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A B S T R A C T
Industrial settings will be characterized by far-reaching production automation brought about by
advancements in robotics and artificial intelligence. As a consequence, human assembly workers will
need to adapt quickly to new and more complex assembly procedures, which are most likely to increase
cognitive workload, or potentially induce overload. Measurement and optimization protocols need
to be developed in order to be able to monitor workers’ cognitive load. Previous studies have used
electroencephalographic (EEG, measuring brain activity) and electrooculographic (EOG, measuring
eye movements) signals, using basic computer-based static tasks and without creating an experience of
overload. In this study, EEG and EOG data was collected of 46 participants performing an ecologically
valid assembly task while inducing three levels of cognitive load (low, high and overload). The lower
individual alpha frequency (IAF) was identified as a promising marker for discriminating between
different levels of cognitive load and overload.

1. Introduction
1.1. Cognitive load in assembly work

Industry 4.0 or "smart industry" is and will increasingly
be characterized by wide-scale automation, connectivity and
AI-driven technology, resulting in a manufacturing process
that will become more and more efficient [19, 40, 41, 60].
Many jobs involving simple, repetitive tasks will increasingly
be handed off to robots or–at the least–cobots (i.e., machines
that physically interact with human workers) [45]. At the
same time, it is expected that customer demand will push
the industry towards increasing product variety to allow for
broad product personalization, also coined "mass customiza-
tion" [10, 67]. For example, in car manufacturing, it is more
and more common for customers to have the ability to decide
on certain design specifications. Amidst this evolution to-
wards more customization stands the human assembly worker,
who will need to operate in a more flexible and agile way, con-
stantly adjusting his or her skills to changing job demands
where automatization is not possible [47, 59, 80]. While
this means assembly work in a manufacturing setting will
become more challenging, human information processing
capacities still remain limited. As a result, some workers will
be unable to keep up with the ever increasing cognitive job
demands [18, 80, 81]. From this perspective, it is highly im-
portant to work on measurement and optimization protocols
to be able to first accurately measure and monitor workers’
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cognitive load, or more importantly cognitive overload.
Rooted in various seminal theoretical frameworks (cf., Sweller

[66], Wickens [78]), cognitive load is generally defined as a
multidimensional construct covering working memory pro-
cesses, ranging from attention and perception to memory and
decision making [70, 81]. Throughout the history of (cogni-
tive) ergonomics, the construct of cognitive load played a cru-
cial role in the prevention of occupational error, safety hazard,
and negative (physical) stress caused by overload [10, 79, 81].
Measurement and optimization protocols are created to avoid
or reduce this overload (e.g., through designing adaptive
supporting interfaces, light-based guidance systems, or by
(re)designing assemblies per se), maintaining optimal perfor-
mance and well-being of workers [5, 9, 26, 43, 57, 65, 82].

Resonating with the multidimensional nature of the con-
struct, the measurement of cognitive load encompasses the
assessment of subjective perceptions, performance and physi-
ological responses [14, 56, 70, 77, 81]. Whereas performance
measures [8, 14] and self-report measures (e.g., NASA-TLX
questionnaire based on Hart and Staveland [32]) for cogni-
tive load assessment are widely used in industrial settings,
important steps have to be made yet to arrive at a reliable and
valid implementation of physiological measures [52, 68, 73].
Recent innovations and advancements in wearable technol-
ogy have led to low-cost, easy-to-wear, and energy-efficient
devices to measure, for example, skin conductance and heart
rate at the wrist (e.g., Empatica E4, Chillband+) [21, 37] or
electrical activity at the human scalp and around the eyes
(e.g., Emotiv EPOC+, Muse, imec EEG headset, imec EOG
glasses) [20, 55, 71, 72]. Because of these improvements
in usability, efficiency and cost, it is expected that these de-
vices will convince companies of their potential, making
applied cognitive load measurement very prominent in the
future [7, 24, 28, 33, 43]. Nevertheless, these devices will
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need to be wearable and unobtrusive, while guaranteeing a
reliable, valid and sensitive monitoring of cognitive load in
real-time [52].
1.2. Toward physiological cognitive load

measurement during assembly work
In the fields of cognitive psychology and neuroscience,

researchers have been studying the brain mechanisms and
physiological correlates of cognitive load in detail for over
40 years (for a review, see [3, 12, 15]). Several physiological
measures have been identified as markers of cognitive load,
such as electrical activity of the brain as measured by elec-
troencephalography (EEG) [3], eye blink metrics, pupil size
and eye movement microsaccade magnitude [44, 49]. EEG
measures are particularly interesting to the ergonomics and
human factors field, due to technological advancements in
mobile EEG-systems and dry electrode systems that do not
require conductive gel [17, 54].

