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Abstract: Three-dimensional (3D) bioprinting promises to change future lifestyle and the way we
think about aging, the field of medicine, and the way clinicians treat ailing patients. In this brief review,
we attempt to give a glimpse into how recent developments in 3D bioprinting are going to impact
vast research ranging from complex and functional organ transplant to future toxicology studies
and printed organ-like 3D spheroids. The techniques were successfully applied to reconstructed
complex 3D functional tissue for implantation, application-based high-throughput (HTP) platforms
for absorption, distribution, metabolism, and excretion (ADME) profiling to understand the cellular
basis of toxicity. We also provide an overview of merits/demerits of various bioprinting techniques
and the physicochemical basis of bioink for tissue engineering. We briefly discuss the importance
of universal bioink technology, and of time as the fourth dimension. Some examples of bioprinted
tissue are shown, followed by a brief discussion on future biomedical applications.

Keywords: bottom-up engineering; 3D bioprinting; additive manufacturing; nanotoxicology;
tissue engineering

1. Introduction

Human organs are highly specialized tissue structures performing particular distinctive functions.
In the case of dysfunctional organs, clinical treatments are often limited by a scarcity of available donors
and by immune rejection of donated tissue [1]. To overcome the lack of available transplantable organs,
tissue-engineering approaches are used, which face some challenges [2]. Borrowing the concept of
three-dimensional (3D) printing from additive manufacturing technologies, whereby a digital design
for a 3D structure is fabricated layer by layer following the bottom-up approach, 3D bioprinting
is now being pursued as a potential solution to some of the challenges faced in tissue-engineering
methods [3–8]. Layer-by-layer precise positioning of biological materials, and biochemical and living
cells, with spatial control of the placement of functional components, is used to fabricate 3D tissue
structures [9].
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A typical bioprinting process consists of three major steps, namely pre-processing, processing,
and post-processing (Figure 1). Pre-processing involves imaging of the tissue or organ and the
reconstruction of 3D models from the imaging (Figure 1a–d). Multidetector computed tomography
(MDCT) is widely used for rapid prototyping because of its simpler image-processing requirements.
Cone-beam computed tomography (CBCT), positron emission tomography (PET), single-photon
emission computed tomography (SPECT), magnetic resonance imaging (MRI), and ultrasonography
(US) are other non-invasive imaging modalities [10]. The processing step involves the bioprinting
process using an appropriate bioink [11–14] (Figure 1e–g). The bioprinting process can be classified into
four different categories, including laser-based bioprinting [15–23], droplet-based bioprinting [24–31],
extrusion-based bioprinting [28,29,32–42], and stereolithography-based bioprinting [13,43–50].
Post-processing involves maturation of the bioprinted tissue before its intended use [9,51] (Figure 1h–i).
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here are models of a near and a heart). (e) The composition of bioink depends on the 63 
intended tissue form and function. Using such inks, methods like (f) laser-based 64 
bioprinting, or (g) extrusion-based bioprinting can be employed to print the intended 65 
tissue. (h-i) Some form of post-processing or maturation may be needed before the 3-d 66 
bioprinted tissue can be used (shown here is the maturation of bioprinted tubes composed 67 
of porcine aortic smooth muscle cells in a perfusion bioreactor). 3D model of ear is reprinted 68 
from Mannoor et.al. [35], with permission from American Chemical Society; Bioink 69 
formulation schematic is taken from Gungor-Ozkerin et.al. [12], with permission from 70 
Royal Society of Chemistry; Schematic of laser-based bioprinting is taken from Guillemot 71 
et.al. [17], with permission from Elsevier; Schematic of extrusion-based bioprinting is taken 72 
from Mannoor et.al. [35], with permission from American Chemical Society; Post-73 
processing images are taken from Norotte et.al. [52], with permission from Elsevier. 74 
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Figure 1. A typical process for bioprinting 3D tissues. Imaging of the tissue or organ using (a) CT
scanner (shown here is a Siemens SOMATOM Force © Siemens Healthcare GmbH, 2018), or (b) MRI
machine (shown here is a Siemens MAGNETOM Sola © Siemens Healthcare GmbH, 2018) and
(c,d) reconstruction of 3D models from the imaging (shown here are models of a near and a heart).
(e) The composition of bioink depends on the intended tissue form and function. Using such inks,
methods like (f) laser-based bioprinting, or (g) extrusion-based bioprinting can be employed to print
the intended tissue. (h,i) Some form of post-processing or maturation may be needed before the 3-d
bioprinted tissue can be used (shown here is the maturation of bioprinted tubes composed of porcine
aortic smooth muscle cells in a perfusion bioreactor). 3D model of ear is reprinted from Mannoor
et.al. [35], with permission from American Chemical Society; Bioink formulation schematic is taken
from Gungor-Ozkerin et.al. [12], with permission from Royal Society of Chemistry; Schematic of
laser-based bioprinting is taken from Guillemot et.al. [17], with permission from Elsevier; Schematic of
extrusion-based bioprinting is taken from Mannoor et.al. [35], with permission from American Chemical
Society; Post-processing images are taken from Norotte et.al. [52], with permission from Elsevier.

