small vehicles are used instead of

large ones, and it further reduces to 345 when both vehicle types are used. Comparing the workdays

of each vehicle type in the homogeneous and the heterogeneous fleet cases, we can also see how

small and large vehicles shape their workdays according to each other in the heterogeneous fleet

case.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
4

large vehicle 1
large vehicle 2

(a) homogeneous fleet of

large vehicles

small vehicle 1
small vehicle 2
small vehicle 1
small vehicle 2

(b) homogeneous fleet of

small vehicles

large vehicle 1
small vehicle 1

(c) heterogeneous fleet

Figure 1 The optimal solution of C202 instance with 30 customers and two depots for different variants

In this study, we formulate the heterogeneous fleet multi-depot multi-trip VRP with time win-

dows using workday (sequence of trips) based variables and propose a branch and price algorithm.

In addition to introducing a new problem and devising an exact solution approach, we make the

following methodological contributions:

• We use the iterative nature of the state-space augmenting algorithm to compute completion

bounds without solving a separate relaxation. We do this by switching between forward and back-

ward extensions in consecutive iterations.

• Although accelerating the pricing problem with heuristic methods has been commonly used,

we contribute to the literature by introducing a new pricing heuristic based on the reduction in

the graph size using reduced costs.

• We show that the multi-trip feature might lead the labelling algorithm to produce columns

that cannot be a part of an optimal solution, and the existing dominance rules do not detect

these columns. We show how to detect such columns and provide computational evidence on the

effectiveness of this approach.

The remainder of the paper is organized as follows. In Section 2, we review the literature. Section

3 provides a formal definition of the heterogeneous fleet multi-depot MTVRP with time windows

and introduces our formulation with workday-based variables. We describe the proposed branch and

price algorithm in Section 4. In Section 5, we present the results of our computational experiments.

Finally, we conclude in Section 6.

2. Literature Review

Since there is a vast body of literature on the multi-depot and the heterogeneous fleet extensions of

VRP, we refer the reader to the comprehensive surveys of Montoya-Torres et al. (2015); Koç et al.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
5

(2016) and Costa, Contardo, and Desaulniers (2019). Among the studies covered in these surveys,

the most relevant one to our work is Bettinelli, Ceselli, and Righini (2011), where the authors

propose a branch-and-cut-and-price algorithm for the heterogeneous fleet multi-depot VRPTW.

They assume that the number of vehicles of each type is limited and allow vehicles to be at any

depot at the beginning of the workday. They define the capacities of the depots in terms of the

number of available drivers who can use any type of vehicle. Therefore, the number of trips assigned

to a depot is limited, as in our problem. However, in their problem setting, each vehicle type

requires one unit of the depot’s capacity. The authors assume that the travel times are the same

for each vehicle type and impose that each vehicle must finish its workday at its starting depot.

They examine the impacts of different pricing and cutting techniques for this problem. To the best

of our knowledge, this is the only exact algorithm proposed up to now for the heterogeneous fleet

multi-depot VRPTW.

The rest of this section focuses on the exact methods on MTVRPs with time windows

(MTVRPTW). Different extensions of MTVRP that have been addressed in the literature and the

proposed methods can be found in the extensive survey of Cattaruzza, Absi, and Feillet (2016).

The extension of MTVRPTW with limited trip duration has been studied by several authors.

The presence of time windows, low vehicle capacity and limited trip duration allow visiting only a

few customers in each trip. This makes the enumeration of all feasible trips possible for small and

medium size instances. Exact methods proposed by Azi, Gendreau, and Potvin (2010), Macedo

et al. (2011) and Hernandez et al. (2014) use this observation and solve the problem in two phases.

In the first phase, they generate all feasible non-dominated trips and in the second phase, they

convert the trips generated in the first phase into workdays. Algorithms differ in the methods used

in the second phase. Both Azi, Gendreau, and Potvin (2010) and Macedo et al. (2011) consider

the problem with profits where visiting all customers are not mandatory. Whereas Azi, Gendreau,

and Potvin (2010) apply a branch and price algorithm in the second phase, Macedo et al. (2011)

solve a minimum cost flow model. Although the latter has a drawback because of the need of time

discretization, it outperforms the former algorithm. Different from these two studies, Hernandez

et al. (2014) consider the problem where all customers have to be served. In the second phase, they

propose a set covering formulation with side constraints where columns represent trips with a fixed

schedule and apply a branch and price algorithm. The resulting pricing problem has a pseudo-

polynomial complexity. Their computational results show that this algorithm performs significantly

better than the one proposed in Azi, Gendreau, and Potvin (2010) and obtains comparable results

with the one proposed in Macedo et al. (2011). Which algorithm performs better depends much

on the type of instance.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
6

Later, Hernandez et al. (2016) consider the MTVRPTW without the limit on the duration of

trips, which prevents the enumeration of all feasible trips. They propose two different set covering

formulations, first based on workdays and the second based on trips and apply a branch and

price algorithm. The pricing problem corresponds to an elementary shortest path problem with

resource constraints (ESPPRC) for both formulations. Their computational results show that both

algorithms outperform the two-phase algorithms mentioned above, and the formulation with trips

globally outperforms the one with workdays.

Table 1 A classification of the studies in the literature

time
windows

profit
multi
depot

heterogeneous
fleet

multi
trip

limited trip
duration

variable
type

enumeration of all
feasible columns

Azi, Gendreau, and Potvin (2010) ✓ ✓ ✗ ✗ ✓ ✓ workday ✓

Bettinelli, Ceselli, and Righini (2011) ✓ ✗ ✓ ✓ ✗ ✓ trip ✗

Macedo et al. (2011) ✓ ✓ ✗ ✗ ✓ ✓ trip ✓

Hernandez et al. (2014) ✓ ✗ ✗ ✗ ✓ ✓ trip ✓

Hernandez et al. (2016) ✓ ✗ ✗ ✗ ✓ ✗
workday

trip
✗

Paradiso et al. (2020) ✓ ✗ ✗ ✗ ✓ ✓ structure ✗

In a recent study, Paradiso et al. (2020) propose a set partitioning formulation with side con-

straints using structure based variables and a column generation and cutting plane based exact

algorithm. They show that with small modifications, the proposed solution framework can be used

to solve the MTVRPTW with loading times, with limited trip duration, with release dates and

the drone routing problem. Their computational results show that this algorithm can solve more

instances and is on average seven times faster than the one proposed in Hernandez et al. (2016).

In Table 1, we provide the classification of the studies mentioned above. As can be seen from

Table 1, neither the multi-depot nor the heterogeneous fleet extensions are considered along with

the multi-trip feature. In this study, we aim to fill this gap in the literature.

3. Problem Definition and Formulation

We first introduce the notation and give a definition of our problem. The set of nodes is represented

by N = I ∪ J where I = {1, . . . ,m} is the set of depots and J = {m+ 1, . . . ,m+ n} is the set of

customers. The set of different types of vehicles is denoted by V . For each type v ∈ V , there are

unlimited number of vehicles with capacity Qv and a fixed cost fv at each depot. Each node i has

a known demand represented by qi, service time represented by si (demands and service times of

the depots are zero) and must be visited within a specified time interval [ei, li]. Vehicles can neither

depart from nor arrive at a depot outside of its time window. If the vehicle arrives at customer j

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
7

earlier than ej, it has to wait until time ej. Arrivals later than lj are not allowed. For each j ∈ J ,
the set of vehicles that can serve customer j is represented by Vj = {v ∈ V | qj ≤Qv}. Each vehicle

is allowed to perform several trips and visit different depots in-between to reload. Vehicle trips can

start and end at different depots; however, for each vehicle type, the number of vehicles leaving a

depot at the beginning of the workday must be equal to that of those returning to it at the end of

the workday. Each depot i has a given capacity of hi, and vehicle type v ∈ V consumes av
i units of

its capacity.

The aim is to find the sets of trips both starting and ending at depots with minimum cost.

The set of trips should also satisfy that each customer is visited exactly once, total demand of

the customers in each trip does not exceed the vehicle capacity, and total capacity consumption of

vehicles assigned to a depot does not exceed its capacity.

To replace multi trips of a vehicle with a single trip, we use replenishment arcs proposed in

Boland, Clarke, and Nemhauser (2000); if the last visited node before going to depot i ∈ I is

node j ∈ J and the next trip starts at node k ∈ J , arcs (j, i) and (i, k) can be replaced by arc

(i, j, k). As small vehicles can use short-cuts that are not compatible with large vehicles, different

vehicle types have access to different arcs between the same pairs of customers. The time spent

by vehicle type v ∈ V to visit customer k ∈ J right after customer j ∈ J using a normal arc is

denoted by τ v
jk and using a replenishment arc that traverses depot i ∈ I by ρvijk. We assume that

the travel times satisfy the triangle inequality. For each vehicle type v ∈ V , Av = {(i, j) | i, j ∈
N, i ̸= j such that lj − ei − si ≥ τ v

ij, qi + qj ≤ Qv} \ {(i, j) | i, j ∈ I} represents the set of arcs and

Rv = {(i, j, k) | i∈ I, j, k ∈ J, j ̸= k such that lk− ej − sj ≥ ρvijk, qj ≤Qv, qk ≤Qv} represents the set

of replenishment arcs that can be used by this vehicle type. The cost of using arc (i, j)∈Av is cvij,

and the cost of using replenishment arc (i, j, k)∈Rv is rvijk = cvji + cvik for vehicle type v ∈ V .

We define workday p as an ordered list of nodes that starts and ends at a depot and can start

within a time interval [ep, lp] such that the total travel time, which is the minimum time required to

visit the given nodes in the given order, remains the same for each start time within this interval. We

call a workday feasible if it satisfies the time window restrictions and vehicle capacity constraints.

As different vehicle types have different capacities and can use different arcs, we define the set of all

feasible workdays separately for each vehicle type v as P v, the set of all feasible workdays that start

at depot s and end at depot t as P v
st with P v = ∪s,t∈IP

v
st, the set of customers visited in workday

p∈ P v as Jp, the set of arcs and replenishment arcs used to visit the nodes using the order of p∈ P v

as Av
p and Rv

p, respectively, and the cost of workday p ∈ P v as ∆v
p =

∑
(i,j)∈Av

p
cvij +

∑
(i,j,k)∈Rv

p
rvijk.

