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Abstract
An issue that has so far received only limited attention in
probabilistic logic programming (PLP) is the modeling of
so-called epistemic uncertainty, the uncertainty about the
model itself. Accurately quantifying this model uncertainty
is paramount to robust inference, learning and ultimately de-
cision making. We introduce BetaProbLog, a PLP language
that can model epistemic uncertainty. BetaProbLog has sound
semantics, an effective inference algorithm that combines
Monte Carlo techniques with knowledge compilation, and
a parameter learning algorithm. We empirically outperform
state-of-the-art methods on probabilistic inference tasks in
second-order Bayesian networks, digit classification and dis-
criminative learning in the presence of epistemic uncertainty.

1 Introduction
Uncertainty is often described as being either aleatoric or
epistemic in nature (Hüllermeier and Waegeman 2021). The
former is the intrinsic uncertainty that a probabilistic model
brings and that cannot be reduced with further observations
of the world. For example, the outcome of a coin toss is in-
trinsically uncertain and consequently the model of the toss
will be probabilistic. In contrast, epistemic uncertainty, also
called model uncertainty, stems from the lack of knowledge
about the true underlying model and can be reduced with
more observations. Explicitly modeling both types of uncer-
tainty is important for gauging the uncertainty of learned
probabilistic models and allows for reasoning over the ro-
bustness of subsequent predictions. It allows the user to
avoid risky decisions when a learner is uncertain about its
results or to perform probabilistic inference even when the
probabilistic model is not exactly known.

Modeling epistemic uncertainty explicitly is studied in the
fields of credal sets (CS) (Levi 1983) and subjective logic
(SL) (Jøsang 2016). CS models the epistemic uncertainty
by reasoning over convex sets of distributions, whereas SL
uses beliefs. Both fields have issues that we address by in-
troducing BetaProbLog, an extension of the probabilistic
logic programming (PLP) language ProbLog. The first issue
is that the field of SL often uses approximating operators.
Cerutti et al. (2019) introduce SLProbLog, whose semantics
rely on such approximations. As a result the semantics are

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not exactly defined. In contrast, BetaProbLog has a well-
defined semantics rooted in probability theory. Second, al-
though convex sets of distributions can suffice to make more
informed decisions, CS lacks the ability to calculate ex-
pectation values. With so-called second-order queries, Be-
taProbLog can calculate any expectation value, offering a
vast range of query types. Third, we provide an easy to in-
terpret Monte Carlo inference algorithm for BetaProbLog
based on knowledge compilation (Darwiche and Marquis
2002) combined with parallelized tensor operations, imple-
mented with PyTorch (Paszke et al. 2019). This leads to an
inference algorithm that is more than an order of magnitude
faster than the one proposed by Cerutti et al. (2019). Fourth,
we tackle (discriminative) parameter learning with epistemic
uncertainty. To our knowledge, learning in second-order net-
works has so far been limited to networks of only two
nodes (Kaplan et al. 2020). Our algorithm can handle net-
works of any size, by combining stochastic gradient descent
with sampling and the reparametrization trick (Kingma and
Welling 2014). We empirically evaluate our work on prob-
abilistic inference tasks in second-order Bayesian networks,
digit classification, and by performing parameter learning in
the presence of epistemic uncertainty.

Consider the example of tossing two coins with unknown
probabilities. We know that the queried probability of a sin-
gle heads is in [0.5, 0.6] and of two heads is in [0.3, 0.4].
From this information we want to learn a distribution over
the coin probabilities. We can use BetaProbLog, SL or CS.
However, SL can make a considerable approximation error
in this case. CS returns intervals for the probabilities, but
not their full distribution. With Bayesian learning probabili-
ties are learned from data counts instead of target intervals,
making it unfit for this type of problem. Using a loss that pe-
nalizes probabilities outside the target interval, BetaProbLog
can learn the full distribution, allowing more queries to be
answered, such as finding moments or quantiles. This helps
users make decisions when it is important to know whether
some probability lies below a given threshold.

2 Background
2.1 Inference in ProbLog
ProbLog is a PLP language that allows users to compactly
write down complex relational probabilistic models while



abstracting away the intricacies of performing inference.
The primary inference task supported by ProbLog is com-
puting conditional probabilities P (q | e). Since P (q | e) =
P (q, e)/P (e), we will focus on computing marginal prob-
abilities and omit evidence for the sake of brevity. We now
briefly delineate ProbLog’s semantics and inference mecha-
nism.
Example 1 A simple ProbLog program comprised of prob-
abilistic facts (lines 1 to 3) and logical rules (lines 5 and 6)
is shown below.
1 0.6::burglary.
2 0.2::earthquake.
3 0.5::alarm_on.
4
5 alarm :- alarm_on, burglary.
6 alarm :- alarm_on, earthquake.

A probabilistic fact is composed of an atom and the prob-
ability that the atom is true. In the example, the burglary
atom is true with probability 0.6. A literal is an atom a or its
negation ¬a.

