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g Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil   
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A B S T R A C T   

Acute gastroenteritis is one of the main causes of mortality and morbidity worldwide, affecting mainly children, 
the immunocompromised and elderly people. Enteric viruses, especially rotavirus A, are considered important 
etiological agents, while long-term care facilities are considered favorable environments for the occurrence of 
sporadic cases and outbreaks of acute gastroenteritis. Therefore, it is important to monitor the viral agents 
present in nursing homes, especially because studies involving the elderly population in Brazil are scarce, 
resulting in a lack of available virological data. As a result, the causative agent remains unidentified in a large 
number of reported acute gastroenteritis cases. However, the advent of next-generation sequencing provides new 
opportunities for viral detection and discovery. The aim of this study was to identify the viruses that circulate 
among elderly people with and without acute gastroenteritis, living in residential care homes in Belém, Pará, 
Brazil, between 2017 and 2019. Ninety-three samples were collected and screened by immunochromatography 
and qPCR. After, the samples were analyzed individually or in pools by next generation sequencing to identify 
the viruses circulating in this population. In 26 sequenced samples, members of 13 eukaryotic virus families were 
identified. The most abundantly present virus families were Parvoviridae, Genomoviridae and Smacoviridae. 
Contigs displaying similarity to pegiviruses were also detected. Furthermore, a near-complete rotavirus A 
genome was obtained and could be classified as G3P[8] genotype with the equine DS-1-like genetic background. 
Complete sequences of the VP4 and VP7 genes of a rotavirus C were also detected, belonging to G4P[2]. This 
study demonstrates the first characterization of the gastrointestinal virome in elderly in Northern Brazil. A di-
versity of viruses was found to be present in patients with and without diarrhea, reinforcing the need to monitor 
elderly people residing in long-term care facilities, especially in cases of acute gastroenteritis.   
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1. Introduction 

Acute gastroenteritis (AG) is one of the leading causes of mortality 
and morbidity worldwide (Leung and Hon, 2021). Alongside several 
other possible etiologies, viruses are the main cause of diarrhea world-
wide, especially in children (Hartman et al., 2019; Leung, 2020). The 
transmission of gastroenteric viruses occurs via the fecal-oral route, 
mainly by person-to-person contact and ingestion of contaminated food 
and water, as well as by fomites, aerosols and vomit droplets (Wikswo 
et al., 2015). Several groups of viruses have been reported to be 
responsible for causing AG. Among them, Group A rotavirus (RVA) 
stands out and is considered to be the main cause of AG in childhood, 
followed by norovirus (NoV), astrovirus (AstV) and adenovirus (AdV) 
(Akdag et al., 2020; Banyai et al., 2018; Dian et al., 2021; Farahmand 
et al., 2021; Olortegui et al., 2018). However, other less common viral 
pathogens are also related to cases of AG, such as sapovirus (SaV), 
rotavirus group C (RVC) and enteroviruses (Malik and Ghosh, 2020; 
Trovao et al., 2019; Zaki et al., 2021). 

Diagnosis of AG viruses can be done by antigen detection (enzyme 
immunoassays- EIA) or conventional molecular methods, such as poly-
merase chain reaction (PCR), reverse transcription polymerase chain 
reaction (RT-PCR), multiplex RT-PCR or Real-Time PCR. Several EIAs 
are used to detect NoV, RVA, AstV and AdV viral antigens, but although 
these methods are considered sensitive and specific, their large-scale 
application is limited because of the high reagent costs (Chen et al., 
2017; Miller et al., 2013). Of the molecular techniques, only Real-Time 
PCR offers quantitative data for the presence of viral genomes, while 
simultaneously offering superior detection sensitivity compared to other 
conventional PCR techniques (Aggarwala et al., 2017; Altan et al., 
2017). 

Molecular studies using PCR and sequencing techniques have 
contributed significantly to the improved detection of these viruses and 
to the knowledge of their epidemiology and clinical importance. How-
ever, despite the variety of available detection methods in surveillance 
laboratories, many clinical samples remain undiagnosed, even after 
having undergone several conventional tests (Aggarwala et al., 2017; 
Moore et al., 2015). This is the situation for up to 40% of AG cases, 
where the scope of the tests used is often insufficient to identify the 
causative virus and where episodes are often caused by yet uncharac-
terized viruses (Carding et al., 2017). Conversely, the technique of viral 
metagenomics, which performs the simultaneous analysis of all nucleic 
acids recovered in a single sample (with or without a step to enrich for 
viral particles), has the potential to revolutionize the detection of both 
known and new viruses (Osunmakinde et al., 2018). Instead of per-
forming multiple tests, each one looking for a specific pathogen, meta-
genomics using next-generation sequencing (NGS) technology is able to 
identify all viruses present in the sample, and sometimes even allows the 
assembly of the (almost) complete genomes of known and novel viruses 
(Nooij et al., 2018). The resulting data sets can also be used to identify 
virulence genes and provide more complete information in cases of large 
outbreaks of AG (Altan et al., 2017). Furthermore, viral metagenomics is 
a valuable tool in detecting new viral species and strains. As NGS 
technologies improve, more studies involving this approach are being 
carried out in public health laboratories in different locations to inves-
tigate the causes of various diseases, mainly because metagenomics al-
lows the detection of pathogens in low concentrations and can be 
performed directly on clinical specimens. The disadvantages of NGS 
technologies are that they take longer to perform, are more expensive, 
and are not as sensitive as PCR and qPCR (Greninger, 2018). 

