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Abstract

Prostate cancer is among the most common type of cancer in men worldwide. Despite the
use of clinical indicators, as part of simple rule-based strategies, stratifying patients diag-
nosed with prostate cancer into risk groups to reliably reflect oncological prognosis remains
challenging. Machine Learning (ML) offers the possibility to develop estimation models
based on routinely evaluated patient or tumor characteristics. In the present study, the
estimation of metastasis in prostate patients after primary treatments (radical prostatec-
tomy) with the aid of Support Vector Machines (SVMs) and Conformal Predictors (CP)
was evaluated. We show that the use of ML models can complement classical statistical
approaches. Moreover, the application of CP, on top of an underlying ML model, renders a
probabilistic outcome that combines the simplicity of a clinical indicator with the precision
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of a ML approach. The TriNetX Research Network, an electronic health records database
with datasets from several United States health care organizations, was used in this study.
This approach can be further adapted to support clinical decision making in prostate and
other types of cancer.

Keywords: Metastatic prostate cancer, conformal predictors, real world data, machine
learning, supervised classification, risk stratification.

1. Introduction

Prostate cancer (PCa) is the second most frequent cancer diagnosis in men worldwide
accounting for 25.9% of all new cancers in 2020 and was the fourth most common in the
general population (Ferlay et al., 2018; Sung et al., 2021).

PCa is a heterogeneous disease with many differences in clinical evolution, ranging from
indolent tumors to lethal castration-resistant PCa (Testa et al., 2019). A wide variety of
treatment options is available, and treatment choice is notoriously complex and driven by
the assessment of a favorable trade-off between treatment risks (e.g., erectile dysfunction
and incontinence) and benefits (cancer control), speed of return to routine activities and
the long-term impact on health-related quality of life. Sub-optimal prognosis of possible
outcomes following a particular treatment is therefore common and often results in over-
treatment of indolent disease or under-treatment of aggressive disease (Loeb et al., 2014;
Bratt et al., 2015). This highlights the need of high quality, customized prognostic strat-
ification strategies for clinical counselling and decision-making to tailor treatment to the
needs of the individual PCa patient.

To date, patient risk stratification and outcomes assessments hold prominent places in
therapeutic decision making of localized PCa. Risk stratification aims to assess the lethality
of PCa to help determine choice of treatment, whilst health outcome assessments help to
determine the efficacy of the therapies prescribed Clinckaert et al. (2021).

Several risk stratification systems for patients with PCa have been proposed (Zelic et al.,
2020; D’Amico et al., 1998). These stratification systems are easy to obtain provided that
the required clinical-pathological variables (more details are given in Sec. 3.2) are available.
Given the seminal work in (Pound et al., 1999), these variables have gained more attention
and are frequently found as part of data collected routinely during PCa patient follow up.
For example, recently published online tools (MDCalc, 2021; MSKCC, 2021) are available
for patient stratification.

However, data availability remains a primary obstacle for use of these stratification sys-
tems at scale across different healthcare settings. Moreover, data need to be standardized
to a common terminology due to the variety of clinical procedures and medical coding
systems utilized differently across institutions. Additionally, little is known about how to
estimate the inherent risk associated with misclassifying PCa patients during risk strati-
fication as there is no probabilistic framework to account for these uncertainties. Finally,
the stratification systems are supervised methods, meaning that the set of variables used in
the stratification is known in advance. Thus, there is no exploration regarding the poten-
tial benefit(s) that incorporating additional variables found in electronical health records
(EHRs) may provide.

Patient-level data, collected from EHRs, registries, or claims data, can be de-identified
and organized using a standard terminology to enable clinical research, among other appli-
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cations, across different healthcare organizations. For instance, TriNetX (TriNetX, 2021),
as a global health research network, provides secured access to EHRs from approximately
17,000 patients from 16 healthcare organizations with clinical data linked to tumor registry
data.

Conformal Predictors (CP) (Vovk et al., 2005) offers a theoretical framework to generate
probabilistic predictions (i.e., a prediction set, allowing for several values) whilst controlling
for a defined error rate, a property denoted as validity (see Sec. 2.3 for more details). The
prediction sets and the validity property brought by CP are used in several healthcare appli-
cations such as early drug development (Lapins et al., 2018; Alvarsson et al., 2021), allergy
detection (Forreryd et al., 2018), or Alzheimer’s Disease (Pereira et al., 2020). In oncology,
CP are applied to early diagnosis of ovarian and breast cancer where validity, prediction
sets, and efficiency metrics are key components for interpreting the results (Devetyarov
et al., 2012).

