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Abstract
Advanced control strategies, and model predictive control (MPC) in particular,
are gaining widespread attention for building climate control, since they can
systematically save energy and/or costs with simultaneous thermal comfort
improvement, as well as adapt the energy demand in correspondence with the
available (renewable/residual) supply via demand response. The performance of any
MPC strategy is dependent on the accuracy of the mathematical model describing
the thermal loads and on the quality of the forecasts of disturbances, such as weather
and occupant behavior. Deviating model parameters and inaccurate disturbance
predictions are shown to give rise to increased energy costs and comfort violations
if not properly accounted for, and require real-time corrective actions, thereby
jeopardizing the participation in possible demand response programs. In contrast to
the additive forecast uncertainty, the uncertainty on the building model parameters
is typically not explicitly taken into account in MPC applications. Nevertheless, the
building controller model is not always capable of capturing the building dynamics in
detail, due to the unavailability of sufficient data and/or experts’ knowledge to set
up the model, and/or due to the impossibility to correctly describe the complexity
of the underlying physics. In that case, the parametric uncertainty of the controller
model can become non-negligible, and hence, should be accounted for.

Therefore, the main goal of this dissertation is to develop and assess a stochastic
model predictive control (SMPC) strategy for building climate control and demand
response under combined additive (disturbance forecast) and parametric (model)
uncertainty (more specifically referred to as the SMPCap strategy). The presented
approach is tailored to the class of systems represented by a linear time-invariant
state space model. Analytically reformulated chance constraints are combined with
affine disturbance feedback (ADF) to reduce conservatism.

The SMPC development consists of two important parts. First, starting from
the conventional deterministic optimal control problem, a convex stochastic
problem formulation is derived, explicitly accounting for additive as well as
parametric uncertainties. Second, an appropriate mathematical model of all relevant
uncertainties is obtained, serving as an essential input to the stochastic optimal
control problem. Here, an important additional contribution, in particular, is the
derived probabilistic description of the parameters of a physics-based building
controller model. The thermal characteristics of the building envelope, and the
derived controller model parameters, are determined based on sparse, publicly
available data via the probabilistic characterization method of De Jaeger et al.,
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without intensive on-site data collection, which is fundamentally different from what
is done in current research.

To fully assess the potential added value of the proposed SMPCap strategy, its
impact is examined at building level, as well as at electricity system level.

At building level, the advantages of the SMPCap approach are investigated for two
different application domains, being optimal control and integrated optimal control
and design. Regarding optimal control, the main focus is on the attainable thermal
comfort improvement by hedging against uncertainty, and on the associated energy
costs. The enhanced uncertainty anticipation of the SMPCap approach is shown
to induce improved thermal comfort in closed-loop simulations compared to the
conventional deterministic MPC (DMPC) strategy and the state-of-the-art SMPCa

strategy only accounting for additive uncertainties. These gains are most prominent
in buildings equipped with floor heating (representing large thermal inertia) and
characterized by the combination of a large model uncertainty and a large nominal
heat demand, and this at the expense of limited increases in energy use. For all
considered cases, irrespective of the installed heat emission system, 90% of the
thermal comfort improvement relative to the DMPC strategy can be realized with
a relative increase of at most 9% in energy use. Regarding optimal design, the
suitability of the SMPCap approach for obtaining a more appropriate, yet robust,
heat supply system size is illustrated, by incorporating the SMPCap strategy in an
integrated optimal control and design approach. Capacity reductions of 3-5 kW
are shown to be achievable in an individual building for a heating system initially
sized at 15 kW without increasing thermal discomfort compared to an analogous
approach incorporating a DMPC strategy.

At electricity system level, the focus is on the impact of the stochastic control
strategy on the resulting demand, and on how this demand of a group of buildings
can be coordinated via demand response to lower the system operating cost. Due to
the incorporation of ADF in the open-loop control problem, the SMPCap strategy is
able to simultaneously optimally schedule the demand for electrical energy, reserve
capacity and real-time flexibility, required to guarantee thermal comfort. This
discloses very valuable information for an aggregator or system operator, since
the load uncertainty can be revealed and controlled ahead of real time. It is
demonstrated that the day-ahead coordination of the demand for reserve capacity
in addition to the energy demand is able to reduce the system operating cost,
and hence, enables a more cost-efficient electrification of the residential heating
sector. Cost reductions up to 10.7% are shown to be achievable for a demand side
consisting of 900 000 flexible heat pumps combined with low-temperature radiators.
These insights support the discussion on the need for flexibility markets for low-
voltage/residential consumers, and demonstrate the added value of implementing
the proposed SMPCap strategy for demand response under uncertainty in this
context.



Beknopte samenvatting
Optimale regeling, en modelgebaseerde voorspellende regeling (beter gekend
als model predictive control (MPC)) in het bijzonder, maakt een opgang voor
klimaatregeling in gebouwen. De toenemende interesse valt te verklaren door haar
potentieel om energie en/of kosten te besparen en tegelijkertijd het thermische
comfort te verbeteren, en om de energievraag aan te passen aan het beschikbare
aanbod van (hernieuwbare en/of rest-)energie via vraagsturing. De performantie
van een MPC-strategie is afhankelijk van de nauwkeurigheid van het gebruikte
wiskundige model van het gebouw, en van de kwaliteit van de voorspellingen van
de verstoringen, zoals het weer en het gebruikersgedrag, die mee het binnenklimaat
bepalen. Afwijkende modelparameters en onnauwkeurige voorspellingen leiden tot
verhoogde energiekosten en thermisch ongemak, en vereisen realtime corrigerende
acties waardoor een mogelijke deelname aan vraagsturing in het gedrang komt. In
tegenstelling tot de onzekerheid op de voorspellingen van de verstoringen, wordt de
onzekerheid op de gebouwmodelparameters doorgaans niet in rekening gebracht bij
het bepalen van een optimale regelstrategie. Nochtans is het niet altijd mogelijk
om een accuraat gebouwmodel te bekomen, omwille van een gebrek aan voldoende
data en/of vakkennis, en/of de onmogelijkheid om alle optredende fysische effecten
voldoende in detail te vatten in een wiskundig model. In deze gevallen kan het
nodig zijn om zich ook tegen parametrische onzekerheden expliciet in te dekken.

Het hoofddoel van dit doctoraatsonderzoek is dan ook om een stochastische
regelstrategie (aangeduid als de SMPCap-strategie) te ontwikkelen en te evalueren
voor de optimale regeling van het binnenklimaat in residentiële gebouwen, en van
vraagsturing, onder gecombineerde additieve (voorspellingen van de verstoringen)
en parametrische (gebouwmodel) onzekerheden. De uitwerking is gericht op
systemen voorgesteld door een lineair, tijdsinvariant state space model (letterlijk
vertaald als toestand-ruimte-model). De voorgestelde methode combineert
analytisch geherformuleerde kansbeperkingen met affiene verstoringsfeedback, om
de conservativiteit van de regelstrategie te beperken.

De uitwerking van de SMPCap-strategie bestaat uit twee onderdelen. Ten eerste
moet er een convexe stochastische formulering van het optimaal regelprobleem
opgesteld worden vertrekkende van de deterministische formulering, door de
impact van onzekerheden expliciet in rekening te brengen. Ten tweede moet
er een geschikt wiskundig model van alle relevante onzekerheden gedefinieerd
worden, aangezien dit een essentieel onderdeel is van het stochastisch optimaal
regelprobleem. Een belangrijke bijdrage wat betreft dit onzekerheidsmodel is de
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uitwerking van waarschijnlijkheidsverdelingen voor de modelparameters van een
fysica-gebaseerd gebouwmodel. Deze modelparameters worden afgeleid van de
thermische eigenschappen van de gebouwschil, die op hun beurt bepaald worden op
basis van schaarse, publiek beschikbare gegevens met behulp van de probabilistische
karakteriseringsmethode van De Jaeger et al., zonder een intensieve dataverzameling
ter plaatse, wat fundamenteel verschilt van de gangbare onderzoeksaanpak.

Om de meerwaarde van de SMPCap-strategie te evalueren, wordt haar impact
onderzocht op het niveau van een individueel gebouw, alsook op het niveau van
het elektriciteitssysteem.

Op het niveau van een individueel gebouw worden de voordelen van de SMPCap-
strategie onderzocht voor twee toepassingsdomeinen, met name optimale regeling,
en geïntegreerde optimale regeling en ontwerp. Wat betreft optimale regeling ligt de
focus op de haalbare verbetering van het thermische comfort door zich in te dekken
tegen onzekerheden, en op de mogelijke stijging van de energiekosten die hiermee
gepaard gaat. Aan de hand van simulaties wordt aangetoond dat de verhoogde
onzekerheidsanticipatie van de SMPCap-strategie een duidelijke comfortverbetering
teweeg brengt ten opzichte van de gangbare deterministische (D)MPC-strategie,
alsook ten opzichte van de state-of-the-art SMPCa-strategie die zich enkel indekt
tegen additieve onzekerheden. Deze comfortverbetering is het meest uitgesproken
in gebouwen met vloerverwarming (wat gepaard gaat met een grote thermische
inertie) die gekenmerkt worden door een grote modelonzekerheid en een hoge
nominale warmtevraag, en dit met slechts een beperkt hoger energiegebruik; voor
alle bestudeerde gevallen, zowel degene met vloerverwarming als degene met
radiatoren, wordt 90% van de comfortverbetering relatief ten opzichte van de
DMPC-strategie bereikt met een relatieve stijging van het energiegebruik van
maximaal 9%. Wat betreft optimaal ontwerp ligt de focus op de bruikbaarheid
van de SMPCap-strategie om een adequate en robuuste dimensionering van het
warmteproductiesysteem te bekomen. Simulaties tonen aan dat het vervangen van
een DMPC- door een SMPCap-strategie in een geïntegreerde optimale regeling-
en ontwerpaanpak capaciteitsreducties van 3 tot 5 kW mogelijk maakt voor een
systeem initieel gedimensioneerd op 15 kW, met behoud van thermisch comfort.

Op het niveau van het elektriciteitssysteem ligt de focus op de impact van de
SMPCap-strategie op de vraag, en op de coördinatie van deze vraag van een groep
van gebouwen via vraagsturing om de werkingskost van het elektriciteitssysteem
te verlagen. Dankzij de implementatie van affiene verstoringsfeedback in de
SMPCap-strategie is deze in staat om de vraag naar energie, reservecapaciteit
en realtime flexibiliteit simultaan optimaal te plannen. Dit is zeer waardevol
voor een aggregator of systeembeheerder, aangezien de onzekerheid op de vraag
vooraf (bijvoorbeeld een dag voordien, in plaats van slechts in real time) kan
ingeschat, en bovendien ook gecontroleerd kan worden. De day-aheadcoördinatie
van deze flexibiliteitsvraag bovenop de energievraag maakt een verlaging van
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de totale systeemkosten mogelijk, en garandeert aldus een kostenefficiëntere
elektrificatie van de residentiële verwarmingssector. De resultaten tonen aan dat er
voor een vraagzijde bestaande uit 900 000 flexibele warmtepompen gecombineerd
met lagetemperatuurradiatoren een kostenreductie tot 10.7% gerealiseerd kan
worden. Deze bevindingen ondersteunen de hypothese van de behoefte aan
flexibiliteitsmarkten voor huishoudelijke consumenten, en bevestigen de meerwaarde
van de implementatie van de ontwikkelde SMPCap-strategie voor vraagsturing onder
onzekerheid in deze context.
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Chapter 1

Introduction

1.1 Context and problem statement

In order to mitigate the detrimental effects of global warming and climate change,
a drastic reduction of anthropogenic greenhouse gas emissions is required. A crucial
sector to be tackled in this context is the residential heating sector. In 2018, the
residential sector was responsible for 26.1% of the final energy use in Europe, of
which 63.3% was used for space heating; the majority of this energy demand is
still being delivered by fossil fuels [1, 2]. To achieve the envisioned reduction of
greenhouse gas emissions in the building sector, the European Commission has
discerned two important measures. First, the energy efficiency of buildings should
be improved, resulting in a reduced energy use. Second, the remaining energy
demand should to a large extent be covered by renewable and residual energy
sources (R2ES) [2, 3, 4, 5, 6].

Improved energy efficiency for residential space heating can be achieved in different
ways. First and foremost, building renovation is an important measure to reduce
the space heating demand. [7, 8]. In addition, district heating networks offer an
interesting possibility to further improve energy efficiency [9]; this is especially
true in areas with a large heat demand per square kilometer, where the thermal
losses are limited, thereby guaranteeing the efficiency and profitability of thermal
networks [10]. For areas with a smaller heat density, energy-efficient electric
heat pumps are the most cost-effective option [9, 11]. Finally, the additional
implementation of an overarching advanced control strategy for building climate
control, aiming at optimally operating the space heating system, can further reduce
energy use; energy savings of 15-50% are reported for numerous simulation or pilot

1
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case studies [12,13,14,15].

Increasing the utilization of R(2)ES is a challenging task, because of their
intermittent character, i.e., their variability and limited predictability, hampering
the balance between supply and demand. This issue could be overcome by shifting
from a demand-driven to a resource-driven operation of the energy system, by
exploiting demand side flexibility in a smart grid context [16, 17]. In this setting,
thermostatically controlled loads (TCLs), such as heat pumps, play an important
role, because of the high energy use, and the inherent flexibility offered by the
thermal storage capacity of the building thermal mass and active energy storage
devices if available [18, 19, 20]. The exploitation of this available flexibility to
increase the system efficiency1 and the penetration of R(2)ES, while safeguarding
the operational limits of the system (i.e., the heat pump, network, generation,
etc.), can be established via demand response (DR), and can be applied in either
electricity networks [22, 23, 24, 25, 26] or district heating networks [27, 28, 29, 30].
The main aim of DR is to let flexible end-consumers change their consumption
pattern to better match the available supply, by either shifting loads in time, or
changing loads in size [15, 31]. This altered behavior is often achieved via price
incentives [31]. Here again, advanced control strategies play an important role, since
residential consumers lack the required knowledge about how to optimally schedule
the operation of their appliances and heating, ventilation and air-conditioning
(HVAC) devices in response to changing price signals [32]. Besides, dynamic pricing
without smart appliances, thus requiring manual interventions, is also shown to
lead to user fatigue, resulting in very limited behavioral changes [33, 34]. Hence,
automated response technologies are recommended to facilitate the implementation
of DR [4,17,31,34].

A particular advanced control strategy that is gaining widespread attention in the
context of buildings/TCLs, is model predictive control (MPC). MPC is a control
method that optimizes the operation of a system over a finite prediction horizon in
accordance with a selected objective function, while explicitly taking into account a
mathematical model representing the system behavior together with predictions of
the relevant boundary conditions. The control strategy is implemented in a receding-
horizon fashion, thereby not only exploiting the benefits of feedforward, but also of
feedback control. Applied to residential space heating applications, MPC typically
optimizes the heating schedule over a number of days, considering the dynamics of
the building envelope, heat supply system and heat emission system, together with
predictions of the future weather conditions, occupant behavior, and energy prices.
1 It should be stressed that the application of demand response is not only beneficial/required

to increase the utilization of R2ES. The ongoing electrification associated with the energy
transition (for example via the increased implementation of heat pumps), also leads to an
increased electricity demand, with a high degree of simultaneity among consumers, possibly
overloading the grid. Also these issues can be tackled by demand response, by incentivizing
consumers to lower their demand and/or shift/spread their demand in time [21].
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The indoor temperature is thereby maintained between predefined, user-specified
comfort limits, while the exact system operation depends on the user preferences
(e.g., minimization of energy use, operational cost, CO2 emission, ... and/or
maximization of thermal comfort). MPC offers numerous advantages compared to
other less advanced control logics such as proportional-integral(-derivative) (PI(D))
control or rule-based control (RBC). An important added value is the possibility for
a multi-objective optimization of the heating strategy while taking into account
the physical constraints of the system, allowing for systematic energy and/or cost
savings with simultaneous thermal comfort improvement [12,13,14,35,36]. The
price-responsiveness and anticipative behavior make it moreover an ideal candidate
for DR coordination, adapting the energy demand in correspondence with the
available supply [26,32,37,38].

The application of MPC for building climate control is currently mostly focused on
larger (office/tertiary) buildings, since, among others, the investment cost is more
likely to be justified in that case due to higher absolute savings [39]; however, if also
taking into account the DR capabilities, and the associated monetary value [40]
and benefits for the central energy system, the application of MPC for residential
buildings stands to reason.

The performance of any MPC strategy for residential space heating is dependent
on the accuracy of the mathematical model describing the thermal loads and the
quality of the forecasts of disturbances, such as weather and occupant behavior.
Deviating model parameters and inaccurate disturbance predictions are shown to
give rise to increased energy costs and comfort violations if not properly accounted
for [41, 42,43, 44, 45], and require real-time corrective actions, thereby jeopardizing
the participation in possible demand response programs [46,47]. To address this
issue, dedicated MPC approaches that explicitly take into account uncertainty when
determining the optimal control strategy have been developed. These approaches
currently mainly focus on the additive disturbance forecast uncertainty [44,48,49,
50,51,52,53]. Although the building model parameters are recognized as another
important source of uncertainty influencing the building energy performance [54,55],
this uncertainty is typically not explicitly taken into account [43, 56, 57, 58, 59].
Nevertheless, the building controller model is not always capable of capturing the
building dynamics in detail, due to the unavailability of sufficient data and/or
experts’ knowledge to set up the model, and/or due to the impossibility to correctly
describe the complexity of the underlying physics [54,59,60,61].
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1.2 Research objectives and questions

Given the aforementioned trends and challenges, the main aim, and main
novelty, of this work are to develop and assess an MPC strategy for
building climate control and DR under combined additive (disturbance
forecast) and parametric (model)2 uncertainty. More particularly, a stochastic
MPC (SMPC) approach, tailored to systems subject to probabilistic uncertainty,
is pursued. This choice is motivated by the probabilistic descriptions found in
literature for the building envelope characteristics [60, 62, 63, 64, 65, 66], weather
conditions [51,55,64,67] and occupant behavior [55,64,65], and by the fact that
thermal comfort is allowed to be occasionally violated, which is confirmed in building
standards (see e.g., [68, 69]). The presented approach is tailored to the class of
systems represented by a linear time-invariant state space model (SSM).

Two main aspects are embedded in this main research objective, being the SMPC
development and the SMPC performance assessment.

The SMPC development entails two important underlying objectives. First,
starting from the dominating deterministic optimal control problem (OCP), a
stochastic (preferably convex) OCP formulation needs to be derived, explicitly
accounting for additive as well as parametric uncertainties. Second, an appropriate
mathematical description of all relevant uncertainties, serving as an essential part
of the stochastic OCP formulation, is required.

The main objective of the SMPC performance assessment is to illustrate the
potential added value of the proposed SMPC approach for different application
domains.
When focusing on an individual building, first, the advantages of the proposed
SMPC approach for optimal building climate control need to be investigated. Here,
the main focus is on the attainable thermal comfort improvement by hedging against
uncertainty, and on the associated energy costs, which are the key factors of interest
for consumers. In addition, acknowledging the emerging interest to exploit optimal
control algorithms for optimal design applications3 [70, 71], the suitability of the
proposed SMPC approach to obtain a more appropriate, yet robust, heat supply
2 The uncertainty on the building model is limited to parametric uncertainty, i.e., uncertainty

on the value of the model parameters. Model-form uncertainty, representing the discrepancy
between the complex physical process and the simplified mathematical characterization, is out
of scope of this work.

3 A better alignment of control and design via an integrated optimal control and design
methodology, properly accounting for the system dynamics, can result in a more appropriate,
i.e., less oversized and more cost-optimal, system design [70, 71]. This is in contrast to current
engineering practices, that typically consider worst-case static conditions, and/or assign a safety
factor to a deterministic load calculated for specific design conditions, leading to serious oversize
problems [64,72,73,74,75].
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system size needs to be additionally investigated, by incorporating it in an integrated
optimal control and design (IOCD) methodology.
In a next step, the link with the central energy system needs to be taken
into account, to investigate the advantages of the active DR capabilities of the
SMPC strategy. To this end, the SMPC approach needs to be embedded in a
system-level optimization problem, involving both the supply and demand side,
where the demand side is constituted by a group of TCLs. Here, the main focus is
on the impact of the stochastic control strategy on the resulting demand, and on
how this demand can be coordinated to lower the total system cost.

Summarizing, the following research questions (RQ) will be answered.

Development of the SMPC strategy:
RQ 1: How does the conventional deterministic OCP formulation for building
climate control need to be reformulated in order to explicitly account for
additive (disturbance forecast) and parametric (model) uncertainties?
(→ Chapter 4)

RQ 2: How can all relevant uncertainties affecting the building indoor climate
be appropriately mathematically modeled in order to include them in the
stochastic OCP formulation?
(→ Chapter 5)

Assessment of the potential added value of the SMPC strategy at building level:
RQ 3: Does the SMPCap4 strategy guarantee a thermal comfort improvement
compared to the current-practice deterministic MPC (DMPC) strategy, and
the state-of-the-art SMPCa strategy only accounting for additive uncertainties,
and at what cost is this improvement obtained?
(→ Chapter 6)

RQ 4: Does the SMPCap strategy allow for obtaining a more appropriate, yet
robust, sizing of the heating system when embedded in an IOCD approach?
(→ Chapter 7)

Assessment of the potential added value of the SMPC strategy at system level:
RQ 5: How does the proposed SMPCap strategy alter the demand profile,
and how can this altered demand profile be coordinated for the benefit of the
central energy system?
(→ Chapter 9)

4 In the remainder of this dissertation, the proposed approach will more specifically be indicated
by the SMPCap strategy, to emphasize that both additive and parametric uncertainties are
being considered, in contrast to the state-of-the-art SMPCa strategy that is only accounting for
additive uncertainties.
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1.3 Scope

Model predictive control of TCLs for building climate control and DR is linked to a
wide range of research areas. Hence, to guarantee the feasibility of this research, it
is required to clearly delineate its scope.

This work specifically focuses on an SMPC strategy for residential space heating
applications, given the heating-dominated climate in Belgium. For the sake of
simplicity, neither space cooling, nor domestic hot water supply are considered
(except in Chapter 8). Nevertheless, the presented methodologies for optimal
control/design under uncertainty could be transferred to these applications, since
they can also be represented with the help of a SSM.

The SMPC strategy is assumed to merely deal with high-level, supervisory control
actions regarding the supply of space heating (i.e., the optimal indoor temperature
profile and the required heat supply to accomplish this). The component-level
control is not considered in this work. Consequently, the component models used
by the SMPC strategy are rather simple (the detailed configuration of the hydronic
system, including all pumps and valves, and associated losses, is for example
disregarded), which in turn limits the available degrees of freedom when optimizing
the design via an integrated optimal control and design approach.

When linking the demand side to the central energy system, thereby assessing the DR
capability of the SMPC strategy, a system-level perspective is adopted, minimizing
the overall system cost, and assuming perfect competition and perfect knowledge of
all involved agents. The analysis considers an electrification scenario, motivated
by the expected increase in market penetration of heat pumps for residential space
heating [76, 77]. Hence, the considered demand side is a group of residential
compression heat pumps, each controlled by the proposed SMPC strategy, and the
considered supply side is a pool of electricity generation units. The transmission and
distribution grid, on the other hand, are not included, but are considered to be a
copper plate, not posing any congestion problems, and not showing any losses. DR
can only be performed by heat pumps, without competition from other technologies,
such as white good appliances, battery storage, electric vehicles, or flexible industrial
processes. The available electricity merely stems from generating facilities; import
and export of electricity are disregarded.

1.4 Scientific challenges

In order to answer the research questions, some important scientific challenges have
to be overcome.
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A first challenge is the mathematical formulation of the stochastic OCP
(Chapter 4). Since the combination of additive and parametric uncertainty gives
rise to products of optimization variables, the stochastic OCP in its most general
form results in a non-convex formulation. Non-convex problems are generally hard
to solve, and do not guarantee a globally optimal solution, which is not desirable
in MPC applications. Hence, a convex reformulation needs to be found to ensure
tractability when taking into account the parametric uncertainty in addition to the
additive uncertainty.