2. Laser-Based Bioprinting

The main components of a laser-based bioprinter are the laser source, a laser transparent print
ribbon coated with a layer of cell-laden bioink, and a substrate or collector slide on a motorized
stage. The energy from the laser is utilized to pattern cell-laden bioinks in a three-dimensional
spatial arrangement with the aid of computer-aided design and manufacturing (CAD/CAM).
The high resolution and reproducibility of this process makes it a viable option for use in biomedical
applications [53]. Some of the variations of this method based on the type of laser source and laser
transparent print ribbon are shown in Table 1. Stem-cell grafts, skin tissue, multicellular arrays,
and biopapers were reported to be printed using this method [23,54]. The major advantage of laser
printing is the non-contact process. This eliminates nozzle clogging and also results in high cell
viabilities [55]. However, there are several disadvantages of laser-based bioprinting, which outweigh
the advantages. Laser exposure on the cells is not without risk, and the use of metal to absorb the laser
energy can induce cytotoxicity [53].
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Table 1. The comparison among different laser-based bioprinting techniques.
CCD—charge-coupled device.

Laser-Based Bioprinting

Category
Laser-Induced

Forward
Transfer (LFT)

Absorbing
Film-Assisted
Laser-Induced

Forward Transfer
(AFA-LIFT)

Biological
Laser

Processing
(BioLP)

Matrix-Assisted
Pulsed Laser
Evaporation

Direct Writing
(MAPLE-DW)

Laser-Guided
Direct Writing

(LG DW)

Difference

Laser
transparent
print ribbon

With thin
metal layer With thick metal layer

With
biopolymer

layer
/

Laser pulses High power High power High power Low power /

CCD camera / / Included / /

Optical fiber / / / / Included or not
included

Advantages

Overall

1. High cell viability
2. High resolution
3. High cell densities
4. Low-viscosity cell suspensions

Individual / Thick metal layer reducing the risk
of laser energy on cells damage

Biopolymer
facilitating
initial cell

attachment

/

Disadvantages

1. A risk of photonic cell damage
2. Scalability limitation
3. Fabrication of the laser print ribbon
4. High cost of laser system
5. Complexity of controlling the laser pulses

3. Droplet-Based Bioprinting

Such a process ejects cell-laden bioink out of the nozzle onto a substrate in the form of droplets [51].
Inkjet printers are one of the most commonly used type for both non-biological and biological
applications [9]. Inkjet printers can use thermal [27] or acoustic [56] forces, among others, to eject drops
of liquid onto a substrate [9], as seen in Table 2. One of the major advantages of droplet-based
bioprinting is its compatibility with a wide variety of biological materials. Furthermore, such
bioprinters provide high resolution (20–100 µm) and speed (1–10,000 droplets/s) while being a low-cost
alternative [29]. For example, a high-throughput cell printing system was demonstrated for drug
screening [30,57–61]. At the same time, a major drawback of this technique is the requirement for the
biological material to be in a liquid and less viscous form [29], which may not always be the case.