A logical rule h :- b is composed of a head h and a
body b. The head is a single atom, for example alarm, while
the body consists of one or more literals. The meaning of a
logical rule is that when the body is true, then the head can
be derived to be true as well. In the example, alarm is true
iff alarm_on is true and either burglary or earthquake
is true. We assume without loss of generality that an atom
only occurs as a probabilistic fact or as the head of rule, but
not both. The former are called probabilistic atoms, the latter
derived atoms.

A modelM of a program is a truth assignment to all atoms
in the program such that the probabilistic atoms are assigned
either true or false, and the truth assignment of each derived
atom further follows from the logical rules in the program.
We will represent a model M as a set of literals where for
each atom a: either a ∈ M or ¬a ∈ M . For example,
M1 ={burglary, ¬earthquake, alarm_on, alarm} is
one model of the example program. For a more formal ex-
planation of the two-valued well-founded model semantics
utilised by ProbLog, we refer to Fierens et al. (2015). The
probability of a model is defined as the product of the proba-
bilities associated with the probabilistic atoms. For example,
the modelM1 has a probability of 0.6 ·(1−0.2) ·0.5 = 0.24.

Given a ProbLog program and a query to that program,
inference in ProbLog consists of four steps: grounding, con-
version, compilation and finally evaluation. The grounding
step first turns a ProbLog program and query q into a rel-
evant ground program, thereby eliminating all logic vari-
ables. Note that the program in Example 1 is already ground.
The relevant ground program for q is then converted into a
weighted propositional theory ψq , capturing all of its two-
valued well founded models (Fierens et al. 2015). The prob-
ability of atom q being satisfied is given by Sato’s distribu-
tion semantics (Sato 1995):

P (q) =
∑
M |=ψq

∏
l∈M w(l) (1)

where w(l) maps a literal l to its weight, which is a proba-
bility. The sum runs over all models M of the program such
that ψq evaluates to true.

Example 2 To compute the probability of alarm being true
in Example 1, the ProbLog program is converted into a
propositional weighted formula ψq taking the form a ↔
on∧(b∨e) with weightsw = {b 7→ 0.6,¬b 7→ 0.4, . . . , a 7→
1,¬a 7→ 0}. Due to w(¬a) = 0 all models where alarm is
false are ignored and only those where it is true are consid-
ered.

The sum-product computation in Equation 1 is often re-
ferred to as the weighted model counting (WMC) problem –
a #P-hard problem (Darwiche 2009). ProbLog follows a two
step approach to perform WMC: a knowledge compilation
step that is followed by an evaluation step, cf. (Chavira and
Darwiche 2008). In the compilation step,ψq is first compiled
into a data structure that then allows for poly-time query an-
swering (evaluation).

Separating the WMC into a compilation step and an eval-
uation step is especially useful when the compiled structure
can be re-used multiple times. The #P-hard compilation is
performed in an offline step, which then allows repeated
poly-time online evaluations using different weight func-
tions. An iterative learning approach will naturally require
many such evaluations.

The structures resulting from the knowledge compilation
step are often referred to as decision diagrams, with bi-
nary decision diagrams (Bryant 1986) probably being the
most prominent representative. Decision diagrams are triv-
ially converted into arithmetic circuits by replacing the lit-
erals with their associated weight and replacing the ∧ and
∨ connectives with multiplication and addition operations
respectively. The transformed decision diagrams are called
arithmetic circuits (Darwiche 2000).
Definition 1 An arithmetic circuit (AC) is a rooted directed
acyclic graph where the leafs are associated with a weight,
and the internal nodes are associated with either a sum- or
a product operation.
An AC also has specific properties required to accurately
represent the WMC problem, for more details we refer
to (Darwiche and Marquis 2002) and (Kimmig, Van den
Broeck, and De Raedt 2017). For now, one can consider an
AC as a type of computational graph representing the com-
putations required to answer probabilistic queries in time
linear in the circuit size.

2.2 Beta Distributed Bayesian Networks
The beta distribution is a univariate distribution supported
in the interval [0, 1] and has two parameters α and β. A beta
distributed random variable X ∼ Beta(α, β) often repre-
sents the probability of the outcome of a Bernoulli experi-
ment, for example a coin flip. Its density is given by

pBeta(X;α, β) =
Xα (1−X)β∫
zα (1−z)βdz (2)

When using a beta distribution to model uncertainty, the
parameters α and β are used to represent the epistemic un-
certainty. Lower values of α and β correspond to high un-
certainty. The probability X on the other hand is an intrinsic
aleatoric uncertainty in the probabilistic model. An exten-
sion of the beta distribution for multivalued discrete vari-
ables is called the Dirichlet distribution. For the sake of



brevity, we will focus on beta distributions, but all our re-
sults also apply to Dirichlet distributions.

A beta distributed Bayesian network is a directed acyclic
graph in which every node represents a Boolean random
variable. The probability of every variable is beta distributed
with parameters that depend on the value of the variable’s
parents in the network. These networks are special cases of
second-order Bayesian networks as discussed by Kaplan and
Ivanovska (2018). The beta parameters are used to model
epistemic uncertainty and the beta distributed variable itself
to model the network’s aleatoric uncertainty. In our experi-
mental evaluation we will use beta distributed Bayesian net-
works for benchmarking inference and learning.

