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Abstract— 3D ultrasound(US) reconstruction has grown
quickly in preoperative disease diagnosis, intraoperative sur-
gical navigation and postoperative treatment assessment. US
image calibration is a crucial step to produce accurate 3D
representations from 2D images. Several image calibration
methods have been developed for freehand and robotic systems.
During calibration, the scanning motions can vary a lot and
typically have a large impact on the resulting calibration
and subsequent reconstruction quality. However, the adopted
calibration procedures are not detailed clearly in previous
studies. This complicates reproduction of the obtained results.
Moreover, the influence of the different scanning motions on
the calibration accuracy is hardly investigated. Therefore, it
is difficult to devise optimal scanning motion profiles for
automatic robotic ultrasound calibration. This paper studies
calibration and reconstruction results with different motion
profiles employed in robotic US image calibration. Then, the
calibration procedure was performed with a sphere phantom.
The performance of the calibration was validated by assessing
the reconstruction quality on a 3D printed mock-up model
with two quantitative measurements for the geometric repre-
sentation error and the 3D localization error. The geometric
representation error of the reconstruction is within 1 mm by
using the different combination of motion profiles. However,
the 3D localization error changes with the various motion
profiles. By using the proposed motion profile, the RMSE of
the reconstructed model could be reduced to 2.18 mm.
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I. INTRODUCTION

Reconstructed 3D ultrasound (US) volume could offer
a non-radiative tool for clinicians with detailed geometric
information of organs, tissues and anatomical structures [1]–
[3]. The US image calibration is a crucial step for accurate
3D volume reconstruction from 2D images. Incorrect image
calibration will cause inaccurate volume rendering and geo-
metric distortion which could produce severe consequences,
as surgeons’ decision-making process could be hampered by
it [4], [5].

There are several image calibration approaches and phan-
toms developed for the freehand and robotic-assisted sys-
tems [6]. Conventional freehand calibration is time consum-
ing and labor intensive. Only a skilled operator can produce
consistent and reliable calibration scanning. Different to it,
robotic-assisted calibration is an alternative which provides
automatic and stable probe manipulation. However, it re-
quires a predefined motion profile before scanning.
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In previous studies [7], it is already showed that the
3D reconstruction quality depend on motions profiles used
during calibration. Thus, it is important to investigate the
influence of the different scanning motions on the accuracy
of US calibration. Subsequently, based on knowledge of
the influence, optimal motion profiles could be devised for
improving the quality of robotic scanning and reconstruction.
Several researchers already looked into ways to improve
the US calibration accuracy, both for freehand and robotic-
assisted approaches [8]–[11]. The scanning motion profiles
were typically utilized as combination of individual transla-
tion and rotation motion. Treece et al. designed a freehand
calibration motion profile for the Cambridge phantom [8].
The profile was defined as a combination of individual mo-
tions along US probe coordinate, which are vertical motion,
side-to-side rotation and front-to-back translation and rota-
tion. The calibration was evaluated with 3D reconstruction
and achieving a 0.65 mm mean error. However, the impact
of the individual motions on the reconstruction was not
discussed thoroughly. Besides, Rousseau et al. proposed a
framework to quantitatively evaluate the freehand US image
calibration methods [9]. In Rousseau’s study, rotation motion
and translation motion were separately performed during
calibration. Then, the calibration outcomes were computed
and validated with 3D volume reconstruction. Comparing
with the volume of the CAD model, the results revealed
that translation motion was better than rotation motion to
obtain accurate US image calibration. However, the com-
bined motion profile was not investigated and evaluated.
Based on the aforementioned freehand studies, two robotic
approaches were implemented for US image calibration [10],
[11]. Summarized from conventional freehand manipulation,
Li et al. proposed a robotic calibration motion profile for
the sphere phantom [10]. During scanning, the US probe
was aligned with sphere center and tilted between ±30
degree around phantom X and Y axis. Then, the US probe
translated 10 mm at the positions of ±30 degree along probe
Z axis. Aalamifar et al. also designed a robot motion for
calibration scanning. The profile was defined as translation
motion along the lateral and the elevation axis of US probe
[11]. Although, the studies introduced the calibration motion
profile with detail, the influence of motion profiles was not
investigated extensively. In summary, for different calibration
approaches, the scanning motion profile could vary greatly.
But in previous studies, these motions were not analysed in
depth or communicated which may affect the reproducibility
of the work.