Table 2. The comparison among droplet-based bioprinting techniques.

Droplet-based Bioprinting

Category
Inkjet Bioprinting Electro-Hydrodynamic

Jetting-Based Bioprinting
Acoustic Bioprinting Microvalve Bioprinting

Continuous Inkjet Drop-on-Demand

Trigger
Difference Pneumatic actuator Thermal, piezo-electric,

electrostatic actuator Electric field Acoustic actuator Pneumatic actuator

Advantages

1. High resolution
2. High printing speed
3. Affordability
4. Cell concentration gradient

1. High resolution
2. High-viscosity bioink

1. Without
detrimental stressors

2. High resolution
3. High printing speed

1. Synchronized
ejection from
different print heads

Disadvantages

1. Low-viscosity bioink
2. Nozzle clogging
3. Droplets cannot be

controlled precisely

1. Low-viscosity bioink
2. Nozzle clogging

1. Electric field might affect
the long-term
cell viability

2. Precise spatial
placement of cells
is onerous

1. Not too high a
viscosity of bioink

2. Not too high a
cell concentration

1. Nozzle clogging
2. Low resolution
3. Damage of cells
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4. Extrusion-Based Bioprinting

In extrusion-based bioprinting, the bioink is extruded out of the nozzle using pneumatic pressure
or mechanical force. The biggest advantage of extrusion-based bioprinting is the scalability due to the
continuous flow of bioink and large deposition rate (Table 3). At the same time, the resolution of this
method is lower than other methods [62,63]. While the printability of high-viscosity bioinks and high
cell concentrations is an advantage [37], the inherent nozzle-clogging problem is a disadvantage [64].
Due to their low cost and simple-to-use nature, extrusion-based bioprinters are the most widely
used of all bioprinters [51] (Table 4). Cell-laden constructs with tunable 3D microenvironments were
constructed by bioprinting gelatin methacryloyl (GelMA)/alginate core/sheath microfibers using
extrusion-based bioprinting and subsequent ultraviolet (UV) cross-linking [40]. Further stabilization
strategies in extrusion-based bioprinting were also reported, in order to successfully complete the
printing of intact, accurate, and biologically relevant constructs with desirable properties [65].

Table 3. The advantages and disadvantages of extrusion-based bioprinting and
stereolithography-based bioprinting. UV—ultraviolet.

Category Extrusion-Based Bioprinting Stereolithography-Based Bioprinting

Trigger difference Pneumatic pressure or mechanical force Light (usually UV) irradiation

Advantages
1. Scalability
2. High-viscosity bioink
3. High cell concentration

1. Highest resolution
2. Reduced printing time

Disadvantages
1. Lowest resolution
2. Nozzle clogging
3. Shear-thinning bioink

1. Nozzle clogging
2. Photopolymerizable bioinks or bioinks containing UV-activated photo initiated damage of cells
3. UV irradiation damage of DNA and promotion of cell lysis

Table 4. A comparison of various bioprinting techniques as tabulated by Vijayvenkataraman et al. [51].