The variable zvp takes value 1 if workday p∈ P v is used and 0 otherwise. Using these variables, our

problem can be formulated as follows:

min
∑
v∈V

∑
p∈Pv

(fv +∆v
p)z

v
p (1)

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
8

s.t
∑
v∈Vj

∑
p∈Pv :j∈Jp

zvp = 1 ∀j ∈ J, (2)

∑
v∈V

∑
p∈Pv

av
i

(∑
j:(i,j)∈Av

p

zvp +
∑

j,k:(i,j,k)∈Rv
p

zvp

)
≤ hi ∀i∈ I, (3)

∑
j∈I

∑
p∈Pv

ij

zvp =
∑
j∈I

∑
p∈Pv

ji

zvp ∀i∈ I, v ∈ V (4)

zvp ∈ {0,1} ∀v ∈ V,p∈ P v. (5)

The objective function (1) minimizes the total routing cost. Constraints (2) impose that each

customer is visited exactly once. Constraints (3) ensure that the total capacity consumption of

vehicles assigned to a depot does not exceed its capacity. Constraints (4) are vehicle balance

equations for depots, and constraints (5) are variable restrictions.

4. Branch and Price Algorithm

As formulation (1) - (5) contains an exponential number of variables, we propose a branch and

price algorithm to solve it. At each node of the branch and bound tree, we first check whether

the node is pruned by bound using the lower bound of its parent node. If not, we apply column

generation to solve the LP relaxation. When column generation terminates, we check whether the

node is infeasible or pruned by bound. If not, either the node is pruned by optimality if the current

solution is integer or else branching is applied. In the following, we explain how we start, how we

generate columns, the techniques we apply to accelerate the solution of the pricing problem as well

as the used branching scheme.

4.1. Initialization

4.1.1. Preprocessing Since the travel times satisfy the triangle inequality, the time windows

can be tightened by modifying the procedure described in Dash et al. (2012), as shown below.

We apply this procedure to the graph of each vehicle type v ∈ V separately. As the arc and

replenishment arc sets are different for different types of vehicles, the resulting time windows might

also be different. Therefore, for each node i, we define evi and lvi as the earliest and latest arrival

time at node i by vehicle type v, respectively. We set evi = ei and lvi = li for each i∈N and v ∈ V .

Step 1. evj ←max
{
evj ,min

{
min

k:(k,j)∈Av
{evk + sk + τ v

kj}, min
i,k:

(i,k,j)∈Rv

{evk + sk + ρv
ikj}
}}

∀j ∈ J.

Step 2. evj ←max
{
evj ,min

{
lvj ,min{ min

k∈J:
(j,k)∈Av

{evk− sj − τ v
jk}, min

i,k:
(i,j,k)∈Rv

{evk− sj − ρv
ijk}}

}}
∀j ∈ J.

Step 3. lvj ←min
{
lvj ,max

{
evj ,max{ max

k∈J:
(k,j)∈Av

{lvk + sk + τ v
kj}, max

i,k:
(i,k,j)∈Rv

{lvk + sk + ρv
ikj}}

}}
∀j ∈ J.

Step 4. lvj ←min
{
lvj ,max

{
max

k:(j,k)∈Av
{lvk − sj − τ v

jk}, max
i,k:

(i,j,k)∈Rv

{lvk − sj − ρv
ijk}
}}
∀j ∈ J.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
9

In Step 1, if the earliest possible arrival time at a customer is greater than its time window start,

the start of the time window is set to the earliest possible arrival time. If arriving at a customer

later than its time window start does not lead to waiting at its successors, Step 2 sets the start of

the time window to the latest such arrival time. If the latest possible arrival time at a customer is

less than its time window end, Step 3 decreases the end of the time window to the latest possible

arrival time. Step 4 sets the time window end of a customer to the latest possible arrival time

that satisfies all time window constraints of its successors. We apply these steps iteratively until

no more changes are possible.

4.1.2. Initial Solution We use a greedy algorithm to produce a starting solution to the initial

rmp at the root node. If the algorithm fails to produce a feasible solution, it returns a set of feasible

and artificial columns formed in a way to satisfy the feasibility conditions of a column as much as

possible.

We divide the initial solution algorithm into two parts: clustering and scheduling. First, we

cluster the customers based on their coordinates. Then we schedule the visits of customers in the

same cluster using a time metric to form a trip from each cluster. This two-step approach aims to

take both distance and time into account and reduce the search space in the scheduling part by

clustering the customers first.

In the first part, we use the k-means clustering algorithm (Lloyd, 1982). As we consider the

depots with a limited capacity, we define the number of clusters as the maximum number of trips:∑
i∈I hi. In the second part, we build the tours using a time-oriented nearest-neighbour heuristic.

4.2. The Pricing Problem

Let P ⊆ P = ∪v∈V P
v be a subset of workdays for which the restricted master problem (rmp, the

LP relaxation of formulation (1)-(5) when zvp = 0 for all v ∈ V and p∈ P v \P) is feasible. We drop

zvp ≤ 1 for all for all v ∈ V and p∈ P v as these are implied by the set of constraints (2). The pricing

problem decomposes for each vehicle type and checks whether there exists a workday performed by

this vehicle type with a negative reduced cost. Let Nv = {i∈N |qi ≤Qv} represent the set of nodes
that can be visited by vehicle type v ∈ V . For each vehicle type v ∈ V , we introduce graph G′v =

(N ′v,A′v ∪Rv) where N ′v =Nv ∪ {o, d} is the set of nodes, A′v = {(o, i)|i ∈ I} ∪ {(i, d)|i ∈ I} ∪Av

is the set of arcs and Rv is the set of replenishment arcs. Nodes o and d are dummy nodes that

represent the origin and destination of workdays. If we associate dual variable vectors α, λ and

θ to the set of the constraints (2), (3) and (4), respectively, the pricing problem, for each v ∈ V ,

seeks to find a workday p∈ P v such that

∑
(i,j)∈Av

p

wv
ij +

∑
(i,j,k)∈Rv

p

uv
ijk < 0

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
10

where

wv
ij =

fv − θvj + av

iλj, if i= o
θvi , if j = d
cvij, if i ̸= o, j ∈ I
cvij −αj, otherwise

∀(i, j)∈A′v

uv
ijk = rvijk−αk + av

iλi ∀(i, j, k)∈Rv

For each vehicle type v ∈ V , the resulting pricing problem is an ESPPRC where wv
ij and uv

ijk

are the costs of arcs (i, j) ∈A′v and (i, j, k) ∈Rv, respectively. To simplify the notation, we drop

vehicle index v in the following sections.

We solve ESPPRC using the state-space augmenting algorithm proposed by Boland, Dethridge,

and Dumitrescu (2006). This is a label setting method that starts without the elementarity con-

straints and iteratively includes them for a subset of nodes based on the information obtained

at the previous iteration until the relaxed problem yields an elementary optimal solution. The

labelling algorithm can be performed by extending the labels from the origin to the destination

or vice versa. What follows next is a detailed explanation of the label setting algorithm for both

extension methods and how changing the direction of the extension at different iterations can be

used to obtain completion bounds without requiring to solve a separate relaxation.

4.2.1. Forward Labelling Each forward label represents a path from the origin to the node

it is associated with and stores the end node, cost and resource consumption. Forward labels are

iteratively extended from the origin to the destination. Extending a forward label associated with

node i to j corresponds to adding arc (i, j) to the path from the origin to i. In order to decide

the order in which labels are extended, we sort them breaking ties first by their duration, then

cost, and then capacity consumption. We apply the dominance test to the labels associated with

the same node and discard the dominated ones. A label is dominated only if there exists another,

not more costly label for which all feasible extensions of the dominated one are also feasible. This

iterative procedure continues until all non-dominated labels have been extended.

Feillet et al. (2004) indicate that keeping track of nodes that cannot be in any extension of the

label because of the resource constraints enables to identify larger numbers of dominated labels.

These nodes are called unreachable and the resources used to identify them must satisfy the triangle

inequality. If an unreachable node is found, dominance rules are applied as if the label has visited

that node which is similar to the idea of using the same node resource for the nodes that cannot

be on the same path, as proposed by Kohl (1995). We use this observation in the label generation

procedure by taking time windows as the resource constraint to identify the unreachable nodes.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
11

Notice that as we allow visits to the depots in between trips, the consumption of capacity resource

does not satisfy the triangle inequality, consequently cannot be used to identify such nodes.

Let r̄ be a forward path starting at node o and ending at node ir̄ at time tr̄ such that every

customer in the path is visited within its time window and capacity constraints are satisfied, and

S be the set of critical nodes that are not allowed to be visited more than once. We represent every

forward path with a label Lr̄ = (c̃r̄, q̃r̄, ir̄, tr̄, Sr̄) where c̃r̄ is the reduced cost, q̃r̄ is the total demand

of the nodes visited after the last visit to a depot and Sr̄ is a binary node-visit resource vector

of size |S| with Si
r̄ = 1 if the ith node in S has already been visited or identified as unreachable,

0 otherwise for i ∈ {1, . . . |S|}. To extend node-visit resources, we define a vector bj of size |S| for

each node j ∈N : bij = 1 if node j is the ith node in S, 0 otherwise (bi = 0⃗, ∀i∈ I).

To generate such paths, we initialize the dynamic programming algorithm with a label for each

depot i ∈ I defined as c̃r̄i =woi, q̃r̄i = 0, ir̄i = i, tr̄i = ei, and Sr̄i = 0⃗. We distinguish the extension

rules first according to two main cases: if the label is associated with a customer or with a depot. If

it is associated with a customer, we define different rules for the extensions via a normal arc and a

replenishment arc. We do not allow vehicles to traverse a depot using a normal arc in-between their

trips as we use replenishment arcs for this purpose. Therefore, we divide the extension rules of the

labels associated with a depot into two: if it is the beginning of the workday (the first iteration),

it must be extended to a customer; if not, to the destination node. For the sake of clarity, in the

following, we explain the extension procedure at the first and subsequent iterations separately.

The First Iteration: Let Lr̄′ represent the label generated by extending Lr̄ with ir̄ = i∈ I (initial

labels) towards node j ∈ J such that (i, j)∈A. It is constructed as follows:

- c̃r̄′ = c̃r̄ +wij;

- q̃r̄′ = q̃r̄ + qj;

- ir̄′ = j;

- tr̄′ =max{tr̄ + si + τij, ej}

- Sr̄′ = Sr̄ + bj and update the reachability of other critical nodes.

Next Iterations:

• If j ∈ J , k ∈N such that (j, k)∈A and S⊤
r̄ bk = 0. Lr̄′ is constructed as follows:

- c̃r̄′ = c̃r̄ +wjk;

- q̃r̄′ = q̃r̄ + qk;

- ir̄′ = k;

- tr̄′ =max{tr̄ + sj + τjk, ek}

- Sr̄′ = Sr̄ + bk and update the reachability of other critical nodes if k ∈ J , Sr̄′ = Sr̄ otherwise.

• If j ∈ J and k ∈ J such that S⊤
r̄ bk = 0, different labels are constructed for each replenishment

arc (i, j, k)∈R as follows:

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
12

- c̃r̄′ = c̃r̄ +uijk;

- q̃r̄′ = qk;

- ir̄′ = k;

- tr̄′ =max{tr̄ + sj + ρijk, ek};
- Sr̄′ = Sr̄ + bk and update the reachability of other critical nodes.