Machine Learning (ML) refers to a broad range of algorithms that learn the pattern
recognition of the underlying data structure in a dataset to perform intelligent predic-
tions (Uddin et al., 2019). Generally, clinical practice is not predictable, but ML algorithms
have a capability to learn from almost any data type and to identify data-driven clinical
patterns in large patient populations (MacEachern and Forkert, 2021). Unlike statistical
models, ML models make minimal assumptions about the data generation mechanism and
can provide accurate prognosis even when the data are originally collected for purposes
other than research and in the presence of complex non-linear interactions, as is the case of
Real World Data (RWD).

In this paper, we propose a methodology to rank men at risk of developing metastatic
PCa using a retrospective analysis of patient data with the potential to be used at scale
accross different healthcare institutions. To mitigate the risk of data unavailablility, we use a
comprenhensive PCa dataset from TriNetX (see Sec. 3 for details). To complement existing
stratification systems, we incorporate CP as a probabilistic framework to assist clinical
interpretation by means of calibrated probabilities, prediction regions, and a way to estimate
the risk of patient misclassification given a confidence level. We provide groundwork on the
ML framework to computationally extract features from EHRs along the longitudinal follow
up of each patient to generate the models, which can be extended to incorporate additional
clinical variables that are currently absent in the existing methods that use a suppervised
approach.

2. Methods

In this sections, after defining the problem that will be tackled in this paper we will try to
briefly describe the methods that will be used in the results section

2.1. Problem Definition

The problem consists of estimating, retrospectively, the occurrence of a metastasis diagnosis
in PCa patients initially diagnosed as non-metastatic. This problem can modeled as a binary
classification task, since there are only two classes (either metastatic or non-metastatic).
The true class of the patient is determined based on retrospective data reported and col-
lected in EHRs. If the patient’s initial diagnosis of non-metastatic PCa is followed by a
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subsequent diagnosis of metastatic PCa, the true class is defined as ’metastatic’. If there is
no indication of diagnosis of metastasis in the patient’s medical history and only the inital
diagnosis of non-metastatic PCa is found, then the true class is defined as ’non-metastatic’.

In our use case, we are facing what is known as class imbalance. It is a more difficult
type of classificatin task due to the imbalance on the diagnoses, as there are more cases
of patients in the non-metastatic class. Therefore, ML classifiers will tend to have poor
performance on the minority class (metastatic class) which is harder to estimate since there
are less examples to learn from. We aim to estimate metastatic cases, so we will use
performance metrics that are specific to the minority class or those that take into account
class imbalance. For instance, the F1-score with average macro.

Let us assume that a set of n ∈ N patients is in scope for our study (with n > 1).
Let {(x1, y1), (x2, y2), . . . , (xn−1, yn−1)} be a set of samples (xi, yi) for i ∈ {1, 2, . . . , n− 1}
used to build a predictive model (namely, a training set), where xi is a vector of features
constituting a clinical profile for patient i and yi is the label of patient i. We define yi = 1,
if a diagnosis of metastatic disease is recorded after the earliest occurrence of a localized
prostate cancer diagnosis (ICD-O, International Classification of Diseases for Oncology,
code C61.9). Otherwise, yi = −1.

Metastatic disease is defined as ICD-9 (International Coding System) codes: 196, 197,
and 198, and their descendants, or ICD-10 codes: C77, C78, and C79, and their descendants,
or having M1 status from the TNM coding system. Patients who do not fall into this
metastatic disease definition are considered as non-metastatic. Our goal is to predict the
label of a patient n, alien to the training of the predictive model.

