
Polynomial Interpretations as a Basis

for Termination Analysis of Logic Programs

Manh Thang Nguyen, Danny De Schreye
{ManhThang.Nguyen, Danny.DeSchreye}@cs.kuleuven.ac.be

Department of Computer Science, K.U.Leuven
Celestijnenlaan 200A, B-3001, Heverlee, Belgium

Abstract. This paper introduces a new technique for termination anal-
ysis of definite logic programs based on polynomial interpretations. The
principle of this technique is to map each function and predicate symbol
to a polynomial over some domain of natural numbers, like it has been
done in proving termination of term rewriting systems. Such polynomial
interpretations can be seen as a direct generalisation of the traditional
techniques in termination analysis of LPs, where (semi-) linear norms
and level mappings are used. Our extension generalises these to arbitrary
polynomials. We extend a number of standard concepts and results on
termination analysis to the context of polynomial interpretations. We
propose a constraint based approach for automatically generating poly-
nomial interpretations that satisfy termination conditions.
Keywords: Termination analysis, acceptability, polynomial interpreta-
tions.

1 Introduction

In the last 20 years, the work on termination analysis has been most active for
declarative programming languages, with an emphasis on two specific paradigms:
logic programming (LP) and term rewriting systems (TRSs). In both areas, the
work has been extensive and successful, with many powerful techniques devel-
oped and automated tools for these techniques available. However, termination
analysis research has evolved very independently for these two paradigms. This
has led to two collections of techniques and tools that co-exist without a reason-
able level of cross-fertilization between them, nor an acceptable understanding
of the portability of these techniques from one paradigm to the other.

Independent of the paradigm, almost every termination analysis is based on
a mapping from computational states to some well-founded ordered set. A main
difference between LP and TRS is the class of well-founded orderings that are
being considered as a basis for the termination proof. For LP, computational
states are usually mapped to a well-founded order on the natural numbers. This
is usually done through ”norms” and ”level mappings”, that respectively map
terms and atoms to corresponding natural numbers (see [4]). In TRSs, a con-
siderably wider range of well-ordered sets is being considered in the literature,

including polynomial interpretations, recursive and lexicographic path orders,
and Knuth-Bendix orders (see [7, 18]).

On a most general, methodological level, cross-fertilization of techniques
could be organized using two alternative routes: a transformational approach
or a direct approach. A disadvantage of the transformational approach is that
it somewhat obscures the intuitions regarding the termination argument. Often,
one is not merely interested in finding a proof of termination as such, but it is
more helpful if the proof - or the absence of it - helps us in better understanding
the behaviour of the program. Another disadvantage is that this approach is only
applicable to a class of transformable programs (i.e. well-moded logic programs).

In this paper we focus on a direct approach of porting techniques, in our case
from TRS to LP. Within this context, an initial result to allow porting of more
general orderings to the LP setting is presented in [5]. This work provides a new
termination condition for definite logic programs based on general term orders.
As such, it can be used as a framework in which different orderings considered
in TRSs could be ported to LP directly and be evaluated. The current paper
provides a first step in this study: the use of polynomial interpretations for LP
termination analysis. Using polynomial interpretations as a basis for ordering
terms in TRSs was first introduced by Lankford in [12]. It is currently one of the
best known and most widely used techniques in TRS termination analysis.

In this paper, we develop the approach within an LP context. We redefine
and extend several known concepts and results from LP termination analysis to
polynomial interpretations. We show how polynomial interpretations can be seen
as a direct generalisation of currently used techniques in LP termination based
on (semi-) linear norms and linear level-mappings. As one would expect, the gen-
eralisation is a move from linear polynomial functions to arbitrary polynomials,
while the concepts that link the two approaches are those of the “abstract norm”
and “abstract level mapping” [17]. The paper is organised as follows. In the next
section, we present some preliminaries. In section 3, we introduce basic defini-
tions of polynomial interpretations and show how this approach can be used to
prove termination with some examples. In section 4, we discuss the automation
of the approach. We end with a conclusion in section 5.

2 Preliminaries

2.1 Notations and Terminology

We assume familiarity with logic programming concepts and with the main re-
sults of logic programming [1, 13]. In the following, L denotes the language un-
derlying a definite logic program P . We use V arP , ConstP , FunP and PredP

to denote the set of variables, constant, function, and predicate symbols of L.
Given an atom A, rel(A) denotes the predicate occurring in A. Let p, q be pred-
icates occurring in the program P , we say that p refers to q if there is a clause
in P such that p is in its head and q is in its body. We say that p depends on q
if (p, q) is in the transitive, reflexive closure of the relation refer to. If p depends

on q and vice versa, p and q are called mutually recursive, denoted by pwq. Let
TermP and AtomP denote, respectively, the sets of all terms and atoms that can
be constructed from L. The extended Herbrand Universe UE

P , and the extended
Herbrand Base BE

P are the quotient sets of TermP , and AtomP modulo the
variant relation [9]. Given two expressions E and F (terms, atoms, n-tuples of
terms or n-tuples of atoms), we denote by mgu(E, F) their most general unifier.