Properties Laser-Based
Bioprinting

Inkjet
Bioprinting

EHD Jetting-Based
Bioprinting

Acoustic
Bioprinting

Microvalve
Bioprinting

Extrusion-Based
Bioprinting

Stereolithography-Based
Bioprinting

Bioink viscosity 1–300 mPa·s 3–12 mPa·s 1–1000 mPa·s NA 1–200 mPa·s ~600 kPa·s ~5 Pa·s

Cell density 108 cells/mL 106 cells/mL 106 cells/mL 106 cells/mL 106 cells/mL 108 cells/mL >106 cells/mL

Speed 200–1600 mm/s 10,000 droplets
per second 10–500 mm/s 10,000 droplets

per second
1000 droplets

per second 10–50 µm/s High

Resolution 50 µm 50 µm 100 nm 37 µm – 100 µm 200 nm–6 µm

Accuracy High Medium Low Medium Medium Low High

Cell viability >95% >80% >80% >90% >80% 40–95% 25–85%

Structural integrity Low Low High Low Low–medium High Medium–high

Scalability Low High High Medium High High Medium–high

Cost High Low High Medium–high Medium Low–medium Medium

5. Stereolithography-Based Bioprinting

In stereolithography-based bioprinters, UV light is used to cure layers of photopolymer, stacks
of which form the 3D object (Table 3). The biggest advantage of stereolithography in general and
stereolithography-based bioprinting in particular is its very high resolution. Other advantages include
high cell concentrations and no problem of nozzle clogging. The preparation of three-dimensional
biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures using stereolithography
at high resolutions was shown [46]. Cell-encapsulated hydrogels were also shown to be 3D-printed
using stereolithography [48]. Cell-attachable and visible-light cross-linkable bioinks, based on gelatin
methacryloyl (GelMA) with eosin Y (EY) photoinitiation, for stereolithography three-dimensional (3D)
bioprinting were developed and used to print cell-laden hydrogels [13]. However, there are many
disadvantages of this method. The biggest disadvantage is that only photocurable bioinks can be used.
Another disadvantage is that the cells will get exposed to harmful UV light, which affects the cell
viability [44].
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6. 3D-Printed Tissues and Organs

Bioprinting was used to generate two-dimensional (2D) and 3D structures for various purposes,
including fabrication of scaffolds and tissue constructs for tissue regeneration (Table 5). Some examples
of printed tissues are shown in Figure 2. Markstedt et al. [66] printed shapes resembling human ear and
sheep mensci using a bioink containing alginate and nanofibrillated cellulose and an inkjet-based 3D
bioprinter which is largely applied for fibrous nanomaterials packaging [67]. Duan et al. [62] printed
aortic valve conduits using hydrogel-based bioinks laden with aortic root sinus smooth-muscle cells
and aortic valve leaflet interstitial cells and an extrusion-based 3D bioprinter. Table 5 summarizes the
applications of 3D bioprinting in tissue engineering.

Table 5. Tissue-engineering applications using 3D bioprinting, adapted from Seol et al. [8] (with
permission from Oxford University Press). BMP-2—; FGF-2—; TGF-β—; CNTF—; VEGF—; EGF—;
GelMA—gelatin methacryloyl.

Tissue Techniques Cell Types Growth Factors Materials References

Heart valve Extrusion-based
bioprinting

Aortic valve interstitial cell
Aortic root sinus smooth-muscle cell –

Hyaluronic acid
Gelatin

Alginate
[62,68]

Myocardial tissue Extrusion-based
bioprinting Cardiomyocyte progenitor cell – Alginate [69,70]

Blood vessel

Jetting-based
bioprinting

Endothelial cell
Smooth-muscle cell

Mesenchymal stem cell
– Fibrin [71,72]

Extrusion-based
bioprinting

Endothelial cell
Cardiac cell

Smooth-muscle cell
Fibroblast

–
Collagen
Agarose
Alginate

[52,73,74]

Musculo-skeletal
tissue

Jetting-based
bioprinting

Muscle-derived stem cells
Myoblast

Mesenchymal fibroblast

BMP-2
FGF-2 Fibrin [75–77]

Extrusion-based
bioprinting

Bone marrow stromal cell
Endothelial progenitor cell

Endogenous stem cell
TGF-β

Agarose
Alginate

Hydroxyapatite
Polycaprolactone

[78,79]