Especially appealing to applied research is spectral anal-
ysis of the EEG signal, since there is no need for trial repeti-
tions or an explicit experimental paradigm. Specifically, the
human EEG-signal consists of a sum of neural oscillations
at different frequencies [6]. Spectral analysis decomposes
the EEG signal into its different frequency components and
computes power (reflecting amplitude of the oscillations) at
each of these frequencies. Frequencies can then be binned
into frequency bands, each of which has its functional signif-
icance, based on empirical research [3]. For example, high
power in the traditional broad alpha frequency band (8 – 12
Hz) indicates a psychological state of relaxation. Therefore,
alpha suppression (decreased power in the alpha band) is an
important marker of cognitive load [3, 35, 42, 62, 63, 64].

If one distinguishes more narrow frequency bands in the
alpha range, as preferred by Klimesch and colleagues [42],
lower-frequency alpha bands (i.e., lower1 between 6–8 Hz
and lower2 between 8–10 Hz) are more sensitive to general
task demands (e.g., attentional processes or cognitive de-
mands) and the upper-frequency alpha band (upper between
10–12 Hz) reflects more specific task demands (e.g., semantic
memory processes or visuospatial factors) [22, 25, 27, 42, 64].
To a lesser degree, increased power in the theta frequency
band (4-7 Hz) can also be related to high cognitive load [42].

Another physiological measure that is interesting for cog-
nitive load monitoring at the workplace is EOG (i.e., elec-
trooculography), which allows for eye blinks to be detected
in a non-obtrusive way through mobile eye-tracking methods.
Here, a reduced amount of blinks has been associated with
high cognitive load, likely because the act of blinking is unde-
sirable in this state, as it impedes visual information process-
ing and the operator needs to stay concentrated [9, 46, 63, 74].

In general, only a small amount of studies deploying EEG
or EOG measurements have tried to make the connection with
cognitive load in a real-life industrial work context. Previous
work mostly used very basic computerised tasks, in which for
example mental calculations ( [44] or memorization of digits
and letters (cf., an n-back task in [38]) were used to experi-
mentally induce different levels of cognitive load. By doing

so, first, researchers were able to study the effect of cogni-
tive load on isolated cognitive processes (attention, memory,
executive control) while, secondly, keeping confounding vari-
ables under control. For example, motion artefacts, often
related to muscle activity of the body and the face, can have a
detrimental effect on the signal-to-noise ratio in physiological
signals [48]. Altogether, these two criteria, covered by the
bulk of previous research, are part of the crucial first steps
towards measurement validation.

However, the next pivotal research steps need to translate
these criteria for applied validation. First, although basic
cognitive tasks are excellent to pinpoint isolated cognitive
processes, they are not completely representative of the indus-
trial tasks that the future flexible and agile industrial worker
will need to perform. Second, confounding variables such as
motion artefacts or ambient noise artefacts are inevitable in
a real industrial work setting and preprocessing protocols to
deal with them should be as efficient, practical and as limited
as possible [29]. For these two reasons, more ecologically
valid research is now highly needed to incrementally bridge
the gap between highly controlled laboratory research and
fully applied industrial cognitive load measurement.

Currently, there is some inspiring work available on using
EEG and EOG to measure cognitive load with more ecologi-
cally valid tasks, but limited to seated operators performing
robot-assisted surgery [31], driving a car [9] or, for example,
working in an air traffic control room [4]. Less research is
available for manufacturing contexts. The majority of stud-
ies in this area only investigated how to accurately question
people about their cognitive load using self-report question-
naires and in-depth interviews. An important exception is a
study by Kosch and colleagues [43], in which participants
performed an assembly task (i.e., building constructions with
Lego bricks) with two different assisting systems (i.e., pa-
per instructions and in-situ projections indicating where a
part needs to come). By looking at changes in the EEG fre-
quency bands, they found indications that in-situ projections
reduced working memory and cognitive load compared to
paper instructions.