In this paper, we focus our attention only on definite logic programs and
SLD-derivations where the left-to-right selection rule is used. Such derivations
are referred to as LD-derivations; the corresponding derivation tree as the LD-
tree. We say that a query Q LD-terminates for a program P , if the LD-tree for
Q∪P is finite (left-termination [13]).

2.2 Norms and Level Mappings

Definition 1 (norm, level mapping). A norm is a mapping ‖.‖ : UE
P→N. A

level-mapping is a mapping |.| : BE
P→N.

Several examples of norms can be found in literature [2]. One of the most com-
monly used norms is the list-length norm which maps lists to their lengths and
any other term to 0. Another frequently used norm is term-size which counts
the number of function symbols in the tree representation of a term.

Definition 2 (linear norm). [15] A norm ‖.‖ is a linear norm if it is recur-
sively defined by means of the following schema:

- ‖X‖ = 0 for any variable X,
- ‖f(t1, ..., tn)‖ = f0+

∑
i∈If

fi‖ti‖ where fi∈N and the index set If⊆{1, ..., n}

depend only on the n-ary function symbol f/n, n≥0.

2.3 Conditions for Termination w.r.t. General Orderings

A quasi-ordering on a set S is a reflexive and transitive binary relation � defined
on elements of S. We define the associated equivalence relation �� as s��t if
and only if s�t and t�s. If neither s�t, nor t�s we write ‖�. To each quasi-
ordering � on S, we can associate a strict ordering � on S as s�t if and only
if s�t and it is not the case that t�s. A strict ordering � is called well-founded
if there is no infinite sequence s0�s1�... with si∈S. Let T be a set such that
S⊆T . A quasi-ordering D defined on T is called a proper extension of � if

- t1�t2 implies t1Dt2 for all t1, t2∈S.
- t1�t2 implies t1Bt2 for all t1, t2∈S, where B is the strict ordering associated

with D.

We also need the following notion of a call set.

Definition 3 (call set). Let P be a program and S be a set of atomic queries.
The call set, Call(P, S), is the set of all atoms A, such that a variant of A is
the selected atom in some derivation for (P, Q), for some Q∈S and under the
left-to-right selection rule.

In practice, the query set S is specified as a call pattern. The set Call(P, S) can
be computed by using a type inference technique (e.g.[11]).

Definition 4 (order-acceptability w.r.t. a set). [5] Let S be a set of atomic
queries and P be a program. P is order-acceptable w.r.t. S if there exists a well-
founded ordering � such that

- for any A∈Call(P, S),
- for any clause A′←B1, ..., Bn, such that mgu(A, A′) = θ exists,
- for any atom Bi, such that rel(Bi)wrel(A),
- for any computed answer substitution σ for ←(B1, ..., Bi−1)θ:

A�Biθσ

The following theorem establishes the link between order-acceptability w.r.t. a
set and LD-termination of a program.

Theorem 1. [5] A program P LD-terminates under the left-to-right selection
rule for any query in S if and only if P is order-acceptable w.r.t. S.

Definition 5 (interargument relation). Let P be a program, p/n be a pred-
icate in P and � be an ordering on UE

P . An interargument relation for p is a
relation Rp = {(t1, ..., tn)|ti∈TermP ∧ ϕp(t1, ..., tn)}, where:

- ϕp(t1, ..., tn) is a formula in a disjunctive normal form,
- each conjunct in ϕp is either si�sj , si�sj , si��sj or si‖�sj , where si, sj

are constructed from t1, ..., tn by applying functors of P .

Rp is a valid interargument relation for p/n w.r.t. the ordering � if and only if
for every p(t1, ..., tn)∈AtomP : P |= p(t1, ..., tn) implies p(t1, ..., tn)∈Rp.

The concept of rigidity is also generalized to general orderings.

Definition 6 (rigidity). [5] A term or atom A∈UE
P ∪B

E
P is called rigid w.r.t.

a quasi-ordering � if ∀σ∈Subs, A��Aσ. In this case, � is said to be rigid on
A. A set of terms (or atoms) S is called rigid w.r.t. a quasi-ordering � if all its
elements are rigid w.r.t. �.

Example 1. The list [X |t] (X is a variable, t is a ground term) is rigid w.r.t. the
quasi-ordering � imposed by the list-length norm ‖.‖l, i.e. t1�t2 if and only if
‖t1‖l≥‖t2‖l, t1�t2 if and only if ‖t1‖l>‖t2‖l. For any substitution σ, ‖[X |t]σ‖l =
1+‖t‖l = ‖[X |t]‖l. Therefore, [X |t]σ��[X |t]. However, this list is not rigid w.r.t.
the quasi-ordering D imposed by the term-size norm ‖.‖t, i.e. t1Dt2 if and only
if ‖t1‖t≥‖t2‖t, t1Bt2 if and only if ‖t1‖t>‖t2‖t. For instance, with σ1 = {X/a1},
a1 is a constant, ‖[X |t]σ1‖t = 1 + ‖t‖t, while with σ2 = {X/[a1, a2]} a1, a2 are
constants, ‖[X |t]σ2‖t = 3 + ‖t‖t. That implies [X |t]σ2B[X |t]σ1. �

The following notion of rigid order-acceptability w.r.t. a set of atoms no longer
forces us to reason on Call(P, S). Instead, we only need to consider the rigidity
of the call set. Furthermore, the condition in this notion is fully at the clause
level and the condition on computed answer substitution is replaced by one on
valid interargument relations.