Nerve

Jetting-based
bioprinting

Embryonic motor neuron cell
Hippocampal cell

Cortical cell
Neuronal precursor cell

Neural stem cells

CNTF
VEGF

Soy agar
Collagen

Fibrin
[80,81]

Extrusion-based
bioprinting

Bone-marrow stem cell
Schwann cells – Agarose [82,83]

Skin

Jetting-based
bioprinting

Dermal fibroblast
Epidermal keratinocyte – Collagen [84]

Extrusion-based
bioprinting Epitheleal progenitors EGF BMP-4 Gelatin [85]

Bone Extrusion-based
bioprinting Human mesenchymal stem cells – GelMA [86]

Therefore, it can be said that bioprinting holds tremendous potential and is fast moving toward
fully functional 3D-printed organs. For example, in the future, chronic toxicological diseases that
are majorly due to industrial particulate pollutants such as pulmonary fibrosis could be cured by
transplanting 3D-printed lungs from patients’ own programmed cells. Life expectancy can be increased
because patients will not be left waiting until a suitable organ is available from an organ donor.
Body cells taken from patient blood or from a skin biopsy will be transported to a laboratory [87].
Here, cells will be programmed into routine culture to be transformed into diseased organ cells (e.g.,
lung cells) and will be expanded in volume/number for the 3D bioprinting to resemble a lung after
a few weeks. After maturation into sterile culture conditions, the artificial lung will be ready to be
implanted inside the patient (Figure 3) to replace the dysfunctional organ [88]. This whole process
will take just a few months and will also produce personalized organs for the patient from their own
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cells. This will reduce the possibility of rejection by the body, and the patient will not have to spend
the rest of his/her life on anti-rejection drugs and having to deal with all of the associated side effects.
Petersen et al. [89] (Figure 3) proposed using scaffolds of extracellular matrix from lungs of adult rat
that retain the hierarchical branching with cellular components removed. A bioreactor was used to
culture pulmonary epithelium and vascular endothelium on the acellular lung matrix, resulting in
hierarchical organization within the matrix and efficient repopulation of the vascular compartment.
When implanted into rats in vivo for short time intervals (45 to 120 minutes) the engineered lungs
participated in gas exchange, although the inflation of engineered lung was found to be less than that
of the native lung, and some bleeding and clotting was observed. While this represents a step toward
developing a viable strategy for generating fully functional lungs in vitro, there remains the issue of
extracting scaffolds from lungs, among others. This is where 3D bioprinting can help by developing
patient-specific, on-demand biological scaffolds.Appl. Sci. 2018, 8, x 6 of 15 
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Figure 3. Scheme for lung tissue engineering [89]. (A) Native adult rat lung is cannulated in the
pulmonary artery and trachea for infusion of decellularization solutions. (B) Acellular lung matrix
is devoid of cells after 2 to 3 h of treatment. (C) Acellular matrix is mounted inside a biomimetic
bioreactor that allows seeding of vascular endothelium into the pulmonary artery and pulmonary
epithelium into the trachea. (D) After four to eight days of culture, the engineered lung is removed
from the bioreactor and is suitable for implantation into (E) the syngeneic rat recipient. (Reprinted with
permission from the American Association for the Advancement of Science (AAAS)).
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The entire process involves nano- and micro-to macroscale bottom-up engineering [90,91] using
a simple desktop 3D printer. This opens up the possibility that, one day, we will be able to bioprint
amputated sub-organs, missing organs, and digitally designed cosmetic body parts. Instead of using
plastics to print structures, researchers will use living cells mixed with biocompatible scaffolds to build
living tissue inside a sterile safety cabinet to keep the cells protected from harmful foreign substances.
In this context, it is also important to discuss the relevance of four-dimensional (4D) bioprinting,
the fourth dimension being time [92]. While 3D bioprinting is set to make our lives easier by printing
required living tissue on demand, in some cases, it may lose relevance if it is too time-consuming.
Therefore, time taken to create the end-product is an important parameter to consider when judging
the effectiveness of bioprinting processes. Furthermore, it was suggested that a universal bioink
would be a significant technological advancement that could standardize the bioprinting field and
accelerate the realization of human tissue product biomanufacturing [93]. With advancement in 3D
printing, parallel advancements in 3D bioprinting can also be expected in the future. For example,
dip-pen nanolithography is being developed, combining advantages of electron beam lithography,
inkjet printing, and microcontact printing [94]. Such methods also allow the parallel application of
different inks, which may be useful for printing complex tissue structures when integrated with in
silico modeling [95,96].