Hence, the current study wanted to take the next crucial
step in applied measurement validation by, first, implement-
ing a more ecologically valid task (requiring visuo-spatial
information processing and information storage skills similar
to performance on assembly tasks), while simulating a real-
life industrial assembly context. Secondly, during execution
of this task some motion with the hands and head was allowed
in order to approach a more realistic (and hence practical)
manufacturing scenario. To obtain high quality EEG data
with a standard (not-wearable) EEG system, however, this
study was still conducted in a controlled laboratory setting.
1.3. Addressing cognitive overload

Another aspect that has often been overlooked in mea-
surement validation research, is empirically investigating the
cognitive load ‘redlines’ or thresholds, namely cognitive un-
derload and overload. According to the framework of Young
and colleagues [81], cognitive overload arises when the in-
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congruency between mental resources spent and the required
task demands becomes too large. Some incongruency can
be positive, challenging the worker to maintain performance
levels and creating a potential state of flow (cf. flow the-
ory, [13]), but a large incongruency can lead to a steep drop
in performance and negative appraisals of the situation (e.g.,
threatening) [53, 79, 81]. In an overload state, the worker
could be unable to cope with this incongruency, exhausting
his or her cognitive effort supply, and enduring a subjective
experience of emotional load (e.g., feelings of distress and
frustration) [50, 70]. Extending previous work, the current
study hence wants to make a clear distinction between an
optimal state of high cognitive load, in which the worker is
potentially challenged according to his or her level of skills,
and a suboptimal state of cognitive overload, in which the
task demands exceed the worker’s mental resources and the
worker is at risk of dropping out.

To this extent, a manual assembly task was chosen to
create an overload condition (i.e., Tangram puzzle task, as
described in [73]). Tangram puzzles are challenging dissec-
tion puzzles that consist of seven individual wooden pieces
in different sizes and forms. The individual pieces should
be put together in a certain way (without overlapping), in
order to form a required shape represented in an example
figure that is put in front of the participants. A pilot study
was conducted in order to tune the difficulty levels of the
task, as many possible shapes can be formed. As such, the
difficulty of the puzzle can be manipulated by the extent to
which individual pieces are recognizable in the example fig-
ure or if only contours (outlines) are shown. For example, in
the overload condition, all puzzles have multiple touching
sides, which makes it very difficult to find out how the puzzle
should be arranged.

Participants were asked to solve these puzzles without
knowing the difficulty level in advance and had to solve as
many puzzles as possible within a specified time window
(i.e., 10 minutes). In addition, overload was created by letting
participants perform on a secondary task, (i.e., memorizing
digits and pictures) with task-irrelevant factory sounds play-
ing on the background. Taken together, the main goal of the
present study was to explore whether physiological signals
such as EEG and EOG can distinguish not only between a
low and a high level of cognitive load, but also between a
state of high load and overload.

2. Method
2.1. Participants

For this study, 46 participants between 19 and 40 years
old (25 female, 21 male, Mage = 25.8, SDage = 4.19) were
recruited via an online questionnaire. There was a required
variability in participants’ educational background (ranging
from secondary education to a PhD as highest degree) and
visual-spatial intelligence. The latter was measured through
an adapted version of the Revised Minnesota Paper Form
Board Test [61]: only 20 of the total of 64 questions were in-
cluded but they still covered the entire difficulty range. A time

limit of 5 minutes was set and a correction for guessing (i.e.,
-1/4 for every incorrect answer) was applied. This research
got the approval of the ethics committee of the University of
Ghent.
2.2. Task

To make the study relatable to real-life assembly work,
the task used in the conditions included both a motor compo-
nent and an intellectual component: putting a puzzle together
and remembering stimuli. The Tangram puzzle consisted
of seven seperate wooden blocks with different geometrical
shapes. Participants had 10 minutes in each condition to solve
as many puzzles as possible. Based on an example figure of
the presented puzzle printed on paper in front of them, the
participant was required to recreate the puzzle correctly and
as fast as possible. Three different conditions were presented,
which were created to induce three different levels of cogni-
tive load (i.e., low, high, and overload). This was done by
adapting specific features of the task: (1) introducing differ-
ent levels of difficulty of the task, (2) adding a supplementary
working memory task, and (3) playing task-irrelevant noise.