2.2. Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are widely used as classifiers in ML problems, for both
binary or multi-class problems. The basic principle of the algorithm is the identification of
the optimal margin between two classes in a certain feature space. SVMs find a decision
hyperplane that separates two classes with a maximal margin. Any hyperplane can be
written as a function of a set of data points x, each one corresponding to a feature vector
in the feature space:

f(x) = wTx + b, (1)

where w is the normal vector to the hyperplane and b a scalar offset.
The distance from this decision hyperplane to the closest data point determines the

margin of the classifier. The goal of the learning phase is to find the optimal hyperplane
such that the distance of the margins to the decision boundary is maximized. Hence, in a
binary problem we can define two classes +1,−1 and two hyperplanes passing by the closest
point of each class to the decision hyperplane. The function of these hyperplanes can be
h1 : wTx + b = 1 and h2 : wTx + b = −1, any point lying above the first boundary will
lie in the class c1 with label 1 and any data point lying below the second one in the class
c2 with label −1, respectively. The distance of the two hyperplanes will be 2

‖w‖2 (with ‖.‖2
denoting the Frobenius norm of the vector). The distance of a random data point xi to the
decision hyperplane, h, is given as:
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Figure 1: Finding the decision hyperplane in non-linearly separable data with the use of
the 2D Gaussian kernel function. The data points of the two classes are depicted
with red squares and green circles, respectively.

dhi =
|f(xi)|
‖w‖2

(2)

and the distance to the margin, m of one of the two classes (+1,−1) is given as:

dmi =
|f(xi)| − 1

‖w‖2
. (3)

Hence, the maximization of the margin, is equivalent to the minimization of ‖w‖2. SVM
algorithm also identifies the support vectors, which lie either on or within the margin and
are the data points that are solely responsible for the classification solution. For multi-class
problems one decision function for each class and the one amongst those with the maximum
value are selected.

The initial algorithm of SVM assumes that the data are linearly separable. In real
case scenarios, this assumption is not always valid, due to non-linearities or noise in the
underlying data generation process. non-linear versions of the SVM algorithm are also
available. The most common approach for classifying non-linear data with the use of SVMs
is through the adoption of kernels and the mapping of the data into a higher dimensional
space, where they can be linearly classified (Fig. 1). The mapping of the original feature
space into some higher-dimensional feature space, where the training set is separable, must
be done in a way that any coherence information between the data points will be preserved.
Kernel functions facilitate the computation of the inner product of any given two points
in a suitable feature space, providing a notion of similarity, with low computational cost,
even in high-dimensional spaces. There are different types of kernel functions that can be
used such as linear, Gaussian, radial basis, polynomial, Laplacian, Bessel, sigmoid, and
hyperbolic tangent kernels. The selection of the suitable kernel function is problem- and
data-dependent and usually selected based on trial and error. The RBF, which is considered
the most generalized form of kernelization and is one of the most widely used kernels due
to its similarity to the Gaussian distribution, is defined for two points xi and xj , as:
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K(xi, xj) = e−γ‖xi−xj‖
2
2 , (4)

where γ is a parameter that sets the “spread” of the kernel.

2.3. Conformal Predictors

The intuitive notion of CP (Gammerman and Vovk, 2007; Vovk et al., 2005) is to quantify
how ‘unusual’ a completion zn = (xn, yn) is when compared to zi from the training set (i 6=
n). If the completion (xn, 1) ‘conforms’ with those of the training set (all other patients in
the study) while the alternative completion (xn, 0) does not, then we can assign ŷn = 1 as
the label of patient n. But in other situations, a patient can be assigned to both classes
(metastatic and non-metastatic) or remains unassigned. For our use case, assignments to a
single final status are preferred, but other cases could be informative as well.

To construct a CP, we need to define a non–conformity measure to capture the extent
to which given patient data conforms to each class (e.g., metastatic, non-metastatic) of
patients. The definition is dependent on the underlying algorithm and several alternatives
can be available and play an important role in the outcome of CPs (Balasubramanian et al.,
2009; Toccaceli et al., 2017). The non–conformity measure we use is:

αci = −cd(xi), (5)

where i refers to a given patient profile, c is the class (metastatic or non-metastatic), and
d is the (signed) distance proportional to that of the profile xi to the SVM hyperplane.

Then, the non-conformity measure, together with the underlying algorithm, are used to
compute the p-values for each class. We use label-conditional (Mondrian) CP (Vovk et al.,
2005), because our classification problem has class imbalance. The p-value is implemented
as:

p(y) =
Ay + 1

By + 1
(6)

where Ay is the count of calibration scores that are associated to class y and are equal or
greater than the calibration score obtained in the test set for (xi, y), By is the count of
labels in the calibration set that are class y.

