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Abstract
1.	 Meta-analyses in ecology and evolution require special attention due to certain 

study characteristics in these fields. First, the primary articles in these fields usually 
report results that are observed from studies conducted with different species, and 
the phylogeny among the species violates the independence assumption. Second, 
articles frequently allow the computation of multiple effect sizes which cannot be 
accounted for by conventional meta-analytic models. While both issues can be dealt 
with by utilizing a multilevel model that accounts for phylogeny, the performance of 
such a model has not been examined extensively. In this article, we investigate the 
performance of this model in comparison with some simpler models.

2.	 We conducted an extensive simulation study where data with different hierarchi-
cal structures (in terms of study and species levels) were generated and then vari-
ous models were fitted to examine their performance. The models we used include 
the conventional random effects and multilevel random-effects models along with 
more complex multilevel models that account for species-level variance with dif-
ferent variance components. Furthermore, we present an illustrative application 
of these models based on the data from a meta-analysis on sizeassortative mating 
and comment on the results in light of the findings from the simulation study.

3.	 Our simulation results show that, when the phylogenetic relationships among the spe-
cies are at least moderately strong, only the most complex model that decomposes the 
species-level variance into nonphylogenetic and phylogenetic components provides 
approximately unbiased estimates of the overall mean and variance components and 
yields confidence intervals with an approximately nominal coverage rate. Contrarily, re-
moving the phylogenetic or non-phylogenetic component leads to biased variance com-
ponent estimates and an increased risk for incorrect inferences about the overall mean. 
These findings are supported by the results derived from the illustrative application.

4.	 Based on our results, we suggest that meta-analyses in ecology and evolution 
should use the model that accounts for both the nonphylogenetic and phyloge-
netic species-level variance in addition to the multilevel structure of the data. Any 
attempts to simplify this model, such as using only the phylogenetic variance com-
ponent, may lead to erroneous inferences from the data.
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1  | INTRODUC TION

Meta-analysis encompasses an array of methods for synthesizing 
information from studies examining some phenomenon of interest 
and evaluating the consistency of their results (Cooper et al., 2009; 
Glass,  1976; Hedges & Olkin,  1985; Senior et  al.,  2016). Although 
these methods have been mostly developed in the medical and 
social sciences (Cooper et  al.,  2009; Egger et  al.,  2001; Sutton & 
Higgins, 2008), ecologists and evolutionary biologists have success-
fully adopted these techniques for conducting research syntheses 
in their respective fields (Gurevitch et  al.,  2001, 2018; Koricheva 
et al., 2013). However, meta-analyses in ecology and evolution typ-
ically have several features that require special attention so that 
trustworthy evidence can be obtained.

To start, meta-analyses in these fields often incorporate data 
from multiple species which share an evolutionary history, described 
by a phylogeny (Arnqvist & Wooster, 1995; Chamberlain et al., 2012; 
Gurevitch & Hedges,  1999). As a result, the samples (and the ef-
fect sizes obtained from these samples) are not independent which 
violates the independence assumption underlying conventional 
meta-analytic models. For example, the standard fixed- and random-
effects models (Hedges & Olkin, 1985; Hedges & Vevea, 1998), often 
used for ecological meta-analyses (Nakagawa & Santos, 2012), as-
sume independence among the effect sizes and therefore do not 
account for phylogeny (Chamberlain et al., 2012; Noble et al., 2017). 
This issue was first addressed by Adams (2008) and Lajeunesse 
(2009) who incorporated phylogenies into the fixed- and random-
effects models, respectively.

Chamberlain et al. (2012) empirically investigated how the inclu-
sion of phylogeny affects the estimate of the overall mean based 
on data from 30 meta-analyses in ecology and evolution. While the 
estimate of the overall mean did not change considerably in most 
cases (especially when using a random-effects model), a substan-
tial portion of the meta-analyses, which reported significant results 
before, produced non-significant results when the phylogeny was 
incorporated into the model. Therefore, including phylogeny might 
be an important factor to reduce Type I error rates and to obtain 
an accurate reflection of the uncertainty of meta-analytic estimates.

Although Chamberlain et al.'s (2012) study is the most extensive 
study to date examining the effects of phylogeny in meta-analysis, 
their work was based on available meta-analyses. To investigate the 
issue of phylogeny more broadly, we require a simulation study to 
explore a wider parameter space and under controlled conditions. 
Moreover, Chamberlain et  al.  (2012) did not address the fact that 
ecological and evolutionary studies usually report multiple ef-
fect sizes per study, which leads to dependence among the effect 
sizes belonging to the same study (Nakagawa & Santos,  2012; 

Noble et al., 2017). Although past and current meta-analyses have 
sometimes avoided this issue by selecting a single effect size from 
each study or by collapsing multiple effect sizes into one, these 
procedures can lead to a severe loss of information (Nakagawa & 
Santos, 2012; Nakagawa et al., 2021).

As an alternative, Hadfield and Nakagawa (2010) proposed a 
mixed-effects model that accounts for the multilevel structure via 
a study-level random effect (i.e. multiple effect sizes per study are 
nested within this random effect). In the same model, they include 
two additional random effects to estimate the non-phylogenetic and 
the phylogenetic species-level variance. This way, among-species 
variance is decomposed into two components, the one resulting 
from species similarities due to evolutionary history and the other 
from species similarities due to shared ecology and other factors 
(Lynch,  1991). Although the model by Hadfield and Nakagawa 
(2010) addresses two major statistical issues in ecological and evo-
lutionary meta-analyses, the complexity of the model poses certain 
challenges.