First, to introduce different difficulty levels of the task,
the image of the example figure printed on paper was manip-
ulated. In the low load condition, the contours of each of the
seven pieces of the Tangram puzzle were visible, making it
quite easy to put the puzzle together. In the high load condi-
tion, the example figure of the puzzles consisted of 3 pairs
of 2 pieces touching each other (with only the surrounding
contour of the pair visible) and one separate piece, making
it already harder to put these puzzles together. In the over-
load condition, all seven pieces of the example figure touched
each other, which created only one surrounding contour. This
made it very challenging to recreate the correct assembly as
the separate pieces were not recognizable. It was expected
that the majority of the participants would not succeed in
solving many puzzles in the overload condition. In total, two
different versions were created for each load condition (by
randomizing the order of the puzzles), which were counter-
balanced between participants. Participants were also asked
about their previous experience with Tangram puzzles on a
7-point Likert scale. Most participants (67 percent) indicated
to be rather inexperienced, while 11 percent of the partic-
ipants chose the neutral option and 22 percent reported to
have had some amount of experience with Tangram puzzles.

Second, to engage the participants’ working memory, they
were asked to remember visual stimuli while simultaneously
performing the assembly task. After each load condition
participants wrote down the stimuli they remembered. Two
different kinds of stimuli were alternately presented: pictures
representing a tool that is typically used in industry (e.g., a
safety helmet, a conveyor belt, or a drilling machine) and
a two-digit number. The number of stimuli that had to be
remembered differed for each load condition: two pictures
and two numbers in the low load condition, three pictures
and three numbers in the high load condition and finally,
five pictures and five numbers in the overload condition. In
total, two different combinations were created for each load
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Figure 1: Design and procedure of the experiment. Order of load conditions is counterbal-
anced between participants (i.e., 6 possible orders).

condition (by randomizing the order of the visual stimuli),
which were counterbalanced between participants.

Third, cognitive load was induced by presenting task-
irrelevant auditory noise in the background. For general-
ization to real-life assembly work in an industrial setting,
ambient factory floor sounds were played.
2.3. Research design and procedure

In this experiment, a within-subjects design was used in
which each participant was exposed to each of the three exper-
imental conditions (i.e., three levels of cognitive load: a low,
high, and overload level). The length of each experimental
condition was kept equal (i.e., 10 minutes) and a counterbal-
anced design, in which participants were attributed to one out
of 6 possible orders (e.g., high - low - overload), was used to
exclude possible learning effects and order effects.

First, the participant filled in the informed consent and
performed a pretest measuring their spatial ability. Next, the
testing equipment was prepared (i.e., EEG set, external elec-
trodes on mastoids and around the eyes). After the set-up,
each participant got detailed instructions about the experi-
mental procedure and could try solving two puzzles in a test
trial. Before starting the first experimental phase, a resting
state measurement was conducted as a baseline. Participants
were asked to relax, not move too much and avoid excessive
eye movements. They were asked to keep their eyes open the
first 2 minutes, and the close their eyes for the last 2 minutes.
Next, the main experimental phase started, in which partici-
pants spent 10 minutes solving puzzles in each load condition.
After each load condition there was a pause in which they

completed a one-page questionnaire gauging experienced
load, affective states, and memory of visual stimuli. The final
step consisted of a participant debriefing and the clean-up.
Figure 1 shows the experimental setting when performing
the Tangram task.
2.4. Measurements

In the present experiment there were three types of out-
comes for each load condition: the self-reported experience of
cognitive load, task performance (Tangram puzzles and mem-
ory) and physiological measurements (EEG and EOG sig-
nals). Repeated measures ANOVA models were performed
with load condition as a within subjects factor. Degrees of
freedom were corrected using Greenhouse-Geisser estimates
when Mauchly’s test indicated that the assumption of spheric-
ity had been violated, and partial eta squared effect sizes
are reported. Pairwise comparisons between load conditions
were conducted with holm-adjusted p values and Cohen’s d
effect sizes are reported.

Inspired on the NASA-TLX [32], Matthews et al. [50],
and Van Acker et al. [69], cognitive load was gauged after
every condition with a 7-point Likert scale ("I invested ... in
the tasks I just completed"), ranging from very little mental
effort to very much mental effort. Also stress and frustration
levels were reported on a 7-point Likert scale ("While solving
these tasks, I felt stressed / I felt frustrated"), ranging from
totally disagree to totally agree. Finally, two constructs were
inquired for the manipulation check on a 7-point Likert scale
ranging from totally disagree to totally agree, being perceived
task complexity ("The tasks were complex") and challenge
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("I think the tasks were challenging"). Task performance was
measured by looking at the number and percentage of cor-
rectly assembled puzzles and the percentage of remembered
visual stimuli during the different load conditions.

Figure 2: EEG (a) and EOG (b) channel locations.