A second challenge is the uncertainty characterization, both in terms of data
gathering and modeling approach (Chapter 5). For both the additive and
parametric uncertainty, a practically relevant uncertainty characterization is pursued,
starting from readily available data, and aiming at a practically feasible processing
methodology.
Although the additive uncertainty (i.e., weather and occupant behavior forecast
uncertainty) has been widely studied, and there is a clear consensus about how to
mathematically represent this, the mathematical model cannot straightforwardly be
found in literature. Most works provide a clear description of the applied uncertainty
characterization method, see e.g., [44,48,53,78,79], but the actual numerical values
are usually not disseminated. Besides, important details such as (auto- and cross-
)correlation are often disregarded, thereby omitting valuable information that could
otherwise be exploited to improve the control strategy under uncertainty [80,81].
Hence, a more dedicated data gathering and subsequent processing of the additive
forecast uncertainty is required, by using the methods as prescribed in literature.
Regarding the parametric uncertainty, the main challenge is that the uncertainty
characterization is currently typically derived based on detailed (mostly building-
specific) information and/or experts’ knowledge. However, in case of a widespread
MPC implementation, a lack of detailed and accurate input data is plausible,
especially if also the older, existing building stock is involved [54]. Moreover, the
need for an expert should be avoided to lower the implementation cost. In this case,
one needs to rely upon sparse, publicly available data to characterize the building
envelope [60,62,63] and subsequently construct the building controller model. This
fundamentally different point of view requires revisiting the currently prevailing
uncertainty characterization methods, in addition to dedicated data gathering.

A final challenge is the development of a suitable coordination framework for DR
of a group of TCLs under uncertainty, leveraging the developed SMPC strategy
(Chapter 9). An important aspect is the need for an integrated system-level
optimization problem, requiring a thorough understanding and reflection of the
decision making of all different involved agents, and of their interaction. The
elaboration of an appropriate solution strategy of this fairly large problem is a
crucial challenge to be tackled.
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1.5 Outline

This dissertation consists of ten chapters, which are briefly discussed below. A
graphical representation of these chapters is presented in Figure 1.1, highlighting
their coherence and interdependency.

The dissertation starts with the discussion of the important background. Following
the introduction in Chapter 1, Chapter 2 explains the general working principle of
MPC applied to TCLs, elaborates on the mathematical formulation, and highlights
the problems related to the dominant deterministic implementation in case high-
quality forecasts and/or a high-quality model are lacking. Chapter 3 subsequently
gives a concise overview of the literature on the different application domains
involving MPC applied to TCLs under uncertainty. This review is moving from
building level to system level, thereby successively discussing building climate control
under uncertainty, (integrated optimal control and) design under uncertainty, and
DR under uncertainty. The main aim of this literature review is to delineate the
state-of-the-art regarding the uncertainty incorporation in each of these application
domains, and to identify important gaps to be tackled by this dissertation.

The next two chapters constitute Part I of this dissertation, dedicated to the SMPC
development. Starting from the deterministic problem formulation presented in
Chapter 2, Chapter 4 subsequently derives a stochastic OCP formulation, explicitly
accounting for additive as well as parametric uncertainties (RQ 1). Chapter 5
continues the SMPC development, by establishing an appropriate mathematical
model of all relevant uncertainties, serving as an essential part of the derived
stochastic OCP formulation (RQ 2). The uncertainty characterization, including
dedicated data gathering and subsequent processing steps, is successively discussed
for the building model parameters, embodying the parametric uncertainty, and for
the weather forecasts and the occupant behavior forecasts, embodying the additive
uncertainty.

The next two parts of this dissertation investigate the potential added value of
the proposed SMPC strategy in different application domains, either focusing on
building level or on system level.

In Part II, Chapter 6 first investigates the effectiveness of the proposed SMPC
strategy for optimal building climate control under uncertainty, by examining the
attainable thermal comfort improvement, as well as the associated energy costs,
compared to the state-of-the-art (RQ 3). Chapter 7 in turn discusses the potential
of an integrated optimal control and design approach incorporating the proposed
SMPC strategy, to obtain a more appropriate, yet robust, heat supply system size
under uncertainty (RQ 4).

In Part III, Chapter 8 first substantiates the switch from a building-level perspective
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towards a system-level perspective, by elaborating on the importance of system
integration. To this end, an illustrative study regarding the attainable self-
consumption with residential heat pumps in the Belgian heating-dominated climate
is presented, highlighting the suboptimality of individual, isolated approaches. Next,
Chapter 9 links the proposed SMPC strategy with the central energy system, and
investigates the advantages of its DR capabilities. In particular, it is investigated
how the SMPC strategy impacts the resulting demand profiles, and how these
altered demand profiles could be optimally coordinated for the benefit of the central
system (RQ 5).

Finally, Chapter 10 presents the conclusions, complemented by the recommendations
for future work.



10 INTRODUCTION

Stochastic MPC

CH3 Literature review on MPC of TCLs 

under uncertainty

CH4 Stochastic OCP formulation

CH5 Uncertainty characterization

CH9 Demand response coordination 

framework

CH6 Individual optimal control under 

uncertainty 

Building climate control

CH7 Individual optimal design under 

uncertainty 

Heat supply system sizing

CH9 Collective optimal control under 

uncertainty 

Demand response

Development Application/assessment

Building level 

System level

CH2 Deterministic MPC

CH1 Introduction

Development Application/assessment

CH8 System integration

CH10Conclusions and future work

Figure 1.1: A graphical representation of the outline of the dissertation.



Chapter 2

Setting the scene –
Deterministic MPC as starting
point

This chapter is based on A. Uytterhoeven, R. Van Rompaey, K. Bruninx, and L.
Helsen, “Chance Constrained Stochastic MPC for Building Climate Control Under
Combined Parametric and Additive Uncertainty,” submitted to Journal of Building
Performance Simulation, July 2021.

This introductory chapter briefly explains the general working principle of MPC
applied to a TCL in Section 2.1, elaborates on the mathematical formulation in
Section 2.2, and highlights the problems related to the dominating deterministic
implementation in case high-quality forecasts and/or a high-quality model are
lacking in Section 2.3.

2.1 General MPC procedure applied to TCLs

Figure 2.1 illustrates the general MPC procedure for building climate control and
DR applied to a TCL. At the current point in time, the heating plan for the next
hours up to a few days is determined by solving an open-loop optimal control
problem. This open-loop OCP aims at optimizing the heating system operation over

11
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a finite prediction horizon in accordance with a selected objective function (e.g.,
minimization of energy use, operational cost, CO2 emissions, ... and/or maximization
of thermal comfort), while explicitly taking into account the mathematical model
representing the system behavior together with the thermal comfort constraints,
and predictions of the relevant boundary conditions. Typically, MPC algorithms
are implemented in closed-loop, using the principle of receding horizon control, as
shown in Figure 2.1. After solving the OL OCP, the first step of the optimized
control sequence is applied to the building. Then, the actual system response is
measured and fed back to the OCP, thereby serving as an updated initial condition
for the optimization at the next time step [36]. As such, MPC combines both
feedforward and feedback.

Dynamic system model 

System constraints

Building envelope

HVAC system

Focus of Chapter 5

Disturbance predictions

Weather

Occupant behavior

Focus of Chapter 5

Optimal control problem

Focus of Chapter 4

Actual system

Building envelope

HVAC system

Actual disturbances

Weather

Occupant behavior

Obtain sequence 

of control inputs

Apply first 

control input

Measurements

Energy use
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Figure 2.1: The general working principle of MPC applied to a TCL. All relevant
parts regarding the SMPC development are highlighted in grey. Adapted from [82].
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2.2 Mathematical formulation

The deterministic open-loop OCP for the class of systems represented by a linear
time-invariant SSM can be mathematically formulated as follows.

min
{xk}k=0...K+1,
{sk}k=0...K+1,

{uk}k=0...K

ϕ (xk, sk, uk)

s.t. xk+1 = A xk + B uk + E dk ∀k (2.1a)

xk + sk ≥ xmin
k ∀k (2.1b)

xk − sk ≤ xmax
k ∀k (2.1c)

sk ≥ 0nx
∀k (2.1d)

0nu ≤ uk ≤ umax
k ∀k (2.1e)

x(0) = x0 (2.1f)

u(0) = u0 (2.1g)

Here, {xk ∈ Rnx}k=0...K+1 represents all system states over the prediction horizon
K, being the indoor temperature as well as all relevant temperatures of the building
construction elements and of the heating system (which can be easily extended to
the complete HVAC system). {sk ∈ Rnx}k=0...K+1 represents the slack variables
relaxing the state constraints. {uk ∈ Rnu}k=0...K in turn represents the thermal
power inputs delivered by the heat supply system during one time step ∆t. Finally,
{dk ∈ Rnd}k=0...K represents the point forecasts of the disturbances affecting the
system, such as weather and occupant behavior.

The state space equation (2.1a) describes the dynamics of the building envelope and
heating system with the help of the state space matrices A ∈ Rnx×nx , B ∈ Rnx×nu

and E ∈ Rnx×nd , constituting the building controller model. This constraint
determines the evolution of the system states xk+1 as a function of the preceding
states xk, heat inputs uk and disturbances dk. The states are constrained by
a lower and upper bound, {xmin

k }k=0...K+1 and {xmax
k }k=0...K+1, in Equations

(2.1b) and (2.1c). When applied to the indoor temperature, these state constraints
(approximately1) denote the thermal comfort requirements. These requirements
1 In reality, thermal comfort is determined by a wide variety of factors, such as metabolic factors,

humidity level, human body thermal radiation, etc. [83]. However, including detailed comfort
models in the OCP could lead to a computationally intractable problem [14,51].
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cannot always be satisfied, e.g., after a perturbation due to an uncertainty
manifestation. To prevent the model from becoming infeasible in these cases,
the state constraints are relaxed with the help of the slack variables sk that are
penalized in the pursued objective function ϕ at a very high value. The inputs are
in turn limited by an upper power bound {umax

k }k=0...K in Equation (2.1e), that
is typically reflecting the technical limits of the heating system. Finally, the current
conditions, represented by x0 and u0, are taken into account as initial values for
the states and inputs in Equations (2.1f) and (2.1g).

2.3 Problems related to deterministic MPC

Although closed-loop MPC already offers a certain degree of robustness to
uncertainties via its feedback mechanism, its conventional deterministic OCP
formulation (Equation (2.1)), that is considering the system model A, B, E and
disturbance predictions dk as perfect representations of reality, typically fails to
systematically deal with the impact of uncertainties [84]. This is for example
shown in detail by Wang et al. [41], and will also be further illustrated in Chapter
6). Therefore, to obtain a robust control strategy, it is required to additionally
adapt the formulation of the open-loop OCP by integrating information about the
uncertainties in the problem formulation, which is further discussed in Chapters 4
and 5.



Chapter 3

Literature review on MPC of
TCLs under uncertainty

This chapter gives a concise overview of the literature on the different application
domains involving MPC applied to TCLs, with a particular focus on the consideration
of uncertainties therein. Sections 3.1 and 3.2 consider the application of MPC at
building level, in the context of optimal control and of optimal design, respectively.
Section 3.3 acknowledges that MPC also plays an important role at system level
for the coordination of demand response, thereby adapting the energy demand for
the benefit of the central energy system. The main aim of this literature review is
to delineate the state-of-the-art regarding the uncertainty incorporation in each of
these application domains, and to identify important research gaps to be tackled by
this dissertation.

3.1 Building climate control under uncertainty

Because of the acknowledged detrimental impact of uncertainties on thermal comfort
and energy use [41, 42, 43, 44, 45], more dedicated MPC approaches for optimal
control under uncertainty have been developed. Within MPC literature for building
climate control, two main methods are generally considered to explicitly address
uncertainty: robust MPC (RMPC) and stochastic MPC (SMPC) [50, 52, 85, 86, 87].
There are also other MPC strategies that take into account uncertainty in a more
implicit way, such as offset-free MPC [88], adaptive MPC [89] and learning-based

15
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MPC [90], which are not further considered here. For a detailed review on these
methods, see [36].

Robust MPC is tailored to systems subject to bounded uncertainty. It is especially
useful for applications where the shape of the distribution is not known (or irrelevant),
and when violations are extremely costly. It computes a control policy that
guarantees constraint satisfaction for all possible uncertainty realizations, which
are treated as equally likely, by optimizing the objective for the worst possible
uncertainty realization. This results in a worst-case control strategy, which is rather
conservative [48].

Stochastic MPC, on the other hand, is tailored to systems subject to probabilistic
uncertainty. It exploits the shape of the probability distributions to find a suitable
control strategy under uncertainty, and may allow for acceptable levels of constraint
violations during system operation, as set by the user according to his risk averseness,
by imposing probabilistic chance constraints, instead of hard constraints. As such,
less conservative solutions can be obtained [48].
Two main solution strategies have been adopted for chance constrained problems,
being scenario-based approaches and analytical approximation methods [91].
Scenario-based approaches consider a properly chosen number of uncertainty
realizations to describe the probability distributions, in order to obtain a finite
number of sampled deterministic constraints replacing the original probabilistic
constraints. Hence, scenario-based approaches do not involve any assumption on
the shape and support of the underlying probability distributions, but they are in
general computationally very demanding [86,91,92,93].
Analytical approximation methods, on the other hand, directly reformulate
the probabilistic constraints in deterministic terms. Consequently, they result in
an OCP of similar complexity as the conventional deterministic problem, thereby
ensuring the tractability of the problem. However, this typically comes at the cost
of some degree of conservativeness, due to the involved approximations [93, 94].
Nevertheless, for some specific probability distributions, such as normal distributions,
exact reformulations can be found [91,94,95,96].

Both RMPC and SMPC applications for building climate control currently mainly
focus on the uncertainty on the weather forecasts (typically ambient temperature
and solar heat gains) and/or occupant behavior forecasts (typically equipment-
related and metabolic internal heat gains), as indicated by Table 3.1, which gives a
summary of the relevant literature.

Maasoumy et al. [97] consider imperfect predictions of the ambient air temperature,
solar radiation, and internal heat gains from occupants and equipment, and cope
with this uncertainty by adopting an RMPC strategy. To reduce conservatism, they
additionally implement affine disturbance feedback; here, the idea is to parametrize
the control inputs as affine functions of the preceding uncertainties, in order to



BUILDING CLIMATE CONTROL UNDER UNCERTAINTY 17

Table 3.1: Summary of the relevant literature regarding RMPC and (scenario-based
(scen.) or analytical reformulation based (reformul.)) SMPC applications for
building climate control under uncertainty. The considered papers are categorized
by considered uncertainty type, MPC strategy, and the consideration of feedback in
the open-loop OCP.
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Maasoumy et al. [97] x RMPC x
Wang et al. [41] x RMPC
Zhang et al. [53] x SMPC - scen.
Zhang et al. [86] x SMPC - scen. x
Ma et al. [51] x SMPC - scen. x
Parisio et al. [49, 78,98] x SMPC - scen.
Long et al. [48] x SMPC - scen.
Drgoňa et al. [99] x SMPC - scen. x
Ioli et al. [50] x SMPC - scen.
Oldewurtel et al. [44, 79,79,100] x SMPC - reformul. x
Zhang et al. [52] x SMPC - reformul. x
Hewing et al. [87] x SMPC - reformul. x
Ma et al. [101] x SMPC - reformul. x
Nagpal et al. [56] x RMPC x
Maasoumy et al [57] x RMPC x
Tanaskovic et al. [58] x (adaptive) RMPC
Yang et al. [59] x x (adaptive) RMPC x
This dissertation x x SMPC - reformul. x
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mimick the closed-loop corrective behavior of MPC in the open-loop control problem.
Also Wang et al. [41] adopt RMPC, with an adaptable robustness level (via cardinality
constraints), in order to cope with uncertainties on the outdoor temperature and
hot water demand.

Zhang et al. [53] implemented a scenario-based SMPC strategy to account for
the uncertainty on the outside air temperature, the wet-bulb temperature and
solar radiation, as well as on the equipment-related and metabolic internal heat
gains. To replace the original (not directly solvable) probabilistic constraints, a
limited number of sampled uncertainty scenarios were considered, leading to a
finite number of sampled deterministic constraints replacing the chance constraints.
In order to improve the cost function value, some of the sampled scenarios were
discarded a posteriori via sample removal. A similar scenario-based approach (but
without sample removal), combined with affine disturbance feedback, was adopted
by Zhang et al. [86]. Also Ma et al. [51] applied a scenario-based method with
sample removal, combined with a feedback linearization scheme, and considered non-
Gaussian distributions for the ambient temperature, solar radiation, and the internal
thermal loads induced by occupants. The effectiveness of the proposed approach
was illustrated by simulations as well as experiments in an MPC lab environment.
Parisio et al. [49, 78, 98] also opted for a scenario-based SMPC strategy to limit
the impact of the weather and occupancy uncertainty on the thermal comfort. To
improve robustness, the proposed SMPC approach dynamically learned the statistics
of the weather and occupancy conditions, represented by copulas. The effectiveness
of this strategy was demonstrated for a real office building. Other examples of
scenario-based approaches accounting for additive forecast uncertainties in building
climate control can be found in [48,50,99].

In [79], Oldewurtel et al. applied analytically reformulated chance constraints,
combined with affine disturbance feedback, to cope with assumed Gaussian
uncertainty on the outside air temperature, the wet-bulb temperature and the
incoming solar radiation. The SMPC strategy was shown to outperform both
conventional rule-based control and deterministic MPC, by achieving a better trade-
off between energy use and probability of thermal comfort violations. In related
work [44,79,100], a tractable approximation of chance constrained SMPC combined
with affine disturbance feedback was developed and applied, in order to cope with
uncertainty on the weather and occupant behavior; for the proposed methodology
to be scalable to large-scale systems, special attention was given to obtaining
a linear approximation (rather than second order cone constraints). Another
analytical reformulation approach combined with affine disturbance feedback, subject
to uncertainty on the outside temperature, the solar radiation and the internal
heat gains, can be found in [52], where a simplified control parametrization was
implemented to reduce computation time. Also Hewing et al. [87] considered
an SMPC method where the chance constraints were translated into tightened
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deterministic constraints, to cope with a normally distributed, time-varying and
correlated outside temperature sequence. Ma et al. [101] adopted analytically
approximated joint1 chance constraints, which were decoupled into individual chance
constraints by using Boole’s inequality, to eliminate the negative impact of Gaussian
uncertainty on the ambient temperature, solar irradiance and occupancy load. A
linear feedback control law was additionally implemented to reduce conservatism.
In their approach, not only the control inputs and feedback gain, but also the risk
allocations (i.e., the allowable violation) for each individual chance constraint were
optimized.

Although the building model parameters are recognized as another important
source of uncertainty influencing the building energy performance [54, 55], this
uncertainty is only occasionally explicitly addressed.

Oldewurtel et al. [43] investigated the sensitivity of the performance of a deterministic
MPC, used for climate control of an office room, to model parameter mismatch.
By superimposing expert-defined variations on the nominal values of the U-values
of the windows (±10%), the heat transmission coefficients (±15%), the energy
recovery efficiency of the ventilation (±15%), the building mass (±10%), and the
g-value and visual transmission of the windows (±10%), it was shown that building
model parameter mismatch results in increased thermal comfort violations and
energy costs.
To mitigate these negative effects, Nagpal et al. [56] considered a dedicated
RMPC strategy, explicitly accounting for parametric uncertainty, applied to both a
residential and an office building. Variations of a selection of the parameters of a
one-zone four-states building model, being the heat transfer coefficient between
the zone air and internal mass and the heat transfer coefficient between the zone
air and ambient temperature, were included in the MPC formulation as polytopic
uncertainties, characterized by a minimum and maximum value. The RMPC was
shown to better track an imposed reference temperature profile compared to a
deterministic MPC, with a relative tracking performance improvement of 17-24%.
Maasoumy et al. [57] explicitly accounted for model uncertainty in an RMPC
formulation for an office room in two different ways. First, the parametric uncertainty
was implicitly handled by updating all model parameters of a one-zone five-states
model in an online fashion, based on measurements, resulting in a parameter-adaptive
building model. The uncertainty on the estimated parameters was additionally
represented by an additive, box-constrained uncertainty with a fixed magnitude. In
a simulation setting, the RMPC was able to guarantee a better trade-off between
energy use and thermal discomfort compared to rule-based control or deterministic
1 The constraint satisfaction can either be required for all inequality constraints altogether,

over the whole prediction horizon, resulting in joint chance constraints, or for every individual
inequality constraint at each distinct time step, also referred to as individual chance constraints
[91,100,101,102].
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MPC for moderate model uncertainty (i.e., when the model uncertainty ranges
between 30% and 67% of its maximum value). However, for very small or very
large model uncertainty, the deterministic MPC approach or rule-based controller
were found to be more appropriate.
Tanaskovic et al. [58] extended the robust adaptive MPC method of Maasoumy
et al. [57] by also making the uncertainty, rather than only the estimated model
parameters, adaptive. Starting from an initial set of possible models, a recursive
set membership identification method is used to progressively shrink this set. In a
case study for an office room, they considered an initial variation of ± 50% around
a nominal value for the thermal heat capacities of the walls, floor and ceiling, the
convective heat transfer coefficients between the building elements and the zone
air, and the U-values of the window. They demonstrated via simulations that the
robust adaptive MPC was able to guarantee small thermal comfort violations, even
during the adaptation phase; as the adaptation phase proceeded, the energy costs
decreased, eventually falling below the costs related to a nominal, non-robust and
non-adaptive MPC implementation that has model mismatch.
Building further upon the work of Tanaskovic et al. [58], Yang et al. [59] considered
a robust adaptive MPC that not only takes into account model uncertainty, but
also uncertainty on the disturbance forecasts (more specifically, on the internal
heat and moisture gains). Through simulations for an office room represented
by a one-zone three-states RC model, their adaptive robust MPC was shown to
improve thermal comfort compared to a conventional reactive-based thermostat
control, a deterministic MPC, a calibrated deterministic MPC, and a non-robust
adaptive MPC; the robust adaptive MPC was the only control strategy achieving an
acceptable thermal comfort2 during at least 90% of the office hours. The thermal
comfort improvement came at the cost of a slight decrease in thermal energy savings
relative to the conventional thermostat control, declining from ∼20% to 15% for
increasing uncertainty levels, with the internal load varying from 0-60% around its
nominal value.

Research gap

Despite the limited attention for parametric uncertainty in building climate
control applications, the building controller model is not always capable of
capturing the building dynamics in detail, due to the unavailability of sufficient
data and/or experts’ knowledge to set up the model [61]. This is especially
true in case of a widespread MPC implementation involving the older, existing
building stock [54, 60]. Besides, the impossibility to correctly describe the

2 The indoor thermal comfort valuation in [59] was based on the predicted mean vote (PMV)
index, where an acceptable PMV was in the range (-0.5,0.5). Overall the PMV values can
range from -3 (cold), over -1 (slightly cold), over 0 (neutral), over +1 (slightly warm), to +3
(hot) [83].
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complexity of the underlying physics plays an important role regarding model
uncertainty [59]. In these cases, the parametric uncertainty of the controller
model can become non-negligible, and hence, should be explicitly accounted
for by the MPC strategy. Despite the probabilistic descriptions found in
literature for the building envelope characteristics [60,62,63,64,65,66], weather
conditions [51, 55, 64, 67] and occupant behavior [55, 64, 65], and the fact
that thermal comfort is allowed to be occasionally violated [68,69], building
climate control applications have mostly tackled (the combination of additive
and) parametric uncertainty via RMPC strategies, leading to conservative
approaches. The development and assessment of an SMPC approach for
building climate control under combined additive and parametric uncertainty is
therefore to be investigated. The SMPC development is the focus of Chapters
4 and 5 of this dissertation, whereas the application of the proposed SMPC
strategy for building climate control is discussed in Chapter 6.