Partitioning the species variance into its two components is a 
challenging endeavour, because both components are modelled using 
random effects at the species level, with the only difference being 
that the phylogenetic component assumes that the random effects 
are correlated according to a phylogenetic correlation matrix—which 
is derived from a phylogenetic tree constructed based on the similar-
ities and differences of species in terms of their (usually) genetic (but 
sometimes also physical) characteristics (Felsenstein,  2004). This 
raises concerns about the identifiability of the variance components 
and potential bias in their estimates, and issues that have also been 
raised outside the meta-analytic context when analysing the data of 
primary studies including multiple species (Paradis, 2012).

Moreover, the complexity of the model poses a threat to the con-
vergence of optimization algorithms (Bates et al., 2015). Accordingly, 
Nakagawa and Santos (2012) suggested that model fitting may only 
be feasible with larger datasets, which would limit the applicability 
of the model in practice. To avoid these problems, some ecologi-
cal and evolutionary meta-analyses have been carried out using a 
simplified model without the non-phylogenetic random effect and 
that therefore accounts for species variance only via the phyloge-
netic component (e.g. Garamszegi et al., 2012; Moore et al., 2016). 
However, the consequences of doing so, and the performance of the 
more complex model, have yet to be evaluated in a simulation study.

We therefore investigated the performance of models for con-
ducting a phylogenetic multilevel meta-analysis in a comprehensive 
simulation study. We simulate studies that report multiple effect 
sizes and use several models that vary in their complexity, start-
ing from a simple model (including only a random effect at the ef-
fect sizes level) to the most complex model which incorporates a 
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study-level and two among-species random effects. Furthermore, 
we generate specific conditions to examine the performance of the 
most complex model when phylogenetic relationships are weak and 
the consequences of removing the non-phylogenetic component. 
Finally, we present an illustrative application of these models based 
on the data from a meta-analysis on size-assortative mating and 
comment on the results in light of the findings from the simulation 
study.

2  | MATERIAL S AND METHODS

2.1 | Meta-analytic models

To conduct a meta-analysis, the phenomenon of interest (e.g. the size 
of a treatment effect or the strength of the association between two 
variables) needs to be quantified in terms of an effect size estimate 
for each study to be included in the analysis. We use the term ‘study’ 
broadly here (and essentially in the sense of ‘paper’ or ‘publication’), 
as a single study may contribute multiple estimates (i.e. multiple ef-
fect sizes, for instance, for multiple species, subgroups, treatments), 
but for the moment we assume that each study contributes a single 
estimate to the meta-analysis. Depending on the purpose of a meta-
analysis and the information reported in the individual studies, one 
might use raw or standardized mean differences, response ratios, 
odds/risk ratios or correlation coefficients to quantify the relevant 
results (see Borenstein et al., 2011, for a review). In addition, we need 
to compute the sampling variances of the estimates, that is, the vari-
ability in each estimate that would be expected under repeated sam-
pling of new study units under identical circumstances (Borenstein 
et al., 2011; Cooper et al., 2009; Nakagawa & Cuthill, 2007).

Regardless of the specific measure used in a meta-analysis, let yi 
denote the effect size estimate for the ith study (with i = 1,…,Nstudies ) 
and vi the corresponding sampling variance (note that the terms 
‘study’ and ‘effect size’ are interchangeable when each study reports 
a single effect size). The most basic model that can be considered 
for synthesizing the estimates is the fixed-effects model, which is 
given by

where � is the overall mean, ei is the sampling error for the ith study, 
e is a 1 × Nstudies column vector with the ei values (which are assumed 
to be normally distributed with mean 0 and variance vi), 0 is a column 
vector of zeros and V is an Nstudies × Nstudies matrix with the vi values 
along the diagonal.

The fixed-effects model assumes that the included studies share 
a single common true effect. This assumption, however, is rarely met 
in multi-population and multi-species meta-analyses of ecology and 
evolution studies (Senior et  al.,  2016). The random-effects model 
addresses this potential ‘heterogeneity’ among the true effects by 

adding a random effect corresponding to each estimate and is given 
by

where ui is the random effect corresponding to the ith estimate, u 
is a 1 × Nstudies column vector with the ui values (which are assumed 
to be normally distributed with mean 0 and variance �2

u
) and Iu is an 

Nstudies × Nstudies identity matrix.
Although the models above are suitable for conducting a meta-

analysis in many circumstances, they do not account for the mul-
tilevel structure that arises when at least some studies provide 
multiple effect size estimates (e.g. when the same experiment was 
conducted under varying circumstances within the same study) and 
they do not account for phylogenetic dependence (when studies are 
conducted with multiple species that differ in similarity due to dif-
ferences in their shared evolutionary history).