With regard to physiological measurements, EEG and
EOG signals were acquired with a Biosemi ActiveTwo mea-
surement system (BioSemi, Amsterdam, Netherlands). EEG
signals were obtained by using 64 scalp electrodes attached to
a standard international 10–20 system cap (Figure 2a). Two
additional external electrodes were attached to the left and
right mastoids, which were used for offline re-referencing.
EOG signals were collected through a bipolar channel of
2 external electrodes vertically positioned over the left eye
(Figure 2b). EEG and EOG signals were both amplified and
digitised with a sampling rate of 1024 Hz. Event triggers
were sent for each condition through a serial port via the
open-source application Psychopy [58].

EEG and EOG analysis was performed in Python with
open-source Python software MNE and custom-made code [29].
The EEG data was preprocessed and normalised in order to
eliminate confounding variables such as big movements or
electrical noise, and to account for individual differences. Fi-
nally, down-sampling the data to 100 Hz was done to aid the
processing speed of any further analysis. Two participants
were eliminated because of technical issues and data loss
during the experiment. For the spectral power analysis of
the EEG data, three individual narrow alpha bands (lower1,
lower2, and upper alpha) were created for every participant
based on the local maximum in the eyes closed baseline condi-
tion. Average absolute alpha power was calculated for every
experimental condition (averaged for a selection of relevant
parietal electrodes: P1, P2, POz, CPz and Pz). Finally, the
EOG data was also preprocessed and blink events were de-
tected using MNE-based algorithms. The blink rate (count
of blinks per minute) was calculated for every experimental
condition. For a more detailed outline of this analysis you
can access the data analysis description and scripts via this
link https://bit.ly/3lxTksI.

3. Results
3.1. Self-reported experience

The self-reported experience of cognitive load was ana-
lyzed via a repeated measures ANOVA with the factor load
manipulation. The analysis confirmed that the three load
conditions significantly differed in reported mental invest-
ment, F(1.70,76.41) = 104.21, p <.001, 𝜂p2 = .70 (Figure 3).
Controlling for gender, education level, age or spatial abil-
ity showed no statistically significant impact, all p’s >.05.
Post-hoc analysis revealed a significant difference of reported
mental investment scores between low and high cognitive
load t = -8.99, p <.001, d = -1.33, and high cognitive load
and overload t = -5.28, p <.001, d = -.78. Similarly, the anal-
ysis for the experienced task complexity F(2,90) = 262.87,
p <.001, 𝜂p2 = .85, and task challenge F(2,90) = 114.49,
p <.001, 𝜂p2 = .72, also indicated that the task design suc-
ceeded in inducing three definite states of cognitive load.
Consistently, participants reported a greater subjective ex-
perience of task complexity and challenge for the overload
condition compared to the other load conditions. Finally, the
results for the scale items inquiring stress, F(1.27,77.43) =
55.01, p <.001, 𝜂p2 = .55, and frustration, F(2,90) = 95.33,
p <.001, 𝜂p2 = .68, also indicated that participants reported
greater scores on these affective measures in the higher load
conditions.

Figure 3: Mental investment score as a function of load manip-
ulation. The more load, the more mental investment needed.

3.2. Task performance
The model also controlled for the statistically significant

effect of spatial ability skills, F(2,88) = 4.52, p = .01, 𝜂p2
= .09. As expected, the number of correctly assembled puz-
zles significantly differed across load conditions, F(2,88) =
581.23, p <.001, 𝜂p2 = .93 (Figure 4). With increasing load,
less puzzles were assembled correctly. During low, high and
overload condition, participants correctly assembled respec-
tively 33.13 (SD = 6.84), 12.11 (SD = 7.80) and 0.98 (SD =
1.34) Tangram puzzles on average. Controlling for gender,
education level, or age showed no statistically significant im-
pact, all p’s >.05. Similarly, the proportion of remembered
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stimuli decreased with increasing cognitive load, F(2,90) =
51.68, p <.001, 𝜂p2 = .54. Participants remembered 89.67%
of the visual stimuli (SD = 18.69) in the low load condition,
71.74% (SD = 24.31) in the high condition, and 50.65% (SD
= 22.45) in the overload condition. Additional correlation
analyses showed that the higher participants scored on the
spatial intelligence test, r = 0.47, p = 0.001, the more puz-
zles they were able to solve. There was no relation between
having experience with solving Tangram puzzles and task
performance, r = 0.14, p = 0.35.