3.2 (Integrated optimal control and) design under
uncertainty

In order to cope with uncertainties in design applications, and the associated risk
for thermal discomfort, current engineering practices typically consider worst-case
static conditions, as formulated in heat loss calculations (e.g., [69]), and/or assign
a safety factor to a deterministic load calculated for specific design conditions
[64,72,73,74,75]; this safety factor serves to account for more extreme periods than
the design conditions, thereby implicitly dealing with uncertainty. An important
issue associated with these kind of approaches is that they may lead to oversized
systems [64,72,73,74,75].

In order to overcome this issue, there has been an emerging interest to exploit
optimal control algorithms in an optimal design context, because of the close
interconnection between both [70, 103]. Indeed, the building envelope design
determines the heating and cooling load profiles, and thus, which control actions are
required, whereas the HVAC system design determines the technical limits of the
heat supply, distribution and emission system, and thus, which control actions are
possible [70]. A better alignment of control and design via an integrated optimal
control and design methodology, properly accounting for the system dynamics, can
result in a more appropriate, i.e., less oversized and more cost-optimal, system
design. This is for example shown for an office building by Jorissen et al. [70], or
for a district heating network by van der Heijde [71].
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Research gap

Although the transition towards IOCD methodologies is a considerable
improvement tackling the oversize problem of the static approaches, there
is risk that they still result in an inadequate system sizing, since current
IOCD approaches typically incorporate a deterministic MPC strategy, thereby
overlooking the impact of uncertainties. This could endanger the required
thermal comfort, and might moreover drastically reduce the flexibility potential
needed in DR programs. These problems could be overcome by using an
SMPC (or RMPC) for the optimal control part of the IOCD approach, which
is investigated in Chapter 7 of this dissertation.

3.3 Demand response under uncertainty

Also for DR applications, there has been an increasing interest to explicitly consider
uncertainties in the decision-making process, in order to guarantee the feasibility and
optimality of the determined load schedules in real time [41,46,47,104,105,106].

Although there is a vast amount of research available targeting uncertainty in
real-time control (see e.g., [46, 107, 108, 109, 110]), the uncertainty is especially
important in day-ahead planning problems, since they require forecasts over a longer
timescale, which are inevitably more uncertain [105].

Also in this context, the two most common adopted approaches to deal with
uncertainties are stochastic optimization and robust optimization [47], or even
combinations of both (see e.g., [47, 111]). These approaches are used to cope with
a wide variety of uncertainties, including uncertainty on prices, renewable generation
and/or loads. The scope of this dissertation is limited to the latter category, and
more specifically, to the uncertainty on the flexible demand of residential TCLs.

Several authors have studied the day-ahead coordination of residential TCLs as
a DR resource under uncertainty. In the available literature, two major research
approaches can be discerned.

A first stream of research assesses the day-ahead optimal planning problem from
a system perspective, where the flexible load model is part of a larger energy
system optimization problem or equilibrium model. Note that, although these
approaches can generally not be classified as MPC3, they also use OCP formulations
3 The classification of a control approach as MPC, instead of more generally as optimal control,

requires a receding horizon implementation with closed-loop disruptions.
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to describe the TCL behavior (similar to MPC). These approaches acknowledge
that the demand can be uncertain, and explicitly optimize the actions required to
cope with this load uncertainty. The load uncertainty is typically assumed to be
known and uncontrollable.

Vrakopoulou et al. [112,113] developed a multi-period chance constrained optimal
power flow4 (OPF) formulation that co-optimizes energy and reserves provided
by both generators and controllable TCLs for the upcoming day to guarantee
minimal operating cost, while taking into account uncertainty on the forecasts
of the renewable power generation and the TCL behavior via scenarios. In their
problem formulation, they explicitly acknowledged that an incorrect appraisal of
the demand may cause imbalances, which are corrected for by reserves.
A very similar problem setting was considered by Zhang et al. [106], where the main
difference with the work of Vrakopoulou et al. [112,113] lies in the adopted solution
strategy; they solve a single-period (instead of a multi-period) chance constrained
OPF via distributionally robust optimization, instead of via a robust reformulation
of the scenario approach, and as such, do not require a large number of uncertainty
samples.
Good et al. [115] assessed the DR problem rather from a market oriented perspective.
They looked at aggregated TCLs represented/coordinated by a balancing responsible
party, whose market participation was modeled with the help of a two-stage
stochastic problem, representing a day-ahead market participation with imbalance
responsibility, where the aim is to minimize the overall expected day-ahead energy
costs, as well as imbalance costs for deviations from the day-ahead position as a
consequence of demand forecast uncertainty. The demand forecast uncertainty
is in this work caused by uncertainties on the outdoor temperature (and hence,
also the space heating demand), the domestic hot water demand, the electricity
consumption from all other appliances, and the dwelling occupancy), all of which are
accounted for through the use of scenarios. In addition to the demand uncertainty,
also uncertainty on the imbalance prices is accounted for.
Another two-stage stochastic problem can be found in the work of Kou et al. [116],
who considered the role of a distribution system operator (DSO) in both the
day-ahead and real-time electricity markets. The DSO coordinates the use of the
flexibility of a large number of residential TCLs (via an aggregator) to maximize
social welfare, while explicitly mitigating the impact of a wide range of uncertainties
on the DR performance (including weather uncertainty, i.a., the outdoor temperature
affecting the space heating demand and the solar generation affecting the local PV
generation, and occupant behavior uncertainty, i.a., the non-responsive load and
the hot water consumption, all of which are modeled via scenarios).
Also Bruninx et al. [117,118] explicitly accounted for load uncertainties in a demand
4 An optimal power flow problem optimizes how much power should be generated by each

considered generation unit, as well as how much power should be sent around a transmission or
distribution network in order to meet the demand [114].
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response context. In [117], the authors adopted an optimization based approach,
by solving a multi-period deterministic unit commitment model5 to determine the
optimal day-ahead power plant schedule, with probabilistic power balancing and
reserve constraints to cope with uncertainties. The considered uncertainties include
the stochastic renewable electricity generation, and the limited controllability of
the residential electric heating systems providing load shifting and ancillary services
(due to inaccuracies in the weather and occupant behavior forecast, and in the load
model or due to sub-rational behavior). The uncertainty on the flexible demand
is modeled with the help of a proportional and non-proportional component, both
of which are assumed to be normally distributed with a fixed standard deviation.
In [118], Bruninx et al. assessed a very similar scheduling problem, although this
time without reserve provision by the TCLs, via a market-based approach, by
studying the strategic interactions between an aggregator, its consumers, and the
day-ahead market, with the help of bi-level optimization framework. Here again,
chance constraints were used to cope with the uncertainty, forcing the aggregator
to procure sufficient electricity in the day-ahead market to be able to cover the
demand of its consumers in accordance with the imposed level of risk aversion.

A second stream of research assesses the day-ahead DR scheduling problem under
uncertainty via a bottom-up approach, from the consumer perspective. These
approaches typically implement an MPC strategy that is reacting to an external
price signal expressing the DR request. The MPC problem is formulated as a
stochastic/robust OCP in order to guarantee thermal comfort, as well as to guarantee
the feasibility of the scheduled load profile in real time, despite possible uncertainty
manifestations. Remarkably, these consumer-oriented approaches tend to neglect,
or even deliberately prohibit the closed-loop corrective behavior of MPC, and thus,
do not incorporate affine disturbance feedback6. As such, they limit the exposure
of the central system to load uncertainty (which is fundamentally different from
the approaches described above). Instead, they opt for very conservative control
strategies, where the impact of uncertainties is fully managed at consumer level.

Garifi et al. [120] proposed a chance constrained MPC algorithm, which optimally
schedules the operation of the combination of an HVAC system, uncontrollable
loads, a local PV installation and a battery system in a residential building, in
response to a grid load reduction request, at minimal operating cost. Two sets
of chance constraints were implemented, to guarantee the satisfaction of the load
reduction, as well as of the thermal comfort, with high probability. The considered
uncertainties include the available PV power and the outdoor air temperature, which
are assumed to be normally distributed (and possibly time-dependent).
5 A unit commitment model is an operational model of an electric power system, used to determine

the on/off states of the considered generating units, while taking into account their relevant
technical constraints [119].

6 This is in contrast commonly done for optimal control applications, as discussed in Section 3.1.
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Wang et al. [41] considered a robust optimization method for day-ahead household
load scheduling in response to a time-varying electricity price profile. Different
levels of conservatism were allowed, enabling a trade-off between cost and thermal
comfort. The loads considered in the scheduling problem include controllable loads
affected by uncertainty (i.e., an air conditioning unit and an electric water heater),
uncontrollable loads, uninterruptible loads, interruptible loads, and an (electric)
energy storage device. The control strategy explicitly accounts for uncertainties on
the outdoor temperature and the hot water demand, which were modeled with the
help of uncertainty sets surrounding the forecast values.
Finally, Diekerhof et al. [121] considered a robust MPC as part of a larger
hierarchical DR framework, used for the day-ahead scheduling of flexible heat
pumps (by implementing the alternating direction method of multipliers for
distributed optimization). In the proposed framework, an aggregation service
provider coordinates the heat pump demand via an exchange of price vectors, in
order to pursuit a system-level objective, being either a minimization of the energy
procurement cost, or peak shaving. The TCLs, on the other hand, respond to the
coordination signals received from the aggregator, while potentially optimizing an
additional local objective. The heat pump operation is optimized in a robust
way, hedging against uncertainty on the thermal demand of the building, in
order to avoid real-time power adjustments to the pre-calculated operational
schedule7.

Research gap

In the state-of-the-art literature regarding SMPC and RMPC strategies for
demand response, real-time adjustments to the scheduled control strategy
of TCLs are typically prohibited, thereby fully managing the uncertainty on
consumer level. The system-level oriented literature illustrates that load
uncertainty, typically assumed to be given and known, can be effectively
managed at system level as well. To establish a middle ground between
the two streams of research perceived above, this dissertation proposes to
explicitly account for the closed-loop feedback aspect in the open-loop OCP
of MPC strategies for TCLs participating in DR programs. This can be done
by including affine disturbance feedback. This not only allows to characterize
the load uncertainty in detail, but moreover allows to optimize it. As such, a
trade-off between the degree of uncertainty management at building versus at
system level is enabled, which may facilitate a more cost-effective use of the
demand side flexibility offered by TCLs. This is investigated in Chapter 9.

7 Note that the robust optimization merely focuses on the compliance with the DR request, since
no explicit thermal comfort requirements are considered in the work of Diekerhof et al. [121].
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Chapter 4

Stochastic OCP formulation

RQ 1: How does the conventional deterministic OCP formulation for building
climate control need to be reformulated in order to explicitly account for additive

(disturbance forecast) and parametric (model) uncertainties?

This chapter is based on A. Uytterhoeven, R. Van Rompaey, K. Bruninx, and L.
Helsen, “Chance Constrained Stochastic MPC for Building Climate Control Under
Combined Parametric and Additive Uncertainty,” submitted to Journal of Building
Performance Simulation, July 2021.

This chapter focuses on the first part of the SMPC development, being the derivation
of the stochastic OCP formulation that explicitly accounts for both additive and
parametric uncertainty. First, a short overview of the relevant notation is given in
Section 4.1. Subsequently, starting from the conventional deterministic formulation
presented in Chapter 2, the stochastic substitute is derived. This derivation is
performed in a systematic way, by successively introducing the uncertainties in all
relevant parts of the OCP in Sections 4.2 to 4.4. The resulting convex stochastic
OCP formulation is presented in Section 4.5, after which conclusions are drawn in
Section 4.6.

4.1 Notation

Bold face upper case letters refer to matrices, bold face lower case letters refer
to vectors, and regular lower case letters refer to scalars. Letters with superscript
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tilde .̃ refer to uncertain parameters or variables with mean .̄ and uncertain portion
δ.. E[.] is the expected value operator, P (.) represents a probability. R represents
the set of real numbers, and N the set of integer numbers. 0i×j is the i × j zero
matrix, 0i is an all-zeros vector of size i, Ii is the i × i identity matrix, 1i is an
all-ones vector of size i, and ei is a selection vector containing a one on the ith
position and zeros elsewhere. vec(.) denotes the vectorization of a matrix stacking
all its columns in one vector. ⊗ denotes the Kronecker product.

4.2 Introducing uncertainties in the state space
equation

Uncertainties turn the parameters of the building controller model and the
disturbance predictions into stochastic quantities, whose distribution can be
characterized by a mean value .̄ and a covariance Σ.

A → Ã ≜ Ā + δA

with Ā ≜ E[Ã] and ΣA ≜ E[vec(δA) vec(δA)T ] (4.1a)

B → B̃ ≜ B̄ + δB

with B̄ ≜ E[B̃] and ΣB ≜ E[vec(δB) vec(δB)T ] (4.1b)

E → Ẽ ≜ Ē + δE

with Ē ≜ E[Ẽ] and ΣE ≜ E[vec(δE) vec(δE)T ] (4.1c)

dk → d̃k ≜ d̄k + δdk ∀k

with d̄k ≜ E[d̃k] and Σdk
≜ E[δdk δdk

T ] (4.1d)

By incorporating these probabilistic parametric (Ã, B̃, Ẽ) and additive (d̃k)
uncertainties in the deterministic OCP (2.1) presented in Chapter 2, the deterministic
state space equation (2.1a) is transformed into its stochastic counterpart

x̃k+1 =Ã x̃k + B̃ uk + Ẽ d̃k

=(Ā + δA)(x̄k + δxk) + (B̄ + δB)uk + (Ē + δE)(d̄k + δdk)
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≈(Ā x̄k + B̄ uk + Ē d̄k) +

(δA x̄k + Ā δxk + δB uk + δE d̄k + Ē δdk) (4.2)

where the products of stochastic variables (i.e., second order terms) are neglected
in the third step to ensure mathematical tractability.

Because of the explicit dependency of the states xk on the introduced uncertainties,
imposed by the state space equation, the states are also transformed to stochastic
variables. Based on Equation (4.2), the mean and covariance can then be allocated
as

x̄k+1 = Ā x̄k + B̄ uk + Ē d̄k (4.3)

and

Σxk+1 = E[(δA x̄k + Ā δxk + δB uk + δE d̄k + Ē δdk)

(δA x̄k + Ā δxk + δB uk + δE d̄k + Ē δdk)T ], (4.4)

serving as the stochastic substitute for Equation (2.1a).

Note that the inputs uk, in contrast to the states, do not explicitly depend on any
of the imposed uncertainties. Hence, for now, the deterministic form of the inputs
is retained, but this will be revisited when introducing the uncertainties in the input
constraints.

Further elaboration of Equation (4.4) in its current form would result in a non-convex
expression, due to the cross-products of optimization variables. To overcome this
issue, two manipulations are proposed in this work to convexify the constraint: the
introduction of a latent variable aggregating all uncertainties, and a transformation
of the covariance by using a square root notation.

First, all stochastic quantities are aggregated in the latent random variable p̃ ∈ Rnp

with mean p̄ and covariance Σp, i.e.,

vec(Ã) = TA p̃ with TA ∈ Rn2
x×np (4.5a)

vec(B̃) = TB p̃ with TB ∈ Rnxnu×np (4.5b)

vec(Ẽ) = TE p̃ with TE ∈ Rnxnd×np (4.5c)

d̃k = Tdk
p̃ with Tdk

∈ Rnd×np ∀k (4.5d)

where TA, TB, TE and Tdk
are appropriate selection matrices.
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Consequently, any stochastic parameter f̃ ∈ {Ã, B̃, Ẽ, d̃k} can be expressed as

vec(f̃) = vec(f̄) + vec(δf), (4.6)

with

vec(f̄) = E[vec(f̃)] = Tf p̄ (4.7a)

and

Σf = E[vec(δf) vec(δf)T ] = Tf Σp Tf
T (4.7b)

being the (vectorized1) mean and covariance of f̃ , respectively. In addition,
the covariance between two stochastic quantities f̃ , g̃ ∈ {Ã, B̃, Ẽ, d̃k} that are
correlated with one another, can be written as

Σf ,g = E[vec(δf) vec(δg)T ] = Tf ΣpTg
T . (4.8)

Second, the covariance matrix Σp is decomposed by using a square root notation
as follows

Σp = Σ1/2
p Σ1/2

p
T

, (4.9)

where Σ1/2
p ∈ Rnp×np is the square root of Σp, unique up to an orthogonal

transformation of its columns2. With the help of the square root notation,
the covariance between two stochastic quantities f̃ , g̃ ∈ {Ã, B̃, Ẽ, d̃k} can be
decomposed as

Σf ,g = Tf Σp Tg
T =

(
Tf Σ1/2

p

) (
Σ1/2

p
T

Tg
T
)

= Σr
f Σr

g
T . (4.10)

Here, the more general notation .r is used to refer to the root form instead of .1/2,
since the matrices Σr

f and Σr
g are not necessarily square, and hence are not actual

square roots of the considered matrices.

By applying the two manipulations discussed above to Equation (4.4), and by
furthermore using following relation between the vectorization of a matrix and the
Kronecker product3

vec(AXBT ) = (B ⊗ A) vec(X) (4.11)
1 The vectorized notation is introduced for arguments of simplicity, to prevent the use of tensors.

Indeed, by writing all uncertainties in vector format, it is possible to use covariance matrices,
rather than covariance tensors, of all stochastic quantities.

2 Since the covariance matrix Σp is per definition a positive (semi-)definite matrix, this square
root form can for example be obtained via the Cholesky factorization [122].

3 The Kronecker product of an m × n matrix A and a matrix B is defined as

A ⊗ B =

 a1,1B ... a1,nB
...

. . .
...

am,1B ... am,nB

.
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the covariance Σxk+1 can be rewritten in square root form as follows

Σr
xk+1

=(x̄T
k ⊗ Inx

)Σr
A + Ā Σr

xk
+ (uk

T ⊗ Inx
)Σr

B+

(d̄T
k ⊗ Inx

)Σr
E + Ē Σr

dk
. (4.12)

By using Equation (4.3) in combination with the square root form of the covariance,
as presented by Equation (4.12), as the stochastic substitute for Equation (2.1a),
the constraints are now linear in the optimization variables uk, x̄k and Σr

xk
(rather

than Σxk
), thereby guaranteeing the convexity of the problem.

4.3 Introducing uncertainties in the state con-
straints

By integrating the stochastic information in the state constraints, the hard state
constraints (2.1b) and (2.1c) are transformed to chance constraints, as presented
by Equation (4.13), which are seen as the key characteristic of stochastic model
predictive control formulations.

P (x̃k + sk ≥ xmin
k ) ≥ 1 − ϵxk

∀k (4.13a)

P (x̃k − sk ≤ xmax
k ) ≥ 1 − ϵxk

∀k (4.13b)

Note that the slack variables sk are retained to guarantee feasibility under unbounded
uncertainties [91].

The rationale behind chance constraints is the following. Since the open-loop
stochastic OCP needs to decide upon an optimal control strategy before the actual
values of the stochastic quantities are known, it tries to guarantee constraint
satisfaction for possible realizations of the stochastic quantities in a probabilistic
sense, by exploiting the knowledge of their distributions. The probability of constraint
satisfaction is determined by the user-predefined risk-attitude4 {ϵxk

}k=0...K+1 (or
risk-averseness level 1 − ϵxk

), which enables a systematic trade-off between control
performance and constraint satisfaction; ϵ → 0 corresponds to a very conservative
4 Although the majority of applications impose a user-predefined level of constraint satisfaction,

it is also possible to consider the risk level ϵ as an additional optimization variable that is
determined via optimal risk allocation, see for example [101].
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attitude5, whereas ϵ = 0.5 reduces the chance constraints to their deterministic
equivalent without any uncertainty anticipation [84,123].

The constraint satisfaction can either be required for all inequality constraints
altogether, over the whole prediction horizon K, resulting in joint chance constraints,
or for every individual inequality constraint at each distinct time step, also referred
to as individual chance constraints [91, 100, 101, 102]. Joint chance constraints
typically become non-convex, for which an exact tractable representation might not
exist [91], and hence are highly computationally intensive [100, 101]. Therefore,
this work focuses on individual chance constraints.

As discussed in detail in Section 3.1, two main solution strategies have been
adopted for chance constrained problems, being scenario-based approaches and
analytical approximation methods [91]. In this work, the analytical approximation
method is pursued. According to this approach, chance constraints can be generally
reformulated as deterministic ones by enforcing tightened constraints on the expected
values of the states as follows

x̄k + sk ≥ xmin
k + qk(1 − ϵxk

) ∀k (4.14a)

x̄k − sk ≤ xmax
k − qk(1 − ϵxk

) ∀k, (4.14b)

based on the idea that part of the tail of the distribution is allowed to violate the
imposed bounds, as visualized in Figure 4.1. The exact expression for the constraint
tightening level qk(1 − ϵxk

) is dependent on the distribution of the considered
uncertainties [91]. In the most general case, where the distribution of xk is not
specified, one can resort to distributionally robust chance constraints, resulting in a
more conservative approach [91, 95, 96]. In the specific case where the marginal
distributions of the different states x̃i,k = eT

i x̃k ∀i ∈ Nnx can be approximated
as normal distributions, the individual chance constraints can be equivalently (and
exactly) reformulated as deterministic constraints as follows

x̄i,k + si,k ≥ xmin
i,k + Φ−1(1 − ϵxi,k

)
√

Σr
xi,k

Σr
xi,k

T ∀i, k (4.15a)

x̄i,k − si,k ≤ xmax
i,k − Φ−1(1 − ϵxi,k

)
√

Σr
xi,k

Σr
xi,k

T ∀i, k (4.15b)

where Φ−1 denotes the inverse normal cumulative probability density function of
x̃i,k. The justification of using marginal normal distributions in this work will be
5 Note that ϵ = 0 corresponds to a robust optimization problem, where the constraints need to

hold for all possible values of the stochastic quantities [123]. Under these conditions, a solution
can only be found under the assumption that x̃k is bounded [91]. Only the support of the
distribution is considered in that case, without taking advantage of the actual shape of the
distribution.
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Deterministic lower bound

𝑘

Stochastic lower bound

Risk level 𝜖

Constraint tightening

𝑥𝑖,𝑘

Figure 4.1: The visualization of the constraint tightening resulting from the analytical
reformulation of chance constraints.

further discussed in Chapter 5, and will be numerically tested/validated in Chapters
6 and 7.

The constraints (4.15a) and (4.15b) can be further recast to obtain efficiently
solvable second order cone (SOC) constraints, by introducing an auxiliary
optimization variable {qk ∈ Rnx}k=0...K+1

x̄i,k + si,k ≥ xmin
i,k + Φ−1(1 − ϵxi,k

) qi,k ∀i, k (4.16a)

x̄i,k − si,k ≤ xmax
i,k − Φ−1(1 − ϵxi,k

) qi,k ∀i, k (4.16b)

qi,k ≥ ∥Σr
xi,k

∥2 ∀i, k (4.16c)

where Σr
xi,k

corresponds to the root form of the covariance of the system states
as defined by Equation (4.12). The first two constraints (Equations (4.16a)
and (4.16b)) define a half space in the optimization variables and the last constraint
(Equation 4.16c) defines a second order cone, which all together define a convex
set.

The combination of Equations (4.16a) - (4.16c) replaces Equations (2.1b) and
(2.1c) in the deterministic OCP formulation to form the stochastic OCP.

4.4 Introducing uncertainties in the input con-
straints

For the input constraints two approaches are possible to incorporate the uncertainties.
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First, one can retain the nominal power constraints (2.1e), leading to a
computationally attractive formulation. According to this approach, the future
control actions are only a function of the current situation, and not of the future
disturbance and state realizations. The disadvantage of this approach is that it
results in highly conservative behavior, since the OCP neglects the closed-loop
feedback aspect of MPC. As such, it disregards the possibility to intermediately
react against manifested realizations of the uncertainties (i.e., perturbations), and
tries to hedge against the accumulative effect of the uncertainties over the whole
prediction horizon [92,100].