Finally, for a given a significance level, ε ∈ [0, 1], for each instance in the test set, we
compute a prediction region which is a set of labels for which the true label is not one of its
elements ε% of the times or less. If the prediction region contains a single element then the
prediction is a singleton, if there are more than one then the prediction is uncertain, and
in those cases where the prediction region has no elements, we call the prediction empty. A
more generic and formal definition can be found for instance in (Schafer and Vovk, 2008).

Validity is an important advantage for the applicability of CPs. As other confidence
predictors, CPs can be used to generate a prediction region based on an underlying machine
learning algorithm like SVM or random forest (RF) (Vovk et al., 2005; Schafer and Vovk,
2008). Validity means the frequency of errors that the underlying algorithm commits does
not exceed a pre-specified chosen confidence level (Vovk et al., 2016). Validity relies on
similar assumptions like those imposed by SVMs or on one that is even less restrictive,
namely exchangeability (Vovk et al., 2003; Fedorova et al., 2012). In addition to validity,
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the performance of a CP can be measured by means of efficiency defined as the proportion
of single-label predictions at a given significance level.

Advances in CPs theory allow for targeted approaches to address challenges arising
from large datasets or highly imbalanced ones in classification problems (Norinder et al.,
2015; Toccaceli et al., 2017) with the flexibility to incorporate diverse underlying ML mod-
els (Balasubramanian et al., 2009; Lapins et al., 2018; Forreryd et al., 2018; Nouretdinov
et al., 2010), including artificial neural networks (Papadopoulos et al., 2007; Toccaceli and
Gammerman, 2017).

3. Data Release

The licensed dataset from TriNetX are harmonized to a standardized terminology1. Yet,
since different coding systems are used across the healthcare institutions a mapping of the
respective codes of interest was a necessary prerequisite, also provided by TriNetX.

3.1. Cohort Definition

To define the cohort of patients in scope, we considered the following conjunct (all have to
be fulfilled) inclusion and exclusion criteria:

• Inclusion criteria:

– Any record linked to tumor registry data. For instance, any occurrence of codes
for tumor annotation or tumor properties.

– Gleason score registered at the time of diagnosis.

– Radical Prostatectomy (RP) following a prostate cancer diagnosis.

– PSA measures taken after RP and a minimum of 3 PSA values in the first year
after RP and at least one PSA measurement afterwards.

• Exclusion criteria:

– Metastasis at time of diagnosis.

– Received radiation, chemotherapy, or hormonal therapy prior to RP (i.e., neoad-
juvant therapy).

1. TriNetX is compliant with the Health Insurance Portability and Accountability Act (HIPAA), the US
federal law which protects the privacy and security of healthcare data. TriNetX is certified to the
ISO 27001:2013 standard and maintains an Information Security Management System (ISMS) to ensure
the protection of the healthcare data it has access to and to meet the requirements of the HIPAA
Security Rule. Any data displayed on the TriNetX Platform in aggregate form, or any patient level data
provided in a data set generated by the TriNetX Platform, only contains de-identified data as per the
de-identification standard defined in Section §164.514(a) of the HIPAA Privacy Rule. The process by
which the data is de-identified is attested to through a formal determination by a qualified expert as
defined in Section §164.514(b)(1) of the HIPAA Privacy Rule.
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3.2. Feature Engineering

Different types of features have been proposed in the literature for the prediction of metas-
tasis and biochemical recurrence (BCR) in patients with PCa. The features that we have
identified and used in this analysis are of a different nature (endpoints, clinical characteris-
tics, specific measurements) and include the following:

• Gleason score (GS). The Gleason scoring system is the most common PCa grading
system used to determine the aggressiveness of PCa (net, 2020). The pathologist
quantifies the differentiation of the cancer from the arrangement of the cells and
glands obtained from the biopsy or RP. The Gleason Grades range from 3 to 5 (most
differentiated tissue); the GS, which is a sum of a primary and secondary Gleason
grade subsequently range from 6-10. The Gleason sum score is assessed differently
from biopsy and RP (Egevad et al., 2002). In specimens taken from the biopsy, two
different grades are summed up, a primary grade is given to describe the cells that
make up the largest area of the tumor (“the most”) and a secondary grade is referred
to the Gleason grade which is the second worst in all specimens (“the remaining
worst”). In specimens taken from RP, also two different grades are summed up, a
primary grade is given to describe the cells that make up the largest area of the
tumor (“the most”) and a secondary grade, is referred to the Gleason grade which is
the second most common in the entire specimen and is given to describe the cells of
the next largest area (“the second most”).