Figure 4: Number of correctly assembled puzzles as a function
of load. The more load, the less puzzles were correctly solved.

3.3. Physiological measurements
3.3.1. EEG

A two-way repeated measures ANOVA was conducted
to examine the effect of the IAF band (lower1, lower2, up-
per) and the load manipulation (low, high and overload)
on average alpha activity. The main effects of IAF band,
F(1.16,50.03) = 44.35, p <.001, 𝜂p2 = .51, and load manip-
ulation, F(2,86) = 8.73, p <.001, 𝜂p2 = .17, were signifi-
cant, as was their interaction effect, F(2.53,108.56) = 6.60, p
<.001, 𝜂p2 = .13 (Figure 5). Post-hoc analysis revealed a sig-
nificant difference between low and high cognitive load, and
also between high cognitive load and overload, but only for
the lower1 IAF. However, there was no significant difference
for the lower2 and upper IAF between low and high cognitive
load, nor between high cognitive load and overload (Table1).
Controlling for gender, education level, age or spatial ability
showed no statistically significant impact, all p’s >.05.
3.3.2. EOG

With respect to blink rate, calculated as the number of
blinks per minute, the model also controlled for the (marginally)
statistically significant effect of spatial ability skills, F(2,86)
= 3.10, p = .05, 𝜂p2 = .07. Still, significant differences be-
tween the load conditions were found, F(2,86) = 20.48, p
<.001, 𝜂p2 = .32. During low, high and overload, participants
blinked on average respectively 30.71 (SD = 3.40), 20.92 (SD
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Figure 5: Individualized alpha power measured in power spec-
tral density (𝑉 2∕𝐻𝑧) split out for lower1 [IAF-4Hz, IAF-2Hz],
lower2 [IAF-2Hz, IAF], and upper alpha [IAF, IAF+ 2Hz] as
a function of load manipulation (error bars reflecting standard
error). The mean IAF peak for all subjects was 10.06Hz (SD
= 0.90Hz). Absolute alpha band power within these ranges
was computed by averaging over the entire 10 minutes for
every condition. The more load, the less alpha power could be
observed.

Table 1
Post-hoc contrasts EEG

IAF Load condition 𝒕 df 𝒑𝒉𝒐𝒍𝒎 Cohen’s 𝒅

lower1 low vs. high 2.85 43 .035 0.43
high vs. overload 3.26 43 .012 0.49

lower2 low vs. high 1.38 43 .525 0.21
high vs. overload 1.71 43 .376 0.26

upper low vs. high 0.68 43 1.000 0.10
high vs. overload 1.15 43 1.000 0.17

Table 2
Post-hoc contrasts EOG

Load condition 𝒕 df 𝒑𝒉𝒐𝒍𝒎 Cohen’s 𝒅

high vs. low -4.64 43 .001 -0.69
high vs. overload .92 43 .362 0.14

= 13.96) and 19.16 (SD = 12.32) times, showing a decrease
with increasing load (Figure 6). Post-hoc tests revealed less
blinks per minute in the high load condition when compared
to the low load condition, but not when comparing with the
overload condition. Discriminating between high load and
overload seems difficult with the feature blink rate (Table2).
Controlling for gender, education level or age showed no
statistically significant impact, all p’s >.05.
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Figure 6: Blink rate (blinks per minute) as a function of load
manipulation (error bars reflecting standard error). The more
load, the less blinks could be observed.

3.3.3. Correlation analysis
The correlation analysis between all outcome measures

(i.e., EEG, EOG, subjective and behavioral measures) re-
vealed no statistically significant new insights. All results
can be found in the link mentioned in the method section.

4. Discussion
With regard to cognitive ergonomics, it is most likely

that assembly work in industrial settings will become cogni-
tively challenging, increasing the need for human assembly
workers to adapt quickly to new and more complex assembly
procedures. More adaptation and complexity can increase the
cognitive workload of the operator, who is often already under
quite some time pressure and working in suboptimal condi-
tions (e.g., environmental noise, distractions in surroundings),
increasing the chances of also experiencing ’cognitive over-
load’. Although several studies have already tried to measure
cognitive load with psychophysiological measures such as
electroencephalographic (EEG, measuring brain activity) and
electrooculographic (EOG, measuring eye movements) sig-
nals, the cognitive ergonomics of cognitive overload have
been the subject of significantly less research efforts. In this
study, the researchers therefore designed a lab experiment to
collect EEG and EOG data of a large number of participants
(N=46) performing an assembly task that was created to in-
duce three levels of cognitive load (low load, high load and
overload). In addition to using psychophysiological sensor
data (EEG and EOG), performance metrics and subjective
reports of experienced mental investment, task complexity,
challenge, frustration and stress were also taken into account
(and thus considering cognitive load as a multidimensional
construct). The different levels of cognitive load were experi-
mentally manipulated by creating different complexity levels