To reduce conservatism, it is recommended to introduce affine disturbance feedback
(ADF). Following this approach, the control inputs are reformulated as an affine
function of the preceding uncertainty manifestations, thereby mimicking the closed-
loop behavior of the MPC in the open-loop control problem [52,79,84,91,92,97,100].
Using the previously introduced notation, this can be written as follows.

u → ũ = ū + δu

with ũ = [ũT
0 ... ũT

k ... ũT
K ]T

ū = E[ũ]

Σu = E[δu δuT ] = Tu Σp Tu
T (4.17)

Note that the inputs are rewritten in the same way as the stochastic quantities
in Equations (4.1) and (4.7). However, the important difference is that the mean
ū as well as the selection matrix Tu are now optimization variables, rather than
fixed, predefined parameters. The selection matrix Tu should be interpreted as a
feedback gain matrix, that guarantees causality by ensuring that the control input
at time step k can only react to the uncertainty manifestations up to time k − 1.
Also note that the first control input is not a function of any uncertainty, since it is
assumed that at the first time step, the currently prevailing states and inputs are
known [91,92].

Since the inputs now also become functions of stochastic random variables,
characterized by an unbounded value range, the input constraints can no longer
be guaranteed for all possible uncertainty realizations. This would result in an
infeasible optimization problem, unless Tu = 0nuK×np . To overcome this issue,
the hard input constraints (2.1e) need to be relaxed, and hence, are also replaced
by chance constraints on the individual inputs ũj,k = ej

T ũk ∀j ∈ Nnu , similarly
to Equation (4.16) (see (∗), p. 38). However, in contrast to the thermal comfort
requirements, the input constraints cannot just be violated, since they represent
restrictive technical system limits. Hence, to closely resemble the hard constraints,
small values need to be assigned to ϵuk

, so that the original requirements are met
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with a high probability6 [79,92]. Because of the structure of Tu, the reformulation of
the input constraints has nevertheless no impact on the constraints imposed for the
first time step, which still remain hard constraints. As such, when implementing the
MPC in closed-loop, the technical system limits will never be actually violated [92].

The introduction of ADF requires a slight adaptation to the structure of the latent
variable p̃. To allow for a proper reaction against the uncertainty realizations in
Equation (4.17) via the feedback gain matrix Tu, it should be made explicit that
the model uncertainties persist, and thus reoccur every single time step. Hence,
they should be repeated in p̃, p̄ and Σp

7.

This adaptation leads to the covariance matrix presented by Equation (4.18). Note
that the covariance of the state space matrices Ã, B̃ and Ẽ on the one hand,
and of the disturbances {dk}k=0...K on the other hand, are grouped into a larger
covariance matrix, to account for possible correlations between their elements.

Σp =



ΣA,B,E 0 · · · 0
0 ΣA,B,E · · · 0
...

...
. . .

...
0 0 · · · ΣA,B,E

0

0 Σ{dk}k=0...K


(4.18)

The structure of the associated feedback gain matrix Tu, consisting of two strictly
lower block triangular matrices, is represented by Equation (4.19); here, the dots •
indicate the non-zero sub-matrices.

Tu =


0 0 · · · 0
• 0 · · · 0
...

...
. . .

...
• · · · • 0

0 0 · · · 0
• 0 · · · 0
...

...
. . .

...
• · · · • 0

 (4.19)

It should be stressed that the dimension of p̃ has a large impact on the number
of optimization variables (mainly via Tu and Σr

xk
). Hence, the repetition of the

parametric uncertainty for each time step can easily blow up the problem size,
especially for systems with large time constants, such as buildings, requiring a
sufficiently long prediction horizon (see also Section 6.3.2). One possible way to
reduce the computation time, is by restricting the optimizable degrees of freedom
of the feedback gain matrix, or by rather relying upon pre-computed matrices, as is
for example done in [44,92,99]; this is nevertheless not considered in this work.
6 Throughout this dissertation, ϵuk is consistently equal to 0.999.
7 Be aware that an adaptation of the structure of p̃ also affects the associated selection matrices.
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Finally, since the inputs uk are no longer considered in their deterministic form,
the previously derived formulation for the covariance of the states, as presented by
Equation (4.12), needs to be altered using Equation (4.17), leading to

Σr
xk+1

=(x̄T
k ⊗ Inx

)Σr
A + Ā Σr

xk
+ (ūT

k ⊗ Inx
)Σr

B + B̄ Σr
uk

+

(d̄T
k ⊗ Inx

)Σr
E + Ē Σr

dk
. (4.20)

4.5 Resulting stochastic OCP formulation

Combining all previously introduced steps, the following stochastic OCP formulation,
explicitly accounting for both additive and parametric uncertainties, is obtained.

min
⋊

ϕ (⋊) (4.21a)

with

⋊ = {{x̄k}k=0...K+1, {Σr
xk

}k=0...K+1, {qk}k=0...K+1, {sk}k=0...K+1

{ūk}k=0...K , Tu, {rk}k=0...K} (4.21b)

subject to

x̄k+1 = Ā x̄k + B̄ ūk + Ē d̄k ∀k (4.21c)

Σr
xk+1

= (x̄T
k ⊗ Inx

)Σr
A + Ā Σr

xk
+

(ūT
k ⊗ Inx

)Σr
B + B̄ Σr

uk
+

(d̄T
k ⊗ Inx)Σr

E + Ē Σr
dk

∀k (4.21d)

x̄i,k + si,k ≥ xmin
i,k + Φ−1(1 − ϵxi,k

) qi,k ∀i, k (4.21e)

x̄i,k − si,k ≤ xmax
i,k − Φ−1(1 − ϵxi,k

) qi,k ∀i, k (4.21f)

qi,k ≥ ∥Σr
xi,k

∥2 ∀i, k (4.21g)

si,k ≥ 0 ∀i, k (4.21h)

ūj,k ≥ 0nu + Φ−1(1 − ϵuj,k
) rj,k ∀j, k (∗) (4.21i)
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ūj,k ≤ umax
j,k − Φ−1(1 − ϵuj,k

) rj,k ∀j, k (∗) (4.21j)

rj,k ≥ ∥Σr
uj,k

∥2 ∀j, k (4.21k)

Σr
u = Tu Σr

p (4.21l)

x(0) = x0 (4.21m)

u(0) = u0 (4.21n)

Since only linear constraints and second order cone constraints are added compared
to the convex, deterministic OCP (2.1), the derived stochastic OCP (4.21) remains
convex if ϕ (⋊) is convex in ⋊.

4.6 Conclusion

In this chapter, a convex stochastic open-loop OCP formulation is derived for
building climate control and DR under combined additive (disturbance forecast)
and parametric (model) uncertainty, tailored to the class of systems represented by
a linear time-invariant state space model.

The derivation takes the conventional deterministic formulation, as presented in
Chapter 2, as a starting point, and is performed in a systematic way, by successively
introducing the uncertainties in all relevant parts of the optimal control problem.
The derived stochastic OCP formulation is obtained in a convex form by applying
following manipulations: i) the introduction of the latent variable p̃, aggregating all
uncertainties, ii) the switch to a root form notation, iii) the introduction of chance
constraints, and, iv) the implementation of affine disturbance feedback, and with
the help of following assumptions: i) the original deterministic OCP formulation is
convex, ii) the products of stochastic variables are neglected, and, iii) the chance
constraints are reformulated for every distinct state and input based on its marginal
distribution, which is assumed to be normal.

The derivation of the stochastic OCP formulation constitutes the first part of the
SMPC development. In a next step, the mathematical description of all relevant
additive and parametric uncertainties in terms of their mean and covariance needs
to be further specified, which is the focus of the next chapter.





Chapter 5

Uncertainty characterization

RQ 2: How can all relevant uncertainties affecting the building indoor climate be
appropriately mathematically modeled in order to include them in the stochastic

OCP formulation?

This chapter is based on A. Uytterhoeven, I. De Jaeger, K. Bruninx, D. Saelens, and
L. Helsen, “Data-driven estimation of parametric uncertainty of reduced order RC
models for building climate control,” in Proceedings of the Building Simulation (BS)
Conference 2021, Bruges, Belgium, International Building Performance Association
(IBPSA), 2021, and,
A. Uytterhoeven, R. Van Rompaey, K. Bruninx, and L. Helsen, “Chance Constrained
Stochastic MPC for Building Climate Control Under Combined Parametric and
Additive Uncertainty,” submitted to Journal of Building Performance Simulation,
July 2021.

The mathematical model of the uncertainties is an essential part of the stochastic
OCP formulation derived in Chapter 4. This chapter further elaborates on how the
different stochastic quantities Ã, B̃, Ẽ and d̃k can be properly represented by their
mean and covariance, delineating the underlying probability density functions.

Regarding the parametric uncertainty, this chapter aims to come up with a
substantiated uncertainty characterization without relying upon detailed building-
specific information or experts’ knowledge, to acknowledge the plausibility of a lack
of information in case of a widespread MPC implementation. Since this point of view
is fundamentally different from what is commonly done, the currently prevailing
uncertainty characterization methods first need to be revisited, before deriving

41
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a suitable characterization of Ã, B̃, Ẽ. Hence, the contribution of this chapter
regarding the parametric uncertainty not only lies in the obtained uncertainty model,
but also in the proposed uncertainty characterization method.

In contrast, regarding the additive uncertainties, there is clear consensus on how
to mathematically represent them. However, although most works provide a
clear description regarding the applied uncertainty characterization method, they
rarely disseminate the resulting uncertainty model in terms of numerical values.
Hence, regarding the additive uncertainties, the focus of this chapter is mostly
on determining and disseminating - to the best extent possible - the mean and
covariance of d̃k

1, by applying the methods from literature.

Since the exact controller model structure determines which specific form Ã, B̃, Ẽ
and d̃k take, the considered model structure is first presented in Section 5.1. Next,
an uncertainty characterization method is presented for each of the considered
uncertainties, which is subsequently applied to a case study in order to give
insight in the resulting uncertainty model. Section 5.2 focuses on the uncertainty
characterization of the building model parameters, whereas Section 5.3 and Section
5.4 focus on the uncertainty characterization of the forecasts of the disturbances,
being the weather and occupant behavior. Finally, the most important findings are
summarized in Section 5.5.

5.1 System model specification

Before proceeding with the uncertainty characterization, this section first specifies
the building model structure, and hence, the form of Ã, B̃, Ẽ and d̃k, that will be
considered throughout this dissertation. Due to the fact that the mathematical
complexity (i.e., the number of optimization variables and constraints) of the
stochastic OCP formulation (4.21) highly depends on the order of the building
controller model, because of the repetition of the parametric uncertainty in the
latent variable p̃ (see Equation (4.18)), a reduced order model of sufficiently low
order is preferred.

Model orders as low as two or three are shown to be sufficient to adequately
represent the general thermal dynamics of buildings [14, 126, 127, 128, 129]. In
this work, based on the findings of Reynders et al. [126,130], a building model of
1 Note that it is also possible to incorporate more advanced stochastic forecasting (grey-box)

models for the disturbances in the MPC framework, as is for example done by Thilker et
al. [124,125]; this is nevertheless not further considered in this dissertation.
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Figure 5.1: The model structure of the studied reduced order one-zone four-states
resistance-capacitance model, representing a residential dwelling. Note that the
shown RC model merely focuses on the representation of the building envelope,
without specifying the installed emission system; also the heat inputs coming
from the solar heat gains and the internal heat gains, are not indicated. Adapted
from [130].

order four is used2,3, which is shown in Figure 5.1. This resistance-capacitance
(RC) model uses an electric circuit analogy to represent a residential dwelling. It
serves as a good compromise between complexity and interpretability, since it is
of sufficiently low order, but still distinguishes between all fundamentally different
construction elements and boundary conditions4.

The model approximates the building as one thermal zone, represented by four states,
being the temperatures of the indoor air (Tia), external walls (Tw), internal walls
(Twi) and floor (Tf ). The associated thermal capacitances and resistances (same
indices as the states) are shown in Figure 5.1. The windows are not represented by
an individual state, because of their negligible thermal mass compared to the massive
building structure; as such, the resistance Rinf,win not only refers to the heat losses
via infiltration/ventilation, but also to the transmission losses via the windows and
2 Throughout this work, the building model parameters are theoretically calculated. Hence, the

building model should be interpreted as a highly simplified white-box model. Nevertheless,
the optimal model structure was determined by Reynders et al. [126] via a grey-box modeling
approach.

3 A similar analysis regarding the building model parametric uncertainty was performed using an
analogous but slightly more complex two-zones building model. The results of this analysis can
be found in Appendix A.

4 The difference in occupation (and hence, thermal comfort requirements) between the day and
night zone, and the associated difference in utilization of the thermal mass between the two
zones, is nevertheless discarded by the one-zone model, possibly leading to an overestimation of
the effective thermal capacity.
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doors. The heat emission system that is incorporated in the building can be either
an underfloor heating system or a low-temperature radiator system, and is assumed
to be ideal, with a 100% efficiency. In case the installed heat emission system is a
low-temperature radiator system, an additional state is considered (Trad)5. The
heat input delivered to the heat emission system is coming from a single heat supply
system6, Q̇sup, and is assumed to be a heat pump in this work. The system is
subject to seven disturbances, being the ambient temperature Tamb, the ground
temperature Tgr, the solar irradiance on the vertical planes along the four cardinal
directions Q̇solN , Q̇solE , Q̇solS and Q̇solW , and the internal heat gains from the
occupants Q̇int. The solar heat gains are distributed over the capacitances of the
different states in proportion to their surface area, relative to the total surface area
of all building construction elements, by using distribution coefficients. The fraction
of the solar heat gains associated with the windows is assigned to the internal air
capacitance. For the internal heat gains, on the other hand, a distinction is made
between the convective fraction, which is allocated to the internal air capacitance,
and the radiative fraction, which is allocated to the capacitances of the different
states by using area weighted distribution coefficients (similarly to the solar heat
gains) [126,132].

Summarizing, x̃k, ũk and d̃k take the form as expressed by Equation (5.1) in
this work. The state space matrices Ã, B̃, and Ẽ are defined as in Figure 5.1,
constituting a linear(ized) model. Depending on the installed heat emission system,
they take a different form, to correctly represent all heat exchanges.

x̃k+1 = Ã x̃k + B̃ ũk + Ẽ d̃k ∀k

with x̃k =


T̃ia,k

T̃w,k

T̃wi,k

T̃f,k

(T̃rad,k)

 , ũk =
[

˜̇Qsup,k

]
, d̃k =



T̃amb,k

T̃gr,k

˜̇QsolN,k

˜̇QsolE,k

˜̇QsolS,k

˜̇QsolW,k

˜̇Qint,k


(5.1)

5 The consideration of a radiator as heat emission system requires an additional (linearized)
heat balance, supplementing the SSM: Crad

Trad,k+1−Trad,k

∆t
= Q̇sup,k − UArad (Trad,k −

Tia,k) ∀k. Here, Crad represents the thermal capacitance of the radiator, determined by the
combined thermal capacitance of its dry mass and water content; UArad represents the overall
heat transfer coefficient, obtained by linearizing the radiator formula around the design supply
temperature [131].

6 Since only one heat input is considered, the index j is omitted from now on.
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As a final important remark, it should be highlighted that the radiative temperatures
of the surrounding building components are not explicitly considered in the chosen
building model. Consequently, thermal comfort is assessed based on the indoor
air temperature (i.e., the state associated with the air thermal capacitance of the
building model) in this work, instead of on the operative temperature (which is
typically used in comfort standards [83]). The implications of this point of view will
be further discussed in Intermezzo 6.1.

5.2 Building model parameter uncertainty

This section focuses on the uncertainty characterization of the building model
parameters. After some background discussed in Section 5.2.1, Section 5.2.2
describes the applied modeling approach. Next, Section 5.2.3 presents the resulting
uncertainty characterization. Here, nine existing buildings are presented as case
studies for which the parametric uncertainty is determined and compared.

5.2.1 Background

The uncertainty characterization of the parameters of the building model Ã, B̃ and
Ẽ depends on the pursued modeling method, and the stance taken on the available
information. The values of the building model parameters can either be obtained
via a physics-based [129,132,133] or via a data-driven [124,126,127,132] approach.
In order to include domain knowledge and thus maximize insight, this work adopts a
physics-based approach, that links the stochasticity of the parameters of a reduced
order white-box model to the underlying uncertainty of the physical properties.
It should be stressed that this choice does not detract from the more general
applicability of the proposed stochastic OCP formulation. Indeed, also data-driven
modeling approaches, such as grey-box modeling, result in uncertain parameter
estimations7 [124,134], that can be characterized by a covariance matrix [124,135],
and as such, can be directly incorporated in the proposed SMPC approach.

The stochasticity of the parameters of a physics-based building controller model
is caused by a lack of knowledge about the building envelope. Since the
building geometry and construction year can often be derived from the building
7 In case of a data-driven modeling approach, the uncertainty of the parameter estimation process

emerges from the non-smoothness of the objective function expressing the difference between the
measured (actual) and calculated (modeled) system behavior, due to unavoidable fluctuations
and noise in the measurement data. This non-smoothness can lead to many local minima,
making the search for the most optimal estimate of the model parameters very difficult, and
possibly resulting in large confidence intervals for the individual estimated parameters [134].
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address based on geographic information systems data and cadastral data, the
uncertainties can be mainly attributed to the building thermal properties [63]. This
uncertainty has already been addressed in several studies, where the uncertainty
characterization is typically derived based on detailed (mostly building-specific)
information and/or experts’ knowledge [54,60,136]. However, in case of a widespread
MPC implementation, a lack of detailed and accurate input data is plausible,
especially if also the older, existing building stock is involved. In this case, one needs
to rely upon sparse, publicly available data (i.e., construction year, building location
and building geometry) to characterize the building envelope, and subsequently
construct the building controller model. This fundamentally different point of
view requires a revisitation of the prevailing uncertainty characterizations. This
was done by De Jaeger et al. [62, 63], who recently developed a statistical, data-
driven building characterization method that leverages governmental databases of
the energy performance of buildings to obtain probability distributions, as well as
correlated samples, of the U-values of the ground floor, external walls, windows
and roof and of the window-to-wall ratio (WWR) for a particular dwelling. As
such, a building can be statistically characterized without intensive on-site data
collection. Building further upon that work, a substantiated estimate of the
parametric uncertainty of a theoretical physics-based building controller model can
be derived, which is the focus of the remainder of this section. Since neither detailed
building-specific information on the thermal properties, nor experts’ knowledge is
incorporated, the obtained uncertainty characterization can be seen as a worst-
case appraisal. Note that the obtained uncertainty characterization can be further
improved by using it as a starting point for local learning approaches. However, this
is not further considered in this dissertation.

5.2.2 Modeling approach

To be able to characterize the building model parametric uncertainty, the publicly
available information (i.e., construction year, building location and building
geometry) needs to be transformed into a (probabilistic) building controller model.
This can be achieved via the procedure explained below, which is summarized in
Figure 5.2.

Step 1: Extracting building thermal quality data

Based on the building location, geometry and construction year (where the latter
two characteristics can be derived from the building address based on geospatial and
cadastral data), information on the building thermal properties can be obtained with
the help of the probabilistic building envelope characterization method developed
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INPUT: Building address

Location, geometry, construction year

STEP 1: Building thermal quality data

Distributions and correlated samples of U-values of external

wall, roof, ground floor and windows, and of window-to-wall

ratio

Probabilistic building envelope characterization method

by De Jaeger et al. (2021)

STEP 2: Building construction

Set of possible constructions in terms of materials and layer

thicknesses

STEP 3: Building controller model

Set of possible RC parameters and/or SSM matrices of

reduced order building controller model

Probabilistic approach to allocate building parameters

by De Jaeger et al. (2018)

Theoretical reduced order RC modeling approach

by Reynders et al. (2014)

Focus of this dissertation

Figure 5.2: The pursued methodology to come up with the uncertainty
characterization of the building model parameters, starting from publicly available
data.

by De Jaeger et al. [63]. This method generates distributions of the U-values
of the external walls, roof, ground floor and windows, as well as of the WWR, by
applying a quantile regression method on the Flemish energy performance certificates
database, which contains building envelope thermal quality data of Flemish single-
family dwellings. The correlations between the different variables are included by
building multivariate distributions from the distinct marginal distributions, and by
subsequently drawing correlated samples of the U-values and WWR on building
level. These correlated samples can be seen as possible realizations of a specific
dwelling with a fixed location, geometry and age.

Since advanced control strategies for building climate control and DR are mostly
focusing on heat pump systems, only the realizations with a sufficiently low nominal
heat demand8 are considered (i.e., Q̇nom ≲ 15 kW), restricting the considered
domain of the obtained distributions.
8 The nominal heat demand is quantified following NBN EN 12831 [137].
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Step 2: Converting building thermal quality data to building construction

In order to be able to derive a building controller model, the obtained U-values and
WWR need to be converted to material layers composing the building envelope.
Following the methodology of De Jaeger et al. [62], we derive the building
construction, in terms of materials and layer thicknesses, by gradually adjusting
an initial (heavy-weight) construction, representative for Flemish buildings, with
predefined upgrades until the targeted U-values are reached. More specifically,
for the roof and for the ground floor, these adjustments imply gradually adding
insulation. For the wall, first, the thickness of the heavy masonry composing the
internal walls is increased up to a maximum value, after which a non-ventilated
air cavity is provided between the internal and external walls; finally, if needed,
an insulation layer with appropriate thickness is added between the internal walls
and the air cavity. For the windows, the most appropriate glazing out of a list of
discrete options is chosen.

This conversion process is repeated for all correlated samples spanning the domain
of the distribution of the U-values and WWR obtained in the previous step, leading
to a set of possible constructions for a dwelling with a fixed location, geometry and
age.

Step 3: Converting building construction to building controller model

The building controller model can be obtained based on the specified construction,
by using a theoretical, physics-based modeling approach. In this work, the approach
of Reynders et al. [132] is used, resulting in a reduced order RC model, with a
model structure as shown in Figure 5.1. This building controller model can be either
directly characterized in terms of the RC parameters, or in terms of the (discretized)
SSM matrices derived therefrom.

Note that, for the sake of simplicity, without loss of generality, the determination
of the RC parameters merely focuses on the RC parameters related to the building
construction, making abstraction of the installed heat emission system.

Building controller model in terms of RC parameters
The building model RC parameters are related to the building construction as follows.
The thermal capacitances, representing the active thermal mass, are determined
by the material layers within the insulation barrier. In line with this, the thermal
resistances of the external walls and ground floor are split in two components:
an internal resistance (index 1, see also Figure 5.1) up to, but excluding, the
insulation layer, and an external resistance (index 2, see also Figure 5.1). For the
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Table 5.1: The dependency of the RC parameters of the studied building controller
model on the probabilistic U-values and WWR, illustrating their stochastic character.

R i
nf

,w
in

R w
(1

/2
)

R w
i

R f
(1

/2
)

C w C w
i

C f C i
a

Uexternal walls x x
Uground floor x
Uroof x x
Uwindows x
WWR x x x

internal walls, the thermal resistance is taken equal to 50% of the total resistance
of the wall, since the thermal mass is equally accessible from both sides. The heat
capacitance of the internal air is determined as the product of the specific heat
capacity of the air at constant pressure, the density of the indoor air and the air
volume, multiplied by a correction factor (set equal to five [138]) to account for
the additional furniture thermal capacitance. Finally, the UA-values of the windows
and doors are combined with the ventilation and infiltration losses to represent an
additional thermal resistance [132].

By repeating the model identification for the whole set of possible constructions
obtained in the previous step, the resulting set of RC parameters may be interpreted
as a statistical characterization of the building controller model.

To summarize the whole conversion process, Table 5.1 clarifies the relation between
the probabilistic U-values and WWR characterizing the building envelope, and
the RC parameters of the building controller model, illustrating the probabilistic
character of the latter. Logically, only the RC parameters related to the building
exterior are affected by the uncertainty on the building thermal quality.