Note that for the problem with uncapacitated depots, if the costs and travel times of the arcs

are equal, generating a label only for the replenishment arc with the shortest travel time suffices.

However, due to uijk variables, it is not possible to establish a direct dominance rule for the

replenishment arcs between the same pair of customers when depots’ capacities are considered.

• If j ∈ I, it is only allowed to be extended to the destination node as follows: c̃r̄′ = c̃r̄ +wjd;

q̃r̄′ = q̃r̄; ir̄′ = d; tr̄′ = tr̄; Sr̄′ = Sr̄.

Due to the time window and vehicle capacity constraints, a forward label Lr̄ with ir̄ = j is feasible

only if tr̄ ≤ lj and q̃r̄ ≤Q.

To reduce the number of forward labels generated, we apply the following dominance rule: Let

Lr̄ = (c̃r̄, q̃r̄, ir̄, tr̄, Sr̄) and Lr̄′ = (c̃r̄′ , q̃r̄′ , ir̄′ , tr̄′ , Sr̄′) be two labels. Lr̄ dominates Lr̄′ if the following

conditions are satisfied:

ir̄ = ir̄′ , q̃r̄ ≤ q̃r̄′ , tr̄ ≤ tr̄′ , Sr̄ ≤ Sr̄′ and c̃r̄ ≤ c̃r̄′ .

The first four conditions ensure that every feasible extension of Lr̄′ is also feasible for Lr̄ and

would not result in higher cost due to the last condition. If all conditions hold with equality, we

arbitrarily choose one of the labels.

As the above problem is identical to ESPPRC when the elementarity constraints are relaxed for

the nodes in J \ S, if an optimal path found at the end of label setting iteration is elementary, it

is also optimal for ESPPRC. Otherwise, the node-visit resources are redefined, and algorithm is

restarted with the updated resources until an elementary optimal path is found. As when S = J ,

this is just ESPPRC, it is guaranteed that the state-space augmenting algorithm detects negative

cost paths if any exists.

In our implementation, we solve the pricing problem to optimality and add all generated columns

with a negative reduced cost to the restricted master problem. If the algorithm fails to find an

elementary optimal path at the end of an iteration, we define the node-visit resource for the node

with the highest multiplicity in an optimal path.

4.2.2. Backward Labelling Labelling algorithm can also be performed in the reverse way by

extending the labels from the destination to the origin. In this case, each backward label represents

a path from the node it is associated with to the destination, and extending a backward label

associated with node i to j corresponds to adding arc (j, i) to the path from i to the destination.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
13

For backward labels, first we calculate the latest feasible arrival time to each depot i ∈ I : Ti =

min{li, max
j:(j,i)∈A

{lj+sj+τji}}. We initialize the algorithm with a backward label for each depot i∈ I

defined as c̃r̂i = wid, q̃r̂i = 0, ir̂i = i, tr̂i = Ti and Sr̂i = 0⃗. The backward labels are extended in the

same way as in the forward labels except the time update. Let Lr̂′ represent the label generated

by extending Lr̂ with ir̂ = j ∈ J or j ∈ I (if it is an initial label) towards node k ∈N such that

(k, j) ∈ A and S⊤
r̂ bk = 0, then tr̂′ = min{tr̂ − sk − τkj, lk}. If the label is extended to node k ∈ J

through (i, k, j)∈R, tr̂′ =min{tr̂− sk−ρikj, lk}. A backward label Lr̂ with ir̂ = j is feasible only if

tr̂ ≥ ej and qr̂ ≤Q.

Dominance rule for the forwards labels is applied to the backwards labels with the change in the

time condition as follows : Lr̂ dominates Lr̂′ if ir̂ = ir̂′ , q̃r̂ ≤ q̃r̂′ , tr̂ ≥ tr̂′ , Sr̂ ≤ Sr̂′ and c̃r̂ ≤ c̃r̂′ .

4.2.3. Completion Bounds We complement the labelling algorithm with the completion

bounds as in Baldacci, Mingozzi, and Roberti (2011) to identify a larger number of dominated

labels. A completion bound corresponds to a lower bound on the completion cost of a path into

a workday. These bounds are used to prove that some paths cannot be completed into a workday

with a negative cost, hence can be eliminated. Since, if no elementary path with a negative cost

is found, the state-space augmenting algorithm iteratively increases the cardinality of the set of

nodes for which the node-visit resources are defined, every iteration provides a lower bound for

the next iteration. Contardo and Martinelli (2014) use this structure of the algorithm to solve the

multi-depot VRP. They use forward extension and compute the completion bounds of the labels

at a given iteration from the labels generated at the previous iteration. They turn the partial

paths obtained at the previous iteration backwards to complete the ones at the current iteration.

However, this approach cannot be directly extended to the problems with time windows as reversing

a path might yield infeasibility in this case. In the presence of time windows, a path represented

by a forward label (path from the source to a node) can be completed by a path represented by

a backward label (path from a node to the destination). Therefore, we use the forward labelling

at one iteration and the backward labelling at the next so that the lower bound obtained at the

previous iteration can be used as a completion bound at the next iteration. Pecin et al. (2017)

also use the backward labelling to compute the completion bounds for the forward labels and

vice versa. However, as they do not solve the pricing problem iteratively (as in the state-space

augmenting algorithm), they solve a different relaxation only to compute the completion bounds.

Our implementation eliminates the need to solve a different problem, as in Pecin et al. (2017), and

can be used for a broader range of problems than the method of Contardo and Martinelli (2014).

We use the completion bounds only when no elementary negative cost path is found at the first

iteration (otherwise the algorithm terminates). As stated before, the completion bounds for the

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
14

forward labels are obtained by the backward labels generated at the previous iteration. A forward

label Lr̄ with ir̄ = i is eliminated if c̃r̄ + c̃r̂ ≥ 0 where Lr̂ is the backward label with the minimum

reduced cost obtained at the previous iteration such that ir̂ = i, q̃r̂ + q̃r̄ − qi ≤ Q and tr̄ ≤ tr̂.

Equivalently, a backward label Lr̂ with ir̂ = i is eliminated if c̃r̂+ c̃r̄ ≥ 0 where Lr̄ is the forward label

with the minimum reduced cost obtained at the previous iteration such that ir̄ = i, q̃r̂ + q̃r̄− qi ≤Q

and tr̄ ≤ tr̂. One could obtain better completion bounds by taking the node-visit resources into

account (by using the label that satisfies the above conditions and violates the consumption of the

node-visit resources for the smallest number of nodes). However, our priori experiments showed

that the time spent to find such a label increases the overall computation time.

4.2.4. Heuristic Pricing Even with the implementation of the state-space augmenting algo-

rithm, solving the pricing problem to optimality can still be quite time-consuming. Therefore, we

use heuristic pricing algorithms to detect negative reduced cost columns and only resort to the

exact method when heuristic algorithms fail. First, we construct a reduced graph based on the

observation that the arcs with smaller reduced costs are more likely to be selected in the pricing

algorithm. To do so, we select a pre-determined number of nodes whose corresponding dual vari-

ables take the highest values at each iteration. Consequently, the incoming arcs of these nodes are

presumably the ones with smaller reduced costs. Then we construct a new graph by discarding

the incoming arcs of these nodes and the arcs adjacent to the depots and setting the remaining

arcs’ costs to their reduced cost values. We solve the pricing problem over a reduced graph that

contains the incoming arcs of the selected nodes, the arcs adjacent to the depots and the arcs in

the minimum spanning forest of the new graph.

As identifying negative reduced cost columns, if any exists, gets difficult towards the end of

column generation iterations, we select a smaller number of nodes at the earlier iterations, hence a

graph of smaller size, and increase this number at the later iterations. This choice is also motivated

by the following reasoning. Since the arcs in the reduced graph are selected based on the dual

information, choosing a good subset of arcs highly depends on the quality of the dual estimation.

Therefore, if there is an improvement in the objective function value of the restricted master

problem, we increase the number of selected nodes to make better use of the dual information.

However, we put an upper limit on the number of selected nodes to prevent the size of the reduced

graph from becoming too large. Upon reaching this limit, we keep the number of selected nodes

equal to it at the subsequent iterations.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
15

Algorithm 1 Pricing Algorithm (iter)

1: truncated← true

2: if iter = 1

3: niter← n0 ▷ n0 : the initial value of the number of selected nodes

4: else if z∗iter
LP < z∗iter−1

LP and niter−1 < n̄ ▷ n̄ : the upper bound on the number of selected nodes

5: niter← niter−1 +1

6: else

7: niter← niter−1

8: Select niter nodes whose corresponding dual variables take the highest values and put them into set S

9: As←∪i∈Iδ(i)
⋃
∪j∈Sδ

−(j) ▷ δ(i) : the set of adjacent arcs, δ−(i) : the set of incoming arcs of node i

10: Let Af be the set of arcs of a minimum spanning forest in graph(N,A \As) where the costs of the arcs

are set to their reduced cost values

11: As←As ∪Af

12: Apply the state-space augmenting algorithm on graph(N,As)

13: if no negative reduced cost column is found

14: Apply the state-space augmenting algorithm on graph(N,A)

15: if no negative reduced cost column is found

16: truncated← false

17: Apply the state-space augmenting algorithm on graph(N,A)

Using the structure of this reduced graph, we define the set S of critical nodes as the nodes with

the highest dual values (the ones whose incoming arcs are added to the reduced graph). We start

the state-space augmenting algorithm with this set instead of starting it without any node-visit

resource to reduce the number of label setting iterations. For further reduction in the solution

time of the pricing problem, whenever a non-elementary negative cost path is found, we convert

it into an elementary path by keeping only the first appearance of the nodes visited more than

once. As the triangular inequality guarantees that skipping some nodes cannot increase the travel

time, obtained path satisfies the time window constraints. If the reduced cost of this path is still

negative and the used arcs comply with the branching history of the node, we add it to the list of

returned paths.

To further accelerate the heuristic pricing, we store only a small number of labels at each node.

If the number of labels at any node reaches this limit and a label with a smaller cost than at

least one of the existing ones is found, we drop the label with the highest cost and store the new

one. Although dropping some of the non-dominated labels might increase the number of pricing

iterations, as it decreases the number of applied dominance tests, which is the trickiest part of the

pricing procedure, it usually reduces the overall computation time. If the algorithm fails to find a

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
16

negative cost path using the reduced graph, first we search the original graph again, storing the

limited number of labels and run the exact pricing only if no negative cost path is generated during

this search. We provide an outline of this procedure in Algorithm 1.