Yearly, 500,000 children - especially under 5 years old - die in 
developing countries due to diarrhea, with a hundred million more 
registered cases having a non-fatal outcome (Local Burden of Disease 
Diarrhea, 2020). Because of this significant impact on global human 
health, the role of enteric viruses in childhood AG has been studied 
extensively and is well defined (Chamberland et al., 2015; Elliott, 2007; 
Florez et al., 2020; Guarino et al., 2020; Parashar et al., 2013). However, 

little data about the occurrence of these viruses in the adult population is 
available, especially in elderly people. Nonetheless, the number of 
diarrheal cases in this population group can be very high in developing 
but also developed countries. For example, in the United States of 
America (USA), of the 179 million patients treated with diarrhea, 83% 
were elderly (Sell and Dolan, 2018; Wikswo et al., 2015). Because of the 
acquisition of age-related morbidities, contributing to a reduced inde-
pendence, elderly are often cared for in Long-term Care Institutions 
(LCI). However, in these closed housing arrangements, the close contact 
between residents, employees and visitors can expedite the spread of 
pathogens when diseases are introduced (Harris et al., 2010; Inns et al., 
2019; Strausbaugh et al., 2003). Consequently, outbreaks of AG in 
elderly care institutions have been reported globally, often attributable 
to viral pathogens. For example, in the United States, NoV was respon-
sible for 79% of the outbreaks in long-term care facilities between 2009 
and 2013 (Cardemil et al., 2012; Jayasekara et al., 2016; Luchs et al., 
2017; Marshall et al., 2003; Meier, 2021). The detection of enteric vi-
ruses among the elderly in LCIs and the associated possibility of AG 
outbreaks adds to pre-existing concerns about the quality of life of this 
population, although the global impact of this disease burden on the 
internee geriatric population remains to be fully defined. 

Studies involving the elderly population, although relevant, are 
scarce in Brazil, especially those concerning epidemiological and mo-
lecular research on viral gastroenteritis (IBGE, 2018). As the elderly 
represent one of the fastest growing segments of the Brazilian popula-
tion, it is important to carry out better and more comprehensive sur-
veillance studies to identify the viruses that circulate among these 
people, enabling a more detailed characterization of the impact of these 
agents on this population. Therefore, the aim of this study was to use a 
metagenomics approach to identify the viruses that circulate among 
elderly people living in private and public residential care homes in 
Belém, Pará, Brazil. It is noteworthy that this investigation, carried out 
over a period of two years, from March 2017 to June 2019, represents 
the first surveillance study in the Northern region of Brazil with the aim 
of identifying the viruses that circulate in this type of population. 

2. Material and methods 

2.1. Ethical authorization 

This study was approved by the Ethics Committee of Human 
Research of the Evandro Chagas Institute (Comitê de Ética em Pesquisa 
(CEP)/Instituto Evandro Chagas ((IEC)) under the protocol number 
1.942.979. 

2.2. Sample collection 

The study was conducted in two LCIs, one public and one private, 
over a two-year period. Initially, meetings were held with those 
responsible; caregivers and other employees, as well as with the elderly 
residents of these institutions. The objectives of the study were 
explained, how the research would be performed and what was expected 
to be achieved in the end. Two weekly visits (Tuesdays and Thursdays) 
were carried out to identify individual episodes or outbreaks of diarrhea 
and/or vomiting. During these visits, elderly residents (>65 years old) 
and their caregivers were instructed to collect their stool when they had 
more than three bowel movements per day, or more than normal, and/ 
or episodes of vomiting. In addition, control samples of other residents 
were also obtained to check for possible asymptomatic infections. Dur-
ing these visits, all feces collected, and stored in a refrigerator available 
at the LCIs, were transported to the Laboratory of Norovirus and Other 
Gastroenteric Viruses at IEC, where they were kept at − 30 ◦C until 
further use. 

A total of 93 samples were collected - 50 (3 diarrheic and 47 non- 
diarrheic) from the private LCI and 43 (30 diarrheic and 13 non- 
diarrheic) from the public - from March 2017 to June 2019. All the 
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samples from the private institution were named with the initials PS and 
ordered numerically according to the time of collection (e.g. PS-45 was 
the forty-fifth sample collected). Likewise, the samples from the public 
institution received the initials LP (LP-01 to LP-43), in order to differ-
entiate between samples from the two LCIs. 