2.3 Distributions and Credal Sets
Another common way to model epistemic uncertainty is via
credal sets. A credal set is a convex set of probability dis-
tributions over one or more random variables (Mauá et al.
2014). For a binary variable X , a credal set is specified by a
subinterval S of [0, 1] wherein the probability p of X being
true lies. A credal set can also be viewed as the support of the
distribution over p. Reasoning about credal sets of random
variables is then equivalent to reasoning about the support
of the distributions over the probabilities p associated with
each variable.

Credal sets provide reasoning over robust boundaries,
making them especially useful for robust decision making
applications. However, they do not specify any other de-
tails about the probability distributions beyond the support,
and can therefore not accurately model complex distribution
shapes such as skewness. Furthermore, it is not possible to
use them to calculate expectation values. This is in contrast
to beta distributions, which naturally allow for the calcula-
tion of any function’s expectation value – regardless of the
distribution shape. Comparing credal sets and beta distribu-
tions is difficult, as one aims to reason over boundaries while
the other aims to reason over the entire distribution. Whether
one should use distributions or credal sets depends on the
modeling goals and whether outlier behaviour or expected
behaviour is more important. It is also possible to combine
both approaches using beta distributions that are cut off out-
side a given interval. We can compare both methods by as-
suming a credal set [a, b] represents the uniform distribution
Uniform(a, b). By matching the mean and standard devia-
tion of the unifrom distribution and the beta distribution, we
map a credal interval [a, b] to a beta distribution with mean
(a+ b)/2 and standard deviation (b− a)/

√
12.

3 BetaProbLog
BetaProbLog is an extension of ProbLog, a probabilistic
logic language which in turn builds upon Prolog (Fierens
et al. 2015). The main addition is the ability to distribute
probabilities of facts according to beta distributions, allow-
ing the user to model epistemic uncertainty in the program.

3.1 Semantics
Definition 2 (BetaProbLog) A BetaProbLog program con-
sists of three disjoint sets F , B, andR:

1. a set of probabilistic facts F . Given a probabilistic fact
pf::f, the atom f has probability pf of being true in a
world of the program.

2. a set of beta facts B. A fact beta(αf,βf)::f defines
a random variable Xf ∼ Beta(αf , βf ) representing the
probability of the atom f .

3. a set of logic rules R of the form h :- b1,. . .,bn.
Whenever the body literals b1,. . .,bn are true in a world,
the head atom h has to be true in order for the world to
be a model of the program.

Note that in the absence of beta facts (B = ∅) BetaProbLog
reduces to ProbLog.

Example 3 A BetaProbLog program with two beta facts,
one probabilistic fact and two clauses is shown below.
1 beta(40, 160)::burglary.
2 beta(10, 90)::earthquake.
3 0.8::alarm_on.
4
5 alarm :- alarm_on, burglary.
6 alarm :- alarm_on, earthquake.

If we include beta facts in the program, the probability of
a query atom q is defined using the same semantics as in
Equation 1, except that the weight of a beta fact f will now
be a random variable Xf , which represents the probability
of that fact. Therefore, the probability of the query atom,
which is now a sum-product of random variables, will itself
be a random variable. We will call this random variable Xq ,
representing the probability of q. In general we will use the
symbol X to denote a random variable. We define Xq as

Xq =
∑
M |=ψq

∏
l∈M w(l) (3)

The symbol ψq is a propositional theory such as in Equa-
tion 1 and the weight function returns a real number w(f) =
pf if f is a non-negated probabilistic fact and a random vari-
able w(f) = Xf if f is a non-negated beta fact. For negated
facts we use w(¬f) = 1 − w(f). Note that the negation
¬f of a beta fact f with Xf ∼ Beta(αf , βf ) is distributed
according to (1−Xf ) ∼ Beta(βf , αf ).

Alongside a BetaProbLog program, the user specifies a
second-order query. To answer this query, it is necessary to
obtain the distribution over the probability Xq of the query
atom. This task is analogous to distributional inference in
second-order Bayesian networks as done by Kaplan and
Ivanovska (2018).

Definition 3 (Second-Order Query) For a BetaProbLog
program, a second-order query Q = (q, g) has two compo-
nents: a query atom q present in the program and a measur-
able function g : [0, 1]→ R operating on the probabilityXq

of atom q being satisfied. The answer A(Q) to the query Q
is the expected value, denoted with E, of g(Xq) with regard
to the probability distribution p(X) :=

∏|B|
i=1 p(Xfi).

A(Q)=Ep(X)[g(Xq)]=

∫
g(Xq)

 |B|∏
i=1

p(Xfi)

 dX (4)

The differential dX is shorthand for dX =
∏|B|
i=1 dXfi .

Note, the dependence of Xq on Xfi is given by Equation 3.



We will from now on omit the subscript in the expectation
value unless stated otherwise.