• PSA Doubling Time (PSADT). The doubling time of PSA for prostate carci-
noma cells is faster than the growth of healthy tissue. Furthermore, the tumor cells
contribute significantly more to the increase of PSA (Nowroozi et al., 2009). PSADT
is the number of months it would take for PSA to double and has been used as an
indicator of the presence or absence of malignancy (or metastasis after the removal of
the initial tumor) (Pound et al., 1999). Two main methods are used for the estimation
of the PSADT for every patient, with their difference being the way that the slope,
bi of PSA is computed. Best-Line Fit (BLF) method opts for fitting a least-squares
regression line to the log-scale PSA measurements. The least squares regression line
of a set of data points is computed by minimizing the sum of the offsets of the data
points from the plotted line. As an alternative, the slope can be estimated by comput-
ing the difference between the First and Last log-scale Observations (FLO) of PSA in
relation to the time interval between the two observations. FLO has been reported to
be more robust in the presence of outliers (Svatek et al., 2006). However, if the outlier
happens to be the first or last point of the PSA measurements then the PSADT metric
becomes practically useless. To alleviate such cases, we propose a slightly updated
version of the FLO method which computes the PSA slope between the mean of the
first observations and the last two observations. Therefore, in this study, PSADT is:

PSADTi = log(2)/bi (7)

where bi is:

bi =
log(mean(PSAi,ki ,PSAi,ki−1))− log(mean(PSAi,1,PSAi,2))

mean(ti,ki , ti,ki−1)−mean(ti,1, ti,2)
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with ki being the last PSA value in time of patient i. The maximum value of PSADT
is set to 100 months as in Pound et al. (1999). In cases that have negative values of
PSA or bi = 0 (and hence the division cannot be defined), PSADT is set to zero.

• Time to BCR. Time to BCR is defined as the time from surgery to the first mea-
surement of PSA above 0.2 ng/ml 2. To avoid the influence of outliers or wrong entries
(which were common in our dataset) to the metric, we considered time of BCR as the
time to the first of at least 2 consecutive PSA measurements above 0.2 ng/ml. The
maximum BCR time is set to 5 years as in Pound et al. (1999).

• Post-prostatectomy PSA. A persistent PSA after RP (or following other forms of
treatment) can potentially mean cancer has progressed and metastasized.

• Age at the time of surgery. We chose the earliest occurrence of a surgical procedure
recorded as any of the following CPT codes: 55810, 55815, 55840, 55842, 55845, or
an ICD-9 code of 60.5.

3.3. Sampling, Partitioning, and Folding

We split the data into (proper) training, calibration, and test sets using 60%, 20%, and 20%
of the data release to enable an Inductive CP setup. The splits are stratified with respect
to the label, to keep the class imbalance 1 to 3 in favor of the non-metastatic class. Thus,
the minority class is the metastatic one. Variables are centered and scaled. Moreover, we
generated 100 different samples to allow variance estimation on the performance metrics of
the Inductive CP. In term, each training set was further divided into 3 folds for the ML
setup. Thus, each fold corresponds to 20% of the data release. Folds are also stratified with
respect to the label.

4. Results

Deriving a prostate cancer dataset with pre-selected clinical variables from several health-
care organizations is facilitated using TriNetX research platform. We generate a data release
from the TriNetX licensed dataset consisting of a single table of 204 PCa patient profiles
(rows), and 7 attributes (columns) including a profile identifier (id001, id002, etc.), 5 clinical
features (age, GS, time to BCR, PSADT, and PSA after surgery), and one label variable
(metastatic status, +1 or -1). More details are found in Sec. 3.

In Fig. 2, the cohort diagram highlights the impact of subsequent selection criteria on
data availability for analysis (the N value). Among patients diagnosed with PCa having
tumor registry annotation, estimated in more than 17K cases (at the top of the diagram),
only 6186 were initially diagnosed as non-metastatic PCa patients (and had a GS recorded
at diagnosis), representing an impact (drop in data availability) of 70%. Next, the impact of
requiring patients having RP after diagnosis accounts for an additional drop of more than 5K
cases (or 29%). The final selection criterion is about PSA measurements. The availability
of PSA measurements as a lone criterion has a minor impact (less than 1%) in regard to

2. For subjects that exhibit abnormally high PSA following RP procedure, time to BCR was computed as
the time from the first PSA value below to the first measurement of PSA above 0.2 ng/ml.
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data availability. However, an additional criterion on PSA measurements accounts for a
decrease in data availability from 1,077 cases to only 204 (i.e., an additional 5% decrease).
Some additional cases are dismissed along the cohort diagram (shown in white boxes) due
to missing data. Fulfillment of all required inclusion and exclusion criteria, provide a final
selection of 204 cases, from which 150 are class non-metastatic and 54 are class metastatic.