To address the first issue, we can use a multilevel meta-analytic model 
(Konstantopoulos, 2011; Nakagawa & Santos, 2012) which includes a 
random effect at the effect size level (as in model 3—for brevity, we use 
the equation numbers to refer to the various models throughout this arti-
cle), but which now captures variability in the true effects within studies, 
and a random effect at the study level, which captures between-study 
variability. Let yij denote the jth effect in the th study (with j = 1,…,Ni,  
where Ni is the number of effect sizes reported in the ith study), vij the 
corresponding sampling variance, and let Ntotal =

∑Nstudies

i=1
Ni denote the 

total number of effects. The model is then given by

where uij is a random effect corresponding to the jth effect size in the 
ith study, si is a random effect at the study level, u is now a 1 × Ntotal col-
umn vector with the uij values, s is a 1 × Nstudies column vector with the si 
values (which are assumed to be normally distributed with mean 0 and 
variance �2

s
), and Iu and Is are Ntotal × Ntotal and Nstudies × Nstudies identity 

matrices, respectively. Finally, e is now a 1 × Ntotal column vector with 
the eij values and V is the corresponding (diagonal) variance–covariance 
matrix with dimensions Ntotal × Ntotal, and the remaining terms are de-
fined as described earlier.

When the effect size estimates are computed based on a set 
of Nspecies different species, we will need an additional index. Let 
yijk denote the jth effect in the ith study as before, but now let 
k = 1,…,Nspecies be the index that indicates for which species a par-
ticular effect size estimate was computed. Model 5 can then be ex-
tended to account for species-level variability as follows:

(1)yi = � + ei ,

(2)e ∼ N(0,V),

(3)yi = � + ui + ei ,

(4)u ∼ N
(
0, �2

u
Iu
)
,

(5)yij = � + uij + si + eij,

(6)s ∼ N(0, �2
s
Is),

(7)yijk = � + uij + si + nk + eij,

(8)n ∼ N
(
0, �2

n
In
)
,
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where nk is a species-specific random effect, n is a 1 × Nspecies column 
vector with the nk values (which are assumed to be normally distributed 
with mean 0 and between-species variance �2

n
) and In has dimensions 

Nspecies × Nspecies, with the remaining terms as defined earlier. Note that 
nk is a crossed random effect (e.g. Fernández-Castilla et al., 2019) and 
not nested within studies and we therefore do not put subscript k on 
uij, si or eij.

Model 7, however, does not account for phylogeny. For this, we 
further extend the model by including an additional species-level 
random effect (Hadfield & Nakagawa, 2010), but instead of assum-
ing independence for different species (as for the nk values), we 
allow the values of the random effect to be correlated according to 
a phylogenetic correlation matrix, which, in turn, is derived from a 
phylogenetic tree based on some model of evolution (e.g. Brownian 
motion) prior to the analysis (e.g. Felsenstein, 1985, 2004; Freckleton 
et al., 2002; Lajeunesse, 2009). The model is given by

where pk denotes the phylogenetic random effect for the kth species, 
p is a 1 × Nspecies column vector with the pk values (which are assumed 
to follow a multivariate normal distribution with mean 0 and variance–
covariance matrix �2

p
A, where �2

p
 denotes between-species variance due 

to the phylogeny, and A is the Nspecies × Nspecies phylogenetic correlation 
matrix), with the remaining terms as defined earlier. Hence, the model in-
cludes a non-phylogenetic species-level random effect (i.e. the nk values) 
to account for heterogeneity in the effect sizes due to differences be-
tween species unrelated to phylogeny (e.g. the influence of differences in 
the environments they live in) and a phylogenetic random effect (i.e. the 
pk values) that captures dependencies in the effect sizes according to the 
similarities between species due to phylogenetic relatedness.

Since model 9 includes the species random effect twice (once as-
sumed to be independent and once assumed to be correlated accord-
ing to the values in A), concerns about identifiability and potential bias 
in the estimates of the variance components may be raised. In fact, 
when phylogenetic relationships are weak (i.e. when the off-diagonal 
values in A are close to 0 and hence the phylogenetic tree resembles 
a star phylogeny), then A starts to approximate In and hence �2

p
 and �2

n
 

are confounded and are not uniquely identifiable. This concern, or the 
complexity of model 9 in general, has led some researchers to adopt a 
simplified model in their meta-analyses where the non-phylogenetic 
variance component is removed. This leads to the model

with all terms as explained before. Whether this simplified version is an 
adequate substitute for model 9 is currently unknown.

The models described above can be fitted with the metafor 
package (Viechtbauer, 2010) for R (R Core Team, 2021). Maximum 
likelihood (ML) or restricted maximum likelihood (REML) estimation 
can be used for model fitting (the latter usually being the preferred 
choice; see Patterson & Thompson, 1971), providing estimates of the 

variance components included in a particular model, the estimate 
of � (i.e. �̂), and its standard error (i.e. SE[�̂]). Likelihood ratio tests 
and profile likelihood confidence intervals provide inferences for the 
variance components. An approximate 95% Wald-type confidence 
interval for � can be obtained with �̂ ± t.975,df SE[�̂], where t.975,df 
denotes the 97.5th percentile of a t-distribution with df degrees of 
freedom. Based on Nakagawa et al.  (2021), we set df = Nstudies − 1, 
which we expected would bring the coverage rate of the confidence 
interval closer to its nominal 95% level (when compared to a confi-
dence interval based on a standard normal distribution).

Although fitting the models and deriving inferences from them 
are feasible, the consequences of using the various models have not 
been examined systematically. We therefore conducted an exten-
sive simulation study to investigate the performance of the various 
model under varying circumstances.