4.2.5. Column Elimination When vehicles are allowed to perform several trips, the pricing

algorithm might generate columns whose two consecutive trips can be merged (the total demand

of the customers visited in these two trips is smaller than or equal to the vehicle capacity). If

such a column exists, and if the required arc to merge these two trips complies with the branching

history of the node, a column where these trips are performed as one trip is also feasible and has

a smaller or equal cost due to the triangle inequality. Therefore, a column whose two consecutive

trips can be merged either cannot appear in an optimal solution or has an alternative. However,

if the vehicle completes its workday right after such trips and this column has a negative reduced

cost, the pricing algorithm adds this non-promising column to the rmp. To prevent this, before

adding a column with a negative reduced cost to the rmp, we check whether two consecutive trips

of this column can be merged. If so, we store it in a different list. If no elementary path with a

negative reduced cost that is not contained in this list is found at the end of a pricing iteration, we

check if this list contains any columns. Note that the pricing algorithm generates the non-promising

column but eliminates the stronger one when the labels corresponding to these two columns have

equal cost and time resource consumption. In this case, the label that visits the depot in-between

dominates the one that does not since it has a smaller capacity consumption, and the rest of the

domination conditions (cost, time and node-visit resource consumptions) hold with equality. If

the list is not empty, we merge the trips that satisfy the above definition in the column with the

minimum reduced cost and add only this column. If the required arc to merge such trips cannot

be used, we add this column without any change.

4.3. Branching Scheme

If the optimal solution of the master problem is fractional, we apply hierarchical branching in which

we prioritize the aggregated arc variables and branch on the individual arcs when all aggregated

arc variables take integer values. We first branch on the normal arc variables and then on the

replenishment arc variables at both aggregated and individual arc branching decisions.

First, if there exists an arc (i, j) ∈A= ∪v∈VA
v with fractional xij value defined as

∑
v∈V :

(i,j)∈Av
xv
ij

where xv
ij =

∑
p∈Pv :

(i,j)∈Av
p

zvp , we branch in a way that (i, j) must be used in one branch and cannot

be used in the other. In the first child node, if i ∈ I, we only inherit the columns that use arc

(i, j) or do not visit node j from the parent node. To ensure that the new columns generated at

each iteration comply with the branching decision, we modify the graph of each vehicle type by

eliminating all incoming arcs of node j except for arc (i, j). Analogously, if j ∈ I, only the columns

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
17

that use arc (i, j) or do not visit node i are passed to the child node and all outgoing arcs of node i

except for arc (i, j) are eliminated from the graph of each vehicle type. If arc (i, j) is not adjacent

to a depot, only the columns that use arc (i, j) or visit neither node i nor j are inherited from the

parent node and all outgoing arcs of node i and all incoming arcs of node j except for arc (i, j) are

eliminated from the graph of each vehicle type. This ensures that xij = 1 in every feasible solution

of the rmp of the resulting child. In the second child node, the columns that use arc (i, j) are not

inherited from the parent node and arc (i, j) is eliminated from the graph of each vehicle type to

ensure that no new column that uses this arc is generated. If all xij variables are integer, we check

whether there exists a replenishment arc (i, j, k) ∈R = ∪v∈VR
v with fractional yijk value defined

as
∑

v∈V :
(i,j,k)∈Rv

yv
ijk where yv

ijk =
∑

p∈Pv :
(i,j,k)∈Rv

p

zvp . If yes, we branch in the same fashion. In one branch,

we only inherit the columns that use arc (i, j, k) or visit neither node j nor k and eliminate all

outgoing arcs of node j and all incoming arcs of node k except for (i, j, k). In the other branch,

we do not inherit any columns that use arc (i, j, k) and eliminate this arc from the graph of each

vehicle type.

If the branching on the aggregated arc variables does not suffice for the integrality, we check

whether there exists an arc (i, j)∈Av with fractional xv
ij value for vehicle type v. If so, we set xv

ij

to 1 in the first child node. We filter the columns of vehicle type v and modify its arc set as defined

above in the fixed arc decision. If i∈ I (j ∈ I), we do not inherit any columns of other vehicle types

that visit node j (i). If arc (i, j) is not adjacent to a depot, we filter the columns of other vehicle

types that visit either node i or j. We also eliminate this arc from their arc sets. In the other child

node, we set xv
ij to 0. We filter the columns of vehicle type v and modify its arc set as defined

above in the forbidden arc decision.

When all xv
ij variables are integer, if there exists a replenishment arc (i, j, k)∈Rv with fractional

yv
ijk value for vehicle type v, we branch on this arc. We apply the fixed and forbidden replenishment

arc decisions for vehicle type v. In the branch where yv
ijk is set to 1, we filter the columns of other

vehicle types that visits either node j or k and eliminate this arc from their replenishment arc sets.

We select an arc with value closest to 0.5 and break the ties by selecting the most frequently

used one.

4.4. Artificial Columns after Branching

After a branching decision is performed, the columns passed from the parent node are filtered as

explained above. The columns that remain after filtering may not be sufficient to provide a feasible

solution to the initial rmp of the corresponding child node, which surfaces the need for artificial

columns. To provide the initial rmp at each node with a starting solution, we use the initial columns

generated to start the initial rmp at the root node. In the rest of this section, we use initial columns

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
18

to refer to the initial columns at the root node. Although the same set of artificial columns can

be used at each node as the execution of the branching decision does not require modifying the

master problem, we modify the set of initial columns considering the branching history of the

node to reduce the head-in effect. At each node of the tree, we inherit all initial columns of the

parent node. These columns can be artificial or non-artificial. Since the problem in the child node

is a restriction of the problem in the parent node, we pass the artificial columns as they are. For

each non-artificial initial column, we check whether it is still feasible after the current branching

decision is performed. If it is, we inherit it without any change. Otherwise, we redefine the column

as artificial and change its cost with a big value M . As each node has all initial columns, either as

artificial or not, this procedure ensures that the initial rmp at each node has a starting solution.

5. Computational Experiments

In this section we report the results of our computational experiments where we investigate the

computational effectiveness of our algorithm for both the homogeneous and heterogeneous fleet

instances and the effect of using a heterogeneous fleet on the transportation costs. All experiments

are carried out on a 64-bit machine with Intel Core i7 processor at 1.90 GHz and 16 GB of RAM

using Java and CPLEX 12.8.

5.1. Computational Performance for the Homogeneous Fleet Multi-depot
MTVRPTW

First, we conduct the computational experiments on the problem with the homogeneous fleet of

small vehicles to investigate the effect of the proposed techniques on the computation time. The

solution method described above can be used to solve the homogeneous fleet problem without any

modifications since the heterogeneous fleet multi-depot MTVRPTW where V consists of only one

vehicle type corresponds to the problem with a homogeneous fleet.

In our experiments, we use 216 instances derived from the type 2 instances proposed by Solomon

(1987). These instances are commonly used in the MTVRP literature as the short planning horizon

and tight time windows of type 1 instances do not allow vehicles to perform more than one trip.

These instances consist of three groups; C, R and RC where customers are clustered, randomly

located and half clustered half randomly located, respectively. The coordinates of the customers

are the same for all instances in the same group but the time windows differ. We consider instances

with 25, 30, 35 and 40 customers selecting the first customers from the Solomon instances and

with 2 and 3 depots. As the depots in our content represent the micro-depots that can be placed

in central areas such as parking lots or shopping malls, we divide the customers into as many

clusters as the number of depots based on their coordinates and locate each depot in the center of

a cluster. As the locations of customers are the same for the same group of instances so are the

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
19

Table 2 Comparison of exact and heuristic pricing for instances with 25 customers and two depots

exact pricing heuristic pricing

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

C201 0 7.31 13 339 13 0 7.79 31 605 28.1
C202 0 86.14 1 23 - 0 8.32 1 94 -
C203 NA 3600 0 4 NA 0 472.54 1 88 -
C204 NA 3600 0 3 NA NA 3600 0 66 NA
C205 0 47.11 1 42 - 0 5.99 1 89 -
C206 0 124.42 1 31 - 0 14.94 1 143 -
C207 0 1126.55 1 22 - 0 27.11 1 140 -
C208 4.44 3600 88 1671 4.44 0 1206.88 541 10605 5.6

avg 0.74 1523.94 13.13 266.88 8.72 0 667.95 72.13 1478.75 16.85
solved 5 7

R201 0 21.34 15 81 9.73 0 4.72 9 112 2.92
R202 0 575.62 39 130 5.05 0 28.58 51 275 4.49
R203 NA 3600 0 3 NA 0 255.02 133 1298 0.84
R204 NA 3600 0 3 NA 0 856.68 99 714 7.33
R205 0 95.64 1 26 - 0 7.25 1 76 -
R206 8.19 3600 1 16 8.19 0 422.59 169 1745 4.03
R207 NA 3600 0 3 NA 0 115.42 1 81 -
R208 NA 3600 0 2 NA 0 3310.77 1 108 -
R209 0 1421.96 23 194 6.81 0 61.13 25 306 6.61
R210 0 853.65 3 35 0.43 0 34.56 3 104 7.06
R211 NA 3600 0 3 NA 11.14 3600 79 1288 11.14

avg 1.37 2233.47 7.45 45.09 6.04 1.01 790.61 51.91 555.18 5.55
solved 5 10

RC201 0 7.27 1 27 - 0 1.23 1 57 -
RC202 0 409.06 1 19 - 0 8.13 1 46 -
RC203 NA 3600 0 3 NA 0 15.2 1 58 -
RC204 NA 3600 0 2 NA 0 472.82 1 73 -
RC205 0 99.99 7 68 9.09 0 13.11 11 162 4.88
RC206 0 591.28 81 622 6.12 0 95.05 127 1647 12.59
RC207 0 474.49 1 19 - 0 11.98 1 73 -
RC208 NA 3600 0 2 NA 0 2160.36 1 93 -

avg 0 1547.76 11.38 95.25 7.61 0 347.24 18 276.13 2.18
solved 5 8

locations of the depots (for the instances with the same number of customers) whereas they differ

among different groups. We assume that depots have the same capacity and set it to the nearest

integer to 2
3

⌈∑
j∈J qj

Q

⌉
for the instances with two depots and to 1

2

⌈∑
j∈J qj

Q

⌉
for the instances with

three depots. We set the time windows of the depots to the depot’s time window provided in the

instance. We consider vehicles of capacity 100 and fixed cost 35. We set the cost and travel times of

an arc to the Euclidean distance between its endpoints rounded to the nearest integer. If we detect

an arc violating the triangle inequality, we set its cost and time to the shortest distance between

the corresponding nodes.