Definition 7 (rigid order-acceptability w.r.t. a set). [5] Let S be a set of
atomic queries and P be a program. Let � be a well-founded quasi-ordering on
UE

P and for each predicate p in P , let Rp be a valid interargument relation for p
w.r.t. �. P is rigid order-acceptable w.r.t. S if there exists a proper extension
D of � on UE

P ∪B
E
P , which is rigid on Call(P, S) such that

- for any clause H←B1, B2, ..., Bn,
- for any atom Bi in its body such that rel(Bi)wrel(H),
- for any substitution θ such that the arguments of the atoms in (B1, ..., Bi−1)θ

all satisfy their associated interargument relations Rrel(B1), ..., Rrel(Bi−1):

HθBBiθ

Theorem 2. [5] If P is rigid order-acceptable w.r.t. S, then P is order-acceptable
w.r.t. S.

The stated condition of rigid order-acceptability is sufficient for acceptability,
but is not necessary for it (see [5]).

3 Polynomial Interpretations in Logic Programming

Recall that our objective is to develop and discuss the basic definitions and
properties of polynomial interpretations, and apply them to prove termination
of a program. Here terms and atoms are mapped to polynomials, instead of
natural numbers. This will allow to solve a class of problems that the traditional
approach can not solve. To illustrate this point, consider the following program,
Der, that formulates rules for computing the repeated derivative of a function
in some variable u. This example was introduced in [5] (see also [8]).

Example 2 (Der).

d(der(u), 1).

d(der(A), 0) : −number(A).

d(der(X + Y), DX + DY) : −d(der(X), DX), d(der(Y), DY).

d(der(X ∗ Y), X ∗DY + Y ∗DX) : −d(der(X), DX), d(der(Y), DY).

d(der(der(X)), DDX) : −d(der(X), DX), d(der(DX), DDX).

We are interested in proving termination of this program w.r.t. the query set
S={d(t1, t2)|t1 is a ground term, and t2 is a free variable}. We consider the first
argument of d/2 as an input argument and the second as an output.

Doing this on the basis of a linear norm and level mapping is impossible. The
function symbol der/1 expresses a non-linear relation between the input and
output of the original derivative function. In particular, assume that there exists
such a linear norm ‖.‖ and level mapping |.| of general forms such that: ‖u‖ = 0,
‖t1 + t2‖ = f+

0 + f+
1 ‖t1‖+ f+

2 ‖t2‖, ‖t1 ∗ t2‖ = f∗
0 + f∗

1 ‖t1‖+ f∗
2 ‖t2‖, ‖der(t)‖ =

fd
0 + fd

1 ‖t‖, |d(t1, t2)| = d0 + d1‖t1‖+ d2‖t2‖, |number(t)| = n0 + n1‖t‖ where

t, t1, t2 are terms and f+
0 , f+

1 , f+
2 , f∗

0 , f∗
1 , f∗

2 , fd
0 , fd

1 , d0, d1, d2, n0 and n1 are
non-negative integers. Applying the general constraint based method in [6] shows
a contradiction: the system of inequalities that is set up from the acceptability
condition is unsolvable. A complete proof can be found in [14]. Of course this
only proves that one particular approach is unable to prove termination on the
basis of linear mappings. �

3.1 Polynomial Interpretations

Let N be the set of all natural numbers and A⊆N. We denote by P
A
V arP

the set of
all polynomials in V arP over A, with coefficients in N. The following definition
establishes an ordering on P

A
V arP

.

Definition 8 (polynomial ordering). Let P be a program and A⊆N. Let
P

A
V arP

be a set of all polynomials in V arP over A. For polynomials H, Q∈P
A
V arP

let X1, ..., Xn be the variables occurring in H or Q. We define an ordering ≥A

on P
A
V arP

as H≥AQ if and only if H −Q ≥ 0 for all instantiations a1, ..., an∈A
of X1, ..., Xn respectively. A strict ordering >A associated with ≥A is defined
as H >A Q if and only if H − Q>0 for all a1, ..., an∈A. If H − Q=0 for all
a1, ..., an∈A, we write H≤≥AQ. For any other cases, H‖≥A

Q.

We usually require that A is an infinite set. Under this condition, H≤≥AQ
if and only if the two polynomials are identical, denoted by H≡Q, i.e. all their
corresponding coefficients are equal.

Example 3. Let H , Q be two polynomials in V arP = {X1, X2, X3} over A such
that: H = 2X2

1 + 3X2X3 + 5X3 and Q = X2
1 + 3X2 + 2X3 + 4. We define a

function F (X1, X2, X3) = H −Q = X2
1 +3X2X3− 3X2 + 3X3− 4. Consider the

following cases:

- A = N\{0}. For all a1, a2, a3∈A, F (a1, a2, a3)≥0. Hence, H≥AQ.
- A = N\{0, 1}. For all a1, a2, a3∈A, F (a1, a2, a3)>0. Hence, H>AQ.
- A = N. For a1 = a2 = a3 = 0, F (a1, a2, a3) = −4<0. For a1 = a2 = a3 = 2,

F (a1, a2, a3) = 12>0. Hence, H‖≥A
Q. �

Theorem 3. Let A6=∅. The ordering >A on P
A
V arP

defined in definition 8 is a
well-founded ordering.