Building controller model in terms of SSM elements
Finally, the obtained correlated samples and probability distributions of the
RC parameters, representing all possible dwelling realizations, still need to be
converted into a statistical description of the discrete-time9 state space matrices
Ã, B̃ and Ẽ, in terms of their mean and covariance, in order to incorporate
them in the stochastic OCP formulation (4.21). Since the SSM elements
{ai,i′}i,i′=1...nx

, {bi,j}i=1...nx,j=1...nu
and {ei,h}i=1...nx,h=1...nd

, which can be
directly derived from the RC parameters by writing down the energy balances
9 In this dissertation, a discretization time step of one hour is considered.
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in state-space form and subsequently discretizing the obtained SSM matrices,
are found to more closely approximate a normal distribution compared to the
RC parameters, these SSM elements are used to build up p̃. The covariance
ΣA,B,E can be straightforwardly determined by considering all samples of all
SSM elements altogether. The mean values Ā, B̄ and Ē, on the other hand,
should not be determined in the conventional way, precisely because of the existing
correlation between the different SSM elements (although this is rarely considered
in literature [60]). Simply calculating the mean values of the individual distributions
of the distinct SSM elements would disregard their correlation, and would result
in a wrong representation of the building dynamics when combining the individual
mean values into a SSM. To overcome this issue, the average state space matrices
Ā, B̄ and Ē are replaced by reference state space matrices ¯̄A, ¯̄B and ¯̄E, which
closely approximate the average model, but also respect the actual dynamics. The
reference SSM is determined by selecting the sampled SSM zs ∋ {As, Bs, Es}
that has the lowest weighted distance to the average model z̄, where this weighted
distance to the mean (WDM) for a particular sample s is defined as

WDMs = (zs − z̄)T Σ−1
z (zs − z̄), (5.2a)

with

zs =

vec(As)
vec(Bs)
vec(Es)

 , z̄ =

vec(Ā)
vec(B̄)
vec(Ē)

 , Σz = cov(z̃, z̃). (5.2b)

This weighting (via Σ−1
z ) is needed to account for the fact that different state

space elements - even within the same state space matrix - can have very different
dimensions.

Combining the reference SSM ¯̄A, ¯̄B and ¯̄E with the (actual) covariance ΣA,B,E
results in a mathematical description of the stochasticity of the building model
parameters that can be implemented in the stochastic OCP formulation. It should
be stressed that this combination results in a slightly changed distribution compared
to the actual distribution of the different SSM elements. Nevertheless, the impact
of this modification is limited, exactly because the distance to the mean is being
minimized.

5.2.3 Resulting uncertainty characterization

To give an idea about the order of magnitude of uncertainty on the building thermal
properties to be expected when starting from publicly available data, and about
how this uncertainty propagates into the building model parameters, a case study
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is set up, determining the parametric uncertainty of the building controller model
for a set of residential buildings, by applying the methodology described above.

5.2.3.1 Case study

To maximize insight, the statistical characterization of a building controller model
is repeated for multiple dwellings for which the main characteristics determining the
thermal quality (i.e., geometry and construction year) are sufficiently different. Nine
buildings of varying age (old (O) (<1950), ageing (A) (1950-1990) or more recent
(R) (>1990)) are selected from the suburban residential areas of the City of Genk
in Flanders (Belgium). For each building type (i.e., terraced (T), semi-detached
(SD) and detached (D)), three buildings are selected with a varying floor area,
ranging from small (S), over midsize (M), to large (L). Their main characteristics
are summarized in Table 5.2. As a final remark, it should be noted that all buildings
are assumed to have the same air infiltration rate of 0.4 1

h ; this assumption is based
on the fact that, in case of renovation, the decrease of infiltration is compensated
by the introduction of mechanical ventilation, which is assumed to result in a similar
total air change rate.

For each dwelling in Table 5.2, 100 correlated samples of the U-values and WWR
are generated10, leading to 100 possible building controller models per considered
dwelling.

5.2.3.2 Results and discussion

In this section, the uncertainty on the building thermal properties, as well as
on the derived building model parameters, is determined for the nine dwellings
introduced above, starting from publicly available information, by applying the
proposed uncertainty characterization method. Since the different uncertain variables
have different orders of magnitude, the whole assessment is done in terms of the
standardized coefficient of variation (CV)11. Note that we performed a similar
analysis regarding the parametric uncertainty in previous work [139] for a slightly
more complex two-zones nine-states variant of the model described in Section 5.1.
The results of this analysis can be found in Appendix A.

The discussion about the parametric uncertainty primarily focuses on the inverse
of the RC parameters, rather than on the RC parameters themselves, or on the
10 The choice to pursue 100 samples is based on the findings of De Jaeger [60], who showed that

a sample size of ∼60 is advisable to come up with an adequate uncertainty characterization.
11 The coefficient of variation is equal to the ratio of the standard deviation to the mean, and

serves as a unit-independent statistical measure of the dispersion of a variable.
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Table 5.2: Overview of the main characteristics of the nine dwellings for which the building model parametric uncertainty is
investigated. The label refers to the building type, size, and age, and will be used throughout this dissertation.

Label
Building

type
[-]

Net floor
area
[m2]

Protected
volume

[m3]

Ground floor
area
[m2]

Façade
area
[m2]

Roof
area
[m2]

Construction
year
[-]

T_S_O Terraced (T) 129 (S) 406 87 80 95 <1950 (O)
T_M_O Terraced (T) 193 (M) 531 97 92 116 <1950 (O)
T_L_A Terraced (T) 244 (L) 844 145 116 161 1950-1990 (A)

SD_S_A Semi-detached (SD) 155 (S) 546 96 171 101 1950-1990 (A)
SD_M_A Semi-detached (SD) 210 (M) 692 105 140 122 1950-1990 (A)
SD_L_O Semi-detached (SD) 275 (L) 742 200 226 154 <1950 (O)
D_S_A Detached (D) 163 (S) 559 94 202 112 1950-1990 (A)
D_M_O Detached (D) 260 (M) 716 139 181 187 <1950 (O)
D_L_R Detached (D) 301 (L) 752 151 167 173 > 1990 (R)
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derived SSM matrices. The reason for this is that the conversion process up to
the inverse of the RC parameters is clearly physically interpretable. The last two
conversion steps, in contrast, merely entail strict mathematical manipulations (i.e.,
inversion and discretization), making the subsequent analysis less insightful.
However, one important aspect regarding the SSM matrices that should nevertheless
be discussed, is the appropriateness of the assumption of normality. This
consideration is important to justify the assumption that the different states and
inputs each follow a normal distribution, which is key in the derivation of the
stochastic OCP formulation in Chapter 4. Since the sum of independent normal
random variables is normally distributed, the distribution of the states (see Equation
(4.2)) as well as the distribution of the inputs (see Equation (4.17)) can be assumed
normal if the distinct uncertainty contributions are normal. Nevertheless, it should
be stressed that the normality of the distinct uncertainty contributions is not
required to guarantee the normality of the states and inputs, since also the sum of
non-normal random variables can give rise to a normal distribution.

Note furthermore that, for the discussion of (the inverse of) the RC parameters,
abstraction can be (and is) made of the installed heat emission system12. This is
nevertheless not possible when investigating the SSM elements, since the A- and
B-matrix of the SSM take another form depending on the heat emission system, to
correctly represent all heat exchanges.

Uncertainty on the inverse of the RC parameters
Figure 5.3 and 5.4 respectively show the distributions of the U-values and WWR,
and the resulting set of RC parameters for the nine considered dwellings. In order not
to overload Figure 5.4, only the most important uncertain parameters characterizing
the building envelope are shown. To be able to analyze the results, first, a proper
understanding of the uncertainty on the building thermal properties is needed,
followed by an in-depth assessment of how this uncertainty propagates into the
model parameters.

When comparing the thermal properties of the different dwellings, an interesting
trend can be observed in Figure 5.3. Because of the imposed cap on the nominal heat
demand, the total heat loss coefficient of transmission (i.e., the total sum of the UA-
values of the building), presented in the last plot of Figure 5.3, spans approximately
the same range for all considered dwellings (although terraced dwellings can have
slightly smaller heat losses because of the smaller total loss area). These similar
UA-values break down in small buildings with a large range of admissible U-values,
or in larger, renovated buildings, for which only the lowest U-values are allowed,
12 In case of floor heating, the RC model exactly corresponds to the model shown in Figure 5.1,

since the floor is an integral part of the building construction. However, in case of radiators, an
additional state, and associated RC values, are required, which are for convenience not further
discussed.
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Figure 5.3: The probability distributions of the U-values of the external walls, roof,
ground floor and windows, as well as of the window-to-wall ratio and of the heat
loss coefficient of transmission for the nine considered dwellings.
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1/Rw2 1/Rf2

1/Rinf,win 1/Cw

Figure 5.4: The probability distributions of the inverse of the most significant
uncertain RC parameters characterizing the building envelope of the nine considered
dwellings.
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Figure 5.5: The coefficient of variation of the U-values and of (the inverse of) the
derived RC parameters for the nine considered dwellings.

as shown in Figure 5.3. Due to this effect, the nine considered dwellings can also
be interpreted as nine cases of increasing confidence about the building thermal
quality. This is confirmed by Table 5.3 and Figure 5.5. Figure 5.5 clearly shows
that this effect predominantly manifests itself for the U-value of the external walls
(CV 0.30-0.61) and roof (CV 0.43-0.99). For the U-value of the ground floor
(CV 0.31-0.49), the tendency is less clear, since the low probability of invasive
floor renovations leads to more similar distributions for all dwellings [60], which
is confirmed by Figure 5.3. Also for the windows (CV 0.23-0.30), the difference
in uncertainty is less pronounced, since window glazing can only have a limited
number of discrete U-value options; the significantly lower absolute value of the CV
of the U-value of the window compared to the other U-values, on the other hand,
can be explained by the significantly higher average U-value for windows compared
to opaque parts.

The lower bounds of the CV ranges for all U-values are of the same order (∼0.3) as
the values reported in literature for older buildings [54], and as such, can be roughly
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Table 5.3: The coefficient of variation of the U-values and window-to-wall ratio, the UA-values, and the RC parameters for
the nine considered dwellings.
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D_L_R 0.31 0.43 0.47 0.24 0.38 0.34 0.36 0.04 0.34 0.00 0.30 0.19 0.07 0.00
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considered as expected values of the uncertainty for existing, (partly) renovated,
heavy-weight dwellings. It should be stressed that these uncertainty ranges are worst
case estimates, since the followed approach relies upon very limited building-specific
information.

When converting the U-values of the different construction elements into RC
parameters for a particular dwelling, the uncertainty is affected by the different
processing operations. First, the uncertainty is altered due to the conversion of
U-values into UA-values describing the heat transfer with the surroundings. This
operation only has an impact in case of a variable area (i.e., for the external walls
and windows due to the variable WWR); otherwise, the mean and standard deviation
are simply scaled by the same factor. Next, splitting up the heat transfer in the
material layers inside and outside the insulation barrier further impacts the CV.
Finally, an inverting operation is needed, since the heat transfer coefficients are
related to the inverse of the RC parameters. However, the inverting operation is not
considered here, since it results in distorted distributions with increased skewness
due to exacerbated outliers, thereby making the analysis more difficult.

For the external walls, the CV of the UA-value is slightly increased compared to
the U-value due to the impact of the WWR, resulting in a variation between 0.31
and 0.62 (see Table 5.3). The internal resistance 1/Rw1 and the capacitance 1/Cw

are hardly impacted by this uncertainty, with a CV in the order of 10−2. This is
to be expected, since the large differences in U(A)-values are mainly attributed to
different insulation levels of the exterior, whereas the inner parts don’t change much
when converting U-values to layers and materials with the method of De Jaeger
et al. [62]. Hence, the uncertainty is mainly transferred to the external resistance
1/Rw2, as can also clearly be seen in Figure 5.5. For 1/Rw2, the conversion from
UA to 1/R results in an even higher CV for all nine cases, with values ranging
from 0.32 to 0.94. This increase can be (partially) explained by the additional
incorporation of the uncertainty of the U-value of the roof in 1/Rw2.

For the ground floor, the uncertainty of the U-values does not affect the internal
resistance 1/Rf1 or the capacitance 1/Cf (CV = 0), since the corresponding
material layers, tiles and screed, are fixed. The external resistance 1/Rf2, on the
other hand, has a mildly varying CV ranging from 0.22 to 0.32, which is a clear
decrease compared to the CV of the U-value.

Finally, for the windows and doors, the CV of the UA-value is increased compared
to the U-value due to the varying WWR, resulting in a CV in the range of 0.35 up
to 0.46. This uncertainty is then absorbed by the resistance 1/Rinf,win, resulting in
a CV between 0.14 and 0.21. This reduction in CV is due to the fact that Rinf,win

does not only account for transmission losses via windows and doors, but also for
infiltration losses, which are assumed to be known.
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Summarizing, the uncertainty is predominantly transferred to the external resistances
containing the insulation layer; more specifically, for the ground floor and windows,
the CV decreases when moving from U to 1/R, whereas for the external walls and
roof, it increases. It should be stressed that the results above depend on i) the
underlying input data (being the energy performance data of the Flemish building
stock), ii) the subsequent processing (being the methods of De Jaeger et al. [62,63]),
and iii) the imposed building model structure (being the single-zone four-states
reduced order RC model developed by Reynders et al. [126]). In order to further
consolidate the presented results, a more differentiated assessment is recommended,
where the uncertainty on the U(A)-values and derived model parameters is further
explored for different U-value distributions, and for other building model structures.
Nevertheless, the presented analysis offers important insights regarding the order of
magnitude of the uncertainty on the building thermal properties to be expected when
starting from publicly available information, the impact of increasing confidence
about the building thermal quality, and finally, which building model parameters
are the most uncertain ones.

Uncertainty on SSM elements
For arguments of interpretability, the discussion about the parametric uncertainty has
mainly focused on the inverse of the RC parameters. However, one important aspect
that still needs to be discussed, are the distributions of the stochastic discretized SSM
elements {ai,i′}i,i′=1...nx

, {bi,j}i=1...nx,j=1...nu
and {ei,h}i=1...nx,h=1...nd

, derived
from the uncertain RC parameters. This consideration is important to assess the
validity of assuming a normal distribution for the different states and inputs, imposed
in Chapter 4 when analytically reformulating the chance constraints, as already
explained above. As can be expected, the SSM elements do not exactly follow a
normal distribution. The aim of this discussion is not to prove (quasi-)normality
via formal normality tests (such as the Shapiro Wilk test [140, 141]), but rather
to illustrate the appropriateness of assuming a normal distribution. To this end,
two interesting parameters to consider are the kurtosis and the skewness, which are
both descriptive statistics characterizing the shape of a distribution.
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Intermezzo 5.1

Kurtosis and skewness as descriptive statistics characterizing the
shape of a distribution

The kurtosis is a measure of the extent to which the density of observations of
a distribution differs from the probability densities of a normal distribution, or
in other words, how outlier-prone a distribution is. For a normal distribution,
the kurtosis is equal to three; a kurtosis value larger than three indicates that
there are more extreme values than characteristic for a normal curve, and vice
versa for a value smaller than three [142,143]. The kurtosis can be calculated
with the help of Equation (5.3a) for (the samples xi from) a population of a
variable x [143].

kurtosis =[population version] E[(x − µ)4]
σ4 (5.3a)

[sample version]
1
N

∑N
i=1(xi − x̄)4

( 1
N

∑N
i=1(xi − x̄)2)2

(5.3b)

The skewness, on the other hand, is a measure of the asymmetry in a
distribution. For a normal distribution, which is perfectly symmetrical, the
skewness amounts to zero; a negative skew indicates that the data spread out
more to the left of the distribution (i.e., the mean lies to the left of the peak),
and vice versa for a positive skew [142]. It can be calculated with the help of
Equation (5.4a) for (the samples xi from) a population of a variable x [144].

skewness =[population version] E[(x − µ)3]
σ3 (5.4a)

[sample version]
1
N

∑N
i=1(xi − x̄)3(√

( 1
N

∑N
i=1(xi − x̄)2)

)3 (5.4b)

For sufficiently large sample sizes (i.e., N > 300), the values of the kurtosis and
skewness give a direct indication about the normality of the distribution. As a
rule of thumb, absolute kurtosis values larger than seven, and absolute skew
values larger than two indicate substantial non-normality; for smaller sample
sizes, a z-test is required to accept/reject the null hypothesis of normality [145].
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To get a compact overview of the (non-)normality of the distributions of all SSM
elements, Figure 5.6 shows the kurtosis and skewness of the distributions of all
SSM elements (in one plot per building type) as a function of their CV (each
dot represents the distribution of a particular {ai,i′}i,i′=1...nx , {bi,j}i=1...nx,j=1...nu

or {ei,h}i=1...nx,h=1...nd
). The reference kurtosis and skewness value of a normal

distribution are indicated by the horizontal dotted line. The figure makes a distinction
between the case with radiators and with floor heating, since a different SSM is
obtained depending on the considered heat emission system (as explained in Section
5.1). The figure confirms that most distributions are not exactly normal, as was
to be expected. However, a more detailed inspection of the distinct distributions,
as is for example done in Figures 5.7, 5.8 and 5.9 for the terraced, midsize, older
(but renovated) (T_M_O) dwelling equipped with floor heating (characterized
by the most frequent, large deviations from the kurtosis and skewness values
characterizing a normal distribution in Figure 5.6), suggests that the assumption of
normality for the states and inputs, based on the observed distributions for the SSM
elements, might be reasonable13. Figures 5.7, 5.8 and 5.9 show the histograms,
fitted normal probability density functions, and shifted normal probability density
functions (using the values corresponding to the reference model, rather than the
distinct mean values, as the centre of the probability density functions, thereby
taking into account the correlation between all different SSM elements of the A-, B-
and E-matrix, as explained in Section 5.2.2) of all SSM elements. As can be seen,
the normal distribution approximately covers the domain covered by the different
model realizations.

13 This assumption will be further numerically tested/validated in Chapters 6 and 7.
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(a) In case of radiators.
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(b) In case of floor heating.

Figure 5.6: The kurtosis and skewness of the distributions of the SSM elements ai,j , bi,k and ei,j of the nine considered
dwellings, either equipped with radiators or floor heating as heat emission system, as a function of the coefficient of variation.
Each dot represents (the kurtosis or skewness of) the distribution of a particular SSM element.
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Figure 5.7: The histograms and (default and shifted) fitted normal probability density functions for the SSM elements of the
A-matrix of the considered terraced, midsize, older (but renovated) dwelling equipped with floor heating.
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Figure 5.8: The histograms and (default and shifted) fitted normal probability density functions for the SSM elements of the
B-matrix of the considered terraced, midsize, older (but renovated) dwelling equipped with floor heating.
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Figure 5.9: The histograms and (default and shifted) fitted normal probability density functions for the SSM elements of the
E-matrix of the considered terraced, midsize, older (but renovated) dwelling equipped with floor heating.



66 UNCERTAINTY CHARACTERIZATION

Intermezzo 5.2

Preliminary assessment of the impact of the parametric uncertainty
on the MPC performance

Building further upon the analysis above, an important additional question to
be raised is how big the impact of the parametric uncertainty exactly is. To
already get a first indication about thisa, the impact of the obtained variation
in building model parameters on the thermal energy demand is investigated via
a Monte Carlo analysis. More specifically, an optimal space heating strategy is
determined by deterministic optimal control for the complete set of possible
building controller models that may be representative for a specific dwelling
with a fixed geometry, location and age. The aim is to investigate the variation
in overall yearly demand, as well as in dynamic behavior in terms of timing
and peak demand.

As an important remark, it should be stressed that this analysis was initially
performed for a two-zones nine-states building controller model (see [139] and
Appendix A). Since the results for the further reduced one-zone four-states
building model derived therefrom would reflect the same general trends, the
analysis was not repeated for this simpler model, and the original results for
the two-zones nine-states building controller model are discussed here. The
most important difference of this model compared to the one-zone four-states
model, is the explicit distinction between a day zone (DZ), consisting of all
rooms in which the occupants are active during the day, and a night zone
(NZ), mainly consisting of the bedrooms.

The formulation of the considered optimal control problem, aiming at
guaranteeing thermal comfort at minimal energy use, is equal to the
deterministic OCP formulation described in Chapter 2. The considered
optimization spans a whole yearb, with an additional week for initialization
purposesc. The time step is equal to one hour. The upper bound for the heat
inputs is taken equal to the nominal heat demand of the building; as such,
the heating system is assumed to be ideal, with a 100% efficiency and perfect
modulation. Perfect predictions of the disturbances are assumed, resulting in
a theoretical bound on the performance that any real controller can achieve.
The absence of a receding horizon approach with closed-loop disruptions is also
why the considered implementation is referred to as optimal control, rather
than as MPC. For the weather data (i.e., ambient temperature and solar heat
gains), measurement data of the year 2016 of the Vliet test building of the KU
Leuven Laboratory of Building Physics, located in Leuven (Belgium), are used.
For the occupancy behavior (i.e., internal heat gains and comfort requirements
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in terms of setpoint temperatures for different zones), profiles characterizing
a four-persons-household are generated with the help of the open web tool
StROBe (Stochastic Residential Occupancy Behaviour) of Baetens et al. [146].
The setpoint temperatures are used as a lower thermal comfort bound. The
upper thermal comfort bound, on the other hand, is of minor importance, since
the controller is compelled to stick to the lower temperature bound as it aims
to minimize the energy use.

Figure 5.10 illustrates how the different samples of the detached, midsize, older
(but renovated) (D_M_O) dwelling equipped with radiators, arbitrarily chosen
as an example out of the nine considered dwellings, result in different energy
demand profiles for a particular day (start of January). The different model
realizations entail different estimates of the time constants of the building,
thereby requiring a different heat supply to the radiator system, both in terms
of timing, and in terms of peak demand. The difference in peak demand
between the considered 100 possible dwelling realizations exceeds 4 kW for the
shown 24h-profile.

The yearly energy use for the 100 dwelling realizations of the D_M_O case
ranges from 9757 kWh to 26702 kWh, resulting in a CV of 0.22. For the other
considered dwellings equipped with radiators, the CV is higher; their variation
in yearly energy use is summarized in Figure 5.11.

The substantial variation in resulting space heating control strategies, both
in terms of dynamic effects and total yearly energy use, is a first indication
that the obtained uncertainty characterization is not accurate enough to be
directly used for deterministic building level control, and that an adapted
control strategy explicitly accounting for the uncertainty, and/or additional
data acquisition (e.g., via experts or learning) narrowing down the range of
feasible model parameters, is indeed needed.
a A more thorough and complete investigation of the impact of the parametric uncertainty

on the MPC performance can be found in Chapter 6.
b To ensure mathematical tractability, the full-year optimization is performed by considering

consecutive weekly optimizations, with a receding horizon of 7 days, and a prediction
horizon of 7.5 days (to impede end-of-horizon effects).

c For the one-week initialization problem, cyclic boundary conditions are imposed.
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Figure 5.10: 24h-profiles of the indoor temperature T DZ
ia and heat input to

the emission system Q̇DZ
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dwelling realizations of the considered detached, midsize, older (but renovated)
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solutions spanned by all 100 possible dwelling realizations.
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Figure 5.11: The distribution of the optimized yearly energy demand for space
heating for the nine considered dwellings when equipped with radiators.
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5.3 Weather forecast uncertainty

This section focuses on the uncertainty characterization of the weather forecasts.
Section 5.3.1 first gives some background about weather uncertainty modeling.
Section 5.3.2 then describes the considered uncertain variables and the applied
modeling approach, after which the uncertainty characterization resulting from this
approach is discussed in Section 5.3.3.

5.3.1 Background

In contrast to the building model parameters, there is a clear consensus on how
to model the weather forecast uncertainty, covering the ambient temperature and
solar heat gains, since it is unequivocally defined by the difference between the
forecast and the actual weather conditions. Despite this clear definition, the required
mathematical model cannot straightforwardly be found in literature. Most works
provide a clear description of the applied uncertainty characterization method, see
e.g., [44, 48, 53, 78,79], but the actual numerical values are often not disseminated.
Besides, even if the weather forecast uncertainty model is fully disclosed, see
e.g., [51, 67, 147], these models are often not readily reusable. Either, they are
very detailed, but case-specific, and hence not readily applicable to the considered
conditions, or they neglect important details, such as the time-dependency of the
stochastic characteristics. Also the (auto- and cross-)correlation of the forecast
errors is most often disregarded [80,81]. By using these simplified representations
of the weather forecast uncertainty, valuable information is omitted that could
otherwise be exploited by the SMPC to further improve its control strategy.