Based on some initial experiments, we choose the parameters for the heuristic pricing as follows:

we start the pricing algorithm at each node by defining the node-visit resource for one-third of

the nodes whose corresponding dual variables take the highest values (the incoming arcs of these

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
20

nodes are used in the reduced graph). At each subsequent pricing iteration where the objective

function value of the rmp improves, we increase the number of nodes for which the node-visit

resource is defined by one until it is defined for half of the nodes. We store at most ten labels in

truncated-search mode.

In our first experiment, we analyze the impact of the straightforward version of the proposed

heuristic pricing algorithm on the computation time. We compare the exact pricing algorithm with

the heuristic pricing algorithm where the labels are extended only forward, completion bounds are

not used, and the columns that cannot be in an optimal solution are not eliminated. We present

our results for instances with two depots and 25 customers in Table 2. We set the time limit to

one hour. We report the gap between the best obtained upper and lower bounds for the instances

that are not solved to optimality within the time limit, the solution time, the number of nodes

processed and the number of pricing iterations performed. When the column generation terminates

at the root node, we solve the integer problem that contains all generated columns to compute

a better upper bound earlier in the tree. We report the optimality gap of this upper bound in

the RootIP gap column. If an optimal solution is not obtained, we use the best obtained lower

bound to calculate this gap. If the algorithm reaches the time limit before solving the root node to

optimality, as a valid lower bound is not obtained, we use NA in the gap and RootIP gap columns.

We use dash in the RootIP gap column to indicate the instances for which column generation

returns an integer solution at the root node as in this case the algorithm terminates without solving

the integer problem at the root node.

The results clearly demonstrate the benefit of using the heuristic pricing for each instance group.

It reduces the computation time of C instances by more than a factor of two, of R instances by

almost a factor of three and of RC instances by more than a factor of four. Overall, the algorithm

with the heuristic pricing can solve 25 instances out of 27 in an average time of seven minutes,

whereas it fails to solve 12 instances within the time limit when only exact pricing is used.

In our next experiment, we look at the effect of different extension methods, the completion

bounds and the column elimination explained in Section 4.2.5. Since we report the results when the

labels are extended forward from the source in Table 2, we only report the results when the labels are

extended backward from the destination, when the completion bounds are used (forward extension

at one iteration, backward at the next) and when the completion bounds are supplemented by the

column elimination in Table 3.

The first observation is that the performances of forward and backward extensions depend highly

on the instance group even though same resources and similar dominance rules are used. Whereas

using the backward extension takes a shorter time to solve R instances and provides a better

bound for R211 that cannot be solved optimally by both extension methods, it is outperformed for

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
21

Table 3 Comparison of different variants of label extension, completion bounds and column elimination for

instances with 25 customers and two depots

backward extension completion bounds + column elimination

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

C201 0 8.43 17 411 4.66 0 8.66 31 605 28.1 0 6.96 17 542 15.33
C202 0 15.99 1 126 - 0 7.17 1 69 - 0 7.71 1 73 -
C203 0 159.63 1 155 - 0 172.17 1 108 - 0 63.59 1 84 -
C204 NA 3600 0 72 NA NA 3600 0 64 NA NA 3600 0 72 NA
C205 0 12.13 1 161 - 0 7.33 1 114 - 0 4.42 1 83 -
C206 0 23.26 1 193 - 0 9.73 1 103 - 0 9.30 1 100 -
C207 0 34.56 1 146 - 0 15.41 1 141 - 0 15.63 1 132 -
C208 0 1781.83 577 11561 0.93 0 767.56 263 6976 0 0 689.25 245 6354 0

avg 0 704.48 74.88 1603.13 2.80 0 573.50 37.38 1022.5 14.05 0 549.61 33.38 930 7.67
solved 7 7 7

R201 0 5.93 7 99 0.53 0 2.81 5 72 1.91 0 3.24 15 117 0.53
R202 0 31.14 45 241 1.21 0 14.84 29 184 1.41 0 13.39 37 160 6.32
R203 0 670.34 231 2340 6 0 215.06 255 1878 5.81 0 142.94 117 1179 0.63
R204 0 894.96 39 329 2.57 0 295.50 121 903 11.65 0 150.45 45 428 0.48
R205 0 7.70 1 72 - 0 4.35 1 64 - 0 2.88 1 54 -
R206 0 657.04 239 1900 2.38 0 327.19 193 2258 5.44 0 261.04 179 2134 0
R207 0 260.83 1 87 - 0 32.12 1 73 - 0 14.11 1 73 -
R208 0 1549.40 1 168 - 0 671.83 1 87 - 0 343.25 1 109 -
R209 0 148.21 63 584 2.88 0 50.21 35 347 3.95 0 45.49 17 341 0
R210 0 35.49 3 89 2.95 0 17.61 3 86 1.91 0 15.62 3 93 2.12
R211 8.74 3600 66 932 8.74 0 1532.79 255 2527 7.83 0 1350.55 199 2826 5.07

avg 0.79 714.64 63.27 621.91 3.41 0 287.66 81.73 770.82 4.99 0 213 55.91 683.09 1.89
solved 10 11 11

RC201 0 1.07 1 47 - 0 0.89 1 38 - 0 0.72 1 43 -
RC202 0 7.80 1 58 - 0 4.28 1 50 - 0 5.46 1 60 -
RC203 0 19.11 1 54 - 0 12.93 1 52 - 0 11.24 1 64 -
RC204 NA 3600 0 61 NA 0 553.07 1 47 - 0 66.03 1 55 -
RC205 0 6.12 3 71 0 0 7.54 9 113 0.8 0 6.17 9 123 0.54
RC206 0 132.19 187 2265 0 0 70.53 211 1615 3.16 0 51.74 131 1303 1.34
RC207 0 11.28 1 59 - 0 6.01 1 64 - 0 4.08 1 45 -
RC208 0 1834.55 1 78 - 0 507.94 1 71 - 0 352.83 1 94 -

avg 0 701.52 24.38 336.63 0 0 145.4 28.25 256.25 1.98 0 62.28 18.25 223.38 0.94
solved 7 8 8

the RC group. The performance difference between the two methods is even more significant for

distinct instances. While using the backward extension halves the solution time of R208 compared

to the forward extension, it fails to solve RC204 which is solved in eight minutes using the forward

extension. We believe that this might be caused by unevenly spread time windows and demands.

We also observe that using the completion bounds globally outperforms both methods and solves all

instances except C204 within one hour time limit. It reduces the average computation time for all

instance groups, and its superiority is more evident for R and RC groups. It is more than two times

faster for these groups than the best performed mono-directional method. Besides significantly

reducing the computation time, as our implementation uses extensions in both ways, it abolishes

the priori computations to decide the direction of the extension. Our final observation is that when

the completion bounds are supplemented with the column elimination, better solution times are

obtained for all instance groups, and 26 of the 27 instances are solved to optimality in less than

three minutes on average.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
22

Next, we investigate the impact of the reduced graph on the computation time using the final

version of the heuristic pricing algorithm where both completion bounds and column elimination

are used. We present the results of the heuristic pricing algorithm where the original graph is

searched storing a limited number of labels (lines 9-13 of Algorithm 1 are skipped) for the same

dataset in Table 4.

Table 4 Results of the truncated heuristic pricing with completion bounds and column elimination, without the

reduced graph for instances with 25 customers and two depots

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

C201 0 3.63 9 181 1.97 R201 0 5.01 7 55 0.70 RC201 0 1.34 1 20 -
C202 0 16.07 1 40 - R202 0 25.91 25 122 1.41 RC202 0 9.09 1 30 -
C203 0 60.48 1 42 - R203 0 180.99 107 734 7.48 RC203 0 107.18 1 28 -
C204 NA 3600 0 18 NA R204 0 341.03 35 315 1.18 RC204 0 292.56 1 34 -
C205 0 8.56 1 53 - R205 0 7.75 1 24 - RC205 0 18.91 13 112 0
C206 0 12.66 1 49 - R206 0 337.04 173 1357 10.5 RC206 0 75.59 147 803 1.08
C207 0 28.48 1 69 - R207 0 41.19 1 42 - RC207 0 13.75 1 34 -
C208 0 1403.86 747 8251 10.36 R208 0 554.14 1 43 - RC208 0 1444.51 1 30 -

R209 0 56.64 17 165 6.01
R210 0 34.13 3 47 8.53
R211 0 1917.57 211 2583 1.44

avg 0 641.72 95.12 1087.88 6.16 0 318.31 52.82 498.82 4.66 0 245.37 20.75 136.38 0.54
solved 7 11 8

The instances solved to optimality at the root node show that the total number of pricing

iterations significantly decreases when the truncated search is performed directly on the original

graph. However, the increase in the time per pricing problem deteriorates the overall performance

of the algorithm. These results show that first searching the reduced graph is quite effective for all

instance groups.

In our last experiment to test the performance of the proposed techniques, we measure the impact

of these techniques on the computation time when a good initial upper bound is known. As the

computation times of the instances solved to optimality at the root node, 14 of 27 instances, are

not affected by the quality of the upper bound, we exclude these instances. We also exclude C204

since an integer solution could not be found for this instance. We use the optimal value as an initial

upper bound for the 12 remaining instances. The average computation times of these instances are

1755.95, 523.16, 595.03, 236.59 and 180.31 for the exact pricing, heuristic pricing where the labels

are extended only forward, heuristic pricing where the labels are extended only backward, when

the completion bounds are used and when the post-processing is applied, respectively. The average

computation times of these instances reported in Tables 2 and 3 (without a good initial upper

bound) are 1797.60, 548.84, 664.31, 275.86 and 228.07 for the same order of techniques as above.

These results show that starting the algorithm with a good upper bound shortens the computation

time, and the efficacy of the proposed techniques remains valid.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
23

As these experiments demonstrate the benefit of improvement ideas, using a reduced graph,

eliminating the columns that cannot be in an optimal solution and using the forward extension at

one iteration and the backward at the next complemented by the completion bounds, we use this

version for larger instances. We set the time limit to two hours for the rest of the experiments.

First, to see the effect of the number of customers on the computation time, we report our results

for 30, 35 and 40 customers and two depots in Table 5.