2.2 | Simulation setup

In our setup, the primary studies could provide one or multiple effect 
size estimates for one or multiple species. We set (Nstudies,Nspecies) 
either to (20, 40) or (50, 100) to examine the difference between a 
smaller versus larger meta-analysis. Furthermore, we set �2

u
, �2

s
, �2

n
 

and �2
p
 to either 0, 0.05 or 0.3 (plus an additional parameter � to be 

described below to either 0.5, 1 or 2) to define a particular condi-
tion within the simulation study. Table 1 provides an overview of the 
158 conditions that were studied in this manner. Note that, instead 
of a full factorization of all parameters, we introduced the variance 
components successively (in the order of �2

u
, �2

s
, �2

n
 and �2

p
) using the 

non-zero values (i.e. 0.05 and 0.3) to keep the number of conditions 
manageable and to generate scenarios where one of the models de-
scribed in Equations 3, 5, 7 and 9 corresponds to the true data gen-
erating mechanism (see Table 1). Within a particular condition, the 
following steps were repeated 1,000 times.

First, the number of effect sizes provided by the studies (i.e. the 
Ni values) were simulated from a right-skewed distribution, as typ-
ically observed in practice. For this, we generated Nstudies random 
values from a Beta(1.5, 3) distribution, which were then multiplied by 
39, rounded to the closest integer, and increased by 1. Therefore, the 
number of estimates per study could vary between 1 and 40 (with a 
mean, median and mode of approximately 14, 13 and 9, respectively).

In the next step, we simulated the species indices (i.e. the k val-
ues) by generating Ntotal random values from a Beta(2, 2) distribution, 
which were multiplied by Nspecies − 1, rounded to the closest integer, 
and then increased by 1. Accordingly, the number of times that the 
various species were studied followed a symmetric unimodal distri-
bution (with mean equal to (Nspecies + 1)∕2). To guarantee that all spe-
cies appear at least once in each meta-analysis, a randomly chosen 
Nspecies random numbers generated this way were replaced with the 
integers from 1 to Nspecies.

Next, we generated a phylogenetic tree for the species using the 
rtree() function from the R package ape (Paradis & Schliep, 2019), 
which uses a recursive random splitting algorithm to simulate a 

(9)yijk = � + uij + si + nk + pk + eij,

(10)p ∼ N
(
0, �2

p
A
)
,

(11)yijk = � + uij + si + pk + eij,
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phylogeny (Paradis, 2012). The branch lengths were then computed 
using the compute.brlen() function based on the method by Grafen 
(1989), using the power parameter � to adjust the ‘height’ of branch 
lengths at the tips of the phylogenetic tree, leading to phylogenetic 
relationships that are generally stronger when branches are shorter 
at the tips or weaker when branches are longer at the tips. Figure 1 
shows an example of such a simulated tree for 40 species modified by 
different � values. Finally, the correlation matrix that represents the 
phylogenetic relationships (matrix A in Equation 10) was calculated 
from the tree by using the vcv() function based on a Brownian model 
of evolution (i.e. Ak,k� = 1 − bk,k�, where bk,k′ is the branch length for a 
pair of species to their most recent common ancestor). Hence, as � 
decreases, the off-diagonal values in A converge to 0, whereas as � 
increases, the off-diagonal values in A increase on average.

We then generated the values for the four random effects, cor-
responding to the variance components �2

u
, �2

s
, �2

n
 and �2

p
, either as 

independent draws from normal distributions for the first three 
components or from a multivariate normal distribution for the last 
one. In conditions where a variance component is equal to 0, the cor-
responding random effect values are then just a series of 0s of the 
appropriate length. To complete the data generating step, the sam-
pling variances (i.e. the vij values) were simulated from a right-skewed 
Beta(2, 20) distribution (and hence had a value of 0.091 on average) 
which were then used to generate the Ntotal sampling errors from a 
normal distribution with mean 0 and variance vij. We then summed 
the random effects and sampling errors as shown in Equation 9, set-
ting � = 0 without loss of generality (as scalar changes to � do not 
affect any other parts of the models).

TA B L E  1   Overview of the conditions examined in the mulation study. The first two columns show the number of studies and species, 
respectively. The next four columns indicate the true values of the variance components. The � column represents the power parameter. All 
values were crossed within a particular row of the table. The last two columns, respectively, indicate the number of conditions generated in 
each row and the model that corresponds to the true data generating mechanism for the conditions in a particular row

Nstudies Nspecies �2
u

�2
s

�2
n

�2
p

� Conditions
True 
model

20 40 0, 0.05, 0.30 0 0 0 1 3 Model 3

20 40 0.05, 0.30 0.05, 0.30 0 0 1 4 Model 5

20 40 0.05, 0.30 0.05, 0.30 0.05, 0.30 0 0.5, 1, 2 24 Model 7

20 40 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.5, 1, 2 48 Model 9

50 100 0, 0.05, 0.30 0 0 0 1 3 Model 3

50 100 0.05, 0.30 0.05, 0.30 0 0 1 4 Model 5

50 100 0.05, 0.30 0.05, 0.30 0.05, 0.30 0 0.5, 1, 2 24 Model 7

50 100 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.05, 0.30 0.5, 1, 2 48 Model 9