To overcome these issues, a thorough weather data analysis was performed by
Lambrichts [148], who compared the actual weather conditions recorded at the
Vliet test building of the KU Leuven Laboratory of Building Physics, located in
Leuven (Belgium), with the corresponding weather forecasts made for Leuven by
the Royal Belgian Meteorological Institute (RMI) for a full year. The forecast errors
collected by Lambrichts are further processed in this work, in order to come up with
an accurate characterization of the weather forecast uncertainty.

5.3.2 Modeling approach

The weather information required by the building controller model described in
Section 5.1 includes the ambient temperature, the ground temperature, and the solar
heat gains on the vertical planes along the four cardinal directions (see Equation
(5.1)). In this disseration, the considered uncertain variables are limited to the
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ambient temperature and the solar irradiance, since this information is relatively
easy to measure, and often available from local weather stations14 [126]. The
uncertainty on the ground temperature, on the other hand, is not considered in
this work, since the forecasts and actual measurement data required for a proper
uncertainty characterization are hard to obtain [148]. In fact, the temporal variation
of the ground temperature is not even considered, as argued in [126], since it is
unrealistic that local measurements can be actually used as an input to the building
controller model; rather, a constant value of 10 °C is used throughout this work.

To come up with an accurate uncertainty characterization of the selected weather
variables, the forecast errors collected by Lambrichts are further processed. First,
they are split up in different datasets according to the moment of the day when
the forecast is made, so that this impact on the forecast uncertainty can be taken
into account. Besides, within one dataset, an explicit distinction is made between
forecasts made for different look-ahead times, thereby acknowledging that the
uncertainty is likely to increase with an increasing forecast horizon. Since the
RMI provides forecasts with a prediction horizon of 60 hours, which are being
updated every 6 hours, four different datasets are distinguished, each containing
60 h-forecasts for both the ambient temperature and solar heat gains. Each of these
datasets is used to characterize the probability distributions of the weather forecast
errors in terms of their (time-dependent) mean and covariance, accounting for both
the auto-correlation and cross-correlation. This information is subsequently used to
constitute d̄k and Σr

dk
, which will take different values depending on the moment

of the day when the OCP is being solved, and on the considered prediction horizon.

As a final remark, it should be stressed that the mean value d̄k is determined
by the combination of the weather forecast and its corresponding mean forecast
error, and not merely by the forecast error itself. Hence, also weather forecasts are
needed. In this dissertation, these are obtained via a reverse engineering approach,
by generating correlated samples from the forecast error distributions, and by
subsequently subtracting them from the available measurement data at the Vliet
test building. Although this reverse engineering approach obviously would not work
in real-life applications requiring dedicated forecast algorithms, it suffices for the
setting considered here, without loss of generality, to illustrate the functionality of
the SMPC approach under discrepancies between forecasts and actual data.

5.3.3 Resulting uncertainty characterization

This section particularly focuses on two additional aspects supplementing the
detailed discussion of Lambrichts about (the time dependency of) the statistics of
14 The solar irradiance on the vertical planes along the four cardinal directions can either be directly

measured, or can be derived from global horizontal irradiance data via pre-processing [126,148].
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the weather forecast uncertainty in [148].

A first important contribution is the consideration of the auto- and cross-correlation
of the different forecast errors when determining the (co)variance, which was not
taken into account by Lambrichts, resulting in a more accurate representation
of the weather forecast uncertainty. The four derived covariance matrices, one
corresponding to each moment of the day when a forecast is being made (i.e., t =
0 h, 6 h, 12 h or 18 h), are made available online15 to maximize reusability.

The second contribution is a more nuanced view on the assumption of normality
of the forecast errors. To this end, the kurtosis and skewness of the different
distributions of the weather forecast errors are again considered, similar to what was
done for the building model parameter uncertainty. For each of the forecast error
distributions, corresponding to the combination of a particular moment of the day
when the forecast is made (i.e., t = 0 h, 6 h, 12 h or 18 h) and a particular lookahead
time (i.e., t = 1 h → 60 h), the kurtosis and skewness are plotted in Figure 5.12,
but now as a function of the standard deviation, instead of as a function of the CV,
since the latter is an inappropriate measure for average values amounting to zero.
Given that the sample size is now large enough (i.e., N > 300) for the kurtosis and
skewness to give a direct indication about normality, as explained in Intermezzo 5.1,
the region of quasi-normality is explicitly indicated by the grey shaded region. From
the figure, it is clear that - as already shown by Lambrichts - the forecast errors of the
ambient temperature are mostly (quasi-)normally distributed. However, this does
not always hold for the solar heat gains, where primarily the errors of forecasts made
at the beginning or the end of the day do not follow a normal distribution. However,
as can be seen from Figure 5.12, these specific forecast errors are also characterized
by a small dispersion (i.e., small standard deviation), thereby restraining the adverse
impact of assuming a normal distribution anyway. These observations again suggest
that the assumption of normality for the states and inputs might be reasonable;
this assumption will be further numerically tested/validated in Chapters 6 and 7.

5.4 Occupant behavior forecast uncertainty

This section focuses on the uncertainty characterization of the occupant behavior
forecasts. We again first start with some background about the modeling of occupant
behavior forecast uncertainty in Section 5.4.1. Section 5.4.2 then describes the
considered uncertain occupant-related variables, and how this uncertainty can be
modeled, after which the resulting uncertainty characterization is discussed in
Section 5.4.3.
15 https://gitlab.kuleuven.be/u0117233/weather-forecast-uncertainty.git.

https://gitlab.kuleuven.be/u0117233/weather-forecast-uncertainty.git
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Figure 5.12: The kurtosis and skewness of the distributions of the forecast errors of the ambient temperature, and the solar
irradiance on the vertical planes along the four cardinal directions. Each dot represents (the kurtosis or skewness of) the
distribution of a particular error, corresponding to the combination of a particular moment of the day when the forecast is
made and a particular lookahead time. The grey shaded area indicates the region of quasi-normality [145].
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5.4.1 Background

The uncertainty on the occupant-related disturbance forecasts, can be defined
in the same way as the weather forecast uncertainty. However, finding and/or
defining a proper uncertainty characterization is even more difficult, due to the
complex stochastic nature of human behavior, which is determined by many personal
factors [149]. Dedicated approaches can be found in literature, implementing
rigorous occupancy models combined with real-time, on-site measurements. This is
for example done by Mady et al. [150], who implemented a stochastic occupancy
model based on Markov chains as an input of an MPC algorithm, where the
computation of the occupancy sequence is revisited at every time step. Another
valuable approach is the learning-based approach, see e.g., [78], where the statistics
of the uncertainties are continuously and dynamically inferred from real data.

5.4.2 Modeling approach

The occupant-related variables considered by the building controller model described
in Section 5.1 are the thermal comfort requirements in terms of setpoint
temperatures, and the equipment-related and metabolic internal heat gains. In
this dissertation, the temperature setpoints are assumed to be deterministic, and
hence, fixed and known. This is motivated by the findings of Guerra et al. [149],
who observed that in dwellings with programmable thermostats, occupants take
fewer deliberate actions, and leave the control to the thermostat. Nevertheless,
if desired, the uncertainty on the setpoints can be straightforwardly included by
also writing xmin

k and xmax
k as stochastic quantities in Equation (4.13), and by

treating x̃∗
k = x̃k − x̃min

k or x̃∗
k = x̃k − x̃max

k (rather than x̃k) as a stochastic
variable in the elaboration discussed in Chapter 4. The internal heat gains, on the
other hand, are considered as stochastic variables, and hence, require an uncertainty
characterization.

Although the development of detailed occupancy forecast models are out of scope
of this thesis, the working principle of such an approach can be imitated via a
workaround as follows. With the help of the open web tool StROBe (Stochastic
Residential Occupancy Behaviour)16 [146], an explicit occupancy modeling toolbox
developed at the KU Leuven Building Physics Section, a yearly profile for the
internal heat gains with a one hour time step can be generated17. This yearly profile
16 Note that in this work, an updated StROBe version is used, extended by Jansen, to include

the metabolic heat rates in addition to the heat gains caused by appliances and lighting; see
https://github.com/jelgerjansen/StROBe/tree/output_occupancy_profiles.

17 Although an explicit occupancy model is indeed available in the form of the open-source StROBe
toolbox, it is out of scope of this work to incorporate this toolbox as an integral part of the
MPC framework.

https://github.com/jelgerjansen/StROBe/tree/output_occupancy_profiles
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is considered as a proxy for an actually measured profile, and is subsequently used
to determine an average daily18 profile and associated variance, determined by the
deviations from the average daily profile. The average daily profile can then be
used as a forecast for the internal heat gains (with a zero mean forecast error), and
as such can be directly incorporated in d̄k; the (square root of the) variance, on
the other hand, can be used to constitute Σr

dk
.

It should be stressed that this approach is based on a very important and limiting
assumption, being that direct measurements of the internal heat gains are available,
which are in practice difficult to obtain. A more plausible approach would be to
use the domestic electricity use, available from digital/smart meter data, as an
alternative input for the internal heat gains, as is for example suggested by Reynders
et al. [126]. However, in this dissertation, we are bound to the set-up of the selected
theoretical building model in Section 5.1, where the internal heat gains, rather than
the electricity use (or any other suitable alternative), is used as an occupancy-related
disturbance input.

5.4.3 Resulting uncertainty characterization

Figure 5.13 shows an example of the daily average profile and associated uncertainty
(in terms of the standard deviation) of the internal heat gains derived from a
StROBe profile for a four-persons-household, consisting of two full-time employed
adults and two school-age children.

The approach to derive the uncertainty characterization of the internal heat gains
fundamentally differs from the approach used for the building model parameter
uncertainty and weather forecast uncertainty. Where the latter is based on a
rigorous and extensive data-analysis, the uncertainty on the internal heat gains is
merely a representation of the variation induced by the underlying modeling tool
and its associated assumptions, due to the lack of actually measured profiles19. As
such, it can also not be used to further consolidate the assumption that the states
are normally distributed. Nevertheless, it should be stressed that the imprecise
uncertainty characterization of the internal heat gains does not detract from the
general purpose of this thesis, which is the development and assessment of an
SMPC strategy that is able to cope with different types of discrepancies between
the actual situation and what the model assumes.
18 The reason why a daily average is considered, without considering more details by for example

making a distinction between weekdays and weekend days, is because the occupancy profiles
generated by the considered version of the StROBe toolbox, and the profiles for the metabolic
heat gains derived therefrom (but not the equipment-related heat gains), consist of a one-week
profile (which depends on the household characteristics) repeated 52 times.

19 The statistics used in the StROBe toolbox to generate profiles are nevertheless based on actual
data regarding household activity, collected via surveys [146].
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Figure 5.13: An example of the forecast (i.e., the daily average profile, with a one
hour time step) and associated uncertainty (i.e., the standard deviation) of the
internal heat gains, derived from a StROBe profile of a four-persons-household,
consisting of two full-time employed adults and two school-age children.

5.5 Conclusion

As a second part of the SMPC development, this chapter derives a mathematical
model of the model parameter and forecast uncertainty, serving as an essential part
of the stochastic OCP formulation.

The model parameter uncertainty is derived with the help of the probabilistic building
characterization method of De Jaeger et al. [62, 63]. This method generates a
statistical characterization of the building envelope based on the building geometry,
location and construction year, without intensive on-site data collection. By using
the theoretical physics-based modeling approach of Reynders et al. [132], this
information is subsequently converted into a reduced order one-zone four-states
RC model. The parametric uncertainty can be derived in terms of the mean
and (co)variance of (the inverse of) the RC parameters, as well as in terms of
the reference SSM ¯̄A, ¯̄B and ¯̄E, and associated covariance ΣA,B,E, where the
latter can be directly incorporated in the stochastic OCP formulation discussed
in Chapter 4. The presented approach leads to a worst-case estimation of the
parametric uncertainty, acknowledging the possible lack of information about the
building envelope, e.g., in case the older, existing building stock is involved. This is
fundamentally different from what is done in current research, where the uncertainty
characterization is typically derived based on detailed (building-specific) information
and/or experts’ knowledge.
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The uncertainty characterization is applied to nine disparate, (partly) renovated
dwellings. Analysis of the results of the uncertainty characterization shows that
the proposed methodology results in rather large distributions for the thermal
properties. A coefficient of variation in the order of 0.3 is recognized as a lower
bound for all U-values for all considered dwellings. The uncertainty on the U-
values of the ground floor and windows is found to fluctuate around the same
value, whereas the uncertainty on the U-values of the external walls and roof
can vary considerably. Since the exact set of building model parameters derived
from the building envelope characteristics depends on the imposed building model
structure, the most important takeaway from the parametric uncertainty analysis is
the insight in how the uncertainty on the building thermal properties propagates
into the RC parameters, rather than exact values for the parametric uncertainty.
It is observed that the uncertainty is predominantly transferred to the external
resistances containing the insulation layer; more specifically, for the ground floor
and windows, the CV decreases when moving from U to 1/R, whereas for the
external walls and roof, it increases. Finally it is also shown that the conversion
into a discrete-time SSM with a time step of one hour results in distributions that
can be roughly approximated by a normal distribution for the gross of the state
space matrix elements, which substantiates the normality assumption imposed in
Chapter 4.

The forecast uncertainty encompasses the uncertainties on the weather conditions
and on the occupant-behavior, which together determine the mean d̄k and (the
root form of) the covariance Σr

dk
.

To come up with a substantiated estimate of the weather forecast uncertainty, and
more specifically of the uncertainty on the forecasts of the ambient temperature and
solar irradiance, we build further upon the work of Lambrichts [148], who detailedly
compared the actual weather conditions recorded at the Vliet test building of the
KU Leuven Laboratory of Building Physics, located in Leuven (Belgium), to the
corresponding weather forecasts made by the Royal Belgian Meteorological Institute
(RMI) for a full year. Based on this information, four covariance matrices (one
for each moment of the day when a prediction is being made) are derived, taking
into account the auto- and cross-correlation of the forecast errors, which are often
disregarded.

In contrast to the building model parametric uncertainty and the weather forecast
uncertainty, the uncertainty on the occupant-related disturbance forecasts, and on
the internal heat gains in particular, is much harder to characterize, due to the
complex nature of human behavior, but also due to the lack of actually measured
profiles. As a workaround, a yearly profile, simulated with the open web tool
StROBe, is used to deduce a daily average profile and associated variance, to
nevertheless get a loose representation of the occupancy-related uncertainty to be
incorporated in d̄k and Σr

dk
. Although it is acknowledged that this uncertainty
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characterization is imprecise, it does not detract from the general purpose of this
thesis, which is the development and assessment of an SMPC strategy that is able
to cope with different types of discrepancies between the actual situation and the
model assumptions.

Now that all relevant uncertainties are characterized, the development of the SMPC
strategy is complete. The next important step is to assess its performance, thereby
appraising its potential added value. This is the focus of the next chapters.
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SMPC assessment at building
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Chapter 6

Optimal control under
uncertainty of a TCL in an
individual building

RQ 3: Does the SMPCap strategy guarantee a thermal comfort improvement
compared to the current-practice DMPC strategy, and the state-of-the-art SMPCa

strategy only accounting for additive uncertainties, and at what cost is this
improvement obtained?

This chapter is based on A. Uytterhoeven, R. Van Rompaey, K. Bruninx, and L.
Helsen, “Chance Constrained Stochastic MPC for Building Climate Control Under
Combined Parametric and Additive Uncertainty,” submitted to Journal of Building
Performance Simulation, July 2021.

The goal of this chapter is to investigate the effectiveness of the proposed SMPC
strategy for optimal building climate control under uncertainty. The main focus is
on the attainable thermal comfort improvement by hedging against additive as well
as parametric uncertainties in an optimal control context, and on the related energy
costs. Section 6.1 discusses the general set-up of the performance assessment.
Section 6.2 then introduces the specific case study used to evaluate the performance,
for which the results are discussed in Section 6.3. Finally, the most important
conslusions are summarized in Section 6.4.

81
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6.1 Optimal control performance assessment method

The optimal control performance assessment is done based on two performance
metrics, being the specific thermal energy demand (TED), and the thermal comfort
violations (TCV).

The total specific thermal energy demand is determined by the heat input delivered
by the heat supply system, expressed relative to the net floor area of the building.

TED =
∑

k=0...K

ūk∆t

Afloor
(6.1)

The thermal comfort is determined by the condition of the state representing the
indoor air temperature xi,k = Tia,k, with respect to the imposed lower and upper
temperature bounds. The implications of this point of view regarding the assessment
of thermal (dis)comfort are further discussed in Intermezzo 6.1.
Because of the particular setting considered in this chapter, focusing on optimal
space heating at minimal energy use, the controller is compelled to stick to the lower
temperature bound, implying that the upper bound is of minor importance here1.
Therefore, the violations of the upper thermal comfort bound are not explicitly
considered in Equation (6.2).

TCV =
∑

k=0...K

max(xmin
i,k − x̄i,k, 0)∆t (6.2)

Intermezzo 6.1

The simplified assessment of thermal (dis)comfort
It is important to stress that the assessment of thermal comfort in this
dissertation is based on some simplifying assumptions.

First, as already discussed in Section 5.1, the thermal comfort is assessed based
on the indoor air temperature, instead of on the operative temperature, which
is used in comfort standards [83]. This simplification is required because the

1 Also in Chapter 7, again considering a controller aiming for an energy use minimization in a
space heating context, the upper thermal comfort bound will be neglected. However, be aware
that this simplification is not generally acceptable. Indeed, if the objective is not to minimize
energy use, as is for example the case in Chapter 8 and Chapter 9, both the lower and upper
thermal comfort bounds play an important role, as they determine the valid operating region for
the controller, and as such, the available flexibility.
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radiative temperatures of the building components are not explicitly considered
in the chosen building model (see Section 5.1). Consequently, the impact
of the temperatures of the surfaces surrounding the occupants on thermal
comfort is not taken into account. This hampers a profound comparison of
the thermal comfort achieved by radiators versus by floor heating, since the
impact of the difference in temperature of the heat emission system itself (due
to a different water supply temperature), as well as in temperature of the
surrounding construction elements (due to a different loading of the building
thermal mass), is neglected [151].

Second, thermal discomfort is based on the cumulative violations of the imposed
thermal comfort bounds in this dissertation (see Equation (6.2)); the impact
of the duration, frequency and severeness of the temperature violations is not
further differentiated. Also the impact of the rate of change of the temperature
profile (even when not exceeding the comfort bounds) on the perceived thermal
comfort, is neglected.

Finally, a wide variety of other factors which affect thermal comfort in practice,
such as humidity level, air velocity, metabolic factors, clothing level, etc.
[83, 151], are not further considered.

All statements regarding thermal (dis)comfort mentioned throughout this
dissertation should be interpreted in light of these simplifications.

To obtain a profound insight in the potential added value of the proposed SMPC
approach compared to the state-of-the-art, its control performance is compared to
the following control strategies:

• Performance Bound (PB) MPC PBMPC assumes perfect knowledge of
the system dynamics and future disturbance realizations in the OCP, i.e., the
uncertainty is absent and the stochastic quantities are equal to their actual,
future values. Hence, the system is not subject to closed-loop perturbations.
This is not a controller, but rather a theoretical concept, that can serve as a
benchmark for other control strategies; it illustrates the best possible (but
not actually attainable) MPC performance.

• Deterministic (D) MPC DMPC, also known as certainty equivalence
MPC, considers the deterministic OCP formulation (2.1) without uncertainty
anticipation, i.e., the chance constraints are solved for ϵ = 0.5, and all
predictions are assumed to be correct (i.e., equal to certain). Uncertainties
are nevertheless present in the closed-loop simulations, causing the actual
model parameters and disturbances to differ from the nominal values assumed
in the OCP. This strategy follows common practice.



84 OPTIMAL CONTROL UNDER UNCERTAINTY OF A TCL IN AN INDIVIDUAL BUILDING

• Stochastic MPC SMPC explicitly accounts for the uncertainties in the OCP
formulation (4.21), in order to limit the detrimental impact of the closed-loop
perturbations. A distinction is made between SMPC only accounting for
additive (disturbance forecast) uncertainty, SMPCa, which is the current
state-of-the-art strategy for building climate control, and SMPC taking
into account both additive and parametric (model) uncertainty, SMPCap,
corresponding to the proposed novel strategy.

The difference in information used by the different controllers in the OCP formulation
is summarized in Table 6.1.

Table 6.1: The information used in the OCP formulation by the different MPC
strategies for which the MPC performance regarding building climate control under
uncertainty is compared.
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PBMPC Weather forecast x
Occupant behavior forecast x
Building model x

DMPC Weather forecast x
Occupant behavior forecast x
Building model x

SMPCa Weather forecast x x
Occupant behavior forecast x x
Building model x

SMPCap Weather forecast x x
Occupant behavior forecast x x
Building model x x
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Figure 6.1: The general working principle of MPC applied to a TCL. Adapted
from [82].

To assess the control performance by simulations, all MPC strategies are
implemented in closed-loop, using a receding horizon, as explained in Section 2.1
and illustrated by Figure 2.1, which is repeated here for convencience in a slightly
adapted form as Figure 6.1. Since no model-structure uncertainty is considered,
the emulator model representing the actual system, and used for the state updates,
is characterized by the same model equations, but different model parameters, as
the controller model used in the OCP formulation (except for the PBMPC strategy,
where the controller and emulator model are equal). Perfect state updates and full
state information are assumed, to avoid additional interference of noise introduced
by a state estimator. Thereby, the impact of measurement errors, system errors,
and the like are ruled out. As such, it is possible to unequivocally assess how the
different MPC strategies (merely) cope with the stochasticity of the parameters of
the controller model and of the disturbance forecasts. For the state updates, all
controllers use the same information, being the actual building model parameters,
the actual weather realizations and the actual internal heat gain realizations.



86 OPTIMAL CONTROL UNDER UNCERTAINTY OF A TCL IN AN INDIVIDUAL BUILDING

Table 6.2: The most important characteristics regarding construction year (known),
geometry (known) and thermal quality (uncertain) of the terraced, small, older (but
renovated) building for which the MPC performance for building climate control
under uncertainty is investigated.

Construction year [-] <1950
Detachment level [-] Terraced
Net floor area [m2] 129

Protected volume [m3] 406
Ground floor area [m2] 87

Façade area [m2] 80
Roof area [m2] 95

UA building [W/K] 130-668

6.2 Case study

In this chapter, the TCV and TED of the different MPC strategies are evaluated
by closed-loop simulations for a residential dwelling for one week, during the first
seven days of January 20162. All controllers pursue an energy use minimization,
and consider a time step of 1 h and a prediction horizon of 60 h, restricted by the
characteristics of the available disturbance forecasts. For the SMPC approaches,
different risk-averseness levels regarding thermal comfort (1 − ϵ = 0.6 → 0.999) are
considered, in order to fully cover their possible operating region.

The considered residential building in this study is selected from the set of heavy-
weight dwellings for which the parametric uncertainty is studied in detail in
Chapter 5. Here, the terraced, small, older (but renovated) (T_S_O) dwelling
is considered, characterized by the largest parametric uncertainty. The most
important characteristics are repeated in Table 6.2. Both radiators and floor heating
are considered separately as installed heat emission system.