Figure 2: Cohort diagram. Dark blue boxes contain information about the patients that
continue in the flow diagram of the cohort definition, light blue boxes offer ad-
ditional information about the patients’ cohort and the white boxes include in-
formation about patients that are excluded from the final cohort in this analysis.
The rhombus shape represents a question.

4.1. Inductive Mondrian Conformal Predictors

To generate a scalable patient risk stratification methodology across multiple healthcare
organizations, we applied Inductive Mondrian CPs on data release. The inductive setup
allows for computational scalability and the Mondrian variant is used to account for class
imbalance present in data release. The performance is evaluated on a series of 100 different
rounds of training, calibrating, and testing, which uses 60%, 20%, and 20% of the data
release, respectively. More details can be found at Sec. 3.3. The results are shown in
Table 1.
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Significance Correctly
Classified
Metastatic

Correctly
Classified
Nonmetastatic

Misclassified
Metastatic

Misclassified
Nonmetastatic

Empty
Predictions

Uncertain
Predictions

1 0 0 0 0 0 100
5 4.7±4.4 0 0 2.6±3.7 0 93±7.4
10 9.7±4.6 13±14 2.2±2.8 6.4±5.8 0 69± 18
15 11±4.7 13±14 2.2±2.8 8.5±6.3 0 65± 18
20 14±4.6 28±16 4.5± 4 13±7.2 0.11±0.84 41±19
25 15±4.4 37±16 6.2±4.1 16±7.8 0.47±2.1 26±18
30 17±4.2 36±15 6±3.8 20±7.8 1.5±4.8 20±17

Table 1: Conformal predictors results for data release using SVM variants for different
significance levels on 100 test sets. Figures represernt averages and standard de-
viations over the best models, in percentages. For each resampling the best per-
forming SVM (based on F1-weighted, ties were allowed) is used as the underlying
algorithm.

4.2. Performance of ML models is poor or limited under the current data
release

For training models, we use SVMs. Several variants are built to assess the relative per-
formance between different kernels (linear or RBF) with or without correction for class
imbalance, inspired by King and Zeng (2001). Thus, we explore 4 SVM variants:

• Linear Unbalanced. A linear kernel with class weight 1 on metastatic class.

• Linear Balanced. A linear kerner with class weight 3 on metastatic class.

• non-linear Unalanced. A RBF kernel with class weight 1 on metastatic class.

• non-linear Balanced. A RBF kerner with class weight 3 on metastatic class.

Parameter tuninng of models built on the training set is achieved using a brute-force pa-
rameter grid search. Model parameters (C for linear SVMs, and C and γ for non-linear
SVMs) are tuned via grid search from the sets:

C ∈ {0.25, 0.50, 0.75, 1.00, 5.00, 10.00, 15.00, . . . , 100.00} and

γ ∈ {0.10, 0.20, 0.30, . . . , 1} ∪ {“auto”’, “scale”},

To select the best configuration of the tuned parameters, including kernel and class weight, a
3-fold cross-validation is used on the training set (60% of instances in data release). Results
for the 4 SVM variants based on kernel selection and choice of class weight, are illustrated in
Fig. 3. To assess the robustness of SVM predictions in the data release, we use a collection
of 100 different samplings. The best performing models (based on f1-weighted), for each
sampling, are carried over for subsequent phases of calibration and testing.

Using the same method as in (Pound et al., 1999), where patient profiles composed
of Gleason score, PSADT, and Time to BCR were used, we classify patient profiles from
our study cohort into six risk groups or clusters. For each risk group a probability to
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Figure 3: Performance of SVMs in training and test sets. The boxplots represent the dis-
tribution of the F1-score (weighted) of the different SVM models along the 100
resamplings.