Example 4 (BetaProbLog Query) Consider the program
in Example 3. To compute the probability P (Xalarm < 0.3),
we can use the second order query Q = (alarm, g) with an
indicator g(Xq) = [1 if Xq < 0.3 else 0].

Nested Expectation Values In Equation 4 we are com-
puting two expectations, one expectation over the probabil-
ity distribution p(X) and one somewhat hidden expectation
Xq . To see this, we rewrite Equation 3 as an expectation:

Xq =
∑
M |=ψq

∏
l∈M

w(l) =
∑

M∈I(P)

1M |=ψq

∏
l∈M

w(l)︸ ︷︷ ︸
=: p(M)

= Ep(M)[1M |=ψq ] (5)

In the equation above 1 is an indicator, I(P) denotes all the
possible models of the program P and p(M) :=

∏
l∈M w(l)

is the probability of model M . Note that p(M) and, con-
sequently, the expectation in the last line, depend on the
random variables in Xf with f a beta fact. This means
that Equation 4 effectively defines a nested query, i.e. an
expectation value of an expectation value. We can regard
BetaProbLog as a specific case of nested probabilistic pro-
grams (Mantadelis and Janssens 2011; Rainforth 2018).

Conditional Queries BetaProbLog also supports condi-
tional second-order queriesQ=(q, e, g), where q is a queried
atom and e the evidence. Note that we discuss evidence over
atoms in the program and not on beta distributed probabili-
ties. To clarify, e can be evidence of burglary being true,
but not evidence of burglary taking a specific probability
p. A conditional second-order query is defined as:

A(Q) = Ep(X)[g(Xq | e)] =
∫
g(Xq | e)p(X) dX (6)

where Xq | e = Xq∧e/Xe and Xq∧e is a random variable
representing the probability of q ∧ e being true. Effectively
the second-order query computes the expected probability
of a conditioned probabilistic logic program with respect to
the probability distribution p(X).

3.2 Special Cases of BetaProbLog
Below, we list a couple of particular choices of second-order
queries to illustrate the strength of BetaProbLog and its re-
lation to other work.

Mean Values When calculating the mean value of Xq by
choosing the identity for the query function g(Xq) = Xq ,
the query answer is given by

A(Q) = E[g(Xq)] = E[Xq] (7)

= E

 ∑
M |=ψq

∏
l∈M

w(l)

 =
∑
M |=ψq

∏
l∈M

E[w(l)]

where we have filled in Equation 3 for Xq and used the fact
that an expectation value can be pushed inside a sum and a
product of independent random variables in the last equality.

The BetaProbLog query thus reduces to a regular ProbLog
inference problem, because E[w(l)] is a real number in the
unit interval.

Example 5 (BetaProbLog Query Evaluation) Consider
the program
1 0.4::a.
2 beta(3,7)::b.
3 c :- a, b.
4 c :- \+a, \+b.

with the query Q = (c, I) where I is the identity function.
The models of this program satisfying c are {a, b, c} and
{¬a,¬b, c}. These have weights 0.4 ·Xb and 0.6 · (1−Xb)
respectively. The probability Xc is by Equation 3 equal to

Xc = 0.4 ·Xb + 0.6 · (1−Xb)

and is thus a random variable. The query answer is its ex-
pectation value

A(Q) = E[g(Xc)] = E[Xc] = E[0.4 ·Xb + 0.6 · (1−Xb)]

= 0.4 · E[Xb] + 0.6 · (1− E[Xb])

= 0.4 · 0.3 + 0.6 · (1− 0.3) = 0.54

where the expectation E[Xb] = 3/(3 + 7) is the mean of
the beta distribution Beta(3, 7). The query answer is thus
obtained by replacing every beta fact by a probabilistic fact
with probability given by the mean of the beta distribution.

Moments Higher moments of the distribution can be cal-
culated with g(Xq) = Xk

q for the kth moment. This subse-
quently allows the calculation of other statistics such as the
variance or skewness of the distribution.

Subsets It is possible to calculate the probability that Xq

lies in a measurable subset S ⊆ [0, 1] by choosing

g(Xq) =

{
1 if Xq ∈ S
0 otherwise

(8)

in the second-order query. In particular we can consider in-
terval subsets S = [a, b] ⊆ [0, 1]. In this case, second-order
inference becomes an instance of weighted model integra-
tion (Belle, Passerini, and Van den Broeck 2015).

3.3 Comparison to SLProbLog
While BetaProbLog and SLProbLog are syntactically simi-
lar, their semantics are different. SLProbLog supports both
SL beliefs and beta distributions, which were, however,
shown to be equivalent repreentations of epistemic uncer-
tainty (Jøsang 2016). Furthermore, SLProbLog uses alge-
braic ProbLog (Kimmig, Van den Broeck, and De Raedt
2011), which requires commutative addition and multipli-
cation operators to define consistent semantics. However,
the operators used by Cerutti et al. (2019) are only approx-
imately commutative and therefore not well suited to define
the semantics. It is not guaranteed that two different ACs
produce the same result, even when they encode the same
theory ψq and use the same weight function w. Furthermore,
the operators approximate sums and products of beta vari-
ables with new beta variables. This means that the query dis-
tribution is also approximated by a beta distribution, which
in some cases is an unfaithful approximation.
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Figure 1: Mismatch between the moment matching beta den-
sity and actual density of the query probability. Xc is the
actual density.