The controller model used to represent this building in the OCP formulation, as
explained in Section 5.2, is either the reference SSM ¯̄A, ¯̄B, ¯̄E (in case of the
DMPC, SMPCa or SMPCap strategy), combined with the corresponding covariance
matrix ΣA,B,E for the SMPCap strategy, or the emulator model (in case of the
2 These closed-loop simulations are preceded by an initialization procedure, where the starting

values for the different states are determined by solving an OCP with cyclic boundary conditions
for the states. The prediction horizon for the initialization is chosen equal to the maximum
number of full days (being two days) that fits in the actual prediction horizon, to minimize the
impact of presuming cyclic boundary.
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PBMPC strategy), where the emulator model corresponds to a sampled SSM As,
Bs, Es. To maximize insight, the performance assessment considers different
emulator models, representing different cases of model uncertainty. Seven different
SSMs, each representing a possible realization of the T_S_O building, are selected
from the total set of 100 possible building controller models obtained in Section 5.2;
their characteristics are summarized in Table 6.3. The first one is the reference, with
the smallest WDM (Equation (5.2)); this in fact corresponds to the case without
model uncertainty. Then, two building samples with a moderate WDM are selected,
one with a smaller nominal heat demand3, Q̇nom, than the reference building, and
one with a larger one. The same is done for two building samples with a large WDM.
Finally, also the building samples with the overall smallest and largest nominal heat
demand are included, so that also the ’best-case’ and ’worst-case’ possible building
realizations are considered in the analysis. It should be stressed that, depending
on the heat emission system, the WDM ranking of the sampled SSMs is different.
Hence, the reference model in case of radiators and in case of floor heating differs.
For arguments of convenience, the other selected SSM samples are nevertheless
chosen to be the same, independent of the installed heat emissions system, since
they reflect a moderate or large model uncertainty in either case.

The upper thermal power bound to be used as a constraint in the OCP formulation
is determined by the capacity of the heat supply system in place, which is assumed
to be sized according to the nominal heat demand of the building. In case model
uncertainty is being considered (i.e., in all cases except for the PBMPC strategy),
the sizing is done based on the reference model and takes into account a safety
factor of 1.5, to acknowledge that there may exist a signficant discrepancy between
the reference model and real-world4.

For the actual ambient temperature and solar heat gains realizations, measurement
data of the year 2016 are used, recorded at the Vliet test building of the KU Leuven
Laboratory of Building Physics, located in Leuven (Belgium). For the actual internal
heat gain realizations, a StROBe profile of a four-persons-household, consisting of
two full-time employed adults and two school-age children, is used. As explained in
Section 5.4.2, the thermal comfort requirements are considered to be fixed. In this
study, a minimum temperature of 20 °C is requested during daytime (i.e., 07:00 -
23:00), combined with a night setback of 16 °C. Note that the maximum allowed
temperature is of minor importance in this case study, since a week in January is
3 The nominal heat demand is quantified following NBN EN 12831, considering an extremely

cold day (according to the Belgian climate) with an outside temperature of −8 °C, a ground
temperature of 10 °C, and an indoor temperature of 20 °C [137].

4 The point of view adopted in this dissertation differs from the one adopted in current practice,
where one typically assumes that a sufficiently accurate building model is available. To account
for the impact of the significant parametric uncertainty in this work, a high safety factor is used
on top of the worst-case static design conditions.



88
O

PT
IM

A
L

CO
N

T
RO

L
U

N
D

ER
U

N
CERTA

IN
T

Y
O

F
A

T
CL

IN
A

N
IN

D
IV

ID
U

A
L

B
U

ILD
IN

G

Table 6.3: The most important characteristics distinguishing the seven considered sampled SSMs of the terraced, small,
older (but renovated) building, either equipped with radiators or with floor heating, for which the MPC performance for
building climate control under uncertainty is investigated.
Rather than mentioning the actual WDM value, the WDM is represented by an index, ranging from 1 for the reference building, to 100 for the
realization that differs the most from the reference.

In case of radiators In case of floor heating

Sample Q̇nom

[W]
WDM index

[-]
UA building

[W/K]
Q̇nom

[W]
WDM index

[-]
UA building

[W/K]
A 4080 (min) 81 130 4080 (min) 67 130
B 6334 95 214 6334 95 214
C 8582 50 360 8582 55 360

REF 9033 1 295 9371 1 400
D 11996 53 457 11996 48 457
E 11303 100 480 11303 89 480
F 14959 (max) 96 668 14959 (max) 98 668
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chosen where the controller will try to stick to the lower temperature bound as it
tries to minimize the energy use.

The expected value and covariance of the disturbance forecasts are derived by
applying the methods described in Chapter 5. Since the proposed uncertainty
characterization method for the occupant behavior forecast is not underpinned by
actual data5, and turns out to result in a very large variance, the control performance
assessment is done twice, one time with and one time without uncertainty on the
internal heat gains, where the truth is expected to lie somewhere in between. By
considering these two cases, the impact of the balance between the additive and
parametric uncertainty is taken into account, allowing for a more nuanced view on
the added value of the SMPCap strategy.

6.3 Results and discussion

The discussion of the results focuses on the attainable thermal comfort improvement
by hedging against additive as well as parametric uncertainties in a building climate
control context, and on the related costs. This cost is mainly assessed in terms of
energy use in Section 6.3.1, but also the computational effort associated with the
more complex SMPCap strategy is briefly touched upon in Section 6.3.2.

6.3.1 Thermal comfort improvement and associated increase
in energy use

As we will illustrate below, the SMPCap approach yields thermal comfort
improvements at the expense of limited increases in energy use. These gains
are most prominent in buildings equipped with floor heating and characterized by
the combination of a large model uncertainty and a large nominal heat demand,
and this at a limited cost.

Figures 6.2 and 6.3 summarize the performance, in terms of thermal comfort
violations and specific thermal energy demand, of the PBMPC, DMPC, SMPCa

and SMPCap strategies, for the first week of January 20166. For each considered
realization of the studied T_S_O building, either equipped with radiators (Figure
5 In contrast to the uncertainty characterization of the building model parameters and weather

forecasts, wich are both based on a rigorous and extensive data-analysis.
6 The results shown in this chapter focus on the overall performance in terms of thermal comfort

violations and specific thermal energy demand. A more detailed analysis of the underlying
time-dependent system behavior associated with the different MPC strategies will be discussed
in Section 7.3.
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(a) With uncertainty on the occupant behavior.

(b) Without uncertainty on the occupant behavior.

Figure 6.2: The trade-off curves of the thermal comfort violations versus the specific thermal energy demand during the first
week of January, for different possible realizations of the terraced, small, old building, equipped with radiators.
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(a) With uncertainty on the occupant behavior.

(b) Without uncertainty on the occupant behavior.

Figure 6.3: The trade-off curves of the thermal comfort violations versus the specific thermal energy demand during the first
week of January, for different possible realizations of the terraced, small, old building, equipped with floor heating.
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6.2) or with floor heating (Figure 6.3), the figures visualize i) the best-case
(theoretical) control performance of the PBMPC strategy (★), guaranteeing no
thermal comfort violations (TCV = 0) at the lowest energy use, ii) the worst-case
control performance of the DMPC strategy (✶), and iii) the intermediate control
performance of the SMPCa and SMPCap approaches, subject to a trade-off between
TCV and TED, depending on the value of the risk-averseness level regarding thermal
comfort 1 − ϵ. For these intermediate cases, the horizontal distance with respect
to the DMPC strategy depicts the realized thermal comfort improvement, whereas
the vertical distance depicts the increase in energy use required to accomplish the
enhanced thermal comfort. Figures 6.2 and 6.3 each time show the results of the
two different performance assessments proposed in Section 6.1: one where the
uncertainty on the occupant behavior forecasts is considered (Figures 6.2a and
6.3a), and one where this uncertainty is ignored (both in the OCP and in the
closed-loop simulations) (Figures 6.2b and 6.3b)).

From both Figure 6.2 and 6.3 it is immediately clear that there is considerable value
in switching from current-practice to stochastic approaches (either an SMPCa or
SMPCap strategy), because of the clear reduction in thermal comfort violations,
indicated by the horizontal span of the trade-off curves. This thermal comfort
gain is most pronounced for the cases with a large model uncertainty (indicated
by a high WDM index, see Table 6.3), where the nominal heat demand of the
considered building realization is larger than that of the reference model, i.e.,
especially for samples E and F, and also sample D in case of floor heating. Indeed,
for these cases, the error induced by disregarding the uncertainties in the DMPC
approach is the largest, because of the combined effect of the incorrect forecasts, the
underestimation7 of the required heat relative to the reference model considered in
the OCP, and the incorrect assessment of the moment this heat needs to be delivered
(due to an incorrect appraisal of the building dynamics). Nevertheless, also for the
other samples, i.e., samples A, B and C, a considerable improvement of thermal
comfort is possible, especially in case of radiators. In case of floor heating, on the
other hand, the combination of the large time constants and the overestimation
of the heat demand by using the reference model as a controller model for these
building samples, having a smaller actual nominal heat demand, already implicitly
triggers a considerable amount of anticipation, even without actually hedging
against the impact of possible uncertainties via a stochastic approach; indeed, the
overestimation of the heat demand results in a large initial heating peak, after
which the indoor temperature is situated sufficiently far away from the thermal
comfort bounds (under the condition that the thermal comfort band is sufficiently
wide), allowing the indoor temperature to float freely for multiple time steps, even
7 A slight overestimation of the heat demand is less of a problem (of course only if combined

with a proper estimation of the building dynamics), since this steers the indoor temperature
further away from the minimum bound, thereby implicitly hedging against the impact of possible
downward perturbations causing a temperature drop.
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under the influence of possible (either upward or downward) uncertainty realizations.
Hence, there is little thermal comfort improvement possible by switching to a
stochastic approach for building realizations with a small nominal heat demand
equipped with floor heating. However, for building realizations with a large nominal
heat demand equipped with floor heating, a correct uncertainty anticipation is all
the more important, exactly because of the large time constants. This is confirmed
by the very large thermal comfort gains realized by the stochastic approaches in
this case, as illustrated by Figure 6.3, which significantly exceed the comfort gains
realized for buildings equipped with radiators (as also indicated by the difference in
scale of the x-axis of Figures 6.2 and 6.3).

A large part of the thermal comfort improvement of the stochastic approaches
(either an SMPCa or SMPCap strategy) can be attained at the cost of a limited
increase of energy use, as indicated by the gentle, almost flat, slope of the trade-off
curves. For all building samples, irrespective of the installed heat emission system,
90% of the thermal comfort improvement relative to the DMPC strategy can be
realized with an increase of at most 9% in energy use. However, for larger risk
averseness levels (1 − ϵ ≥ 0.9), the trade-off between enhanced thermal comfort
and additional energy use becomes more pronounced.
Overall, for the dwelling realizations equipped with radiators, the increase in energy
use of the SMPCa strategy relative to the DMPC strategy for the case with the
occupant behavior forecast uncertainty included ranges between 0.6% (samples
D, E, F, 1 − ϵ = 0.6) and 16.7% (sample A, 1 − ϵ = 0.999, but with a relative
TCV decrease compared to the DMPC strategy of -94.3%), whereas the relative
energy use increase of the SMPCap approach ranges between 0.7% (samples D, E,
F, 1 − ϵ = 0.6) and 21.6% (sample A, 1 − ϵ = 0.999, with complete elimination of
thermal discomfort). It should nevertheless be stressed that the SMPCap strategy
can already guarantee zero thermal discomfort at a relative energy use increase
of 16.2% for sample A and 1 − ϵ = 0.99; further increasing the risk-averseness
level actually results in an unnecessarily conservative control strategy, that does not
realize any further thermal comfort improvement, but nevertheless requires more
energy. For the case without occupant behavior forecast uncertainty, the relative
energy use increase of the SMPCa approach compared to the DMPC approach
ranges between -1.1%8 (sample A, 1 − ϵ = 0.6) and 4.2% (sample A, 1 − ϵ = 0.999,
but with a relative TCV decrease compared to the DMPC strategy of -91.9%),
whereas the relative energy use increase of the SMPCap approach ranges between
-0.3% (samples A, B, 1 − ϵ = 0.6) and 13.4% (sample A, 1 − ϵ = 0.999, with
complete elimination of thermal discomfort); the lower energy use compared to the
case with uncertainty on the occupant behavior forecast is to be expected, since
8 The negative value of the relative energy use increase of the SMPC approach compared to the

DMPC approach indicates that the energy use due to the closed-loop corrections of the DMPC
approach outweighs the energy use due to the more conservative (anticipating) control strategy
of the SMPC approach in this particular case.
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the omission of part of the uncertainty results in a lower constraint tightening level.
For the dwelling realizations equipped with floor heating, on the other hand, the
increase in energy use of the SMPCa strategy relative to the DMPC strategy for
the case with the occupant behavior forecast uncertainty included ranges between
0.6% (sample F, 1 − ϵ = 0.6) and 17.7% (sample A, with complete elimination
of thermal discomfort). It should again be stressed that the latter percentage is
actually an overestimation, since it corresponds to an overly conservative strategy;
if only considering the cases that still realize an actual further thermal comfort
improvement when increasing the risk-averseness level, the relative energy use
increase remains limited to 8.7% (sample REF, 1 − ϵ = 0.999). The relative energy
use increase of the SMPCap approach ranges between 0.7% (sample F, 1 − ϵ = 0.6)
and 28.1% (sample A, 1 − ϵ = 0.999); if again neglecting the overly conservative
cases, the relative TED increase only amounts to 10.0% (sample E, 1 − ϵ = 0.999).
For the case without occupant behavior forecast uncertainty, the relative increase
in energy use of the SMPCa strategy compared to the DMPC strategy ranges
between 0.2% (sample E, 1 − ϵ = 0.6) and 7.6% (sample A, 1 − ϵ = 0.999, with
complete elimination of thermal discomfort), or between 0.2% and 3.7% (sample
REF, 1 − ϵ = 0.999, with a relative TCV decrease compared to the DMPC strategy
of -97.4%) when omitting the overly conservative cases. Analogously, the relative
energy use increase of the SMPCap approach ranges between 0.6% (sample E,
1 − ϵ = 0.6) and 24.4% (sample A, 1 − ϵ = 0.999, with complete elimination of
thermal discomfort), or between 0.6% and 8.1% (sample D, 1 − ϵ = 0.999, with
complete elimination of thermal discomfort), respectively.

The relative TED increase and TCV decrease of the stochastic approaches compared
to the DMPC approach for all building samples and risk-averseness levels are depicted
in the subfigures on the right hand side of Figures 6.2 and 6.3. Interestingly, in each
of these subfigures, all relative trade-off curves of all different building samples more
or less coincide; only the curves of samples A and F, being the building samples with
the smallest and largest nominal heat demand, show a slightly deviating behavior.
Hence, the trends followed by the relative trade-off curves suggest the existence of
a rule of thumb when assessing the associated energy cost of an envisioned thermal
comfort improvement.

When focusing on the mutual comparison of the two stochastic approaches, SMPCa

and SMPCap, a more detailed analysis of Figure 6.2 shows that for the bulk of
the possible building realizations equipped with radiators, the added value of the
SMPCap strategy compared to the SMPCa strategy is limited. If thermal comfort
improvements by moving from the SMPCa strategy to the SMPCap strategy of
less than 1 K h over an entire week are deemed insufficient, the SMPCap approach
with uncertainty on the occupant behavior forecast included realizes a considerable
thermal comfort improvement only for sample F, reducing the TCV from 3.3 K h to
1.0 K h for 1−ϵ = 0.999. When increasing the relative share of the model uncertainty
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relative to the additive uncertainty, by omitting the uncertainty on the occupant
behavior forecast, the improvement brought about by the SMPCap strategy for
sample F is significantly amplified, with a TCV reduction from 11.5 K h to 2.1 K h, as
shown in Figure 6.2b. Moreover, also the thermal comfort improvement for sample
E becomes substantial, with a TCV reduction from 1.6 K h to 0.0 K h. The reason
why the SMPCap strategy is hampered to fully distinguish itself from the SMPCa

strategy in the considered case with radiators, is threefold, namely i) because of
the small time constants associated with radiators, ii) because the stochastic OCP
is re-solved for every subsequent time step, and iii) because the heat supply system
has sufficient heating capacity available (due to the imposed safety factor of 1.5).
These three aspects all obviate the added value of a correct uncertainty anticipation,
which is the most important asset of the SMPCap approach.
When comparing the SMPCa and SMPCap strategies for the building realizations
equipped with floor heating, shown in Figure 6.3, the picture completely changes.
In this case, due to the larger time constants associated with floor heating, the
SMPCap strategy can make the most of its enhanced uncertainty anticipation to
improve thermal comfort under uncertainty. Again considering thermal comfort
improvements by moving from the SMPCa strategy to the SMPCap strategy of less
than 1 K h over an entire week as insufficient, the SMPCap strategy is now able to
guarantee a significant improvement in thermal comfort for sample F compared to
the SMPCa strategy, shifting the TCV from 8.3 K h over an entire week towards
2.5 K h for 1 − ϵ = 0.999. When omitting the uncertainty on the occupant behavior
forecast, the thermal comfort improvement becomes even more substantial, with
a TCV reduction for samples D, E and F from 1.2 K h, 3.5 K h and as much as
31.3 K h, towards 0.0 K h, 0.1 K h and 7.3 K h, respectively.

These results show that despite the simplifying assumptions introduced in Chapter 4
(such as the omission of the products of stochastic variables, and the assumption that
every distinct state and input is characterized by a marginal normal distribution) to
derive the open-loop stochastic OCP formulation, the developed SMPCap approach
is able to guarantee improved thermal comfort compared to the state-of-the-art in
closed-loop simulations. The impact of these assumptions could be more profoundly
investigated by performing Monte Carlo simulations, to check whether the thermal
comfort constraints are actually met by a probability of 1 − ϵ. However, this would
require a large number of closed-loop simulations, to be able to make profound,
substantiated statements with sufficient confidence. Given the mathematical
complexity of the stochastic OCP, and the associated calculation effort, this is not
further pursued in this dissertation.
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6.3.2 Computational effort

To finalize the discussion about the performance of the SMPCap strategy, it should
be acknowledged that the increased thermal comfort does not only come at the cost
of a higher energy use, but also at the cost of a higher computational complexity.
In the particular setting considered in this chapter, solving one open-loop OCP
of the SMPCa approach requires less than 1 minute on a 2.3 GHz core with
192 GB RAM, whereas the solution of the OCP of the SMPCap approach takes
approximately 10 minutes. This considerable difference is due to the repetition of
the parametric uncertainty for each time step in the latent variable p̃ for the SMPCap

approach, markedly increasing the problem size. Indeed, by including the parametric
uncertainty, in addition to the additive uncertainty, in p̃, its dimension increases
from np = nd K = 420 to np = nd K + nx (nx + nu + nd) K = 3300 (in case of
floor heating) or np = nd K + nx (nx + nu + nd) K = 4320 (in case of radiators9),
which impacts the dimension of the optimization variables Σr

xk
∈ Rnx×np and

Tu ∈ RnuK×np . Hence, an important downside of the proposed SMPCap strategy
is its scalability. This can nevertheless be partially overcome by discarding the full
optimization of the feedback gain matrix, and rather relying upon pre-computed
matrices, as discussed in Section 4.4; this is nevertheless not further considered in
this dissertation.

6.4 Conclusion

This chapter investigates the potential added value of the SMPCap strategy,
developed in this dissertation, for building climate control under combined additive
and parametric uncertainty.

In a case study, the performance of the SMPCap strategy, in terms of thermal
comfort violations and the specific thermal energy demand, is compared to that of
the theoretical performance bound MPC strategy, the conventional deterministic
MPC strategy and the state-of-the-art SMPCa strategy only accounting for additive
uncertainties. This is done by performing closed-loop simulations, where a building,
controlled by one of these control strategies, is subject to perturbations due to
(additive/parametric) uncertainty manifestations. The different control strategies
are all aiming at guaranteeing thermal comfort while minimizing energy use during
the first week of January 2016. To maximize insight, the analysis is repeated for
different building realizations of the terraced, small, older (but renovated) dwelling,
either equipped with radiators or with floor heating, for which the parametric
uncertainty is derived in Chapter 5.
9 Recall that the consideration of radiators requires an additional state, as discussed in Section

5.1.
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The results of the case study indicate that the enhanced uncertainty anticipation of
the developed SMPCap strategy brings about improved thermal comfort compared
to the current-practice deterministic MPC strategy and the state-of-the-art SMPCa

strategy, and this at the expense of a limited increase in energy use; for the considered
cases, 90% of the thermal comfort improvement compared to the deterministic MPC
can be attained with a relative increase of at most 9% in energy use, irrespective of
the installed heat emission system.

The thermal comfort gains are most prominent in buildings equipped with floor
heating and characterized by the combination of a large model uncertainty and
a large nominal heat demand. Here, for the most extreme building realization in
terms of model uncertainty and nominal heat demand (i.e., sample F), the thermal
discomfort can be decreased from as much as 31.3 K h over an entire week down to
7.3 K h by simply switching from the SMPCa to the SMPCap strategy (for a risk
averseness level of 0.999). For buildings with a small nominal heat demand equipped
with floor heating, on the other hand, the thermal comfort gains by switching to a
stochastic approach (either an SMPCa or an SMPCap strategy) are negligible.

Also for buildings equipped with radiators, both characterized by a small as well
as a large nominal heat demand and/or model uncertainty, a thermal comfort
improvement is possible, especially if the model uncertainty predominates the
additive uncertainty. In this case, switching from an SMPCa to an SMPCap strategy
can induce a thermal discomfort reduction from 11.5 K h down to 2.1 K h for the
most extreme building realization in terms of model uncertainty and nominal heat
demand (i.e., sample F) (for a risk-averseness level of 0.999). Nevertheless, for all
considered building realizations equipped with radiators, the SMPCap strategy is
hampered to fully distinguish itself from the SMPCa strategy, for three reasons,
namely i) because of the small time constants associated with radiators, ii) because
the stochastic OCP is re-solved for every subsequent time step, and iii) because the
heat supply system has sufficient heating capacity available (due to the imposed
safety factor of 1.5). These three aspects all limit the added value of a correct
uncertainty anticipation, which is the most important asset of the SMPCap strategy.





Chapter 7

Towards integrated optimal
control and design under
uncertainty of a TCL in an
individual building

RQ 4: Does the SMPCap strategy allow for obtaining a more appropriate, yet
robust, sizing of the heating system when embedded in an IOCD approach?

This chapter is based on A. Uytterhoeven, R. Van Rompaey, K. Bruninx, and L.
Helsen, “Chance Constrained Stochastic MPC for Building Climate Control Under
Combined Parametric and Additive Uncertainty,” submitted to Journal of Building
Performance Simulation, July 2021.

This chapter aims to explore the potential of an IOCD approach and the added
value of considering parametric and additive uncertainties therein when sizing the
heat supply system. Similar to the previous chapter, Section 7.1 discusses the
general set-up of the performance assessment. Section 7.2 subsequently sets up
the case study used to evaluate the possible added value of an IOCD methodology
incorporating the SMPCap strategy. Section 7.3 then covers the results of this case
study, after which conclusions are drawn in Section 7.4.
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7.1 Optimal design performance assessment method

Rather than setting up an IOCD approach by fully implementing a nested design-
control optimization (as for example done by Jorissen [152] via a genetic algorithm
optimization), which is out of scope of this work, the outer optimization loop
steering the design decisions is replaced by a set of predetermined design scenarios,
focusing on high-level decisions regarding the size of the heat supply system, as
shown in Figure 7.1. Note that more detailed design choices, e.g., related to the
heat emission system sizing and lay-out, cannot be considered here, since this
information is not contained in the simplified controller model (in contrast to more
detailed, high-order building models), as a consequence of the linearization and
model order reduction.

For the lower-level control loop, the same MPC approaches are compared as for the
optimal control performance assessment in Chapter 6, being the PBMPC, DMPC,
SMPCa and SMPCap approaches, all minimizing the overall energy use. As such,
the description of the MPC implementation in Section 6.1 remains valid here; the
only difference now is that the upper thermal power bound is no longer determined
by the nominal heat demand of the reference building multiplied by a safety factor
(i.e., in all cases except for the PBMPC strategy, where the nominal heat demand
of the sampled SSM is simply used for the upper thermal power bound), but rather
by the heat supply system size as imposed by the considered design scenarios.
The PBMPC strategy, or any other open-loop deterministic alternative, can be
considered as the current state-of-the-art in an IOCD context; it considers the
dynamic system behavior in a predefined setting, for a postulated set of boundary
conditions. Due to the negligence of uncertainties, this approach is likely to result
in a too strictly (under)sized system. To correct for this, a closed-loop approach is
considered1, where the impact of the perturbations (either due to additive or due
to parametric uncertainties) is taken into account. This can be considered as the
dynamic equivalent of the safety factor used in static design methods. Here, both
DMPC and SMPC strategies are looked at.