All samples were initially tested by immunochromatographic assay 
for norovirus, adenovirus and rotavirus when they arrived at the IEC. 
Afterwards, they were subjected to RNA/DNA extraction with the 
ReliaPrep Viral TNA Miniprep Kit, (Promega) and tested by Real-Time 
PCR for NoV, AdV and AstV, using the GoTaq Probe qPCR Kit and RT- 
qPCR Systems Kit (Promega) (See also Supplementary table 1) (Hern-
roth et al., 2002; Kageyama et al., 2003; Yokoi and Kitahashi, 2009). 
Specific RT-PCRs targeting RVA VP4 and VP7 were done using the 
OneStep RT-PCR kit (QIAGEN). For the VP7 PCR, 1.2 μM of each primer 
was used. For the VP4 PCR, 1.6 μM of each primer was used as well as 2 
μM of a secondary, degenerated forward primer (Supplementary table 
1). Samples were denatured at 94 ◦C for 2 min, followed by a reverse 
transcription step and 40 PCR cycles according to the manufacturer’s 
instructions, using an annealing temperature of 50 ◦C. 

2.3. Viral metagenomics 

Fecal material (1 g) from 93 samples were lyophilized in a lyophilizer 
(Liotop L101), with an operating temperature of − 54 ◦C in vacuum. 
After, the samples were stored at − 30 ◦C until further processing. 

The lyophilized samples were sent to the Viral Metagenomics Lab-
oratory - Rega Institute KU Leuven, Leuven, Belgium, for viral meta-
genomics procedures. Only a subset of samples was used, to correct for 
the uneven distribution of samples throughout the collection period. 
From the diarrheic samples, 21 samples (18 from the public and 3 from 
the private LCI) that spanned the entire collection period were selected 
for individual sequencing (Table 1). Additionally, 15 samples were 

selected and combined into 5 pools as non-diarrheic controls. Each pool 
contained 3 samples collected in the same year (2017, 2018 or 2019) 
from the same institute. A 2017 pool for the public LCI was not included 
due to a lack of non-diarrheic samples. The samples were submitted to 
the preparation procedures described in the NetoVir protocol (Novel 
Enrichment Technique Of VIRomes) (Conceicao-Neto et al., 2015), 
following the steps described below: 

2.3.1. Fecal specimen enrichment 
The lyophilized fecal samples were rehydrated and homogenized 

using 2 mL of PBS pH 7.4% (GIBCO) in a MINILYS tissue homogenizer at 
3.000 rpm for 1 min, followed by centrifugation at 17,000 xg for 3 min to 
collect a final volume of 150 μL supernatant, which was filtered using a 
0.8-μm centrifugal filter (PES) at 17,000 xg for 1 min. 130 μL of the 
filtrate was placed in a sterile tube, together with 7 μL homemade buffer 
(1 M Tris, 100mM CaCl2 and 30mM MgCl2, pH 8), 2 μL benzonase and 1 
μL micrococcal nuclease for nuclease treatment. The samples were 
incubated for 2 h at 37 ◦C and in the end, 7 μL 0.2 M EDTA was added to 
stop the reaction. The extraction of RNA/DNA was done using the 
QIAmp Viral RNA Mini Kit (QIAGEN), according to the manufacturer’s 
instructions, without addition of carrier RNA. 

2.3.2. Library preparation 
For the random amplification, a PCR was performed with the Com-

plete Whole Transcriptome Amplification Kit (Sigma-Aldrich) according 
to the manufacturer’s instructions, using a thermocycler with the 
following programmed parameters: 94 ◦C/2 min, 17 cycles of 94 ◦C/30s 
and 70 ◦C/5 min. Amplicon purification was done with the MBS Spin 
PCRapace Kit (Stratec Molecular). Quantification of the samples was 
performed with the Qubit ™ dsDNA HS Assay Kit with the use of a Qubit 
Fluorometer. Preparation of the genomic library was done using the 
Nextera XT DNA Library kit (Illumina). AMPure magnetic beads were 

Table 1 
Illumina sequencing data overview.  

Institution Sample Collection date Type of sample N◦ Raw 
reads 

N◦ Trimmed 
reads 

N◦ Total of 
contigs 

N◦ Eukaryotic viral 
reads* (%) ** 

N◦ Viral 
contigs  

LP02 04/04/2017 DIARRHEAL 14,160,796 12,831,900 8517 1,636,450 (12.75) 417 
Public LP05 04/04/2017 DIARRHEAL 8,801,050 7,765,560 6671 1,127,308 (14.52) 137 