Example 6 (Beta Mismatch) The query probability in the
program below is not beta distributed, as Figure 1 shows.
1 beta(0.5,0.5)::a.
2 beta(0.5,0.5)::b.
3 c :- a, not(b).
4 c :- b, not(a).
5 query(c).

In blue is a histogram of the true density, obtained by sam-
pling many times and in orange is the beta density obtained
by moment matching. The peak in the middle and the con-
vexity of the density is entirely missed.

4 Inference and Learning

4.1 General Inference Approach

ProbLog performs probabilistic inference by converting
a queried program into a weighted propositional theory
and solving a WMC task on a compiled circuit (cf. Sec-
tion 2.1). BetaProbLog also follows this compile and evalu-
ate paradigm. A BetaProbLog program with query atom q is
compiled into an arithmetic circuit Γq , a compact represen-
tation of the function

Γq : (Xf1 , ..., Xf|B|) 7→ Xq =
∑
M |=ψq

∏
l∈M w(l) (9)

The circuit Γq maps the probabilities of the |B| beta facts
Xf1 , . . . , Xf|B| onto the probability Xq of the query in a
computationally efficient fashion. Recall that w(f) = Xf

if f is a beta fact. Any probability of a probabilistic fact f
is implicitly present in the circuit function via the weight
w(f) = pf . We omit them in the function arguments as they
are constant. The complexity of compiling a ground prob-
abilistic logic program to a circuit is #P-hard and depends
only on the logic structure. Consequently, the compilation
step is identical for ProbLog, BetaProbLog and SLProbLog.

Example 7 (Circuit) The BetaProbLog program of Exam-
ple 3 can be compiled into the arithmetic circuit of Figure 2.
The circuit represents Γa as w(a) = 1 and w(¬a) = 0.

Figure 2: Arithmetic circuit for the program in Example 3.

The answer A(Q) to query Q = (q, g) is given by

A(Q) = E[g(Γq(Xf1 , ..., Xf|B|))] (10)

=

∫
g(Γq(Xf1 , ..., Xf|B|))

 |B|∏
i=1

p(Xfi ;αfi , βfi)

 dX

Again we use the shorthand dX=
∏|B|
i=1 dXfi . The func-

tion p(Xf ;αf , βf ) denotes a beta density function, cf. Equa-
tion 2.

Although the complexity of calculating the circuit is al-
ways #P-hard, the complexity of answering the query given
the circuit depends on the type of query. For standard
ProbLog inference it suffices to propagate real numbers
through the circuit and evaluation is linear in the circuit size.
Under specific conditions, calculating higher order moments
can be done in polynomial time as well, as shown by Khos-
ravi et al. (2019). More general computations, referred to as
weighted model integration (Belle, Passerini, and Van den
Broeck 2015; Morettin et al. 2021), are known to be #P-hard
even with the circuit given (Zuidberg Dos Martires, Dries,
and De Raedt 2019).

4.2 Monte Carlo Evaluation
The integral in Equation 10 is hard to solve in general but
can be approximated by Monte Carlo sampling. In order to
obtain a sample of Xq , we can generate a sample for every
random variable Xf and evaluate the circuit in these sam-
ples. Instead of sampling directly from Xf ∼ Beta(αf , βf ),
however, we consider random variablesUf ∼ Uniform(0, 1)
and apply a reparametrization function r to these vari-
ables such that r(Uf , αf , βf ) ∼ Beta(αf , βf ) (Kingma and
Welling 2014). This allows us to calculate gradients with re-
spect to the distribution parameters, which enables learning
(cf. Section 4.3).

Let u be a set containing a sample for each variable Uf
and let U denote a collection of distinct u’s. The integral in
Equation 10 can then be approximated as

A(Q) = 1
|U|
∑

u∈U g(Γrq(u,θ)) (11)

Γrq denotes the reparametrized circuit and θ the set of pa-
rameters of all beta distributions:

θ = {αf1 , βf1 , ..., αf|B| , βf|B|} (12)



Figure 3: Example of an arithmetic circuit with samples

As the circuit structure does not change between circuit
evaluations we can parallelize the evaluations for the differ-
ent u by performing them on a GPU. We have implemented
this idea, adapted from (Zuidberg Dos Martires, Dries, and
De Raedt 2019), using PyTorch’s tensor operations (Paszke
et al. 2019).
Example 8 The second-order query previously introduced
in Example 4, P (Xalarm < 0.3), can be answered by re-
placing the random variables in circuit Γa (Figure 2) with
samples from the associated beta distributions, perform-
ing tensor operations throughout Γa, and using the result-
ing samples to compute E[Xalarm < 0.3]. This process is
depicted in Figure 3, only showing the relevant non-zero
branch of Γa.