7. Future Outlook: 3D Bioprinting Air–Liquid Interface (ALI) as an Artificial Material for
Nanotoxicity Assessment of Particulate Matter

With the huge potential that 3D bioprinting holds, other applications apart from tissue/organ
regeneration can be realized [97], for example, printing a lattice-like membrane, which can act as
a biological tape. Such a membrane when placed in a culture microincubator could be used to
recreate the microenvironment of the human body. To mimic the air–liquid interface in vivo, 3D
bioprinting can build living lung-like tissues via printing the inside of the incredibly intricate branching
network of tubes [98,99]. Each of these tubes ends in a tiny structure of air sacs/pouches where
oxygen and carbon dioxide are exchanged, which gives an idea of just how complex this structure
is. There are 300 million of these tiny air sacs in each lung [100], which makes it a very challenging
structure to bioprint. However, a part of it can be printed to be used as a very useful model for
toxicological research [101]. Another example is an asthma attack, where patients breathe in certain
particulate allergens (micro- and nano- to macroscale particles/airborne spores) which aggravate
muscle contraction of reduced-diameter airways [102]. In the future, starting from those airway muscle
cells, one can recreate them in the lab and print them into tubular structures [103]. Further incubating
these constructs in a suitable microenvironment to mature into similar functional airway muscles is
possible via adding a stimulatory compound like histamine. It is released in asthmatic patient airways
during an asthma attack, causing muscle contraction. We will be able to 3D print an airway muscle
tissue mimicking the biological lifelike contraction and, thus, test advance therapeutics to reverse the
contraction, relaxing the air tube as an anti-asthma drug does in patients. The fact that drug tests
can be performed in these tissues is a very important point, because the drug development industry
faces a big challenge of human trials after testing in vitro cells grown in petri dishes and preclinical
tests in in vivo rodents. Rodents such as mice and rats respond very differently to test therapeutic
compounds than humans do [104]. There is a huge chasm between the preclinical tools that we test
the drugs on and the humans for whom the drugs are designed to help. Therefore, 90% of drugs that
show promise in animals actually fail to work in humans, usually because they are just not effective
at fighting disease or, sometimes, they are downright toxic [105]. These 3D-printed tissues can help
the drug development process by enabling pharmaceutical companies to test these compounds in
tissues that reproduce the complexity of the human body [106]. This will save lives by providing
better drugs to patients faster and for less expense. It also has an ethical and moral impact, because
research can drastically reduce the number of animals that are used for drug development. By the
year 2050, it is estimated that the meat and leather industry combined will need around one hundred
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billion farm animals to supply us with our animal-based needs such as meat, leather, milk, etc. [107].
To supplement those kinds of needs, animal cells can now be grown in the laboratory in just the same
way as human cells; thus, there is potential here to replace a large proportion of these animals using
bioprinted cells. We can differentiate them into muscle-like cells and then print those cells into meat
products. The first bioprinted beef burger was revealed back in 2013, although incurring high costs
(approximately $300,000) [108]. As technology moves forward rapidly, bioprinted leather is also a
potential use for this technology. Skin cells can be grown, and the industry could generate customized
leather products with specific thicknesses or textures or colors, making it feasible for the potential
replacement of animal products by even better bioprinted animal products [109].
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