Proof. See [14].

Definition 9 (polynomial pre-interpretation).
A polynomial pre-interpretation J for a language of terms L consists of:

- a set of natural numbers A, A ⊆ N,
- an assignment that associates each n-ary function symbol f , n≥0, in L with

a polynomial Pf (Xf1
, ..., Xfm

) from Am to A, where the coefficients of the
polynomial Pf /m are in N and the index set If = {f1, ..., fm}⊆{1, ..., n} is
determined by f/n.

Note that each constant c in L can be considered an 0-ary function symbol
and is assigned to an element cI of A. Another issue is that the set A should be
closed under evaluating the polynomials, i.e. for all f∈FunP and a1, ..., an∈A,
Pf (a1, ..., an)∈A. This extra condition is required in the definition because of the
fact that terms are recursively defined from their subterms. Thus, when selecting
a polynomial pre-interpretation, we not only select an appropriate polynomial
associated with each function symbol but also an appropriate set A such that
the above closure property is guaranteed.

Definition 10 (polynomial norm). The polynomial norm associated with a
polynomial pre-interpretation J is a mapping ‖.‖J : TermP→P

A
V arP

which is
defined recursively as:

- ‖X‖J = X if X is a variable,
- ‖f(t1, ..., tn)‖J = Pf (‖tf1

‖J , ..., ‖tfm
‖J),

where Pf (X1, ..., Xm) and If = {f1, ..., fm} are the same as in the definition of
the polynomial pre-interpretation J .

Similarly, we define the notion of a polynomial interpretation that sets up an
abstract version of each predicate symbol.

Definition 11 (polynomial interpretation). A polynomial interpretation I
for a language L underlying a program P consists of a polynomial pre-interpretation
J for the language of terms defined by L extended by

- an assignment to each predicate symbol p/n, n≥0, in L of a polynomial
Pp(Xp1

, ..., Xpm
) from Am to A, where the coefficients of the polynomial

Pp/m are in N and the index set Ip = {p1, ..., pm}⊆{1, ..., n} is determined
by p/n.

Definition 12 (polynomial level-mapping). The polynomial level-mapping
associated with a polynomial interpretation I is a mapping |.|I : AtomP→P

A
V arP

which is defined as: |p(t1, ..., tn)|I = Pp(‖tp1
‖J , ..., ‖tpm

‖J) where Pp(X1, ..., Xm)
and Ip = {p1, ..., pm} are as in the definition of the polynomial interpretation I.

For each term t and atom A, we denote by Pt = ‖t‖J and PA = |A|I as the
polynomial interpretations of respectively t and A in I .

Example 4 (Dist). Consider the following distributive program Dist. This exam-
ple was introduced in [5] (see also [18]):

dist(x, x).

dist(x ∗ x, x ∗ x).

dist(X + Y, U + V) : −dist(X, U), dist(Y, V). (1)

dist(X ∗ (Y + Z), T) : −dist(X ∗ Y + X ∗ Z, T). (2)

dist((X + Y) ∗Z, T) : −dist(X ∗ Z + Y ∗ Z, T). (3)

Let I be a polynomial interpretation that consists of a set A⊆N, an assign-
ment that associates the function symbol ∗/2 with the polynomial P∗ = X1∗X2,
the function symbol +/2 with the polynomial P+ = X1 +X2 +1, the constant x
with a constant cx∈A, and an assignment that associates the predicate symbol
dist/2 with the polynomial Pdist = X , where the variable X corresponds to
the first argument position of dist/2. The polynomial interpretation of the atom
A = dist(U ∗(X+Y), T) in I is: PA= |dist(U ∗(X+Y), T))|I = ‖U ∗(X+Y)‖J =
P∗(‖U‖J , ‖X +Y ‖J) = P∗(‖U‖J , P+(‖X‖J , ‖Y ‖J)) = ‖U‖J ∗(‖X‖J +‖Y ‖J +1)
= U ∗ (X + Y + 1). �

We define a quasi-ordering on UE
P ∪BE

P imposed by the ordering >A on P
A
V arP

as follows:

Definition 13 (ordering on terms and atoms). Let P be a program and I
be a polynomial interpretation. We define �I a quasi-ordering on UE

P such that:

- t�Is if and only if Pt >A Ps for any t, s∈UE
P ,

- t��Is if and only if Pt≤≥APs for any t, s∈UE
P ,

and DI a proper extension of �I on UE
P ∪BE

P such that:

- BBIC if and only if PB >A PC for any B, C∈BE
P ,

- BEDIC if and only if PB≤≥APC for any B, C∈BE
P ,

where Pt, Ps, PB , PC are polynomial interpretations of t, s, B and C.

Theorem 4. The strict orderings �I and BI are well-founded orderings on UE
P

and UE
P ∪B

E
P respectively.