LP09 04/06/2017 DIARRHEAL 11,748,558 10,480,039 9379 5,719,902 (54.58) 466 
LP11 04/13/2017 DIARRHEAL 9,965,002 8,850,179 13,592 4,253,339 (48.06) 465 
LP15 04/15/2017 DIARRHEAL 14,330,692 12,723,448 6926 1,591,733 (12.51) 157 
LP16 04/19/2017 DIARRHEAL 14,167,040 12,581,397 38,556 2,820,462 (22.42) 811 
LP18 04/29/2017 DIARRHEAL 13,119,034 11,096,227 102,827 797,998 (7.19) 1542 
LP19 05/22/2017 DIARRHEAL 15,117,052 13,099,676 32,067 2,470,430 (18.86) 714 
LP21 07/07/2017 DIARRHEAL 1,061,730 828,532 12,499 157,264 (18.98) 195 
LP22 08/13/2017 DIARRHEAL 10,294,316 8,369,275 31,053 747,551 (8.93) 434 
LP23 10/29/2017 DIARRHEAL 13,561,446 11,152,308 22,439 2,451,639 (21.98) 288 
LP24 12/03/2017 DIARRHEAL 11,735,406 8,899,256 105,381 171,995 (1.93) 252 
LP25 01/18/2018 DIARRHEAL 7,321,942 6,295,076 3150 2,556,459 (40.61) 338 
LP26 02/21/2018 DIARRHEAL 5,498,194 4,691,336 12,946 776,423 (16.55) 226 
LP27 03/17/2018 DIARRHEAL 4,656,340 3,219,092 40,239 37,317 (1.16) 188 
LP28 04/26/2018 DIARRHEAL 1,572,988 1,348,794 3916 190,189 (14.10) 103 
LP42 06/09/2018 DIARRHEAL 4,674,976 3,488,387 61,313 16,538 (0.47) 185 
LP43 06/29/2018 DIARRHEAL 8,122,492 6,581,415 23,315 142,195 (2.16) 88 
POOL 
01 

05/13/2018 11/01/2018 
11/08/2018 

NON-DIARRHEIC 
CONTROL 

10,346,002 8,811,949 26,158 5,770,149 (65.48) 291 

POOL 
02 

01/07/2019 03/20/2019 
05/15/2019 

NON-DIARRHEIC 
CONTROL 

9,110,788 6,874,556 84,850 29,433 (0.43) 319 

Private PS18 07/21/2017 DIARRHEAL 5,134,310 4,228,844 51,530 552,581 (13.07) 273 
PS45 06/01/2019 DIARRHEAL 1,227,510 997,788 5505 36,240 (3.63) 195 
PS48 06/22/2019 DIARRHEAL 1,690,606 1,046,397 8135 3777 (0.36) 73 
POOL 
03 

04/04/2017 09/05/2017 
11/29/2017 

NON-DIARRHEIC 
CONTROL 

14,186,114 12,176,792 51,788 288,958 (2.37) 508 

POOL 
04 

02/03/2018 06/13/2018 
11/06/2018 

NON-DIARRHEIC 
CONTROL 

10,562,518 8,626,766 161,594 18,299 (0.21) 181 

POOL 
05 

02/18/2019 05/09/2019 
07/10/2019 

NON-DIARRHEIC 
CONTROL 

8,730,090 7,392,166 117,312 944,010 (12.77) 526  

* The number of viral reads was calculated by mapping back the trimmed reads to the contigs classified as ‘eukaryotic viral’ by DIAMOND. 
** The percentage of viral reads was calculated in relation to the total obtained trimmed reads per sample. 
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used to purify the library. For quality control, the samples were analyzed 
with a Bioanalyzer 2100, using the High Sensitivity DNA kit (Agilent 
Technologies) according to the instruction manual. Sequencing was 
performed for 300 cycles on a HiSeqTM 2500 platform (Illumina). 

2.4. Data analysis 

Initially, human genome sequences, adapter sequences and low- 
quality reads were removed using Trimmomatic (Bolger et al., 2014). 
The remaining reads were de novo assembled using SPAdes 3.13.0 with 
the option MetaSPAdes (Bankevich et al., 2012) and taxonomic anno-
tation was performed using DIAMOND v2.0.8 (Buchfink et al., 2015). 
The Refseq sequences for RVA and RVC were used to map the trimmed 
reads using the Burrows-Wheeler Alignment tool (BWA) (Li and Durbin, 
2009), after which consensus sequences were obtained. For RVC, only 
partial genome segments were obtained and additional PCRs (primers in 
Supplementary Table S1), followed by Sanger sequencing, were used to 
further complete the VP4 and VP7 segments. PCRs were performed using 
the One Step RT-PCR kit (Qiagen) according to the manufacturer’s in-
structions. The resulting nucleotide sequences were submitted to NCBI 
GenBank with the accession numbers MW715617 and MW715618, 
respectively. Additionally, nucleotide sequences for all 11 obtained RVA 
genes were submitted to NCBI GenBank with the accession numbers 
MW715606-MW715616. 

For the RVC VP4 and VP7 segments and for all 11 RVA segments, 
alignments were made with appropriate reference strains as well as a 

selection of closely related sequences downloaded from the National 
Center for Biotechnology Information (NCBI) database. IQ-TREE v1.6.12 
was used for model selection and subsequent maximum-likelihood 
phylogenetic tree inference, using 1000 ultra-fast bootstrap replica-
tions for each tree (Nguyen et al., 2015). The abundance table for 
eukaryotic viruses was plotted in RStudio with ggplot2 (R Core Team, 
2020). 