Figure 4: Example of patient classification based on risk groups as defined in (Pound et al.,
1999).
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Method mean ± std minimum maximum

SVM-linear 0.676 ± 0.047 0.777 0.594
SVM-linear-balanced 0.72 ± 0.055 0.857 0.533

SVM-RBF 0.722 ± 0.053 0.849 0.579
SVM-RBF -balanced 0.703 ± 0.078 0.83 0.384

Thresholding 0.69 ± 0.135 0.83 0.57

Table 2: Performance of the underlying algorithms evaluated in the test set. The thresholds
used for thresholding were those reported in Pound et al. (1999) for the six different
patient clusters

develop metastasis is predefined as described in Fig. 4. To compare the performance of
the suggested ML algorithms with the risk stratification every patient with a metastasis
probability higher than 0.5 (classification threshold set in our ML models) were assigned in
the metastatic class, whether patients with probability lower than 0.5 were considered non-
metastatic. Moreover, to contrast this methodology (denoted as thresholding in Table 2)
against that of SVMs, we use the patient profiles from the test set to assess the performance
of the classification which yields inferior results compared to those of SVMs.

Implementation of data processing and machine learning was performed using Python

3.8 and Rstudio Server v. 1.3.1076.1 (RStudio Team, 2020), for visualization. Open-
source libraries were employed such as NumPy (Harris et al., 2020), pandas (McKinney,
2010; pandas development team, 2020), and scikit-learn (Pedregosa et al., 2011).

4.3. CPs for risk patient stratification

To illustrate an application of CPs and ML on risk stratification for PCa patients, we
use an example with two scenarios: one for ’high’ confidence to avoid misclassification
of metastatic cases, and the second for ’moderate’ confidence to minimize the number of
uncertain predictions.

Let us assume that Gε is the set of predictor regions Γεi = {y ∈ Y : pyi > ε}, a given
test set (having labels Y ) of the results presented in Table 1, and pyi is the p-value obtained
from the Inductive Mondrian CP as prepared in this study.

Our example uses two complementary steps. First, we rank patient profiles according
to a risk stratification system, like in (Pound et al., 1999), where patient profiles consist
of GS, PSADT, and Time to BCR. We classify patient profiles from our study cohort into
six risk groups. For each risk group, a probability to develop metastasis is predefined as
described in Fig. 4. Based on this predefined probability, the (ascending) order of the cluster
numbers is: 1,2,3,5,6,4. Second, we use a CP classifier to generate an alternative ranking of
the same patient profiles based on their probability of being classified as metastatic at the
given significance level. The final ranking is obtained adding up the two rankings previously
described (without ML and with ML support) for those cases where the prediction region
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has a single element. Otherwise for empty predictions or uncertain predictions, only the
output of the first ranking is used.

For example, in a scenario where ‘high’ confidence is desired (say, Table 1, line where
ε = 0.05), we expect that out of the 41 cases of the training set, around 97% will be
uncertain. Thus, only around 3% may be used to complement the existing ranking at this
level of confidence. If we were to allow a more ‘moderate’ confidence, for instance ε = 0.20,
the number of expected empty or uncertain predictions drops to around 41%, allowing
more contribution from the CP ranking knowing the maximum level of errors that may be
introduced.

This combination of rankings may incorporate more granularity because p-value ranking
further stratifies patients even when assigned to the same risk group. CP framework allows
us to tune the trade-off between gaining increased granularity for risk stratification and
the introduction of potentially incorrect estimations for the risk of developing metastasis.
The more efficient the CP, the more precise the granularity. This is demonstrated by an
increased confidence in risk-stratification rank due to less potential misclassifications.

5. Discussion and Conclusions

In this paper, we present different SVM models which can be combined with CPs in order to
estimate metastasis for patients who underwent RP following a diagnosis of non-metastatic
PCa. To the best of our knowledge, this is the first report on application of CP as a more
precise model in the retrospective estimation of metastasis in patients with PCa.

Under the current data release, no single combination of parameter, or SVM variant,
in the ML models outperforms all others. As can be seen in Fig. 3 (left panel) the RBF
SVMs (both balanced and unbalanced) outperform the linear kernels in the training set.
But as we can see in the test set (right panel of 3) and in Table 2 the performance of the
RBF is not as good in the test set. This implies that the dataset is very heterogeneous
and the tuning in the training set do not provide (always) optimal parameters for the test.
This is the reason also that the linear kernel (which has less parameters) generalizes better
in the test set. Hence, with the current dataset an optimal algorithm can not be chosen.
Still some indications for modeling choices that could be beneficial for future work can be
derived. For instance, accounting for class imbalance had a positive effect in performance of
the underlying algorithm, especially in the linear models, as showed in Fig. 3. Furthermore,
we can see that the SVM models slightly outperform the simple thresholding approach used
in Pound et al. (1999), which suffers from high standard deviation pointing out also the
heterogeneity of the dataset.