Integrated with definition 4 and theorem 1 we obtain:

Proposition 1. Let P be a program and S be a set of atomic queries. If there
exists a polynomial interpretation I such that

- for any A∈Call(P, S),
- for any clause A′←B1, ..., Bn in P , such that mgu(A, A′) = θ exists,
- for any atom Bi, such that rel(Bi)wrel(A),
- for any computed answer substitution σ for ←(B1, ..., Bi−1)θ:

PA >A PBiθσ

where PA denotes the polynomial interpretation of the atom A,

then P left-terminates w.r.t. S.

Example 5. Reconsider example 4. We prove termination of the program with
the following set of queries S = {dist(t1, t2)|t1 is a ground term and t2 is a free
variable}. We choose the polynomial interpretation I of example 4 except that
A=N\{0, 1}. Then, ∀t∈TermP , ‖t‖J >A 1. Observe that the set Call(P, S) = S.
Suppose A = dist(t, s) is a selected atom in Call(P,S). There are 3 cases to
consider: clauses (1), (2) and (3). We present only the last one:

- A = dist((t1+t2)∗t3, s) (t1, t2, t3 are ground terms) and clause (3) is selected.
There exists a substitution θ such that θ = mgu(A, dist((X1 +Y1)∗Z1, T1)).
That implies X1θ = t1, Y1θ = t2, Z1θ = t3. Therefore, |dist((t1 + t2) ∗
t3, s)|I = ‖(t1 + t2) ∗ t3‖J = ‖t1 + t2‖J ∗ ‖t3‖J = ‖t1‖J ∗ ‖t3‖J + ‖t2‖J ∗
‖t3‖J + ‖t3‖J >A ‖t1‖J ∗ ‖t3‖J + ‖t2‖J ∗ ‖t3‖J + 1 = ‖t1 ∗ t3 + t2 ∗ t3‖J =
|dist(X1 ∗ Z1 + Y1 ∗ Z1, T1)θ|I .

With a similar verification for clauses (1) and (2), P is order-acceptable w.r.t.
S and P terminates on S. �

Next, we study rigidity of a call set w.r.t. a polynomial interpretation and
use it to verify rigid order acceptability.

3.2 Rigidity

First we present the classical notion of strictly monotone polynomials. This class
of polynomials is discussed in [18]. Next we study the rigidity of a set of (terms)
atoms w.r.t. a polynomial (pre-)interpretation that maps (terms) atoms to poly-
nomials.

Definition 14 (strictly monotone polynomials). Let A⊆N. A polynomial
P (X1, ..., Xn), n > 0, over A is called strictly monotone if and only if
t > s ⇒ P (a1, ..., ai−1, t, ai+1..., an) > P (a1, ..., ai−1, s, ai+1..., an) holds for all
i, 1≤i≤n, and all s, t, a1, ..., ai−1, ai+1..., an∈A\{0}.

Example 6. Reconsider example 3. Let A = N\{0}. Obviously, both H and Q
are monotone polynomials. �

Definition 15 (monotone polynomial (pre-)interpretation). A polyno-
mial pre-interpretation is called monotone if it associates each function symbol
f/n, n> 0 in FunP with a strictly monotone polynomial. A polynomial interpre-
tation is monotone if it consists of a monotone polynomial pre-interpretation
and an assignment that associates each predicate symbol p/n, n > 0, in PredP

with a strictly monotone polynomial.

Usually, when talking about rigidity, we are only interested in rigidity of a
set of terms (or atoms) w.r.t. a particular norm (or level mapping). In [2], Bossi,
Cocco and Fabris discussed rigidity of Call(P,S) w.r.t. a semi-linear norm and
a level mapping for some P and S. It is then generally extended to the case
of rigidity of Call(P,S) w.r.t. a general term ordering in [5]. In this paper, we
discuss rigidity of terms (or atoms) w.r.t. a polynomial interpretation and show
that it is also an extension of [2]. Let us recall and extend some basic notions
defined in [2].

Definition 16 (rigidity w.r.t. a polynomial (pre-)interpretation). A term
t∈UE

P is called rigid w.r.t. a polynomial pre-interpretation J if and only if for
any substitution θ, ‖t‖J≤≥A‖tθ‖J . An atom A∈BE

P is called rigid w.r.t. a poly-
nomial interpretation I if and only if for any substitution θ, |A|I≤≥A|Aθ|I . In
this case, J and I are said to be rigid on, respectively, t and A.

The notion of rigidity on a term or an atom is naturally extended to the
notion of rigidity on a set of terms or atoms. In particular, we are interested in
polynomial interpretations that are rigid on a call set Call(P, S) for some P and
S.

Definition 17. Let J be a polynomial pre-interpretation and t be a term. The
ith occurrence X(i) of a variable X in t is called relevant w.r.t. J if there exists
a replacement {s→X(i)} of a term s for X(i) such that ‖t{s→X(i)}‖J 6≡‖t‖J . We
call V REL(t) the set of all relevant occurrences of variables in t.

Obviously from definition 17, if a term t is not rigid w.r.t. J , there must be
some relevant occurrence of some variable in t.

Example 7. Let t = [X |X] and J be the polynomial pre-interpretation imposed
by the list-length norm ‖.‖l, P[H|T] = 1 + PT . Then, V REL(t) = {X(2)}. �

Proposition 2. Let J be a polynomial pre-interpretation and t be a term. If
V REL(t) = ∅, then t is rigid w.r.t. J . For the reverse direction, if J is monotone
and t is rigid w.r.t. J , then V REL(t) = ∅.