3. Results 

All 93 samples tested by immunochromatography and Real Time- 
PCR were negative for RVA, NoV, AdV and AstV. For the 26 samples 
sequenced on an Illumina 2500 HiSeq (21 diarrheal specimens and 5 
non-diarrheic pools of three samples each), 1,061,730 to 15,117,052 
reads were obtained per sample or pool (Table 1). Following adapter 
trimming, between 828,532 and 13,099,676 reads remained and 3150 
to 161,594 contigs could be assembled for each sample. The NGS 
analysis also revealed viral nucleotide sequences in all 26 samples tested 
but only for 18 (69.2%) of them contigs of eukaryotic viruses >500 bp 
could be assembled (Fig. 1). In 12 (66.7%) of these 18 specimens, two or 
more distinct eukaryotic viral species were detected. Based on DIA-
MOND classification, viruses related to unclassified parvorviruses 
(Parvoviridae), Chicken stool-associated gemycirculavirus (Genomovir-
idae) and Human smacovirus 1 (Smacoviridae) were the most prevalent, 
with their sequence being detected in 66.7% (12/18), 33.3% (6/18) and 
27.8% (5/18) of the samples, respectively. Other eukaryotic RNA and 
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Genomoviridae  |  Gemykrogvirus  |  Caribou associated gemykrogvirus 1

Genomoviridae  |  Gemycircularvirus  |  Gemycircularvirus sp.

Genomoviridae  |  Gemycircularvirus  |  Chicken stool−associated gemycircularvirus

Parvoviridae  |  Uncl. Parvoviridae  |  Uncl. Parvoviridae

Parvoviridae  |  Protoparvovirus  |  Primate protoparvovirus 3

Smacoviridae  |  Uncl. Smacoviridae  |  Smacoviridae sp.

Smacoviridae  |  Porprismacovirus  |  Human feces−associated smacovirus

Smacoviridae  |  Porprismacovirus  |  Human feces smacovirus 3

Smacoviridae  |  Porprismacovirus  |  Human associated porprismacovirus

Smacoviridae  |  Huchismacovirus  |  Uncl. Huchismacovirus

Smacoviridae  |  Huchismacovirus  |  Human smacovirus 1

Smacoviridae  |  Huchismacovirus  |  Chicken associated smacovirus

Anelloviridae  |  Uncl. Anelloviridae  |  Anelloviridae sp.

Anelloviridae  |  Betatorquevirus  |  Torque teno mini virus 11

Circoviridae  |  Uncl. Circoviridae  |  Circoviridae sp.

Circoviridae  |  Cyclovirus  |  Bat associated cyclovirus 16

Circoviridae  |  Circovirus  |  Circovirus sp.

Papillomaviridae  |  Betapapillomavirus  |  Betapapillomavirus 1

Flaviviridae  |  Pegivirus  |  Uncl. Pegivirus

Betaflexiviridae  |  Uncl. Betaflexiviridae  |  Shallot virus S

Tombusviridae  |  Gammacarmovirus  |  Melon necrotic spot virus

Virgaviridae  |  Tobamovirus  |  Uncl. Tobamovirus

Virgaviridae  |  Tobamovirus  |  Passion fruit mosaic virus

Virgaviridae  |  Tobamovirus  |  Maracuja mosaic virus

Virgaviridae  |  Tobamovirus  |  Cucumber green mottle mosaic virus

Partitiviridae  |  Alphapartitivirus  |  Carrot cryptic virus

Reoviridae  |  Rotavirus  |  Uncl. Rotavirus

Reoviridae  |  Rotavirus  |  Rotavirus C

Reoviridae  |  Rotavirus  |  Rotavirus A

Picobirnaviridae  |  Uncl. Picobirnaviridae  |  Grey teal picobirnavirus X

Picobirnaviridae  |  Picobirnavirus  |  Uncl. Picobirnavirus

Picobirnaviridae  |  Picobirnavirus  |  Picobirnavirus sp.

Picobirnaviridae  |  Picobirnavirus  |  Marmot picobirnavirus

Picobirnaviridae  |  Picobirnavirus  |  Human picobirnavirus
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Fig. 1. Heatmap containing the viral sequences identified with NGS in fecal samples from elderly people residing in two long-term care institutions (public and 
private) in Belém, Pará, Brazil. Each row corresponds to a specific virus species that was detected in one of the samples or pools. Each column corresponds to an 
individual or sample pool. The colors represent the relative abundance of viral reads corresponding to the virus genome detected in each sample/pool. 
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DNA viruses that were detected at least once in these samples displayed 
similarity to members of the families Picobirnaviridae, Reoviridae 
(Human Rotavirus A and C), Flaviviridae (unclassified Pegivirus), Papil-
lomaviridae (Betapapillomavirus 1) and Anelloviridae (Torque teno mini 
virus 11). Reads belonging to other eukaryotic viruses were also 
detected, but in insufficient quantity to assemble into larger contigs 
(>500 bp). 

In total, 13 eukaryotic virus families were detected in the fecal 
samples. With the exception of four plant-associated virus families 
(Betaflexiviridae, Partitiviridae, Tombusviridae and Virgaviridae), only 
three families of RNA viruses were detected, one single-stranded (Fla-
viviridae) and two double-stranded (Picobirnaviridae and Reoviridae). The 
former was only found in one sample (LP11), wherein fragments of 
human pegivirus (HPgV), formerly known as GBV-C, were detected. 
Analysis of the obtained contigs (500 bp) using Blast (https://blast.ncbi. 
nlm.nih.gov/Blast.cgi), showed that the virus detected here belongs to 
genotype 2, with approximately 93% nucleotide identity with the closest 
related references (MN551063, MH053115, MH053121), a group of 
sequences detected previously in France (Jordier et al., 2019). 
Conversely, mammalian double-stranded RNA viruses were present in 
multiple samples, including multiple divergent picobirnavirus species, a 
rotavirus A and a rotavirus C. Besides the RNA virus families, at least one 
viral species was found for six DNA virus families. Five of these represent 
ssDNA viruses (Genomoviridae, Parvoviridae, Smacoviridae, Anelloviridae 
and Circoviridae), with the only detected dsDNA family being the family 
Papillomaviridae. 