To best of our knowledge, this is the first paper inves-



tigating the influence of motion profiles in US image cali-
bration. This work devises an effective calibration approach
for robotic-assisted US system with a sphere phantom. It
studies the influence of different robotic motion profiles
on the overall calibration accuracy. The paper provides a
list of scanning motions and a quantitative analysis of the
different motion profiles and the impact on calibration and
US reconstruction accuracy. From this, an optimal scanning
trajectory for calibration of a robot-assisted US system is
derived.

The paper is built up as follows. The materials and
methods employed in this work are introduced in Sec.II:
the scanning motion profiles are introduced in SubSec.II-
B, performance criteria in SubSec.II-C and the experimental
setup in SubSec.II-D. Section III summarizes the main
results, which are discussed in Sec.IV. Finally, conclusions
and directions for further work are discussed in Sec.V.

II. MATERIALS AND METHODS

A. US image calibration

The goal of US image calibration is to find the unknown
transformation (R

UST) from the US image to the robot end ef-
fector and scaling transformation Ts, containing scale factors
sx,sy, from the US image pixels to a metric unit of length.
In order to find the these unknowns, the following equation
is used: 
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The equation describes the target point in the robot
base coordinate, termed B

PhT. Fig. 1 illustrates a schematic
overview of the relevant transformations. Note that all points
are expressed in homogeneous coordinates. For the US image
calibration in this paper, the target points (ut ,vt) correspond
to the center of the sphere phantom. Sphere phantoms are
commonly used for US image calibration, as they are easy
to manufacture and deploy [12]. During scanning, the center
of the sphere can be positioned and aligned in the US image
plane. Moreover, the sphere’s contour, and thus its centre,
can be easily segmented from 2D US images using image
processing.

However, when using a sphere phantom, the accuracy
of image calibration depends on how accurate the center
point can be identified on the US images. Therefore, the
US probe is required to align with the center of the sphere
regardless of the US probe’s position and orientation when
performing a calibration procedure. Benefiting from robotic
position control, we applied the following two steps to ensure
continuous US image plane alignment with the sphere center.
Firstly, the sphere phantom and corresponding center point
is aligned with the US image plane by hand when the robot
and US probe are in a initial, stationary position as shown
Figure 1. Secondly, the robot performed motions, which are
described in section II-B, starting from the initial position.

Fig. 1. Overview of experimental setup and transformations between
each coordinate. B

RT is the transformation from robot end effector to base
coordinate, R

UST is from US image to robot end effector coordinate and Ph
B T

is from base to sphere phantom coordinate.

In order to obtain the target point (ut ,vt) from the 2D US
images, image processing is used according to a previous
study [10]. Firstly, a gaussian filter and thresholding was
applied to blur the image reducing white spike noise. Sub-
sequently, canny edge detection and Least squares approach
was applied to segment the upper contour and estimate the
center of circle with RANSAC to filter outliers. Since the
target point is considered as the origin of the phantom, px, py
and pz can be set to zero. Therefore p = [0,0,0,1]T , when
capturing n images, this results in minimizing the following
equation:

f (p) =
n

∑
i=1

| Ph
B T B

RT R
UST Ts pt | (2)

B. Robotic scanning motion

1) Individual Motions: Prior to the robotic US image
calibration, a camera-to-robot calibration was performed by a
point-to-point rigid registration method [13]. This procedure
was implemented to calculate the transformation between
camera coordinate and robot coordinate. Then the pose of the
sphere phantom was converted into the robot coordinate for
calibration scanning. During scanning, position control with
eTaSL, expressiongraph-based Task Specification Language
[14], was implemented to keep the US probe always aligning
with the target point.

At the beginning, the US probe was moved close to the
phantom and initially aligned with the target point in vertical
direction. Subsequently, the probe started scanning twelve
predefined motion profiles shown in Fig. 2 and Table I. While
finishing each motion, the US probe returned to the initial
position before initiating the next motion.

During scanning, US images and corresponding poses of
robot end effector were stored separately for each individ-
ual motion simultaneously. However, the translation motion



Fig. 2. Individual motion profiles for image calibration. The scanning motion is based on the defined axes from the sphere phantom.

along the x axis will not be performed as an individual
scanning motion. This x-axis is aligned in a direction perpen-
dicular to the US-beam. Hence, given the limited thickness
of the US-beam, movement of the US probe along the x-axis
would make the center of sphere quickly disappear from the
US image leading to wrongly segmented sphere centers.