Proof. See [14].

The following proposition shows that monotone polynomial pre-interpretations
characterize relevant subterms in a purely syntactic way.

Proposition 3. For any polynomial pre-interpretation J , for any term t, the
following property holds:

(i) V REL(t) = {t} if t is a variable,
(ii) V REL(t)⊆∪j=1,...,mV REL(tfj), if t = f(t1, ..., tn) and Pt = Pf (Ptf1

, ..., Ptfm
)

is the polynomial interpretation of t (tfj , 1≤j≤m, are the selected subterms
of t under J),

(iii) If J is monotone, then the inclusion in the conclusion of ii) becomes an
equality.

Proof. The proof is similar to the proof in [2] except that it is extended to the
case of polynomial pre-interpretations. �

The major advantage of monotone polynomial pre-interpretations is that
we can check the rigidity of a term t w.r.t. a given monotone polynomial pre-
interpretation in a syntactic way: namely to verifying emptiness of V REL(t). In
principle, another way of verifying that t is rigid under J is to compute Pt and
check that it is variable-free. However, this is computationally more expensive.

3.3 Applying Rigid Order Acceptability to Polynomial
Interpretations

First, we need the following notion of polynomial interargument relations.

Definition 18 (polynomial interargument relation). Let P be a program,
p/n be a predicate in P and I be a polynomial interpretation for the language
L underlying P . A polynomial interargument relation for p is a relation Rp =
{(t1, ..., tn)|ti∈TermP ∧ ϕp(Pt1 , ..., Ptn

)}, where:

- ϕp(Pt1 , ..., Ptn
) is a formula in a disjunctive normal form,

- each conjunct in ϕp is either Psi
≥APsj

, Psi
>APsj

, Psi
≤≥APsj

or Psi
‖≥A

Psj
,

where si, sj are constructed from t1, ..., tn by applying functors of P .

Rp is a valid polynomial interargument relation for p/n w.r.t. I if and only if
for every p(t1, ..., tn)∈AtomP : P |= p(t1, ..., tn) implies (t1, ..., tn)∈Rp.

Using the notions of rigidity and polynomial interargument relations w.r.t. a
polynomial interpretation integrated with definition 7, theorem 2 and definition
13 we obtain:

Proposition 4. Let S be a set of atomic queries, P be a program and I be a
polynomial interpretation for the language L underlying P . For each predicate p
in P , let Rp be a valid polynomial interargument relation for p w.r.t. I. If I is
rigid on Call(P, S) such that

- for any clause H←B1, ..., Bn,
- for any atom Bi in its body, such that rel(Bi)wrel(H),
- for any substitution θ, such that the arguments of the atoms in (B1, ..., Bi−1)θ

satisfy their associated polynomial interargument relations Rrel(B1), ..., Rrel(Bi−1),
PHθ >A PBiθ,

then P left-terminates w.r.t. S.

Example 8. Reconsider example 2. We are interested in proving termination of
the program w.r.t. the query set S={d(t1, t2)|t1 is a ground term and t2 is a free
variable}. Observe that Call(P, S) coincides with S.

Let I be a polynomial interpretation that consists of a set A = N\{0, 1},
an assignment that associates the function symbol der/1 with the polynomial
Pder = X2, +/2 with P+ = X1+X2, ∗/2 with P∗ = X1∗X2, the constant u with a
constant cu∈A and an assignment that associates the predicate symbol d/2 with
Pd = X , where the variable X corresponds to the first argument position of d/2.
Let Rd = {(t1, t2)|t1, t2∈TermP and Pt1≥APt2} be a polynomial interargument
relation w.r.t. the predicate d/2.

It is easy to verify that I is rigid on Call(P, S) and Rd is valid w.r.t. I . Then,
the program terminates if the following holds:

|d(der(X + Y), DX + DY)θ|I >A |d(der(X), DX)θ|I
d(der(X), DX)θ satisfies Rd implies

|d(der(X + Y), DX + DY)θ|I >A |d(der(Y), DY)θ|I
|d(der(X ∗ Y), X ∗DY + Y ∗DX)θ|I >A |d(der(X), DX)θ|I

d(der(X), DX)θ satisfies Rd implies

|d(der(X ∗ Y), X ∗DY + Y ∗DX)θ|I >A |d(der(Y), DY)θ|I
|d(der(der(X)), DDX)θ|I >A |d(der(X), DX)θ|I

d(der(X), DX)θ satisfies Rd implies
|d(der(der(X)), DDX)θ|I >A |d(der(DX), DDX)θ|I

They are equivalent to the following inequalities on X, Y, DX ∈ V arp:

(X + Y)2 >A X2 X2 >A DX⇒(X ∗ Y)2 >A Y 2

X2 >A DX⇒(X + Y)2 >A Y 2 X4 >A X2

(X ∗ Y)2 >A X2 X2 >A DX⇒X4 >A DX2

Since A = N\{0, 1}, the above inequalities are easily verified and the program
left-terminates. �

4 Automation: the general idea

For automation of the approach, two sources of ideas and techniques are impor-
tant:

- the generalisation of the constraint-based approach to termination analysis
of [6] from linear norms and level mappings to polynomials.