The two rotaviruses were detected in unrelated samples from the two 
LCIs: the RVA in a pool of non-diarrheic residents from the public LCI 
(POOL-01) and the RVC in a symptomatic sample from the private LCI 
(PS-45). Using two PCRs targeting the RVA VP4 and VP7 segments, we 
could trace back that the RVA detected in POOL-01 originated from 
sample LP29. To our knowledge, this virus is the first near-complete 
RVA genome obtained from an older patient living in a LCI in Brazil. 
Full or almost complete length contigs were obtained for all 11 RVA 
gene segments. For each segment, a phylogenetic tree was constructed 
using appropriate reference strains as well as the most similar non- 
redundant reference sequences available on GenBank, as determined 
by Blast. Phylogenetic analysis of the VP7 gene identifies this Brazilian 
strain as belonging to genotype G3, more specifically, the equine-like 
G3P[8] lineage, as this sequence was genetically related to previously 
detected equine-like G3P[8] strains from Brazil (KX469400, MT386432, 
MO386434) and other countries, such as Spain, Japan, and Hungary 
(Fig. 2A) (Akane et al., 2021; Arana et al., 2016; Doro et al., 2016; 

Guerra et al., 2016; Gutierrez et al., 2020). Comparably, phylogenetic 
analysis of the VP4 gene shows this gene clustering in the human ge-
notype P[8], with 99.77–99.79% nucleotide similarity with samples 
from Spain and Hungary (Fig. 2B). In accordance with the classic binary 
nomenclature, based on the sequences of the VP7 and VP4 genes, the 
strain detected here can therefore be classified as a G3P[8] genotype. 
Detailed analysis of the complete genomic constellation showed that this 
strain was associated with the equine DS-1-like genetic background (I2- 
R2-C2-M2-A2-N2-T2-E2-H2). Accordingly, the remaining nine genes 
(VP1-VP3, VP6 and NSP1-NSP5) all clustered with other DS-like 1 
strains from variable locations, showing nucleotide similarities ranging 
from 98.05–99.91% when compared to their respective closest refer-
ences (Fig. 3A–I). 

In the symptomatic sample PS-45, fragments of the 11 genetic seg-
ments of a RVC were detected, but due to limited read availability we 
were unable to assemble contigs covering the complete genome. To be 
able to classify this virus, specific primers were designed for the VP4 and 
VP7 genes based on the contigs that had been obtained by NGS. These 
primers were used for the amplification by RT-PCR and subsequent 
Sanger sequencing of the missing parts of the VP7 and VP4 gene seg-
ments to enable further characterization. Similarly to the RVA, phylo-
genetic trees were made for the VP7 and VP4 genes using the closest 
related references as identified by Blast. Based on the resulting 
maximum-like hood trees, the detected strain can be classified as a ge-
notype G4P[2]. For both genes, the nucleotide sequences showed >98% 
similarities with Russian and Indian human RVC strains, respectively 
(Fig. 4A–B). 

4. Discussion 

Several studies have already demonstrated that LCIs present a great 
risk for the spread of viral agents such as norovirus, rotavirus, and other 
enteric viruses. However, the true incidence of viral infections in the 
elderly remains underdiagnosed because in some countries, including 
Brazil, there is no routine monitoring system focusing on this specific 
age group. The present investigation showed viral diversity in diarrheic 
and non-diarrheic samples obtained from elderly patients residing in 
two LCIs. As far as we know, this study, which spanned a two-year 
period (2017–2019), is the first to investigate the gastrointestinal 
virome in the elderly in northern Brazil through a metagenomics 
approach. 

In the present study, viral metagenomics was performed on fecal 
samples, revealing the presence of 13 virus families. For some of these, 
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their potential to infect humans remains to be unambiguously estab-
lished, casting doubt on their relevance for human health. For example, 
gemycircularviruses belonging to the family Genomoviridae have been 
identified in feces of many animals and humans, as well as in plants, 
insects and environmental samples, but it is unknown if they are capable 
of infecting humans (Taboada et al., 2021). The same can also be said for 
members of the families Picobirnaviridae and Smacoviridae, which have 
been identified through metagenomic analyzes in fecal samples from 
humans and animals and might be implicated in cases of gastroenteritis, 
although the association with disease is not yet fully understood (Ng 
et al., 2015; Yinda et al., 2019). Conversely, some studies have provided 
evidence that smacoviruses and picobirnaviruses are not mammalian 

viruses but infect archaea and prokaryotes, respectively (Diez-Villasenor 
and Rodriguez-Valera, 2019; Ghosh and Malik, 2021; Varsani and Kru-
povic, 2018). However, despite some convincing evidence in the case of 
picobirnaviruses, these assumptions still remain hypothetical due to the 
lack of cell and animal models for their cultivation, which has prevented 
viral isolation and more complete clinical-epidemiological studies 
(Malik and Ghosh, 2020). 