4.3 A Learning Algorithm
A question that naturally arises is whether the beta param-
eters in the program can be learned from data. Work on
learning these parameters in the domain of second-order net-
works has so far been limited to networks of only two nodes
(Kaplan et al. 2020), while SLProbLog considered it as fu-
ture work. To resolve this, we propose a parameter learn-
ing approach for BetaProbLog that can be applied to various
learning settings involving model uncertainty. It can be used
for probability estimation, discriminative classification, dis-
tribution matching and cost optimization.

BetaProbLog performs parameter learning by minimizing
a loss function. The total loss L is a sum of loss functions
L applied to a second-order query, which is compared to a
target value. More concretely, given a BetaProbLog program
with a set of probabilistic or distributional parameters θ, a
dataset D of tuples (d, t) with d a partially observed model
of the program and t a target value of A(Qd,θ), the total
loss is:

L(θ) =
∑

(d,t)∈D L(A(Qd,θ), t) (13)

where we explicitly write the dependency of A(·) on θ, un-
like in definition 3, as we would like to learn these parame-
ters.

The loss L can take on any form. Depending on the learn-
ing setting, some useful choices are
• negative log likelihood loss L = − log(A(Qd)) with
Qd = (d, I) and I the identity function, for learning the
most probable underlying parameters,

• mean absolute error or squared error L = (A(Qd)− t)2,
for training classifiers,
• cross entropyL = t log(A(Qd))+(1−t) log(1−A(Qd)),

for distribution matching

BetaProbLog optimizes the loss function in Equation 13
using stochastic gradient descent. When g is differentiable,
the gradients can be obtained by taking the derivative of
Equation 11 and using automatic differentiation methods
available in PyTorch (Paszke et al. 2019). This approach is
similar to the learning setting found in the work of Gutmann
et al. (2008) and DeepProbLog (Manhaeve et al. 2018).
The difference is that BetaProbLog goes beyond mere point
probabilities and allows for expressing distributions over
probabilities. This requires the reparametrization trick.

During learning, the beta parameters can become arbitrar-
ily large. To avoid this issue, we impose the number of data
points |D| as an upper bound on the beta parameters by ap-
plying a normalization after every iteration:

(αf , βf )→
(
αf |D|
αf+βf

,
βf |D|
αf+βf

)
(14)

Having the number of data points as an upper bound mirrors
the same property in Baeysian learning, which arises natu-
rally in the latter. Our learning method differs from Bayesian
learning in that it can use any loss function and as such can
be used for discriminative learning. For example, it can min-
imize the probability of some undesired data points, whereas
Bayesian learning returns a distribution over the parame-
ters that most likely generated that data. With missing data,
BetaProbLog also has the benefit that during learning the
beta facts B remain beta distributed, in contrast to Bayesian
learning.

5 Experiments
Our experiments involve three Bayesian networks proposed
in (Kaplan and Ivanovska 2018) and five larger networks
from the BNLearn repository1. Each network is transformed
into a ProbLog program using a script available from the
ProbLog code repository. Our implementation can be found
on GitHub2.

5.1 Inference Experiments
Experimental Setup We construct two models for each
ProbLog program, one with epistemic uncertainty and one
without. The model MT without epistemic uncertainty is a
ProbLog program that represents the true model. In con-
trast, the model ME with epistemic uncertainty is a Be-
taProbLog program that models the uncertainty of the prob-
ability parameters, and represents a user constructed or
learned model. For our experiments, MT is generated by re-
placing each probability in the program with a probability
randomly sampled from the unit uniform distribution. The
model ME is obtained from MT by replacing each proba-
bility parameter p with a beta distribution. The parameter α
of the beta distribution is sampled from α ∼ Binomial(N, p)

1https://www.bnlearn.com/bnrepository
2https://github.com/ML-KULeuven/betaproblog



Net #n #p Citation

A1 9 17 Kaplan and Ivanovska (2018)
A2 9 19 Kaplan and Ivanovska (2018)
A3 9 21 Kaplan and Ivanovska (2018)

Child 20 230 Spiegelhalter (1992)
Alarm 37 509 Beinlich et al. (1989)
Water 32 10083 Jensen et al. (1989)

Win95pts 76 574 BNLearn
Hepar2 70 1453 Onisko (2003)

Table 1: The number of nodes (#n) and parameters (#p) for
each used Bayesian network.

and β = N −α, with N an experimental parameter control-
ling the number of data points.

A description of the networks used in the experiments in-
vestigating the inference accuracy and the time scaling is
given in Table 1. The time scaling experiments were run on
Intel Xeon CPU with 2.20GHz. BetaProbLog additionally
took advantage of a GeForce GTX 1080 Ti GPU.