- the integration of a number of useful results and heuristics from TRSs ([3,
7, 10, 12, 16]).

The idea of the approach in [6] is to set up a symbolic form for all concepts
involved in the termination conditions: in our case, the polynomial interpretation
of each function and predicate symbol, the polynomial interargument relations
and polynomial ordering conditions in proposition 4. Note that if we do not
put a limit on the maximal degree of the polynomial, then there can be no
finite general form of the polynomial associated with a term (there are infinitely
many monomials aiX

i1X i2 ...X ik to consider). This is why we associate each
function and predicate symbol with a simple-mixed polynomial, which is either
a multivariate polynomial with all variables of at most degree 1 or a unary
polynomial of at most degree 2.

From TRSs we borrow a sufficient condition for monotonicity of the polyno-
mials:

Proposition 5. (see also [18]) Let P =
∑r

i=1 aiX
ki,1

1 X
ki,2

2 ...X
ki,m
m be a polyno-

mial from Am to A for which A = N\{0}, m > 0 and ai≥0 for all i = 1, ..., r, r >
0. P is strictly monotone if

∑r
i=1 aiki,j > 0 for every j = 1, ..., m.

Example 9. Reconsider example 4. Let the first and the second argument po-
sitions of the predicate dist/2 be, respectively, the input and output positions.
For all other function symbols, let all arguments be the input arguments. Let
I be a polynomial interpretation such that the constant x is associated with
xI∈A, the function symbol +/2 is associated with the polynomial P+(X, Y) =

f+
0 +f+

1 X +f+
2 Y +f+

3 XY , the function symbol ∗/2 is associated with the poly-
nomial P∗(X, Y) = f∗

0 + f∗
1 X + f∗

2 Y + f∗
3 XY , and the predicate symbol dist/2

is associated with the polynomial Pdist(X) = fd
0 + fd

1 X + fd
2 X2. I is monotone

if fd
1 + fd

2 ∗ 2 > 0, f+
1 + f+

3 > 0, f+
2 + f+

3 > 0, f∗
1 + f∗

3 > 0, f∗
2 + f∗

3 > 0. �

For the interargument relations, we only allow the linear interargument re-
lations of [6], i.e. Rp/n = {(t1, ..., tn)|

∑
i∈pinp

pe
i Pti
≥A

∑
j∈pout

pe
jPtj

+ pe
0}, with

pe
i∈N, i∈{1, ..., n}, pinp and pout respectively the sets of input and output argu-

ment positions of p/n. But because these are applied to polynomial interpreta-
tions of terms, they still give rise to non-linear conditions in general.

Example 9 (continued). As an example, the condition for a valid interargument
relation Rdist applied to clause 1 is of the following form:

(de
1X≥Ade

2U + de
0) ∧ (de

1Y≥Ade
2V + de

0) ⇒
de
1(f

+
0 + f+

1 X + f+
2 Y + f+

3 XY)≥Ade
2(f

+
0 + f+

1 U + f+
2 V + f+

3 UV) + de
0. �

Next all other polynomial inequality conditions from proposition 4 are trans-
lated into constraints on the introduced symbols.

Example 9(continued). As an example, for recursive clause 1, the following con-
straints are imposed:

fd
0 +fd

1 (f+
0 + f+

1 X + f+
2 Y + f+

3 XY)
+fd

2 (f+
0 + f+

1 X + f+
2 Y + f+

3 XY)2 >A fd
0 + fd

1 X + fd
2 X2

de
1X≥de

2U + de
0 ⇒ fd

0 +fd
1 (f+

0 + f+
1 X + f+

2 Y + f+
3 XY)

+fd
2 (f+

0 + f+
1 X + f+

2 Y + f+
3 XY)2 >A fd

0 + fd
1 Y + fd

2 Y 2 �

After normalisation, all the above constraints are transformed into the form:
P (X1, ..., Xn) ≥A 0 ⇒ Q(X1, ..., Xm)≥A0 or the form P (X1, ..., Xn)≥A0. In
[6] techniques are proposed to transform the constraints of the first type into
constraints of the second type. These can be extended to polynomials.

The following step is to transform all those constraints into constraints which
contain only coefficients as variables. It can be done by applying one of the
following approaches from TRS:

In the first approach of [10], the first step is to move from A⊆N to R
+. Let

a be min{cI |cI∈A is a polynomial interpretation of a constant c}. Then instead
of demanding that any of these constraints should hold (i.e. P (X1, ..., Xn)≥0 for
all X1, ..., Xn∈A), it is sufficient to prove that P (X1, ..., Xn)≥0 for all X1, ..., Xn

∈ AR, AR = R
+\[0, a). The next step is to apply repeatedly the following differ-

entiation rules to transform all polynomial constraints to constraints containing
only coefficients as variables:

P (..., Xi, ...) > 0

P (..., a, ...) > 0, ∂P (...,Xi,...)
∂Xi

≥0

P (..., Xi, ...)≥0

P (..., a, ...)≥0, ∂P (...,Xi,...)
∂Xi

≥0

Note the introduction of the inequations on the derivatives, which are actually
extra constraints. Within TRS it has been argued that imposing these extra

constraints is most often reasonable as it allows to eliminate all variables Xi and
because, if a solution to the original problem exists, the solution space is usually
large enough to also contain an element that respects the extra constraints.
There are a number of heuristics that can be applied to solve these constraints.