TABLE I
MOTION RANGE OF INDIVIDUAL MOTIONS

Motion type motion range
Vertical translation ±15 mm

Horizontal translation ±15 mm
Side to side rotation ±20 °

Front to back rotation ±20 °

The motion ranges were set according to the dimensions
of sphere phantom. Meanwhile, the rages would also ensure
that there is scattered movement of target points in the 2D
US images without collision with the phantom. Besides, the
speed of the probe motion is slow to eliminate influence of
latency. The latency between US images and US probe loca-
tion data results in imperfect synchronization and inaccurate
calibration outcomes . This can either be solved by temporal
calibration or by slow and stable probe motion. Therefore,
the scanning speed of US probe tip was set as 1.5 mm/s for
translation and 0.075 rad/s for rotation, respectively.

2) Motion Profiles: Making use of a single individual
motion is insufficient to obtain accurate and precise calibra-
tion outcomes. Therefore, the proposed individual motions

of Fig. 2 were selected and combined to generate ten
different motion profiles as shown in Table II. One data point
corresponds to a single segmented US image with corre-
sponding probe’s pose. Then, the generated different motion
profiles were processed to compute the calibration outcomes.
The impact and influence on the calibration accuracy was
analyzed by assessing the reconstructed results.

TABLE II
CALIBRATION MOTION DESIGN

Motion
group

Motion
profile

Utilized individual
motions

Data
points

I
1 1 to 2 1200
2 5 to 6 1200
3 9 to 10 1200

II
4 1 to 4 2000
5 5 to 8 2000
6 9 to 12 2000

III

7 1 to 8 4000
8 1 to 4 and 9 to 12 4000
9 5 to 12 4000

10 1 to 12 6000

The calibration outcomes were computed by least square
approach with Eq.2. The result was not sensitive to the
sequence of processed data. Thus the order in which the
motions were performed for each motion profile did not
contribute to the final calibration outcomes.



C. Evaluation Criteria

The precision of US image calibration was assessed via re-
peated calibrations. However, the calibration outcomes would
not directly provide quantitatively measurements. Thus, the
calibration was measured by using reconstruction against the
ground truth [15]. After computing transformation matrices
and scale factors for the various motion profiles, the calibra-
tion results, and thus different motion profiles, were validated
by 3D US reconstruction with a custom designed 3D printed
mock-up model.

1) Geometric Representation Error: The first criterion
evaluates how the geometric characteristics, i.e. size and
shape, of the reconstructed model correspond to the mock-
up model. The deviation between the reconstructed model
and mock-up CAD model is referred to as the ”geometric
representation error”. Since the geometric representation
error does not depend on where the reconstructed model is
located in space, but only on the geometry of reconstruction,
the reconstructed point cloud can be aligned with the ground
truth. For this purpose a simple registration can be conducted
where we search for the transformation (R, t) to match the
points in reconstruction P to the ground truth Q while m is
the number of point. This process can be realized by using
an iterative closest point algorithm (ICP) and is often used
in medical image analysis [16]. This is done by minimizing
the following equation:

f (R, t) =
1
m

m

∑
i=1

∥qi − (Rpi + t)∥2 (3)

The ICP algorithm iterates until the error (i.e. the RMSE
of Euclidean distances between reconstructed point cloud
and ground truth) converges. Meanwhile, the mean error
and standard deviation is calculated to present the difference
between reconstructed model and CAD model.

2) 3D Localization Error: In previous studies, the local-
ization of reconstructed model was not evaluated comprehen-
sively. However, the localization accuracy of reconstructed
model is crucial which would influence the spatial relation
with related instruments in the same coordinate system. Thus,
the second criterion, the ”3D localization error”, is employed
to assess whether the reconstructed point clouds locate at the
actual 3D position of the phantom in the robot coordinate
frame. This is realized by comparing the reconstructed points
to the closest points in ground truth, which is obtained by
the optical camera and converted into the robot coordinate
frame. The results were calculated as point to point distances
with RMSE, mean and standard deviation.

The number of reconstructed points could also influence
the results. In order to compare the difference between
similar motion profiles (e.g. I, II and III) , the average value
of RMSE, mean error and standard deviation for geometric
representation and localization error was calculated. Where
n is the number of points in the point cloud and N is the
number of tests.

RMSEavg =

√
∑

N
i=1

(
ni ·RMSE2

i

)
∑

N
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σavg =

√
N

∑
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σ2
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D. Experimental Setup

To achieve fully automatic scanning, a lightweight robotic
arm (KUKA Robot LWR, Augsburg, Germany) was em-
ployed to manipulate a 7.5MHz linear US transducer
(Sonosite, FUJIFILM, USA). A frame grabber (Epiphan
Systems Inc. Palo Alto, Canada) was used to record the
US images at a rate of 30Hz. Besides, to register the
phantom pose in robot coordinate, an optical tracking system
(FusionTrack 500, Atracsys, Switzerland) was integrated and
operated at 335 Hz. A custom designed US probe holder was
assembled at robot end effector and defined in Unified Robot
Description Format (URDF) for robot control. To control
the robot, OROCOS (Open Robot Control Software) was
integrated and used to communicate with the robot arm at
1 kHz. In addition, a PC workstation was used for data
acquisition and processing.