Despite the contribution from several healthcare organizations through a global hospital
network, data completeness remains a critical requirement to improve the performance of
the proposed model. As shown in Fig. 2, in our application use case, the final selection of
204 patients represents a small subset of the initial cohort. The major data drop comes
from missing features related to tumor annotation. Future work should focus on expanding
the study population, either based on the same data set or applying the analysis to other
datasets to compare results and performance. Furthermore, methodologies for handling
bias (Cave et al., 2019; Berger et al., 2016), outlier detection (Estiri et al., 2019; Hauskrecht
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et al., 2016), and data missingness (Beaulieu-Jones et al., 2018; Cave et al., 2019) shall be
explored in an attempt to avoid the decrease of population due to incomplete data.

Additional data curation processes designed to increase data quality can help to alle-
viate the impact of data unavailability. There is a trade-off between data inclusion and
data heterogeneity. In the currently used dataset, we can choose a broader definition for
prostatectomy as opposed to only RP. This impacts the range and variability of the PSA
values, which in turn may require a more robust definition of PSADT or basal PSA after
surgery, to account for more scenarios in the longitudinal recollection of PSA measurements
per patient. Even when only codes of RP are selected, errors in the codification may not be
excluded and can be associated with outliers in PSA values. For instance, an abnormally
high PSA following a procedure coded as RP, may be indicative of a partial rather than a
RP.

The inclusion of additional data modalities, such as medical imaging and genomic mark-
ers, offers a promising roadmap for improvements in future data releases. Datasets enriched
with augmented Real Word Data (RWD) (Cave et al., 2019; Sarker, 2021) are a promising
line of research. In addition to lab measurements and diagnosis codes, inclusion of addi-
tional type of data, such as genomic markers (Cooperberg et al., 2015; Spratt et al., 2018),
imaging data (Yu et al., 2016), or electronic Patient-Reported Outcomes (ePROs) (Sellers
et al., 2016) can help us to advance our understanding of disease progression in prostate
cancer (Rawla, 2019).

The efficiency of the proposed CP needs to be improved in order to best contribute to
our use case in the clinical setting. However, the CP framework offers a way to mesure the
impact of those improvements to meet a certain goal. For instance, if we aim to have 99%
confidence in the correct classification of metastatic PCa patients (top row in Table 1), it is
not possible using the current data release because all predictions are uncertain. We may
continue working on improving data curation or improved methods of risk stratification
until more cases are correctly classified and there is less uncertainty and more confidence
in the ranking and diagnoses. This level of precision may be possible, and may be tracked
along the way, due to the CP framework.

This is in line with previous applications in clinical use cases where the application of
label-conditional CP is beneficial (Devetyarov et al., 2012). Indeed, the focus of this study
is foundational in terms of the underlying algorithm and the feature engineering and other
approaches in ML such as artificial neural networks that can be used to automate the feature
extraction process (Poulakis et al., 2004; Papadopoulos et al., 2007).

We give an example of the use of CP to gain granularity in the patient risk stratification
(see Sec. 4.3). With the advent of more efficient CP classifiers, misclassification will be
reduced leading to greater prognostic precision and diagnostic confidence. Improved meth-
ods of risk stratification and rank may then support personalized medicine, meaning that
patients will not only be stratified into risk groups, but the improved granularity of the
method will lead to ranking at an individual lelvel.

In conclusion, our results signal a favorable application of the proposed framework in
a retrospective estimation of metastasis in PCa patients. Our results also indicate the
possibility to design a patient-specific risk stratification strategy based on such estimation.
Further improvements on the highlighted modeling configuration, together with data en-
hancement strategies, are needed in order to deploy it as a decision support tool in clinical
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practice. In this analysis, we define the foundational modeling choices for future analyses
where validity and efficacy of CPs or other calibration methodologies can be explored to
assist healthcare providers in efficient and precise medical management of patients with
PCa. The CP methodology has potential for use in ranking patients with other types of
pathologies documented in the EHR systems.
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