Table 5 Results for instances with 30, 35 and 40 customers and two depots

30 customers 35 customers 40 customers

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

C201 0 69.53 197 3677 10.65 0 7.66 1 183 - 0 570.35 155 10886 11.27
C202 0 62.36 45 834 8.46 0 21.32 1 121 - 0 130.15 9 355 0.2
C203 0 5217.38 147 1453 13.43 0.25 7200 28 768 10.34 0.33 7200 52 1988 7.13
C204 NA 7200 0 69 NA NA 7200 0 125 NA NA 7200 0 123 NA
C205 0 134.64 83 1707 13.71 0 17.87 1 137 - 0 101.41 3 377 0.4
C206 0 515.08 179 4252 0.55 0 22.29 1 118 - 0 501.37 41 1233 13.71
C207 0 2549.74 885 15842 0.27 0 52.38 1 137 - 0 3856.77 131 4308 1.23
C208 0 230.37 51 1581 0 0 39.81 1 119 - 0 2171.95 85 4300 3.39

avg 0 1997.39 198.38 3676.88 6.72 0.04 1820.17 4.25 213.50 10.34 0.05 2716.50 59.50 2946.25 5.33

R201 0 30.52 67 406 1.22 0 60.78 49 395 4.26 0 81.86 49 528 0
R202 0 33.58 27 220 0.71 0 142.38 23 278 9.16 0 318.57 53 628 2.16
R203 0 893.35 303 2981 10.98 0 301.59 15 177 15.95 0 2896.61 247 3062 6.78
R204 3.29 7200 14 304 3.29 NA 7200 0 96 NA NA 7200 0 85 NA
R205 0 133.99 103 947 5.75 0 83.57 9 196 4.84 0 373.7 101 735 2.22
R206 0 135.5 27 366 7.65 0 388.2 19 357 9.15 5.11 7200 427 6662 5.11
R207 0 1536.58 5 173 2.75 9.87 7200 2 144 9.87 16.33 7200 18 383 16.33
R208 NA 7200 0 104 NA NA 7200 0 111 NA NA 7200 0 131 NA
R209 0 307.6 101 1023 5.34 0 1529.17 173 2512 7.46 0 2935.17 255 2444 8.64
R210 0 84.34 7 158 1.73 0 235.62 19 250 10.49 0 6321.22 847 5949 9.16
R211 14.81 7200 144 1786 14.81 12.07 7200 31 367 12.07 11.4 7200 11 248 11.4

avg 1.81 2250.50 72.55 769.82 5.42 2.44 2867.39 30.91 443.91 9.25 3.65 4447.92 182.55 1895.91 6.87

RC201 0 1.39 1 44 - 0 126.02 193 1547 0.54 0 5684.35 13023 73310 0.56
RC202 0 5.72 1 54 - 0.37 7200 3812 35359 4.24 7.99 7200 2533 23133 7.99
RC203 0 42.55 1 69 - 10.3 7200 28 294 10.3 12.86 7200 48 518 12.86
RC204 0 373.69 1 75 - NA 7200 0 57 NA NA 7200 0 61 NA
RC205 0 10.53 19 94 0.53 0 6481.84 8903 41654 0.55 8.22 7200 4157 24416 8.22
RC206 0 94.76 127 1198 0.89 2.94 7200 4340 30187 2.94 8.32 7200 3527 21978 8.32
RC207 0 13.05 1 59 - 2.25 7200 1140 16295 3.12 12.22 7200 684 8464 12.22
RC208 0 706.95 1 65 - NA 7200 0 90 NA NA 7200 0 50 NA

avg 0 156.08 19.00 207.25 0.71 2.64 6225.98 2302.00 15685.38 3.62 8.27 7010.54 2996.50 18991.25 8.36

We see that the difficulty of C204 instance remains valid with a larger number of customers.

However, the algorithm is able to solve the rest of C instances with 30 customers and except C203

with 35 and 40 customers for which a high-quality solution is obtained. However, its performance

significantly deteriorates for RC instances. While all instances with 30 customers in RC group are

solved in less than three minutes on average, only two instances with 35 customers and one instance

with 40 customers could be solved within two hours. Based on the results of instances with 30 and

35 customers, we also observe that the difficulty of an instance is not only affected by its size but

also by the locations and the surplus capacity of depots. The results show that instances with 35

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
24

Table 6 Results for the instances with 25 and 30 customers and three depots

25 customers 30 customers

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

C201 0 34.06 83 2021 17.52 0 30.87 7 890 0.32
C202 0 16.11 3 125 15.22 0 185.70 45 2161 0
C203 0 31.45 1 119 - 0 327.74 39 1649 0.33
C204 0 6103.67 17 303 5.05 13.55 7200 2 139 13.55
C205 0 5.74 1 84 - 0 14.19 1 109 -
C206 0 12.89 1 120 - 0 23.47 1 150 -
C207 0 33.14 3 117 0 0 98.47 5 239 4.15
C208 0 17.25 1 118 - 0 59.93 5 285 4.76

avg 0 781.79 13.75 375.88 9.45 1.69 992.55 13.13 702.75 3.85

R201 0 4.24 13 127 3.98 0 25.94 41 269 0.33
R202 0 16.68 15 152 5.28 0 100.43 53 353 2.19
R203 0 38.2 25 154 1.97 0 151.35 25 273 8.07
R204 0 60.23 7 149 0 0 4528.37 43 369 3.08
R205 0 50.46 51 631 2.99 0 132.98 73 521 6.22
R206 0 64.37 31 392 8.04 0 199.56 25 306 12.83
R207 0 18.98 1 97 - 0 1512.22 17 350 7.38
R208 0 1276.72 7 275 11.58 NA 7200 0 208 NA
R209 0 300.57 211 2479 9.45 0 171.77 27 485 0.2
R210 0 18.08 3 101 9.28 0 188.38 27 342 11.49
R211 0 1642.87 211 3535 10.91 0 3483.27 165 1982 11.61

avg 0 317.40 52.27 735.64 6.35 0 1608.57 45.09 496.18 6.34

RC201 0 0.8 1 37 - 0 21.35 33 256 6.08
RC202 0 2.03 1 35 - 0 2194.15 1389 12616 7.36
RC203 0 6.55 1 50 - 0.87 7200 1670 16867 8.96
RC204 0 8.08 1 53 - NA 7200 0 30 NA
RC205 0 2.44 1 46 - 0 827.28 731 6337 1.03
RC206 0 1.93 1 40 - 2.20 7200 3487 33433 7.75
RC207 0 3.14 1 44 - 1.28 7200 1927 17860 6.25
RC208 0 125.89 3 136 0 NA 7200 0 62 NA

avg 0 18.86 1.25 55.13 0 0.73 4880.35 1154.63 10932.63 6.24

customers in C group except C203 are easier to solve than those with 30 customers as the optimal

solution of the master problem at the root node is integer for these instances.

Next, we analyze the impact of the number of depots on the computation time and report our

results for instances with 25 and 30 customers and three depots in Table 6 and with 35 and 40

customers in Table 7. The results show that the algorithm can solve all instances with 25 customers

in an average computation time of six minutes, all but two instances with 30 customers in C

and R groups in 11 minutes on average. However, only three instances with 30 customers in RC

group are solved. It solves 19 of 27 instances in an average computation time of 28 minutes with

35 customers, 17 of 27 instances in 21 minutes on average with 40 customers, and provides high

quality solutions for two instances in both cases. Another observation is that RC group exhibits a

different behaviour than of those with two depots; instances with 35 and 40 customers are easier

to solve compared to the ones with 30 customers.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
25

Table 7 Results for the instances with 35 and 40 customers and three depots

35 customers 40 customers

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

C201 0 124.32 15 2319 10 0 135.81 5 1229 1.07
C202 0 1012.24 111 6908 2.44 0 968.7 25 1769 0
C203 0.56 7200 72 3832 0.84 0.23 7200 7 695 1.12
C204 NA 7200 0 123 NA NA 7200 0 134 NA
C205 0 57.38 1 185 - 0 1053.15 41 2605 6.95
C206 0 65.52 1 169 - 0 373.44 7 477 0
C207 0 4095.37 235 8993 10.83 9.44 7200 62 3937 9.44
C208 0 869 67 2349 10.58 0.56 7200 195 8326 0.78

avg 0.08 2577.98 62.75 3109.75 6.94 1.46 3916.39 42.75 2396.50 2.77

R201 0 187.64 145 1089 0.14 0 158.43 81 770 0.51
R202 0 557.23 161 989 7.39 0 449.08 57 453 6.85
R203 0 1841.4 101 1043 11.92 0 598.18 31 334 0.47
R204 NA 7.200 0 103 NA NA 7200 0 95 NA
R205 0 2626.64 533 6041 10.88 0 177.75 13 159 8.41
R206 0 2400.06 329 2203 14.55 0 4394.54 119 1953 12.5
R207 0 2179.29 9 200 15.72 2.71 7200 23 514 2.71
R208 NA 7200 0 126 NA NA 7200 0 96 NA
R209 0 5517.8 595 6995 15.67 0 1668.31 47 836 7.49
R210 0 1961.96 121 1536 15.32 0 2856.72 153 1262 6.99
R211 12.23 7200 65 921 12.23 16.11 7200 11 211 16.11

avg 1.36 3533.82 187.18 1931.45 11.54 2.09 3554.82 48.64 607.55 6.89

RC201 0 14.75 17 149 7.48 0 92.33 39 414 0.55
RC202 0.56 7200 3415 40959 4.5 0 150.54 11 170 0
RC203 0 7165.86 705 10312 10.67 0 709.99 11 264 4.42
RC204 17.73 7200 3 256 17.73 NA 7200 0 85 NA
RC205 0 413.79 223 2090 5.97 0 2474.54 571 5021 1.01
RC206 0 517.34 167 1600 2.51 0 2020.21 465 3723 1.90
RC207 0 39.62 1 90 - 0 2923.89 113 1470 5.52
RC208 2.65 7200 8 198 11.91 9.59 7200 3 151 9.59

avg 2.62 3718.92 567.38 6956.75 8.68 1.37 2846.44 151.63 1412.25 3.28

5.2. Computational Performance for the Heterogeneous Fleet Multi-depot
MTVRPTW

We classify the types of vehicles based on three characteristics: cost, capacity and network. We use

the same parameters as in the previous section for the small vehicles to analyze the effect of the

integration of large vehicles. We consider the large vehicles of capacity 300 and fixed cost of 50.

Table 8 The number of nodes in the center for each instance group

group 25-2 30-2 35-2 40-2

C 7 9 12 11
R 3 7 6 9
RC 9 10 10 9

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
26

As stated before, small vehicles have the advantage of using some streets, mostly in the city

centers, that are not compatible with or allowed (due to traffic rules) to large vehicles. To reflect

the permeability of cities, we specify a central area and set the travel times of the arcs adjacent

to the nodes in this area to higher values for large vehicles. We put the grid’s borders ten units

away from the closest customer. We define one-third of the grid in the center as the central area,

as shown in Figure 1, for C and R groups. Since almost all customers are located outside the

geometric center in RC instances, we move the central area to the left border of the grid for this

group. We first multiply the travel times of all incoming and outgoing arcs of the nodes in this area

with a random number between 1 and 2, then round them up. We provide the number of nodes in

the central areas in Table 8. Based on these numbers, the instances in C, R and RC groups have

28-34%, 12-23% and 22- 36% of the customers located in the central area, respectively.