Question 1: Can BetaProbLog capture the uncertainty
with respect to the true model? We follow the exper-
iment of Kaplan and Ivanovska (2018) and Cerutti et al.
(2019) and analyse how well our expression of uncertainty
for a specific query q captures the spread between the in-
ferred probability and the actual probability. In this exper-
iment, we infer the probability distribution of Xq from the
uncertain modelME , and the true probability P (q) from the
true model MT . After the distribution of Xq is inferred, we
calculate the root mean squared error of Xq and the under-
lying probability P (q) (TE). Furthermore, we calculate the
predicted error (PE) as the standard deviation σ[Xq] and ver-
ify whether it is representative of the true error (TE). These
results are averaged out over 100 iterations and are tabu-
lated in Table 2 for various values ofN . We compare against
Cerutti et al. (2019) as they exhibited similar performance
to state-of-the-art methods for reasoning under uncertainty:
subjective Bayesian networks (Ivanovska et al. 2015; Ka-
plan and Ivanovska 2016, 2018), credal networks (Fagiuoli
and Zaffalon 1998) and belief networks (Smets 1993).

The predicted error (PE) tends to underestimate the true
error (TE) but it does decrease along with the true error when
N is increased and therefore is indicative of the true error.
We can see that increasing the sample count does not have
a huge impact on the error, and that 10 inference samples
often suffice. The true error for BetaProbLog is smaller than
for SLProbLog in almost all cases, indicating it can more
accurately predict the underlying probability.

Question 2: How well does the computation time scale?
We investigate the compilation and evaluation time for in-
ference in BetaProbLog and SLProbLog, and average out
the results over 5 runs. We include larger Bayesian networks
to illustrate that our approach is not only viable for small
problems. The results shown in Table 3 illustrate that due
to the parallelization, the evaluation time remains constant
with an increasing number of samples. It also shows that
our approach outperforms SLProbLog in terms of run time

Net N BP10 BP100 BP1000 SLP

A1

10
TE 0.156 0.154 0.144 0.152
PE 0.099 0.106 0.103 0.186

50
TE 0.065 0.064 0.064 0.076
PE 0.046 0.048 0.048 0.107

100
TE 0.051 0.045 0.048 0.057
PE 0.034 0.035 0.035 0.078

A2

10
TE 0.134 0.142 0.139 0.138
PE 0.096 0.100 0.099 0.178

50
TE 0.058 0.058 0.059 0.070
PE 0.042 0.044 0.045 0.098

100
TE 0.043 0.042 0.043 0.055
PE 0.029 0.033 0.032 0.073

A3

10
TE 0.134 0.127 0.126 0.150
PE 0.092 0.095 0.093 0.172

50
TE 0.056 0.053 0.050 0.073
PE 0.039 0.039 0.039 0.090

100
TE 0.039 0.037 0.038 0.055
PE 0.029 0.027 0.028 0.066

Table 2: For networks A1, A2 and A3 the true error (TE) and
predicted error (PE) between Xq and the underlying proba-
bility P (q) are shown. The results for BetaProbLog (BP)
with 10, 100 and 1000 inference samples are shown, as well
as the results of SLProbLog (SLP). Different values for the
number of data points N were used. The smallest values are
indicated in bold.

Figure 4: Seven-segment digit display.

– even with 10000 inference samples our method is an order
of magnitude faster. The method can also scale up to larger
networks with more than 1000 parameters.

Question 3: How does our method compare to credal
inference? In (Mattei et al. 2020) an experiment is out-
lined where digits are displayed on an error-prone seven-
segment display, visually represented in Figure 4. A digit
is sampled uniformly at random to be displayed, but every
required segment might fail to turn on independently with
a probability following a beta distribution with sample size
N = α + β and mean µ = α/N . The goal is to predict
which segments should be on, given an observed configura-
tion of segments. We have used BetaProbLog, SLProbLog
and ProbLog to classify segments in order to compare to the
credal approach from (Mattei et al. 2020). A segment is clas-
sified as ‘on’ if the mean probability of being ‘on’ given the
observed segments is larger than 1/2. Both the accuracy and



Net BP SLP
101 102 103 104

A1 C 0.045 0.031 0.027 0.029 0.053
E 0.002 0.002 0.002 0.002 0.697

A2 C 0.033 0.027 0.030 0.030 0.068
E 0.002 0.002 0.002 0.003 0.851

A3 C 0.031 0.030 0.032 0.030 0.063
E 0.002 0.002 0.002 0.002 1.025

Child C 0.201 0.210 0.210 0.202 —E 0.017 0.019 0.017 0.019

Alarm C 0.475 0.468 0.475 0.480 —E 0.040 0.046 0.040 0.054

Water C 9.869 9.817 10.202 9.945 —E 0.730 0.872 0.824 0.804

Win95pts C 0.796 0.618 0.638 0.614 —E 0.035 0.031 0.034 0.031

Hepar2 C 1.422 1.455 1.456 1.438 —E 0.141 0.116 0.123 0.115

Table 3: Time (in seconds) taken by BetaProbLog (BP) to
compile (C) and evaluate (E) circuits for inference in vari-
ous networks with 101, 102, 103 or 104 samples. Networks
with multi-valued variables are not supported by SLProbLog
(SLP) and are denoted with ‘—’.

the u80 score (Zaffalon, Corani, and Mauá 2012), were used
as a metric and are plotted in Figure 5 for various values of
µ and N .