Two models, the calibration sphere phantom and mock-
up model, were designed and 3D printed with polylactide.
Before the models are scanned with the US probe, they were
submerged in a water tank. The sphere phantom was made of
a 30 mm diameter sphere. The diameter of the sphere was set
to be able to capture a full contour of the phantom by using
the linear US probe. The 3D printed sphere was assembled
on a 50×50×10 mm base and an optical marker shown in
Fig.1. The mock-up model consisted of two 20 mm diameter
cylinders, two 8 mm diameter holes and four 10 mm holes.

Fig. 3. (a) The sphere phantom for calibration and (b) mock-up model
for robotic US reconstruction, (c) US image from the sphere phantom, (d)
segmentation of sphere phantom with circle estimation.

During scanning of the mock-up model, the described
motion profiles in SubSec.II-B were not used. Instead, the



US probe was held by the robot arm and kept perpendicular
to the mock-up bottom surface. The US probe scanned along
a predefined trajectory covering all geometric features in the
mock-up model. The upper surface of the mock-up model
was segmented from the recorded US images by image
processing, and reconstructed with corresponding robot end
effector poses by Eq.1. Finally, the mock-up surfaces were
generated as point clouds and visualized by making use of
the open source software cloudCompare (version 2.12).

III. RESULTS

A. Geometric Representation Error

During reconstruction, only the upper surface of the
mock-up model was reconstructed to present the designed
geometric features. The geometric representation errors of
the different motion profiles are shown in Table III. Fig. 4
displays examples of the reconstructed point clouds from the
proposed motion profiles. The absolute distance errors were
quantified and illustrated by a colour scale. The RMSE of
reconstructed model ranged from 0.27 to 0.69 mm according
to the different motion profiles. The mean absolute errors
ranged from 0.16 to 0.52 mm while the standard deviations
were between 0.20 to 0.45. The average of RMSE from
group I, II and III were 0.38, 0.48 and 0.52 mm respectively.

Fig. 4. 3D reconstructed point clouds of mock-up model (gray) with
geometric representation errors. The Color scale illustrates the absolute
euclidean distance error. (a) and (b) are reconstruction from motion profile
1, (c) and (d) are reconstruction from motion profile 4, (e) and (f) are
reconstruction from motion profile 7.

B. 3D Localization Error

The 3D localization error represents whether the US
calibration is able to produce a point cloud at the correct
location in 3D space. Localization errors of the different
motion profiles are shown in Table IV. The RMSE error for

TABLE III
GEOMETRIC REPRESENTATION ERRORS FROM DIFFERENT COMBINATION

OF MOTION PROFILES. MEASUREMENTS ARE IN MILLIMETER.

Motion group Motion Profile RMSE Mean Std. Dev.

I
1 0.27 0.16 0.20
2 0.42 0.21 0.26
3 0.45 0.25 0.27

Average 1-3 0.38 0.21 0.42

II
4 0.30 0.22 0.21
5 0.35 0.24 0.26
6 0.69 0.52 0.45

Average 4-6 0.48 0.33 0.56

III
7 0.48 0.28 0.28
8 0.56 0.32 0.39
9 0.61 0.37 0.41

10 0.43 0.26 0.33
Average 7-10 0.52 0.31 0.71

motion group I ranges from 716.79 to 1767.22 mm. When
rotation and translation are combined, such as motion group
II, the RMSE is up to 2.42 mm while the mean error is up to
5.86 mm. Besides, by combining the motions in different Z
axis, the results are not improved noticeably, as the average
RMSE error of motion group III is around 2.28 mm and of
II is around 2.31 mm respectively.

TABLE IV
3D LOCALIZATION ERRORS FROM DIFFERENT COMBINATION OF

MOTION PROFILES. MEASUREMENTS ARE IN MILLIMETER.

Motion group Motion Profile RMSE Mean Std. Dev.