in a dual task paradigm, which included Tangram puzzles
and memorization tasks (i.e., remembering visual stimuli).
This task was chosen to represent a typical ’assembly’ (re-
quiring visuo-spatial information processing and information
storage skills similar to performance on assembly tasks in
a manufacturing setting), as previous studies used more tra-
ditional paradigms with basic or static computerised tasks.
Also, background stimuli (e.g. factory noises) were added to
improve ecological validity.
4.1. Measuring overload

First, a manipulation check was performed to find out
whether the conditions were able to successfully induce dif-
ferent levels of cognitive load and, most importantly, create
an overload condition. An increase in cognitive load from
low over high, to overload was reflected both in self-reported
ratings of investment in mental resources and in the resulting
task performance. The majority of the participants were not
able to succeed in the dual task of the overload condition, as
almost none of the puzzles were assembled and only half of
the presented visual stimuli were remembered. Additionally,
they reported greater experienced task complexity during this
overload condition (i.e., almost 2 points higher than the high
load condition, and very near to the most extreme part of
the scale range), which was also reflected in higher levels of
self-reported challenge, frustration and stress.

Second, the researchers were interested in whether spe-
cific EEG and EOG features could be used to successfully
discriminate between (high) load and overload. More specif-
ically, this study goes beyond the traditional approach of
selecting fixed frequency bands in the frequency domain
by investigating different bands of ’individualized alpha fre-
quency’ or IAF, resulting in detailed insights in specific fre-
quency effects that are imperceptible when looking at the
broad alpha range [22, 42]. The results showed clearly that
this method of individualized alpha frequency can be used
to differentiate between different levels of cognitive load
and overload, especially when focusing on the lower1 alpha
power. This lower-frequency alpha band (i.e., approximately
between 6–8 Hz) is reported to be more sensitive to gen-
eral task demands (e.g., attentional processes or cognitive
demands) [22, 25, 27, 42, 64]. Importantly, even though
a difference in IAF was found between experimental load
conditions, the small to medium effect sizes in the pairwise
comparisons are in line with previous research that found the
change in the alpha band frequency between different levels
of cognitive load to be subtle [3, 11, 26, 39, 42, 43], partic-
ularly when compared to the difference between relaxation
(or baseline activity) and effortful behavior (or experimental
conditions).

Third, with regard to the EOG measurements, this study
confirmed that blink rate can also be an efficient marker for
differentiating between several levels of cognitive load. This
is in line with previous studies showing that higher cognitive
load leads to a decrease in blink rate [2, 9, 34, 46, 63, 74].
However, there was no significant difference with the in-
between condition comparison of high load vs. overload.
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This finding reiterates the conclusions of Ahmad and col-
leagues [2], who demonstrated that blink rate might not be
sensitive enough to differentiate between more fine fluctua-
tions in cognitive load.
4.2. Interpretation and implications

Hence, combining the psychophysiological findings, one
can conclude that discriminating between a low and a high
level of load (the way it has been in done in most previous
research) is quite straightforward but discriminating between
high load and overload is much more challenging, and the
difference between the two in psychophysiological measures
is very small (reflected in our small effect size for lower
alpha activity, and no effect for EOG). Unfortunately, corre-
lation analyses with the subjective and behavioral measures
did not give us additional insights in this. However, a pos-
sible explanation is that feelings of despair and frustration
could have made the participants give up along the way in
the overload condition. Consequently, only a minimum of
mental resources were invested and performance was not at
the highest level when completing the task, due to a decrease
in motivation [75, 76]. Indeed, some participants confirmed
that the puzzles were too difficult and believed they were
actually unsolvable, which was reflected in nervous laughs
and freeze reactions (see behavioral accounts of cognitive
overload; [1]). Giving up could mean a sharp decrease in
cognitive load, although this is contrary to what was observed
in the results for subjective reports, performance metrics or
lower1 alpha EEG data. Interestingly enough, in the actual
work context, these effects are likely reflected by dropout, bad
product quality and errors because operators are becoming ap-
athetic to their performance [51, 70]. To conclude, it is very
hard to experimentally create a level of cognitive overload
that comes close to the real-life experience. More research is
needed to help draw the fine line between a suboptimal level
of cognitive load (i.e., a very high level) and an overload state
where the worker cannot deal with the situation anymore.
4.3. Limitations and future work