The u80 score is a so-called utility-discounted accuracy
metric (Zaffalon, Corani, and Mauá 2012), which are used
in the credal set literature to compare the precision of impre-
cise probability models (to precise models) as an alternative
to F-metrics (del Coz, Dı́ez, and Bahamonde 2009). The u80
score is a specific instance of this utility-discounted metric.
The score requires computing the so-called discounted ac-
curacy, which is the expected value of the accuracy taken
over the outputted labels. For example, a credal classifier
that outputs a set of n labels has a discounted accuracy of
1/n if the correct label is in the set and 0 if it is not. Then a
quadratic map Q is applied to the discounted accuracy such
that Q(0) = 0, Q(1) = 1 and Q(0.5) = 0.8, with this last
requirement giving the score its name. In symbols,

u80 = Q(a) = −0.6a2 + 1.6a (15)

with a the discounted accuracy. The u80 score is the result
of this quadratic map applied to the discounted accuracy, av-
eraged over all the data points. A more detailed exposition
can be found in (Zaffalon, Corani, and Mauá 2012).

BetaProbLog can be seen to outperform both SLProbLog
and credal inference for both metrics in Figure 5. Notice that
the accuracy of BetaProbLog and standard ProbLog overlap.
This experimentally confirms that when taking mean values
BetaProbLog reduces to regular ProbLog. For SLProbLog
the u80 score is lower than the accuracy, indicating a large
part of the distribution lies on the wrong side of 1/2 for a
correct classification. This illustrates the drawbacks of the

approximations SLProbLog makes during inference.

5.2 Learning From Target Probabilities
Experimental Setup We consider the three networks used
by Cerutti et al. (2019), convert them to BetaProbLog pro-
grams, and use them to illustrate the parameter learning
algorithm for BetaProbLog. The aim of the learning task
in this experiment is to tune the beta parameters of the
network in order to match the probability of a set of se-
lected nodes to a target probability. This learning situa-
tion can occur when combining the results of multiple
sources into one network and trying to find the parame-
ters of the network that conform to the sources. For exam-
ple, given the simple network smoking → cancer, and
the evidence P (smoking) = 0.3, P (cancer) = 0.01 and
P (smoking | cancer) = 0.4, we can easily learn the other
probabilities, such as P (cancer | ¬smoking), by imposing
the above three probabilities in the network. Note that the
given probabilities are not the network parameters and that
discriminative learning with these target probabilities does
not fit the standard Bayesian learning framework.

To generate a dataset D for our problem, we first create
a ProbLog program by uniformally sampling point proba-
bilities for all facts in the program. After that, we randomly
decide on an atom q, and determine a target probability t by
inferring the probability of q from the program. We repeat
this Nq times to form D = {(qi, ti) | i = 1, ..., Nq}. After
the dataset is generated, we randomly selectNp probabilistic
facts and omit their probability for them to be learned.

Question 4: How well can BetaProbLog recover param-
eters based on the number of given target probabilities
and the number of parameters to be learned? To learn
the Np missing parameters from Nq target probabilities, we
utilise BetaProbLog’s parameter learning approach to mini-
mize the squared error between the inferred probability of q
and the target probability t with the loss function

L(A(Q,θ), t) = (A(Q,θ)− t)2 (16)

where Q = (q, I) and I the identity function. During learn-
ing we use the Adam optimizer, a sample count of 1000 and
allow for 100 epochs. We evaluate the learning by repeating
the same experiment 10 times for eachNq andNp, averaging
out the absolute error between the parameters omitted and
the parameters learned (Table 4). Provided with enough data
for the number of parameters to be learned, BetaProbLog
can accurately recover the parameters. Even with less data,
the method is quite robust.

6 Conclusion
Modeling epistemic uncertainty allows for reasoning even
when the underlying probabilistic model is not exactly
known. We extended the PLP language ProbLog with sound
semantics to support epistemic uncertainty through beta dis-
tributions. These semantics are implemented in the language
BetaProbLog for which we also provide an inference and
learning algorithm. The inference method achieves state-
of-the-art performance for second-order Bayesian networks
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Figure 5: Accuracy and u80 for classifying segments with N ∈ {10, 20, 50, 100}.

Net Nq

9 6 3

Np

4 0.030 0.008 0.110
A1 8 0.036 0.098 0.149

12 0.102 0.123 0.173

Np

4 0.005 0.066 0.107
A2 8 0.056 0.097 0.127

12 0.088 0.131 0.152

Np

4 0.004 0.022 0.077
A3 8 0.070 0.090 0.148

12 0.085 0.124 0.160

Table 4: Mean absolute error for the target probability learn-
ing experiment with different values of Np and Nq .

and the learning is more scalable than previous epistemic un-
certainty learning methods. In future work, we would like to
integrate BetaProbLog with DeepProbLog (Manhaeve et al.
2018), a ProbLog extension that supports neural networks,
in order to reason over the uncertainty present in them. Fur-
thermore, we also envisage to apply this work to a utility
learning problem in the context of probabilistic routing net-
works (Derkinderen and De Raedt 2020).
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