I
1 716.79 716.62 11.74
2 864.40 864.09 22.91
3 1767.22 1767.11 19.64

Average 1-3 1213.78 1115.94 32.38

II
4 2.24 5.04 2.75
5 2.27 5.16 2.51
6 2.42 5.86 2.70

Average 4-6 2.31 5.25 4.60

III
7 2.18 4.75 2.49
8 2.31 5.31 2.31
9 2.32 5.40 2.33
10 2.30 5.30 2.33

Average 7-10 2.28 5.19 4.73

IV. DISCUSSION

US image calibration is an important step to apply US
in clinical scenarios. US image calibration provides accurate
anatomic features to surgeons. However, the calibration out-
comes are influenced by several factors such as calibration
motion. There is no investigation in different calibration
motion profiles in the past years. Therefore, this study com-
pares the influence of calibration motions and also provides
guidance on robotic US calibration procedures to ensure a
high accuracy result.

In this paper, we proposed several scanning motions with a
sphere phantom for robotic US image calibration. The image
processing also impacts the calibration accuracy. The devel-
oped 3D sphere phantom is scanned as circles in 2D US im-
ages. With traditional image processing, the sphere contour is
segmented and estimated accurately and automatically. The
sphere phantom obtained fast image processing and precise



image segmentation comparing with conventional wire phan-
toms. Besides, the calibration motions were categorized as
individually translation and rotation motions along sphere
phantom coordinate. By applying different combinations of
individual motions, the transformation matrix and scaling
factor were computed. Then it was quantitatively assessed by
using robotic 3D US reconstruction and visualized as point
clouds.

The evaluation is built on two criteria: geometric represen-
tation error and 3D localization error. The geometric repre-
sentation errors are slightly different among different groups.
The reconstructed models are accurately reconstructed and
matched with the mock-up model after registration in Fig.4.
Motion profile 1, only translation along x and y axis at a
single z axis position, results in accurate reconstruction. The
z axis position to perform motion profile 1 does not matter,
since motions 1, 2 and 3 yield similar results. It is observed
that adding rotation around x and y axis to motion profile
1 and 2, does not yield better results than motion group I
from Table III. The same applies for motion group III, since
combining data from the motion group II does not improve
the geometric representation error. The reconstructed model
could provide an accurate shape and geometry feature with
a 0.31 mm mean error which is better than the 0.69 mm
from Rousseau [9]. These results present the capability and
repeatability for representing geometric features, i.e. size and
shape of the designed mock-up model.

Therefore, we believe that no additional motion is required
to the translation along x and y axis, i.e. motion group I, in
order to obtain accurate geometric representation. Thus, if
the objective of US calibration is solely to obtain accurate
3D reconstruction of a target structure for medical image
analysis or diagnostics, only performing a translational mo-
tion profile such as motions 1, 2 or 3 satisfies this objective.

In previous studies, only few of them evaluated the 3D
localization error with reconstruction. By reconstructing a
custom designed phantom, Ackerman et al. reported the
mean error of the localization differences was up to 1.62±
1.28 mm with the freehand US calibration [17]. Besides, Li
et al. reported the RMSE of 3D localization was up to 2
mm by applying a complex combination of translational and
rotational motion with a robotic-assisted US system [10].
From the localization error in Table IV, it is observed that
motion group I is not capable to produce a point cloud
at the correct location in 3D space. Only when rotation
motion is added, i.e. motion group II, the reconstructed
point cloud is positioned accurately in space. Meanwhile,
the z axis position to perform motion group II does not
contribute to the calibration outcomes, since motions 4, 5
and 6 yield similar results. When combining these motions
at different z axis positions, i.e. motion group III, the RMSE
of 3D localization changes slightly and ranges from 2.18 to
2.32 mm. Therefore, the comparison of the aforementioned
results reveals that if the objective of US calibration is to
obtain accurate 3D volume reconstruction at the correct 3D
space location, performing motion group II at a single z axis
location is sufficient.

This paper proposed scanning motion profile is also adap-
tive to the other derivation of single point phantom, such as
cross-wire phantom, with position control. It only requires an
accurate alignment between the US probe and the phantom
target point. The presented robotic scanning motions can also
be manipulated for freehand calibration, however, the exact
motion profiles will be harder to accomplish as accurately
as robot-assisted calibration.

V. CONCLUSIONS

This paper compares the influence of different calibration
motions by proposing several different calibration motion
profiles. In this work, the properly combined translation and
rotation motion presents an accurate anatomic volume with
robotic 3D US reconstruction. This paper is the first one
that investigate and provide optimal motion profile utilizing
a minimum amount of motions. Future work should focus
on decreasing the localization error. In addition, the motion
range of individual motions can be increased depending on
the experimental setting.
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