Table 9 Results for the instances with 25 and 30 customers, two depots and two types of vehicles

25 customers 30 customers

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

C201 0 3.38 1 125 - 0 57.82 73 1557 17.53
C202 0 492.45 501 6824 10.32 0 129.54 67 774 14.18
C203 0 1941.33 7 161 11.64 15.3 7200 3 105 15.3
C204 NA 7200 0 34 NA NA 7200 0 39 NA
C205 0 4.64 1 59 - 0 900.93 1059 8434 6.2
C206 0 13.51 3 91 9.89 0 2011.62 1173 14125 8.16
C207 0 452.37 43 551 3.04 0.99 7200 284 4848 8.49
C208 0 1591.84 537 9745 9.38 0 93.08 7 188 0

avg 0 1462.44 136.62 2198.75 8.85 2.33 3099.12 333.25 3758.75 9.98

R201 0 4.1 3 55 0.53 0 27.68 45 270 2.12
R202 0 31.76 37 239 7.56 0 43.33 15 130 4.14
R203 0 519.7 219 2043 7.84 0 2351.83 295 2979 6.82
R204 0 523.99 57 465 0.95 NA 7200 0 36 NA
R205 0 14.44 9 92 1.92 0 168.75 101 920 0.89
R206 0 1012.33 559 5465 8.13 0 294.69 49 476 10.98
R207 0 244.05 3 74 9.33 0.23 7200 4 154 7.28
R208 NA 7200 0 33 NA NA 7200 0 32 NA
R209 0 77 21 284 10.79 0 388.20 89 750 13.61
R210 0 40.35 3 93 6.49 0 184.28 7 154 4.12
R211 0 5872.07 387 3757 9.05 9.73 7200 43 538 9.73

avg 0 1412.71 118 1145.45 6.26 1.11 2932.61 58.91 585.36 6.63

RC201 0 2.42 1 38 - 0 3.57 1 40 -
RC202 0 7.95 1 34 - 0 16.47 3 46 0
RC203 0 20.03 1 36 - 0 66.34 1 50 -
RC204 1.96 7200 21 206 7.36 0 905.86 1 61 -
RC205 0 53.43 63 513 0.81 0 11.95 1 35 -
RC206 0 132.4 129 1178 0.54 0 255.35 157 1477 0
RC207 0 10.2 1 41 - 0 25.58 1 52 -
RC208 NA 7200 0 41 NA 2.43 7200 3 93 2.43

avg 0.28 1828.31 27.12 260.88 2.90 0.30 1060.64 21 231.75 0.81

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
27

Table 10 Results for the instances with 35 and 40 customers, two depots and two types of vehicles

35 customers 40 customers

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

C201 0 32.16 17 537 0 0 27.83 1 268 -
C202 0 719.44 77 2358 1.26 0 340.18 19 515 6.77
C203 NA 7200 0 76 NA 8.43 7200 2 160 8.43
C204 NA 7200 0 37 NA NA 7200 0 72 NA
C205 0 522.7 153 2513 0.75 0 288.7 9 426 0
C206 0 1112.53 253 3987 1.75 0 1105.93 41 1264 7.96
C207 0 1034.85 13 517 0 0 530.38 1 148 -
C208 0 242.41 11 390 0 0 823.72 5 376 0

avg 0 2258.01 65.5 1301.88 0.63 1.2 2189.59 9.75 403.62 4.63

R201 0 73.97 53 288 4 0 124.06 83 589 0.36
R202 0 416.46 43 467 1.42 0 605.69 119 678 6.46
R203 0 6358.43 55 437 10.33 8.69 7200 167 1875 8.69
R204 NA 7200 0 46 NA NA 7200 0 67 NA
R205 0 150.57 27 268 12.88 0 1048.29 163 1479 7.24
R206 0 2564.48 81 985 9.29 0.57 7200 277 3725 9.14
R207 13.41 7200 3 98 13.41 18.89 7200 6 152 18.89
R208 NA 7200 0 50 NA NA 7200 0 48 NA
R209 0 6617.33 547 5864 6.25 12.68 7200 246 3487 12.68
R210 0 902 51 502 10.49 5.99 7200 271 3403 5.99
R211 12.35 7200 4 90 12.35 22.25 7200 2 116 22.25

avg 2.86 4171.20 78.55 826.82 8.94 7.67 5398 121.27 1419.91 10.19

RC201 0 3721.52 7547 35982 0 0 18.94 3 54 0
RC202 0.37 7200 2038 14819 3.55 0 44.59 1 47 -
RC203 1.21 7200 24 286 1.21 0 76.61 1 56 -
RC204 NA 7200 0 51 NA NA 7200 0 114 NA
RC205 0.68 7200 1601 10425 3.01 0 1849.90 295 1713 0.80
RC206 0 628.97 135 919 11.61 0 49.78 1 74 -
RC207 3.82 7200 666 6556 3.82 0 125.10 1 77 -
RC208 NA 7200 0 62 NA NA 7200 0 72 NA

avg 1.01 5943.81 1501.38 8637.50 3.87 0 2070.62 37.75 275.88 0.40

Note that even though all customers are accessible by each vehicle type, vehicle dependent travel

times combined with the time windows might result in graphs with different densities for different

types of vehicles.

For the heterogeneous fleet variant, we use the same values of the algorithmic parameters as

before and test its performance on the instances with two depots. We present our results for

instances with 25 and 30 customers in Table 9, and with 35 and 40 customers in Table 10.

Our first observation is that the performance of the proposed algorithm does not show a sig-

nificant degradation for instances with two depots when a heterogeneous fleet is considered even

though fewer instances can be solved at the root node compared to the homogeneous fleet case.

For the homogeneous fleet case, 77 of 108 instances with two depots are solved in 11.31 minutes

on average, and for the heterogeneous fleet case, 72 of 108 instances are solved in 12.31 minutes on

average. We also observe that while the difficulties of C and R instances exhibit a similar pattern

as in the homogeneous fleet case, instances in the RC group with 40 customers become easier to

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
28

solve. Whereas only one instance with 40 customers is solved to optimality when a homogeneous

fleet of small vehicles are considered, six of eight instances are solved when large vehicles are also

incorporated into the fleet.

In our next experiment, we look at the instances with three depots and two types of vehicles.

We report our results for instances with 25 and 30 customers and three depots in Table 11 and

with 35 and 40 customers in Table 12.

Table 11 Results for the instances with 25 and 30 customers, three depots and two types of vehicles

25 customers 30 customers

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

C201 0 389.85 541 12269 30.77 0 92.49 17 1165 0
C202 0 40.65 13 170 14.95 0 257.38 29 1112 4.44
C203 0 831.28 1 103 - 0 1400.26 17 437 1.96
C204 NA 7200 0 53 NA NA 7200 0 51 NA
C205 0 33.05 13 150 12.15 0 26.33 1 87 -
C206 0 49.56 17 187 22.31 0 57.58 1 136 -
C207 0 951.83 55 1012 0 0 328.91 3 217 3.85
C208 0 44.12 1 82 - 0 282 13 464 3.85

avg 0 1192.54 80.13 1753.25 16.04 0 1205.62 10.13 458.63 2.82

R201 0 13.86 13 163 1.3 0 55.84 33 282 0
R202 0 41.82 11 152 0 0 237.66 87 523 5.13
R203 0 156.95 29 196 13.85 0 371.04 37 347 12.19
R204 0 418.21 7 164 0 9.53 7200 29 499 9.53
R205 0 114.67 73 553 12.16 0 359.15 61 818 2.4
R206 0 224.72 81 566 9.81 0 341.79 21 225 9.61
R207 0 587.79 1 81 - 0 4.303.58 21 244 8.32
R208 10.41 7200 2 147 10.41 NA 7200 0 51 NA
R209 0 602.74 165 2074 8.69 0 429.19 47 499 7.22
R210 0 54.12 5 123 8.33 0 678.93 77 726 2.57
R211 0.33 7200 230 3656 16.25 9.12 7200 40 630 9.12

avg 0.98 1510.44 56.09 715.91 8.08 1.87 2407.36 41.18 440.36 6.61

RC201 0 1.31 1 33 - 0 329.72 357 2695 0.2
RC202 0 6.53 1 34 - 5.39 7200 1052 11643 14.39
RC203 0 9.5 1 29 - NA 7200 0 21 NA
RC204 0 6.7 1 33 - NA 7200 0 41 NA
RC205 0 9.25 1 43 - 2.35 7200 3912 30962 5.13
RC206 0 3.78 1 31 - 13.74 7200 2038 19389 13.74
RC207 0 6.42 1 46 - 14 7200 244 2345 14
RC208 0 564.15 7 289 0 NA 7200 0 49 NA

avg 0 75.96 1.75 67.25 0 7.10 6341.22 950.38 8393.13 9.49

We see that the algorithm performs well for instances with 25 customers and three depots and

can solve 24 of 27 instances in less than four minutes on average. However, instances with a larger

number of customers become significantly more difficult than in the homogeneous fleet case. While

83 of 108 instances with three depots are solved to optimality in 15.47 minutes on average for the

homogeneous fleet case, the number of solved instances decreases to 68 with an average computation

time of 15.49 minutes for the heterogeneous fleet case.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
29

Table 12 Results for the instances with 35 and 40 customers, three depots and two types of vehicles

35 customers 40 customers

inst.
gap
(%)

time node
pricing
iter

RootIP
gap(%)

gap
(%)

time node
pricing
iter

RootIP
gap(%)

C201 0 42.64 3 430 0 0 149.03 5 856 0
C202 0 982.97 71 3203 0.28 0 3294.84 33 2918 10.89
C203 2.98 7200 2 256 2.98 1.27 7200 1 192 1.27
C204 NA 7200 0 42 NA NA 7200 0 47 NA
C205 0 83.67 1 179 - 0 1966.06 57 2875 2.57
C206 0 118.55 1 194 - 0 894.22 17 697 0
C207 0 7198.83 217 6451 0.28 4.14 7200 28 1145 4.14
C208 0 1425.04 35 1733 0 1.25 7200 109 3884 1.25

avg 0.43 3031.46 41.25 1561 0.71 0.95 4388.02 31.25 1576.75 2.87

R201 0 276.89 123 784 1.55 0 298.95 147 993 3.43
R202 0 1438.23 199 1361 11.14 0 640.67 47 387 3.48
R203 14.62 7200 44 641 14.62 0 1132.041 33 293 0.77
R204 NA 7200 0 44 NA NA 7200 0 46 NA
R205 0 4117.71 525 5271 6.71 0 191.84 3 132 0
R206 0 6225.14 355 2456 11.82 0 4962.13 171 1535 9.84
R207 13.20 7200 1 80 13.20 8.30 7200 17 351 8.30
R208 NA 7200 0 42 NA NA 7200 0 57 NA
R209 16.33 7200 250 4070 16.33 0 3404.67 51 846 16.08
R210 0 3486.72 169 1245 11.74 0 4527.08 125 1440 10.13
R211 16.27 7200 7 150 16.27 20.41 7200 7 221 20.41

avg 6.71 5340.43 152.09 1467.64 11.49 3.19 3996.13 54.64 572.82 8.05

RC201 0 31.38 5 111 5.63 0 451.60 117 839 5.57
RC202 1.50 7200 1107 11287 6.25 2.31 7200 428 3323 2.31
RC203 4.30 7200 241 2666 5.55 3.62 7200 127 1355 3.77
RC204 NA 7200 0 30 NA NA 7200 0 68 NA
RC205 0 1050 145 1401 0.36 0.67 7200 575 4212 2.75
RC206 0 957.81 123 1242 0.18 0 905.62 63 576 0
RC207 0 124.66 1 66 - 1.92 7200 180 1575 7.26
RC208 5.75 7200 1 75 5.75 NA 7200 0 66 NA

avg 1.65 3870.48 202.88 2109.75 3.95 1.42 5569.65 186.25 1501.75 3.61

5.3. The Impact of the Heterogeneous Fleet

To assess the effect of operating a heterogeneous fleet on the delivery cost, we compare the problems

with a homogeneous fleet of large vehicles and a heterogeneous fleet of small and large vehicles.