F I G U R E  1   An example of a simulated phylogenetic tree for 40 species modified with different values of the power parameter � (i.e. 0.5, 
1 and 2)
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After generating the data, we fitted the four models shown in 
Equations 3, 5, 7 and 9, using REML estimation as implemented in 
the rma.mv() function from the metafor package. For model 3, we 
simply treated each estimate as a separate study (one can also think 
of this as model 5 without the addition of the study-level random ef-
fect). For each model, we then saved the estimate of �, the variance 
component estimates, the bounds of the 95% Wald-type confidence 
interval for �, and the model fitting time to assess how demanding 
the computations are when fitting these models. In case any one of 
the four models did not converge within a particular iteration (with 
the default settings of the rma.mv() function), the iteration was 
discarded and a new iteration was run to guarantee that a 1,000 suc-
cessful model fits were available for all four models (in all conditions, 
>99% of the analyses converged on solutions).

After the 1,000 iterations, we computed the mean of the �̂ values 
for each model, the mean of the variance component estimates, the 
proportion of iterations where 0 was included in the confidence inter-
val (i.e. the empirical coverage rate for �), the mean confidence interval 
width, the mean absolute bias in the estimates of � and the variance 
components, the convergence rate, and the mean model fitting time. 
The simulation was run on a workstation with two AMD EPYC 7551 
32-Core CPUs utilizing 60 cores in parallel. Completion time for the 
simulation was approximately 35 hr (roughly 2,100 core hours).

We generated two other sets of conditions to investigate spe-
cific questions. First, we examined conditions where the phyloge-
netic relationships could also be weaker than in the main scenarios 
to test the performance of model 9 under such conditions. These 
conditions were generated by setting � to (0.1, 0.2, 0.3, 0.4, 0.5, 1, 2) 
when (Nstudies,Nspecies) = (50, 100), the estimate- and study-level vari-
ance components were both large (0.3), and the levels of the remain-
ing variance components were factorized with values of 0.05 and 
0.3 (for a total of 28 different conditions). Second, we compared the 
performance of model 9 and the simplified model 11 (that leaves 
out the non-phylogenetic species-level random effect). For this, we 
set (Nstudies,Nspecies) = (50, 100), �2

u
= 0.05, �2

s
= 0.05 and � = 1, and 

then generated different conditions by factorizing different values 
of only �2

n
 and �2

p
, where the former was set to values from 0 to 0.3 

with increments of 0.05, whereas the latter was set to either 0, 0.05 
or 0.3 (for a total of 21 different conditions). The R code to repro-
duce the simulation and its results are available at the Open Science 
Framework (https://osf.io/ms8eq/).

3  | RESULTS

3.1 | Simulation results

Figure  2a displays boxplots of the mean �̂ values (over the 1,000 
iterations) for each of the four models across the 158 conditions, 
separated by which model was the true data generating mecha-
nism. Generally, the means were clustered tightly around 0, indicat-
ing little to no bias in �̂, although in a small set of conditions there 
was some slight positive bias in the estimates of the overall mean. 

These conditions were characterized by non-zero values for all 
four variance components (i.e. when model 9 was the true model), 
(Nstudies,Nspecies) = (20, 40), a weak phylogenetic relationship (� = 0.5 ) 
and a large phylogenetic variance (�2

p
= 0.3).

In contrast to the results for the overall mean, the coverage rates 
of the 95% confidence interval for � differed markedly across models 
(Figure 2b). For conditions where model 3 was the true data gen-
erating mechanism, all models achieved coverage rates close to or 
slightly above the nominal 95% confidence level regardless of the 
condition. As the other variance components were introduced into 
the data, however, the coverage rates of models that did not ac-
count for these additional sources of variability started to decrease, 
at times severely so. Only model 9 was able to achieve rates close 
to the nominal level across the majority of conditions, although the 
rates also fell somewhat below the nominal level for certain condi-
tions when all variance components were larger than zero.

Given that estimates of � were relatively unbiased for all models, 
the closer to nominal coverage rates of model 9 would be expected 
to be mainly a consequence of wider confidence intervals (that con-
sequently have a better chance of capturing the true value of �). 
Figure 2c confirms this, showing the mean confidence interval widths 
for the various models across the various conditions. However, what 
is particularly noteworthy is that the use of model 9 under conditions 
where actually a simpler model is the true data generating mechanism 
only leads to a relatively minor increase in the mean interval width.

Figure 3 displays the bias in the variance component estimates 
of model 9 under the 28 different conditions generated by varying � , 
�2
n
 and �2

p
 (while holding �2

u
 and �2

s
 constant at 0.3). The results show 

no bias in the estimates of �2
u
 and �2

s
. Furthermore, the model is able 

to estimate �2
n
 and �2

p
 with little to no bias, except when the strength 

of the phylogenetic relationships decreased. As expected, under 
such conditions, the model struggles to provide unbiased estimates 
of the non-phylogenetic and phylogenetic species-level variance 
components. Regardless, model 9 still provided overall estimates 
with mean absolute bias lower than 0.024 across all 28 conditions, 
although the coverage rate of the CI for � again tended to fall some-
what below the nominal 95% level (with a mean coverage rate of 
92% over the 28 conditions).