For other virus families detected here, the potential to infect humans 
is well established, although this does not necessarily imply a link with 
human disease. A prime example of this is the family Anelloviridae, of 
which Torque teno mini virus-11 (TTMV-11) was found, as well as 
several sequence fragments that resemble not yet classified members. 
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Anelloviruses in general have been detected in many diseases, like 
hepatitis, respiratory diseases, cancer and autoimmune disorders (Al- 
Qahtani et al., 2016; Spandole et al., 2015). Some studies have also 
reported anellovirus sequences, like TTMV-11 (detected in the sample 
LP25), in human melanoma and lymph nodes of patients with Hodgkin 
lymphoma (Pan et al., 2018). However, it is unclear if anelloviruses 
contribute to tumor formation (Figueiredo et al., 2007) or other human 
pathologies (Yu et al., 2020). Comparably, as is the case in this study, 
circoviruses, in particular members of the genus Cyclovirus, are 
commonly detected in metagenomics studies of different types of human 
samples (Zhao et al., 2019). However, even though they are known 
pathogens of pigs, birds and other animals, their human pathogenic 
potential has not yet been demonstrated (Klaumann et al., 2018; Nath 
et al., 2021). 

In one of the symptomatic samples (LP-18), a species of parvovirus, 
known as protoparvovirus primate 3 or Cutavirus, was detected. The 
genus Protoparovirus contains several pathogens associated with diseases 
in humans and animals. However, more investigative studies on cuta-
virus infections are needed regarding its pathogenicity, to know its real 
impact on human health (Phan and Nagaro, 2020). According to the 
BLASTx results, the sequences detected here displayed 97.24% - 98.71% 
similarity with sequences also detected by viral metagenomics in Brazil, 
involving diarrhea of unknown cause from children (Phan and Nagaro, 
2020). Nonetheless, this represents the first detection of this viral spe-
cies in Brazil in this type of population. Fragments of Human pegivirus 
(HPgV) were also detected in this study. HPgV is transmitted among 
humans mainly through exposure to contaminated blood (Fama et al., 
2020). This transmission profile suggests that HPgV coinfection with 
other viruses, such as HIV-1 and hepatitis C virus (HCV), is common 
(Coller et al., 2020; de Pina-Araujo et al., 2021). Several studies carried 
out in different populations in the last decades in Brazil have shown 
variable prevalence rates of HPgV infections, mainly in blood donors 
(Silva et al., 2020). However, data about the prevalence of HPgV and its 
circulating strains in the Northern Brazilian population are scarce, 
especially in the elderly population. HPgV is believed to be a non- 
pathogenic virus, but further studies are necessary to evaluate the un-
clear aspects related to HPgV infection (Tumbo et al., 2021). 

Perhaps the most interesting result was the detection of different 
rotavirus species. Rotaviruses are considered an important cause of 
acute gastroenteritis in childhood, but they can also cause this disease in 
adults and the elderly, potentially with an underestimated prevalence 
due to the lower frequency of tests in this age group (Troeger et al., 
2018). In our study, two rotaviruses were detected, a RVA in a pool of 
non-diarrheic samples from the public LCI (POOL-01) and a RVC in a 
symptomatic sample from the private LCI (PS-45). The true incidence of 
RVA and RVC infection in the elderly remains underestimated because 
in many countries, such as Brazil, there is no routine monitoring system 
in place with a focus on this specific age group (Cardemil et al., 2012; 
Luchs et al., 2017). In Brazil, two reports showed the implication of RVA 
as the cause of an outbreak in a residential geriatric institution in Sao 
Paulo (Luchs et al., 2017) and as a possible reason of GA cases in 4% of 
the patients >60 years of age who had diarrhea and sought outpatient 
care, in Rio Grande do Sul (Paesi et al., 2015). 

The present investigation of RVA genotyping detected the G3P[8] 
equine strain on a DS-1-like genetic background (I2-R2-C2-M2-A2-N2- 
T2-E2-H2) in a pooled sample of non-diarrheic elderly. Emergent 
equine-like DS-1-like G3P[8] RVA strains were first identified in chil-
dren with AG in Australia in 2013 (Kirkwood et al., 2014). From 2013 
onwards, the equine-like G3P[8] DS-1-like genotype has spread and 
become endemic worldwide (Arana et al., 2016; Cowley et al., 2016; 
Gutierrez et al., 2020; Perkins et al., 2017). In Brazil, type Wa-like G3P 
[8] was the predominant G3 strain up until 2013–2014. In March of 
2015, in the state of Paraná, the Equine-like G3P[8] similar to the DS-1 
strain was first detected, after which it spread rapidly across the country 
(Luchs et al., 2019). Since then, it has been the only G3 strain detected in 
Brazil in areas under surveillance (Gutierrez et al., 2020). In northern 

Brazil, the first report of this strain was in 2016 in the Amazon region, in 
children hospitalized with severe gastroenteritis (Guerra et al., 2016). 
Interestingly, the previously detected Brazilian Amazon equine-like G3P 
[8] DS-1-like strains all had a distinct genotype constellation (G3-P[8]- 
I2-R2-C2-M2-A2-N1-T2-E2-H2), different from the one found in our 
study. This in accordance with the hypothesis of Luchs et al. (2019) that 
the Brazilian equine-like G3P[8] DS-1-like strains were introduced in the 
country at distinct points with a set of different co-circulating strains. 