In the second approach of [3], all constraints are transformed to Diophan-
tine inequalities. Then, if we put an arbitrary bound on the values of variable
coefficients (e.g., [0, B]), the problem becomes solving a finite domain constraint
satisfaction problem for a finite set of variables. Here finite-domain constraint
solvers provide a variety of techniques to solve the remaining inequalities.

5 Conclusions

Since a few years ago, the LP termination analysis community and the TRS
termination analysis community jointly organize the ”International Workshop
on Termination” (WST). These workshops have raised a considerable interest
in gaining a better understanding of each others approaches. It soon became
clear that there has to be a close relationship between one of the most popular
techniques in TRS, polynomial interpretations, and one of the key techniques
in LP, acceptability with linear norms and level mappings. However, partly be-
cause of the distinction between orderings over the natural numbers (LP) versus
orderings over polynomials (TRS), the actual relation between the approaches
was unclear.

One main conclusion of the research that led to this paper is that the distinc-
tion is a superficial one. Although termination conditions in LP are formulated
in terms of mappings to natural numbers, the actual termination proofs do not
reason on natural numbers. They are formulated in terms of linear inequalities.
In fact, LP termination analysis systems never work on the basis of the norm
and the level mapping; they work on the level of the abstract norm and abstract
level mapping (see [17]). As such, one outcome of the work is that, indeed, the
polynomial interpretations of TRS are a direct generalization of the current LP
practice.

On the more technical level, the contribution of this paper is that we provide a
complete theoretical framework for polynomial interpretations in LP termination
analysis. Part of this builds strongly on the results in [5] on order acceptability,
another part extends the results of Bossi et al. [2] on syntactic characterization
of rigidity.

In the paper we only provide two examples of the class of programs for which
the extension from linear to polynomial interpretations is important. Note that
typical examples in LP termination analysis are often deliberately chosen to be
linear, to remain in the scope of the designed techniques. Non-linear polynomial
functions are present in many real world problems and programs encoding these
problems are bound to require polynomial interpretations for their termination
proofs.

It remains to be studied how we can benefit from the huge amount of work
that people in TRS termination analysis have spent on automating proofs with

polynomial interpretations and how integration of these techniques with the
best approaches of LP termination analysis can lead to even more powerful
techniques. We expect that this will lead to the development of a powerful new
termination analyzer in the near future.

6 Acknowledgements

Manh Thang Nguyen is supported by GOA/2003/08. We thank the referees for
useful comments.

References

1. K. R. Apt. Logic programming. In Handbook of theoretical computer science (vol.
B): formal models and semantics, pages 493–574. MIT Press, 1990.

2. A. Bossi, N. Cocco, and M. Fabris. Proving termination of logic programs by
exploiting term properties. In TAPSOFT, Vol.2, pages 153–180, 1991.

3. E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving
termination using polynomial interpretations. J. Auto. Reason., 2005.

4. D. De Schreye and S. Decorte. Termination of logic programs: the never-ending
story. J. Log. Program., 19-20:199–260, 1994.

5. D. De Schreye and A. Serebrenik. Acceptability with general orderings. In Com-
putational Logic: Logic Programming and Beyond, pages 187–210. Springer Verlag,
2002.

6. S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint based automatic ter-
mination analysis of logic programs. ACM Trans. Program. Lang. Syst, 21(6):1137–
1195, November 1999.

7. N. Dershowitz. Termination of rewriting. J. Symb. Comput., 3(1-2):69–116, 1987.
8. N. Dershowitz. 33 examples of termination. LNCS, 909:16–26, 1995.
9. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of

the operational behaviour of logic languages. Theor. Comput. Sci., 63(3):289–318,
1989.

10. J. Giesl. Generating polynomial orderings for termination proofs. In RTA, pages
426–431, 1995.

11. G. Janssen and M. Bruynooghe. Deriving descriptions of possible values of program
variables by means of abstract interpretation. J. Log. Program., 13(2&3):205–258,
1992.

12. D. S. Lankford. On proving term rewriting systems are noetherian. Technical
report, Mathematics Department, Louisiana Tech. University, Ruston, LA, 1979.

13. J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, Berlin, 1987.
14. M. T. Nguyen and D. De Schreye. Polynomial interpretations as a basis for ter-

mination analysis of logic programs. Technical report, Department of Computer
Science, K.U.Leuven, Belgium, 2005.

15. A. Serebrenik. Termination Analysis of Logic Programs. PhD thesis, Department
of Computer Science, K.U.Leuven, Belgium, 2003.

16. J. Steinbach. Generating polynomial orderings. Inf. Process. Lett., 49(2):85–93,
1994.

17. K. Verschaetse and D. De Schreye. Deriving termination proofs for logic programs,
using abstract procedures. In Proceedings 8th ICLP, pages 301–315, 1991.

18. H. Zantema. Termination, In Terese, Term Rewriting Systems, chapter 6. Cam-
bridge Univ. Press, 2003.