Figure  4a shows the coverage rates of the confidence inter-
val for � for models 9 and 11 as the size of the non-phylogenetic 
species-level variance component (i.e. �2

n
) was increased. While 

model 9 provided rates close to or somewhat below the nominal 
level, the rates for model 11 were often equal to 100% and hence 
the confidence interval tended to be too wide (except for the three 
conditions where �2

n
= 0 and hence where model 11 was the true 

model). Furthermore, Figure 4b demonstrates that the bias in the 
phylogenetic variance component of model 11 inflated rapidly as 
the value of �2

n
 increased (the value of �2

p
 had no noteworthy influ-

ence on the bias and hence we averaged these results over the three 
possible values of �2

p
). In contrast, model 9 estimated these two vari-

ance components essentially without bias under these scenarios.
Model fitting times differed between the various mod-

els (Table  2), with model 9 requiring the most amount of time on 

https://osf.io/ms8eq/
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average, regardless of the true data generating mechanism. The 
most challenging conditions for the more complex models were 
those scenarios where model 3 corresponded to the true data gen-
erating mechanism. In this case, a single fit of model 9 took around 
33  s on average when (Nstudies,Nspecies) = (50, 100). In these condi-
tions, convergence rates were also the lowest, although even model 
9 then converged in more than 99% of the iterations.

3.2 | Illustrative example

We use the data from the meta-analysis by Rios Moura et al. (2021) 
on size-assortative mating (SAM) to illustrate an application of the 
models. Each study included in the meta-analysis provided one or 

multiple correlation coefficients describing the similarity in some 
measure of body size in mating couples. For the analysis, the correla-
tion coefficients were transformed with Fisher's r-to-z transforma-
tion (i.e. the inverse hyperbolic tangent transformation). We focus 
here on the estimate of the overall mean (transformed) correlation 
coefficient, leaving aside the issue of differences between studies 
where correlations were computed with or without pooling of data 
across different timepoints or areas (i.e. temporal/spatial pooling). 
Also, using the method by Grafen (1989), we turned the phyloge-
netic tree used by Rios Moura et al. (2021) into an ultrametric tree 
before fitting models 9 and 11, to bring these analyses more in line 
with how our simulation study was conducted. The dataset includes 
1,828 effect size estimates (i.e. transformed correlations) collected 
from 457 studies and 341 species.

F I G U R E  2   Boxplots (representing the five-number summaries) based on the (a) mean �̂ values (over the 1000 iterations), (b) coverage 
rates of the 95% confidence interval for �, and (c) mean confidence interval widths for each of the four models across the 158 conditions, 
separated by which model was the true data generating mechanism
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F I G U R E  3   Mean bias of the variance component estimates of model 9 under different combinations of the power parameter (�) and the 
non-phylogenetic and phylogenetic variance components (�2

n
 and �2

p
, respectively). The variance components in model 9, �2

u
, �2

s
, �2

n
 and �2

p
 are 

presented as black, red, green and blue lines

F I G U R E  4   Comparison of models 9 and 11 as the size of the non-phylogenetic species-level variance component (i.e. �2
n
) was 

systematically increased. (a) Coverage rates of the 95% confidence intervals for �, (b) bias in the non-phylogenetic and phylogenetic variance 
components
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Table  3 presents the results obtained from each model. 
Interestingly, the estimate of the overall mean tended to be some-
what larger in the more complex models, although differences be-
tween models 7, 9 and 11 were relatively small. More importantly, 
we see a substantial increase in the standard error of the estimated 
overall mean for the more complex models. As a result, the confi-
dence intervals become wider, the values of the test statistics were 
smaller, while the respective p-values increase. Although each model 
suggests that the overall mean significantly differs from 0 (at the 
conventional 0.05 level of significance), the p-value for model 11 was 
approaching the rejection threshold.

The estimates of the variance components also show some in-
teresting patterns. While the simple random-effects model 3 cannot 
distinguish between different sources of variability and attributes 
all of the heterogeneity to differences between the individual ef-
fect size estimates, model 5 suggests that the variance in the ef-
fects is more related to differences between studies than particular 
estimates within studies. However, once species-level variability 
is considered in model 7, it becomes apparent that this is actually 
the dominant source of heterogeneity. Moreover, model 9 shows 
that this variability is approximately equally attributable to non-
phylogenetic and phylogenetic species-level differences. In contrast, 
when ignoring the non-phylogenetic variance component in the sim-
plified model 11, part of the variance from that component is forced 
back into the study-level variance component. Furthermore, �̂2

p
 in 

the simplified model is substantially inflated compared to model 9 
which may be an example of the inflation in this component when �2

n
 

is excluded (see Figure 4b). Based on these findings and the Akaike 
Information Criteria (AIC) values of the various models, we would 
strongly favour model 9 in this comparison, illustrating that both 
non-phylogenetic and phylogenetic variance components should be 
considered in the analysis.