Due to depots’ capacities and customers’ time windows, using a fleet of only large vehicles yields

infeasibility for C instances with 35 and 40 customers, and RC instances with 30 and 35 customers.

We increase the capacity of each depot by one for these instances. We consider only the instances

solved to optimality for both variants. We report the average values of the total number of vehicles,

the number of small vehicles (for the heterogeneous fleet), the optimal value and the saving of

these instances in Table 13.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
30

Table 13 Comparison of the homogeneous and the heterogeneous fleet

instance
group

of
customers

total
demand

of
solved inst.

homogeneous fleet heterogeneous fleet
saving %

vehicles cost vehicles small vehicles cost

C

25 460 5 1.60 357.20 1.86 1 314.20 12.04
30 520 5 2 404.80 2 1 355.40 12.20
35 640 6 2 414.67 2 1 382.67 7.72
40 730 6 2 493.33 2 1 473.50 4.02

R

25 332 10 1.80 496.40 2 2 458.30 7.68
30 411 7 2 611.14 2.43 2.43 546.29 10.61
35 494 7 2 640.71 2.43 2.14 606.14 5.40
40 563 2 2 881.50 3.50 3.50 765.50 13.16

RC
25 540 6 2 424.00 2.50 2.33 353.83 16.55
30 620 8 3 518.88 2.88 1.50 494.50 4.70
35 710 6 3.5 640.33 3.33 1.33 621.83 2.89
40 830 6 3.67 708.83 3.83 0.67 693.83 2.12

The results show that using a heterogeneous fleet provides 7.75% cost saving on average and

has a more pronounced impact on the cost for smaller instances. On the other hand, the average

number of vehicles is almost the same for both cases. Whereas 2.32 vehicles on average are used

for the homogeneous fleet case, it is 2.50 for the heterogeneous fleet case where more than 64%

of the fleet consists of small vehicles. The results on the number of used vehicles demonstrate the

benefit of allowing vehicles to perform multiple trips per day.

We also observe that the vehicle selection strategy depends on the instance group and varies even

among the instances from the same group. Whereas one large and one small vehicle are selected on

average for C instances, the optimal solution almost always favours small vehicles for R instances.

Although the total demand of the R instances with 25 customers being slightly higher than the

capacity of the large vehicle might cause an under-utilization of vehicles and impact the vehicle

selection, the results of larger instances support that more factors need to be taken into account.

Note that when more than one vehicle of the same type is used, these vehicles have the flexibility to

choose their returning depots as long as the vehicle balance constraints of depots are satisfied. On

the other hand, when only one vehicle is used, it has to go back to its starting depot to satisfy the

vehicle balance constraints. Since, on average, at least two small vehicles are used in R instances,

we investigate whether this provides an advantage to small vehicles and dominates the solutions

where one large vehicle is used. To this end, we solved the problem where each vehicle has to start

and end its workday at the same depot and found out that the selection of the vehicle type remains

the same. Another observation is that while the ratio of the number of small vehicles to the total

fleet size remains almost the same for different sized instances in C and R groups, it decreases

proportionally to the number of customers in RC group that contains the customers with higher

demands.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
31

6. Conclusion

In this study, we presented an effective branch and price algorithm for the heterogeneous fleet

multi-depot MTVRPTWs under shared depot resources in which we considered the effect of bike-

friendly infrastructures on the travel times. The results of conducted experiments demonstrate the

efficacy of our solution approach and suggest that, besides the size of the instance, the tightness

of the capacities at depots as well as the customers’ spatial distribution influence the difficulty of

the problem.

One of the limitations of our study is that the proposed method cannot be used when the

depot’s capacities are defined in terms of the amount of products. In this case, the dual variables

corresponding to the depot capacity constraints cannot be decomposed over arcs as it depends both

on the visited customer and the depot used before visiting this customer. Developing a technique

for this case is an important future research direction.

Our study considers the effect of physical city structures such as the density of narrow streets and

infrastructures like bike bridges on the travel times of small and large vehicles. Another promising

direction of future work is to incorporate access time restrictions during which large vehicles cannot

enter certain areas. Without such restrictions, the streets that different vehicle types can use differ

based on the physical city structures, whereas under these restrictions, the time of the day is also

a determinative factor on the vehicle selection. With the integration of the access time restrictions,

another promising direction of future work is to allow large vehicles to be used as mobile depots.

In this extension, small vehicles deliver the products to the customers in the restricted zones, and

large vehicles can be used to replenish the load of small vehicles in-between their trips. Since the

vehicles have to meet at a location for loading, the workdays of different vehicle types become

inter-dependent, which raises the need for synchronization constraints. We believe that these are

interesting and challenging extensions of our current work.

Acknowledgments

We would like to thank Prof. Gizem Ozbaygin, Sabanci University, for her help with the implementation.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
32

References

Azi N, Gendreau M, Potvin JY, 2010 An exact algorithm for a vehicle routing problem with time windows

and multiple use of vehicles. European Journal of Operational Research 202(3):756–763.

Baldacci R, Mingozzi A, Roberti R, 2011 New route relaxation and pricing strategies for the vehicle routing

problem. Operations research 59(5):1269–1283.

Bettinelli A, Ceselli A, Righini G, 2011 A branch-and-cut-and-price algorithm for the multi-depot hetero-

geneous vehicle routing problem with time windows. Transportation Research Part C: Emerging Tech-

nologies 19(5):723–740.

Boland N, Dethridge J, Dumitrescu I, 2006 Accelerated label setting algorithms for the elementary resource

constrained shortest path problem. Operations Research Letters 34(1):58–68.

Boland NL, Clarke LW, Nemhauser GL, 2000 The asymmetric traveling salesman problem with replenishment

arcs. European Journal of Operational Research 123(2):408–427.

Boysen N, Fedtke S, Schwerdfeger S, 2020 Last-mile delivery concepts: a survey from an operational research

perspective. OR Spectrum 1–58.

Cattaruzza D, Absi N, Feillet D, 2016 Vehicle routing problems with multiple trips. 4OR 14(3):223–259.

Cattaruzza D, Absi N, Feillet D, Vigo D, 2014 An iterated local search for the multi-commodity multi-trip

vehicle routing problem with time windows. Computers & Operations Research 51:257–267.

Contardo C, Martinelli R, 2014 A new exact algorithm for the multi-depot vehicle routing problem under

capacity and route length constraints. Discrete Optimization 12:129–146.

Costa L, Contardo C, Desaulniers G, 2019 Exact branch-price-and-cut algorithms for vehicle routing. Trans-

portation Science 53(4):946–985.

Dash S, Günlük O, Lodi A, Tramontani A, 2012 A time bucket formulation for the traveling salesman problem

with time windows. INFORMS Journal on Computing 24(1):132–147.

Feillet D, Dejax P, Gendreau M, Gueguen C, 2004 An exact algorithm for the elementary shortest path prob-

lem with resource constraints: Application to some vehicle routing problems. Networks: An International

Journal 44(3):216–229.

Gevaers R, Van de Voorde E, Vanelslander T, et al., 2009 Characteristics of innovations in last-mile logistics-

using best practices, case studies and making the link with green and sustainable logistics. Association

for European Transport and contributors 1–21.

Groot Rd, 2007 Design manual for bicycle traffic. Number 25.

Hernandez F, Feillet D, Giroudeau R, Naud O, 2014 A new exact algorithm to solve the multi-trip vehicle

routing problem with time windows and limited duration. 4or 12(3):235–259.

Hernandez F, Feillet D, Giroudeau R, Naud O, 2016 Branch-and-price algorithms for the solution of the multi-

trip vehicle routing problem with time windows. European Journal of Operational Research 249(2):551–

559.

Şahin and Yaman: A Branch and Price Algorithm for the Heterogeneous Fleet Multi-depot MTVRPTW
33

Koç Ç, Bektaş T, Jabali O, Laporte G, 2016 Thirty years of heterogeneous vehicle routing. European Journal

of Operational Research 249(1):1–21.

Kohl N, 1995 Exact methods for time constrained routing and related scheduling problems. Ph.D. thesis,

Technical University of Denmark.

Lloyd S, 1982 Least squares quantization in pcm. IEEE transactions on information theory 28(2):129–137.

Macedo R, Alves C, de Carvalho JV, Clautiaux F, Hanafi S, 2011 Solving the vehicle routing problem with time

windows and multiple routes exactly using a pseudo-polynomial model. European Journal of Operational

Research 214(3):536–545.

Montoya-Torres JR, Franco JL, Isaza SN, Jiménez HF, Herazo-Padilla N, 2015 A literature review on the

vehicle routing problem with multiple depots. Computers & Industrial Engineering 79:115–129.

Paradiso R, Roberti R, Laganá D, Dullaert W, 2020 An exact solution framework for multitrip vehicle-routing

problems with time windows. Operations Research 68(1):180–198.

Pecin D, Pessoa A, Poggi M, Uchoa E, 2017 Improved branch-cut-and-price for capacitated vehicle routing.

Mathematical Programming Computation 9(1):61–100.

Pucher J, Dill J, Handy S, 2010 Infrastructure, programs, and policies to increase bicycling: an international

review. Preventive medicine 50:S106–S125.

Solomon MM, 1987 Algorithms for the vehicle routing and scheduling problems with time window constraints.

Operations research 35(2):254–265.

Vision Monday, 2021 E-commerce share of total global retail sales from 2015 to 2024. Accessed August 9,

2021, https://www.statista.com/statistics/534123/e-commerce-share-of-retail-sales-worldwide/.