Although the researchers believe that this study is already
a significant improvement in terms of ecological validity or
generalizability to the real-life context (i.e., with a motor
assembly task where participants needed to cope with the
dual task paradigm and task-irrelevant noises), it is of course
important to shift the research focus to workplace and indus-
trial settings. Indeed, if this line of scrutiny wants to arrive at
investigating ’cognition in the wild’ [30], taking the step to-
wards the so-called ’Evidence Readiness Level 8’ [36], where
findings are investigated and replicated in representative en-
vironments, is imperative. In the end, however, our findings
were obtained in a controlled lab context, which represents
a limitation to our study. Still, given the complexity of us-
ing electrophysiological measurement methods, and in our
opinion lower signal quality of mobile devices, it is also im-
portant to first fully understand what can be measured in the
controlled context of a lab. Our experiment was supposed to
be an intermediate step to a fully ecologically valid field test
in a manufacturing setting, but future work should include

measurement setups that accommodate real assembly tasks
(that require even more flexibility and multitasking) and mo-
bile dry electrode and EOG systems. This way, more body
movement is allowed, hence closing the gap even further.
Future work could also focus on even more relevant assembly
tasks or 3D-puzzles, and finding better ways for filtering out
motion artefacts.

A second limitation of our study is that the conditions
were relatively short time frames. Evidently, workers per-
form assemblies over longer time windows, so that cognitive
fatigue effects or cognitive restoration might interact with
cognitive load measurements. On the other hand, implemen-
tation in the field will require more fine-grained continuous
indications of load levels, that is, addressing shorter time
windows than 10 minutes. Also interpersonal differences in
learning or personality (e.g., neuroticism) might affect load
and overload over longer work time windows. The same goes
for very specific contextual factors at the level of the work
station or the assembly per se. Future work could therefore ex-
tend cross-sectional research with longer term repeated mea-
sures research accounting for intra-individual variations [23],
caused by interpersonal differences or contextual factors. In
doing so, such approaches can make the proposed cognitive
load measurement protocol more robust, eventually tailoring
protocols to the individual and contextual level, allowing for
a more fine-grained reliable continuous measurement. In gen-
eral, one could argue that using more than one physiological
marker (i.e., a multidimensional approach) is beneficial for
the detection and classification of different levels of cognitive
load [15, 73]. In fact, machine learning algorithms that use
the input from heart rate, eye-tracking and EEG sensors can
lead to classification rates of around 90% [2]. Thus, future
research that aims to distinguish between cognitive load and
overload levels should incorporate an even wider sample of
sensors.

The researchers think assessment via physiological sig-
nals is only one part of the equation. The current findings
and the use of sensor data are useful for the first assessment
or initial detection of overload. This way, work planners and
manufacturing engineers can gain more thorough explana-
tory insights into the cognitive processes triggered by spe-
cific cognitive load antecedents such as task complexity, task
switching, instruction formats, or for example, human-cobot
communication [57, 65]. Equally, future smart manufactur-
ing systems could automatically adapt production procedures
or instructions to the level of cognitive load measured through
real-time EEG and EOG. In so doing, the presentation of infor-
mation and materials in the smart manufacturing environment
can be redesigned, assemblies can be made more intuitive,
or smart adaptive technologies such as AR-instructions or
cobots can be implied to assist the operator in a more cogni-
tively optimal way [16, 45, 47]. Optimizing cognitive load
through smart measurement integration can hence foster em-
ployees’ mental wellbeing and personal efficacy, eventually
transforming the future operator into a flourishing knowledge
worker. If not, cognitive overload caused by the very same
smart manufacturing environment could contrarily lead to
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errors or safety hazards, or to detrimental effects on worker
motivation and mental and physical health [18].

5. Conclusion
The results from the current study encourage the measure-

ment and evaluation of EEG and EOG features for estimating
cognitive (over)load in, at least, controlled lab settings al-
lowing for more ecologically valid cognitive task demands
and motion envelopes. The results from the current study
validated lower alpha power activity as a promising marker
for discriminating between high load and overload, while the
EOG marker (i.e. blink rate) was not sensitive enough.
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