4  | DISCUSSION

Meta-analyses in the fields of ecology and evolution typically need 
to address the fact that multiple effect size estimates can be ex-
tracted from at least some of the studies and that the estimates are 
based on various species that are related to each other due to their 
shared evolutionary history. In this paper, we investigated the per-
formance of the phylogenetic multilevel meta-analytic model by 
Hadfield and Nakagawa (2010) and Nakagawa and Santos (2012) 
that captures these intricacies along with some simpler models. 
Despite the concerns raised in the introduction, the model can 
successfully estimate the overall mean and its uncertainty. It also 
provides approximately unbiased estimates of all variance compo-
nents, including the non-phylogenetic and phylogenetic species-
level variances, as long as there are at least moderately strong 
phylogenetic relationships among the species. In addition, despite 
its complexity, the model does not appear to suffer from conver-
gence problems and model fitting does not require excessive com-
putational times.TA
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4.1 | Estimating the overall mean and its uncertainty

Not only the phylogenetic multilevel meta-analytic model, but also 
the simpler models that leave out certain variance components pro-
vide essentially unbiased estimates of the overall mean, regardless 
of the nature of the true model that underlies the data (Figure 2a). 
However, the uncertainty in the overall mean will only be estimated 
accurately when the fitted model includes the variance components 
that contribute to the heterogeneity and the dependencies among 
the underlying true effects. Fitting underspecified models typically 
led to severe undercoverage of the confidence interval for the over-
all mean and hence anticonservative inferences. In fact, subtracting 
the coverage rates shown in Figure 2b from 1 yields the Type I error 
rates for the test of the overall mean, which could go as high as 91% 
when using a simple random-effects model that ignores the multi-
level structure and the species-level variance components.

These findings are in line with those by Chamberlain et al.  (2012), 
who demonstrated, based on 30 published meta-analyses, that the inclu-
sion of phylogeny into a random-effects model usually only led to minor 
changes in the pooled effect size, but had a more substantial impact on 
the statistical significance of the finding (turning significant findings into 
non-significant ones in the majority of cases where changes occurred).

Our findings can also be used to alleviate concerns with using the 
phylogenetic multilevel meta-analytic model when it is actually an over-
specified model (i.e. when the actual data generating mechanism is sim-
pler). In those cases, the mean confidence interval width of the model 
was just barely wider than that of the simpler models, indicating little to 
no loss in efficiency by fitting an overly complex model (Figure 2c). The 
superfluous variance components then converge towards 0 (or close to 
it), which appears to be slightly more challenging for the optimization 
algorithm, leading to longer model fitting times and occasional conver-
gence problems, but not to any worrisome degree (Table 2). Moreover, 
in practice, for any particular dataset, convergence problems can typi-
cally be resolved by selecting a different optimizer or making changes 
to the settings for the optimization routine, so the convergence rates as 
given only apply to the default settings.

At the same time, we should point out that the coverage rate of 
the model did fall slightly below the nominal 95% level in the majority 
of conditions when all variance components were in fact non-zero (see 
Figure 2b, rightmost panel). A similar issue, but for a simpler model 
with only between- and within-study variance components (i.e. model 

5 in our simulation), was also recently pointed out by Song et al. (2020). 
Improved methods based on a t-distribution with various approxima-
tions for the degrees of freedom have been proposed and studied ex-
tensively in the context of the standard random-effects model (e.g. 
Sanchez-Meca & Marin-Martinez, 2008) and mixed-effects models in 
general (e.g. Luke, 2017). Following Nakagawa et al. (2021), we actu-
ally based the confidence interval on a t-distribution with Nstudies − 1 
as the degrees of freedom (as an improvement to using a confidence 
interval based on a standard normal distribution), although this was 
apparently not conservative enough, presumably due to the additional 
dependency among the effect sizes introduced by the phylogeny. 
Further work will be needed to find an even better approximation to 
the degrees of freedom in the present context.

4.2 | Including and testing the phylogenetic effect

Phylogenies play a central role in the context of phylogenetic comparative 
studies (Blomberg et al., 2003; Freckleton et al., 2002; Ives et al., 2007). 
An important step in such studies is testing the significance of the ‘phy-
logenetic signal’ in some trait of interest. This test is often performed 
through a statistic such as � (Pagel, 1999) or K (Blomberg et al., 2003). 
Although model 9 does not parameterize the phylogenetic effect in this 
manner, one can derive information from its output that shows its rela-
tionship to the � statistic. In particular, Pagel's � is a multiplicative factor 
that is applied to the off-diagonal values of the correlation matrix that 
represents the phylogenetic relationships (i.e. the A matrix). For example, 
the variance–covariance matrix for three species would be given by

while the decomposition of the species-level heterogeneity in model 9 
implies the variance–covariance matrix
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TA B L E  3   Results derived from fitting the various models to the example dataset. The first five columns show the estimated overall mean, 
its standard error, the 95% confidence interval, the test statistic and the p-value for testing H0:� = 0, respectively. The next four columns 
show the estimates of the variance components in the respective models. The last column shows the Akaike Information Criteria (AIC) 
values

�̂ SE[�̂] 95% CI Z p �̂
2

u
�̂
2

s
�̂
2

n
�̂
2

p
AIC

Model 3 0.24 0.007 0.23, 0.25 34.15 <0.0001 0.0641 — — — 1082.8

Model 5 0.30 0.015 0.27, 0.33 20.42 <0.0001 0.0149 0.0806 — — 429.0

Model 7 0.34 0.019 0.30, 0.38 17.37 <0.0001 0.0143 0.0195 0.0815 — 386.3

Model 9 0.37 0.130 0.11, 0.62 2.83 0.0046 0.0145 0.0192 0.0555 0.0512 344.7

Model 11 0.36 0.172 0.02, 0.70 2.07 0.0382 0.0149 0.0557 — 0.0913 367.2
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and hence �2 = �2
n
+ �2

p
 and � = �2

p
∕
(
�2
n
+ �2

p

)
 (see also Freckleton 

et al., 2002; Lynch, 1991). Hence, �2
p
∕
(
�2
n
+ �2

p

)
 indicates the degree 

of the phylogenetic signal in the overall variance sourced from the 
species. A likelihood ratio test of H0: �

2
p
= 0 can be easily performed 

by comparing X2 = − 2(ll7 − ll9) against a chi-squared distribution 
with one degree of freedom, where ll7 and ll9 are the (restricted) 
log likelihoods of models 7 and 9, respectively. However, we do not 
advocate making changes to the model based on this test (i.e. by 
dropping the phylogenetic species random effect from the model 
if the test is not significant), since making changes to an a priori 
chosen model based on the data at hand affects the statistical 
properties of all inferential methods in unknown and unpredict-
able ways. Finally, we note that the (asymptotic) null distribution of 
the likelihood ratio test statistic is actually more complex than sim-
ply a chi-squared distribution with one degree of freedom, a result 
of the parameter being on the boundary of the parameter space 
under the null distribution (Self & Liang,  1987). The appropriate 
reference distribution for this test in the present context remains 
to be determined.

4.3 | Estimating the non-phylogenetic and 
phylogenetic variance

Given the informative nature of these two variance components, 
it is essential to estimate their true values accurately to properly 
account for the sources of heterogeneity and dependency in the 
data. We found that model 9 was usually able to estimate these 
components with little to no bias, but should note that the model 
struggles to separate the non-phylogenetic and phylogenetic 
species effects when phylogenetic relationships are weak. In es-
sence, the two sources of variability then start to collapse into 
one, with a total variance of �2

n
+ �2

p
. The way this total variance 

is then distributed into the two estimates is in essence arbitrary 
and can depend on the starting values or other settings of the 
model fitting algorithm. Therefore, we would caution against the 
use of model 9 when phylogenetic relationships are weak. As a 
rough guideline, for � = 0.5, the mean correlation in the A matrix 
(excluding the diagonal) is around 0.2 and hence a lower mean 
correlation would call into question the trustworthiness of the 
estimates of �2

n
 and �2

p
.

Some meta-analyses in ecology and evolution have used model 
11 to reduce model complexity (e.g. Garamszegi et  al.,  2012; 
Moore et al., 2016). Our results indicate that this approach cannot 
be recommended. As we increased the value of �2

n
, the bias in the 

phylogenetic variance component inflated massively in this simpli-
fied model (Figure 4b). As a result, the relevance of the phylogeny 
could be greatly overestimated. In addition, the confidence inter-
val for the overall mean then becomes extremely conservative 
with coverage rates at or very close to 100%. This in turn implies 
a loss of efficiency for estimating the overall mean and a loss of 
power for testing H0:� = 0. The illustrative example also shows this 
phenomenon.

5  | CONCLUSIONS

For the simulation study, we used a ‘generic’ effect size measure, 
that is, we directly simulated the sampling errors from a normal dis-
tribution and treated the sampling variances (i.e. the vij values) as 
known. These conditions only apply asymptotically to measures typ-
ically used in practice (e.g. standardized mean differences, response 
ratios, correlation coefficients, risk/odds ratios). The present results 
therefore reflect the performance of the various models under ide-
alized conditions (i.e. when the sample sizes of the individual stud-
ies are sufficiently large such that the sampling distributions of the 
estimates are indeed approximately normal and any inaccuracies 
in the estimated sampling variances are negligible). Although such 
ideal conditions are rare in practice (Hillebrand & Gurevitch, 2014; 
Pappalardo et al., 2020), the advantage of using a generic measure 
is that we were able to identify problems that are inherent to cer-
tain models and not (potentially) a consequence of violations to the 
model assumptions (i.e. if a particular model performs poorly for a 
measure that violates model assumptions, we do not know whether 
the poor performance is attributable to deficiencies of the model 
itself or a consequence of model assumptions being violated). On 
the other hand, it remains to be determined how well the phyloge-
netic multilevel model performs when the effect sizes are generated 
based on the exact distributional assumptions underlying specific 
measures.

Also, an issue we did not tackle in the present simulation study 
is the influence of the distribution of the different species over the 
simulated studies. In particular, concerns may arise when many 
of the primary studies included in a meta-analysis have examined 
only a single or closely related species. This may make it difficult to 
accurately estimate and differentiate between the study- and the 
species-level variance components. We did not generate conditions 
to specifically simulate such scenarios; thus, this issue still remains to 
be investigated in future simulation studies.

Therefore, at least for the moment, the present results suggest 
that model 9 is the most appropriate tool for conducting a multi-
species meta-analysis in ecology and evolution (unless the phy-
logenetic relationships are weak, in which case model 7 may be 
preferable). For the vast majority of conditions examined, it pro-
vides approximately unbiased estimates of the variance components 
and the overall mean and a confidence interval for the latter with 
a close to nominal coverage rate. Therefore, we recommend that 
meta-analysts in ecology and evolution use the phylogenetic mul-
tilevel model as the de facto standard when analysing multi-species 
datasets.
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