Besides RVA, we also detected RVC in one of our samples and ob-
tained nearly full-length sequences of the genes encoding the RVC 
structural proteins, VP4 and VP7, representing the first set of sequences 
derived from an elderly person with diarrhea in Belém, Pará. RVC was 
previously detected in Belém, associated with gastroenteritis in children 
causing an outbreak, hospitalization and sporadic cases (Gabbay et al., 
1999; Lobo Pdos et al., 2016). In addition, evidence of transmission of 
RVC from swine to humans as well as the endemic presence of both 
human and porcine RVCs in Belém has also been demonstrated previ-
ously (Gabbay et al., 2008). Lastly, an outbreak of group C rotavirus 
gastroenteritis in adults from Valentim Gentil, São Paulo state, has also 
been reported (Souza et al., 1998). The sample described in the present 
study grouped only with members of the human RVC G4P[2] genotype, 
the same type previously found in hospitalized samples from Belem 
collected between May 2008 and April 2011, and did not show evidence 
of recent animal ancestry (Lobo Pdos et al., 2016). 

When the sequence of the VP7 gene of the strain described here (PS- 
45) was analyzed phylogenetically with a set of representative se-
quences available through GenBank, its clustering was observed close to 
strains from Russia and India. On the other hand, the only available 
complete sequence from Brazil, X77256, clusters separately from our 
sequence, close to the Bristol strain. Comparably, also for VP4, our strain 
was most similar to strains from Russia, as well as sequences from Italy, 
India and Bangladesh. It should be noted that not all available RVC VP7 
and VP4 sequences from Brazil were included in the tree because of their 
limited length. However, all of them show only limited similarity with 
our sequence (<96.5%), highlighting its unique lineage. 

Different studies in developed countries in the elderly population 
have demonstrated evidence that these patients can experience severe 
cases of diarrhea caused by RV, NoV and other viral infections, poten-
tially leading to hospitalization, the acquisition of subsequent nosoco-
mial infections and a higher chance of mortality when associated with 
other co-morbidities (Anderson et al., 2012; Beck-Friis et al., 2019; 
Meier, 2021; Yandle et al., 2021). In Brazil, there is no proper moni-
toring system investigating adult or elderly cases of AG in hospitals, 
nursing homes or LCIs, nor in the general population, and the official 
number of cases is probably an underestimation. In our study, we 
detected some known diarrheal viruses but also many other viruses in 
our NGS data. Although there is insufficient data to conclusively support 
the role of most of these viruses, like the smacoviruses and parvoviruses, 
as the causative agents of AG, their role as potential contributor to some 
of the patient’s symptoms cannot be excluded. However, even when 
taking into account these poorly characterized viruses, a causative agent 
could not be identified for several diarrheic cases. While some were 
probably of bacterial origin, it is also likely, especially in the public LCI, 
that some were of non-infectious origin. Many of the patients in these 
institutions are of high age, with many underlying illnesses, requiring 
the intake of preventive/therapeutic drugs. Furthermore, the reduced 
mobility and/or cognitive ability of patients often results in malnutrition 
or patients being kept on a liquid diet, all factors that might affect the 
quality/consistency of the patient’s stool and the number of bowel 
movements. 

5. Conclusions 

In summary, this study demonstrated the first diversity description of 
the gastrointestinal virome in institutionalized elderly from Brazil. Our 
results show the presence of a wide viral diversity, with several viruses 
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of clinical interest being present in patients with and without diarrhea. 
The presence of RVA and RVC demonstrates the circulation of patho-
genic enteric viruses in this population and reinforces the need to 
monitor elderly people residing in LCIs, especially in cases of acute 
gastroenteritis. 

CRediT authorship contribution statement 

Thayara Morais Portal: Conceptualization, Methodology, Formal 
analysis, Investigation, Data curation, Writing – original draft, Writing – 
review & editing, Visualization. Bert Vanmechelen: Methodology, 
Formal analysis, Data curation, Writing – original draft, Writing – re-
view & editing. Lore Van Espen: Formal analysis, Data curation. Daan 
Jansen: Methodology, Formal analysis, Data curation, Writing – review 
& editing. Dielle Monteiro Teixeira: Methodology, Investigation. 
Emanuella Sarmento Alho de Sousa: Methodology, Investigation. 
Victor Pereira da Silva: Methodology, Investigation. Juliana Silva de 
Lima: Methodology, Investigation. Tammy Katlhyn Amaral Reymão: 
Methodology, Investigation. Carina Guilhon Sequeira: Conceptuali-
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