To assess and compare the suitability of the different control strategies to be used
in an optimal design context (and to investigate the potential added value of using
the SMPCap approach), the most appropropriate heat supply system size for each
of the four control strategies is determined via a simplified IOCD application, and
subsequently compared, as follows. Given a particular installed thermal power (design
decision), and a particular risk-averseness level regarding thermal comfort (control
decision) (1− ϵ = 0.5 for the PBMPC and DMPC strategies, or 0.5 < 1− ϵ ≤ 0.999
for the SMPCa and SMPCap strategies), the chosen MPC approach is applied in an
1 For this assessment, historical forecasts and historical actual data should be used in a simulation-

based setting.
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Figure 7.1: Schematic representation of the adopted procedure for the integrated
optimal control and design, where the outer optimization loop steering the design
decisions is replaced by a set of predetermined scenarios.

optimal control setting, after which the resulting thermal discomfort is determined
in terms of TCV (see Equation (6.2) and Intermezzo 6.1). To account for the
parametric uncertainty, this is repeated for different building samples (i.e., emulator
models) of a particular dwelling with a given geometry, location and age, thereby
acknowledging that in reality, the exact building sample is not known. As such, a
thermal discomfort range, rather than one single value for the thermal discomfort, is
obtained for this dwelling. This procedure is repeated for different heat supply sizes,
and risk-averseness levels (as far as the SMPC approaches are concerned), thereby
mimicking the functioning of a genetic algorithm [152], resulting in a whole set of
thermal discomfort ranges, that can be used to make proper design decisions. For
every MPC strategy, the heat production capacity is then selected that guarantees
the lowest (preferably zero) thermal discomfort range for all considered building
samples of a particular dwelling. The adopted procedure is summarized in Figure
7.1.
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7.2 Case study

The thermal discomfort range resulting from the implementation of the different
MPC strategies (i.e., the PBMPC, DMPC, SMPCa or SMPCap strategy) for a
specific dwelling, heat supply system size, and risk-averseness level regarding thermal
comfort is again determined via closed-loop simulations. Ideally, the optimal control
part should be run for a full year, or at least for a set of representative days, in
order to make sure that the different operating regimes that the system might
encounter, are sufficiently covered [71]. However, since this is only an exploratory
case study, the evaluation is restricted to one day2, where challenging weather
conditions according to the Belgian climate apply. Here, the 18th of January 2016
is chosen, characterized by temperatures that are well below zero throughout the
entire day. Apart from the different time period, altered weather conditions and
upper thermal power bounds, the simulation set-up is equal to that of the first case
study3, discussed in Section 6.2, in terms of the considered residential building (i.e.,
the terraced, small, older (but renovated) (T_S_O) dwelling, either equipped with
radiators or floor heating, see Table 6.2), considered building samples (see Table
6.3) and considered occupant behavior.

7.3 Results and discussion

Figure 7.2 visualizes the thermal discomfort ranges to be used to make a design
decision, resulting from the application of the PBMPC, DMPC, SMPCa or SMPCap

strategy to the T_S_O dwelling, either equipped with radiators (Figure 7.2a) or
with floor heating (Figure 7.2b), during the 18th of January 2016, for different
capacities of the heat supply system. Multiple observations can be made indicating
the added value of using the SMPCap strategy for optimal design applications.

From Figure 7.2, it becomes clear that depending on the applied MPC strategy, a
different heat supply system size will be chosen.
For the case with radiators, according to the PBMPC (which is the current state-of-
the-art for IOCD applications), a heat supply system with a thermal power of 13 kW
is able to guarantee thermal comfort for all building samples. However, this is a
false promise; when taking into account the closed-loop impact of the uncertainties,
by rather looking at the results of the DMPC strategy, it is clear that this system
2 The closed-loop simulations are again preceded by an initialization procedure, where the starting

values for the different states are determined by solving an OCP with cyclic boundary conditions
for the states, for a prediction horizon of two days.

3 However, note that in this chapter, the case without uncertainty on the occupant behavior
forecast is no longer considered.
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DMPC

(a) In case of radiators.

DMPC

(b) In case of floor heating.

Figure 7.2: The thermal discomfort ranges showing the TCV for different possible realizations of the terraced, small, older
(but renovated) building, as a function of the installed thermal power of the heat supply system, applied MPC strategy (i.e.,
the PBMPC, DMPC, SMPCa or SMPCap strategy) and imposed risk averseness level.
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size in reality leads to thermal discomfort. For the DMPC strategy, this thermal
discomfort can be decreased, but evidently never eliminated4, by switching to a
larger system size, where the design guaranteeing the lowest TCV is the largest
considered size of 15 kW. When looking at the SMPCa and SMPCap approaches,
where the closed-loop impact of (part of) the uncertainties is not only taken into
account, but also explicitly anticipated for, Figure 7.2 shows that these MPC
strategies can further reduce the thermal discomfort, where the SMPCap strategy is
even able to truly guarantee zero thermal discomfort for all building samples for
a risk-averseness level 1 − ϵ = 0.999 and an installed thermal power of 14 kW, in
contrast to the PBMPC, DMPC or SMPCa strategy. Taking the thermal discomfort
of the DMPC approach with a system size of 15 kW as a reference, indicated by the
grey dashed horizontal line in Figure 7.2a, the same degree of thermal comfort can
be achieved with a heat supply system size of 11-12 kW for the SMPCa strategy,
and of 10-11 kW for the SMPCap strategy, depending on the applied risk-averseness
level5.
For the case with floor heating, similar observations can be made. Here, the SMPCap

strategy is able to guarantee zero thermal discomfort for all building samples, except
for sample F, for a risk-averseness level of 1 − ϵ = 0.99 and an installed thermal
power of 15 kW. Again taking the thermal discomfort of the DMPC approach with
a system size of 15 kW as a reference, the same degree of thermal discomfort only
occurs at a system size of 11-12 kW for both the SMPCa and SMPCap strategies,
depending on the applied risk-averseness level.

The reason why the stochastic approaches are able to longer avoid thermal
discomfort, is because of their fundamentally different operating principles compared
to a deterministic approach. This is illustrated in Figures 7.3 and 7.4, showing
the closed-loop indoor temperature profiles and heat input profiles realized by the
DMPC, SMPCa and SMPCap strategies during the 18th of January for sample
E (chosen as an arbitrary example) of the terraced, small, older (but renovated)
dwelling, either equipped with radiators (Figure 7.3) or floor heating (Figure 7.4),
for different installed thermal powers of the heat supply system.

Figures 7.3 and 7.4 clearly show that the DMPC strategy does not anticipate6

for any uncertainty in its open-loop OCP, and hence waits until the last possible
moment to start heating, to subsequently fully exploit the maximum available
4 Deterministic approaches do not hedge against uncertainty, making thermal discomfort due to

closed-loop perturbations inevitable.
5 Similar thermal discomfort levels can be obtained for different combinations of system sizes and

risk averseness levels (where the risk-averseness level is rather a control preference characteristic
to the user), illustrating the interchangeability between control and design.

6 Note that the DMPC strategy in Figures 7.3 and 7.4 nonetheless shows a certain degree of
anticipation. However, this anticipation has nothing to do with uncertainties, but is merely
due to the fact that the decreasing installed thermal power becomes insufficient to deliver an
instantaneous thermal power peak.
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Figure 7.3: The closed-loop indoor temperature profiles and heat input profiles (averaged over one hour) realized by the
DMPC, SMPCa and SMPCap strategies during the 18th of January for sample E of the terraced, small, older (but renovated)
dwelling equipped with radiators, for different installed thermal powers of the heat supply system.
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Figure 7.4: The closed-loop indoor temperature profiles and heat input profiles (averaged over one hour) realized by the
DMPC, SMPCa and SMPCap strategies during the 18th of January for sample E of the terraced, small, older (but renovated)
dwelling equipped with floor heating, for different installed thermal powers of the heat supply system.
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power. If the required real-time correction/additional heating thereupon exceeds the
capacity of the heating system, thermal discomfort occurs. This effect (evidently)
becomes more pronounced for smaller heat supply system sizes, for which the risk
that the required real-time heating power exceeds the available capacity increases.
This explains the need for larger system sizes in case of a DMPC strategy: to be
able to correct for non-optimal control strategies, real-time flexibility is required in
the form of spare capacity.
In contrast, SMPC approaches explicitly optimize both the anticipation for7 as well
as the reaction against uncertainties (via ADF) in their open-loop OCP. As such,
they deploy the available thermal power in a better way, as illustrated in more
detail in Intermezzo 7.1. The pronounced anticipative behavior of the stochastic
approaches, and of the SMPCap strategy in particular, can be clearly distinguished
in Figures 7.3 and 7.4, especially for smaller heating capacities.

Intermezzo 7.1

The open-loop system behavior induced by SMPC strategies
incorporating ADF

To better understand how SMPC strategies incorporating ADF are able to
more appropriately deploy the available thermal power compared to a DMPC
strategy, this intermezzo briefly explores in more detail the open-loop system
behavior induced by such approaches. Where Figures 7.3 and 7.4 focus on the
closed-loop system behavior, Figure 7.5 shows the corresponding optimized
open-loop system behavior determined by the SMPCap strategy for the first
time step of the receding horizon. Figure 7.5 clearly shows that due to the
incorporation of ADF, the reaction against uncertainties is explicitly taken into
account in the open-loop OCP. Indeed, the SMPCap strategy establishes an
uncertainty band around the mean heat input profile (depicted by the grey
shaded area in Figure 7.5), representing the possibly required real-time reactions
against additive and/or parametric uncertainty manifestations. As such, it
forces the mean heat input profile to stay further away from its upper bound,
in order to make sure that there is still capacity available to accommodate
real-time corrective actions.

A more detailed discussion of this induced system behavior, and of the
interpretation of the uncertainty band, will be covered in Chapter 9.

7 This is done by increasing the temperature by operating the heating system at nominal capacity
before the disturbance is expected to occur.
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With radiators With floor heating

. .

_ _

.._ . ._

Figure 7.5: The open-loop indoor temperature profiles and heat input profiles
(averaged over one hour), as determined by the SMPCap

1−ϵ=0.999 strategy, for
the 18th of January 2016 for the terraced, small, older (but renovated) dwelling,
and an installed thermal power of 15 kW.

The above-mentioned observations confirm the assertion made during the discussion
of the results of the optimal control performance assessment in Chapter 6, stating
that the added value of the SMPCap strategy compared to the SMPCa strategy
depends on the required degree of anticipation, which is, among others, influenced
by the available heating capacity. To more clearly show the impact of the heat
supply system size on the differentiation between the SMPCa and SMPCap strategies
in case of radiators, the information depicted by Figure 7.2a is recast in Figure
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7.68, illustrating the TCV as a function of the installed thermal power for samples
D, E and F; the choice of these specific samples is motivated by the fact that
their nominal heat demand is exceeding the heat demand of the reference building.
Figure 7.6 clearly shows that, because the SMPCap strategy is able to longer avoid
thermal discomfort compared to the SMPCa strategy, the difference in TCV between
the two approaches becomes more pronounced for decreasing heating capacities,
up to the point where also the SMPCap strategy is no longer able to guarantee
thermal comfort. Figure 7.6 also clearly illustrates that the SMPCa strategy is never
able to fully eliminate thermal discomfort (in contrast to the SMPCap strategy);
for an increasing capacity of the heat supply system, the TCV rather stagnates.
Indeed, even when there is spare capacity available to react against uncertainty
manifestations, a complete elimination of thermal discomfort can only be achieved
by correctly hedging against uncertainty manifestations, prior to reacting to them.
Finally, Figure 7.6 shows that this improved performance of the SMPCap strategy
comes at the cost of a higher TED, due to the increased losses associated with the
more pronounced anticipative behavior.

The final decision about the most appropriate design is a complex issue, depending
on different (and possibly conflicting) factors, including: i) the user’s and designer’s
preference regarding the level of thermal discomfort that is allowed (i.e., is it
preferred to guarantee thermal comfort for all possible building realizations, or
are certain building realizations - e.g., the most uncertain/extreme ones - rather
disregarded when making a design decision?), ii) the desired level of controllability
(i.e., oversizing a modulating heat pump might disable the modulation capability,
leading to on/off behavior, in case the requested operation corresponds to the
operating regime near/below the minimum modulation level), iii) the investment
cost, determined by the heat supply system size, and iv) the operational cost,
determined by the control choices (i.e., which MPC strategy, and which risk-
averseness level). Especially the latter two aspects require a careful balancing, since
a smaller heating capacity results in a smaller investment cost, but requires a control
approach enforcing increased anticipative behavior, resulting in a higher energy use
(which may increase operational costs). In analogy with the vision adopted for
chance constrained optimal control, this whole sizing problem could be tackled via
a chance constrained optimal design problem, by properly implementing an IOCD
approach, where the investment costs and operational costs are weighed up under
the consideration of a probabilistic guarantee of thermal comfort. Based on the
auspicious results obtained in this exploratory case study, this is considered as a
valuable future research track, that is out of scope of this dissertation.
8 To highlight the link with Figure 7.2, the same color code and symbols are used.
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Figure 7.6: The differentiation between the control performance of the SMPCa and
SMPCap strategies in terms of TCV and TED as a function of the installed thermal
power for samples D, E and F of the terraced, small, older (but renovated) building,
equipped with radiators.

7.4 Conclusion

As a second MPC application domain, this chapter investigates the potential of
IOCD approaches, and the added value of considering additive and parametric
uncertainties therein.

Rather than fully implementing a nested design-control optimization, the outer
optimization loop steering the design decisions is replaced by a set of predetermined
design scenarios, focusing on high-level decisions about the size of the heat supply
system. For the lower-level control loop, different MPC approaches are considered
and compared. A first option is the current state-of-the-art open-loop performance
bound MPC strategy. In addition, different closed-loop approaches are being
considered, to account for the impact of uncertainties, including the deterministic
MPC strategy, the SMPCa strategy or the SMPCa strategy. The different lower-level
control strategies are all aiming at guaranteeing thermal comfort at minimal energy
use under uncertainty during the 18th of January 2016; this day is chosen because
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of the challenging weather conditions, characterized by temperatures that are well
below zero throughout the entire day, which are decisive for the required heat
supply system size. The analysis is again tailored to the terraced, small, older (but
renovated) dwelling, for which the parametric uncertainty is derived in Chapter 5.

The case study shows that the current-practice open-loop performance bound MPC
strategy results in a too strictly sized system, that is not able to guarantee thermal
comfort under uncertainty. In contrast, the incorporation of the developed SMPCap

strategy in an IOCD approach guarantees a robust sizing of the heat supply system,
able to truly guarantee thermal comfort under combined additive and parametric
uncertainty for (almost) all building possible realizations, if desired. Moreover, the
SMPCap strategy also allows for a more appropriate system sizing (i.e., right-sizing
the system, rather than over-/undersizing it), because of the capability of the
SMPCap strategy to longer avoid a thermal comfort deterioration. When taking
the thermal discomfort of a deterministic MPC approach combined with a heat
supply system size of 15 kW as a reference, the SMPCap strategy allows for size
reductions of 4-5 kW in case of radiators, and of 3-4 kW in case of floor heating,
without increasing thermal discomfort.
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Chapter 8

The importance of system
integration – The sense and
nonsense in maximizing
self-consumption with a
HP-PV system in an
individual building

This chapter is based on A. Uytterhoeven, A. Arteconi, and L. Helsen, "De digitale
meter en warmtepompen. Verhoging zelfverbruik & gevolgen voor dimensionering
(in Dutch)," presented at General Assembly Meeting Flemish Heat Pump Platform,
Kortenberg, Belgium, 24 May 20191, and,
A. Uytterhoeven, G. Deconinck, A. Arteconi, and L. Helsen, "The Added Value
of Heat Pumps for Grid Stability via Demand Response," in IEA Heat Pumping
Technologies Magazine, vol 37, no2, August 2019, Heat Pump Centre, 2019.

1 The results presented here differ from the originally presented results, due to modifications
made to the considered setting, and due to an improvement of the component model of the
heat/cold supply system.
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Up to now, this dissertation has mainly focused on the application of MPC for
building climate control at building level. However, MPC can yet serve another
purpose in a residential heating/cooling context, being the exploitation of demand
side flexibility to aid the balancing between supply and demand. Given the rising
share of intermittent (and hence less controllable) renewable energy sources in the
energy supply, this aspect is becoming increasingly important. In this context, a
popular approach is to use MPC to control residential heat pumps (HPs) such
that they make maximum use of the electricity produced by locally installed solar
photovoltaic (PV) panels. However, as this chapter will demonstrate, these kind
of individual, isolated approaches can lead to non-optimal solutions from a system
perspective. Rather than focusing on building level, the energy system should be
considered as a whole, by taking into account the interaction between the supply and
demand side. Hence, this chapter advocates the importance of system integration,
thereby stressing the importance of the switch from a building-level perspective
towards a system-level perspective in the last part of this dissertation.

First, Intermezzo 8.1 gives a short introduction about the exploitation of the demand
side flexibility in a residential heating/cooling context, by using residential heat
pumps coupled to thermal energy storage (TES) systems to balance the available
supply and demand, and more particularly, to increase self-consumption of electricity
locally produced by PV panels. Section 8.1 then proposes an assessment method that
can be used to determine the maximally attainable self-consumption of residential
HP-PV installations. Next, Section 8.2 sets up a case study, considering a typical
Belgian residential building equipped with a PV installation and an air-to-water heat
pump supplying space heating (SH), space cooling (SC) and domestic hot water
(DHW). The aim of this case study is to quantify the realizable self-consumption,
as well as to investigate how the heating system behavior is altered to accomplish
this. The results of this case study, and the (un)reasonableness to aim for maximal
self-consumption with residential HP-PV systems, are discussed in Section 8.3, after
which conclusions are drawn in Section 8.4.

Before starting the discussion, it is important to stress that this chapter adopts a
rather rudimentary point of view, in order to highlight (and even partly exaggerate)
the potential issues regarding the use of HP-PV installations in a context where the
main objective is to maximize self-consumption. To get a correct and profound view
on the actual value of local PV production, a more nuanced approach is required,
considering a more appropriate objective function, which correctly evaluates the
cost and value of purchased and injected electricity at each moment in time (thus
taking into account the link with the rest of the energy system).



THE IMPORTANCE OF SYSTEM INTEGRATION – THE SENSE AND NONSENSE IN MAXIMIZING
SELF-CONSUMPTION WITH A HP-PV SYSTEM IN AN INDIVIDUAL BUILDING 117

Intermezzo 8.1

Demand side flexibility of residential heat pumps coupled to TES
In the context of residential heating/cooling applications, where compression
heat pumps are used for space heating, space cooling and DHW provision, the
inherent flexibility offered by the thermal storage ability of the building mass,
and by active storage devices if available, allows for a temporal decoupling of
the thermal and electric power demand. This flexibility can be exploited to
change the electricity demand in time and/or size in order to better match
the available supply, without jeopardizing the requested thermal comfort. This
concept is explained in Figure 8.1, for an illustrative case. In the situation
depicted in Figure 8.1, the electricity generation provided by locally installed
PV panels peaks at noon (t1), when solar radiation is maximal. The heat
demand for space heating and/or DHW, on the other hand, only occurs in the
evening (t2), when people get home from work. In the case without flexibility,
this heat demand needs to be delivered (quasi-)ainstantaneously by the heat
pump, to avoid thermal discomfort. This results in a mismatch between the
electricity generated by the PV panels at noon, and the electricity required
by the heat pump in the evening. One possible way to cope with this, is the
exploitation of demand side flexibility. By using the thermal storage ability of
the building thermal mass and the DHW storage tank, the electricity demand
can be shifted (advanced) towards noon, after which the heat is temporarily
stored and subsequently delivered to the end consumer at a later point in
time. As such, the balance between the supply of and demand for electricity is
restored, and the requested heat demand is still being fulfilled.

The explanation above is focusing on local electricity generation by solar PV,
which is the focus of this chapter, but it should be stressed that the same
reasoning holds for any other form of local/central renewable/non-renewable
electricity generation. As already mentioned, leveraging residential HP-PV
installations to maximize self-consumption might in fact not be ideal, especially
in heating dominated climates [18,154], despite the fact that it is a popular set
up in research (see e.g., [155,156]), and that it is also encouraged in practice
(e.g., due to the difference in injection and offtake tariffs). This non-optimality
will be more profoundly illustrated below, with the help of a case study.
a The time lag between the heat supply and heat emission is dependent on the time constant

of the considered emission system, with radiators being characterized by significantly lower
time constants (∼15 min) than floor heating (multiple hours) [153].
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Figure 8.1: The utilization of the demand side flexibility of residential (air-to-water) heat pumps used for space heating
and DHW coupled to thermal energy storage (i.e., the storage ability of the building mass and the DHW storage tank)
to shift the electricity demand (≤ 0) in time in order to better match the available supply (≥ 0).
(PV: photovoltaic, HP: heat pump, TES: thermal energy storage, Ṗ: electric power, Q̇: thermal power)



SELF-CONSUMPTION ASSESSMENT METHOD 119

8.1 Self-consumption assessment method

The aim of this section is to come up with an assessment method that can be used
to determine the attainable self-consumption of HP-PV installations. One possible
way to do this, is to consider a deterministic optimal control problem, which is a
best-case assessment, resulting in a theoretical bound on the actually achievable self-
consumption. The formulation of the considered OCP is an altered/extended version
of the deterministic OCP formulation (2.1) described in Chapter 2, merely focusing
on space heating. Indeed, to ensure nuanced and fair results, it is acknowledged in
this particular chapter that heat pumps can not only provide space heating, but
also space cooling and DHW. Neglecting the latter two aspects when assessing the
attainable self-consumption would lead to an overly negative representation, due to
the seasonal mismatch between the space heating demand and the PV electricity
production.

To be able to cover the demand and supply of electricity as well as of space
heating/cooling and DHW, supplementary component models are needed, in
addition to the building model considered so far, which is the focus of the next
sections. For each component model, a linear representation is being pursued.
Although more complex, mixed-integer or non-linear problems might be more
accurate representations of reality, they require significant computational effort.
Moreover, non-linear problems can exhibit multiple local minima, thereby no longer
guaranteeing global optimality, in contrast to linear (convex) problems [131,157].

8.1.1 Objective function

The imposed objective function determining the optimal control actions should
promote the maximal usage of the locally generated electricity by the solar PV.
However, rather than simply maximizing the self-consumption, it is chosen to
minimize the grid electricity demand, which is the difference between the total
electricity demand Ṗdem,k and the self-consumption Ṗ sco

pv,k, as expressed by Equation
(8.1). This objective not only tries to maximally exploit the PV electricity generation,
but also fosters a rational energy use, especially when there is no locally produced
electricity available. Note that an additional term penalizing thermal comfort
violations is added, as explained in Section 2.2.

min
K∑

k=1
(Ṗdem,k − Ṗ sco

pv,k) ∆t + (cCCV 1T
nx

) ssh/sc
k (8.1)
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8.1.2 Solar photovoltaic model

To account for the local electricity generation, a simplified PV model [158] is
included, presented by Equation (8.2). This model converts the incident solar
irradiance per unit surface area, Q̇soltilt,k, hitting a tilted PV panel with area Apv

at a time instance k, into electric power, Ṗpv,k. The attainable electricity generation
depends on the solar panel yield, ηpv, as well as on the performance ratio, PRpv,
accounting for all possible losses.

Ṗpv,k = PRpv Apv ηpv Q̇soltilt,k ∀k (8.2)

The generated electricity can be either injected into the grid, Ṗ gi
pv,k, or used for

self-consumption, Ṗ sco
pv,k, where the self-consumption cannot exceed the total local

electricity demand, Ṗdem,k. No curtailment is being considered.

Ṗpv,k = Ṗ gi
pv,k + Ṗ sco

pv,k ∀k (8.3)

Ṗ sco
pv,k ≤ Ṗdem,k ∀k (8.4)

It should be stressed that the proposed PV model is a considerable simplification of
reality, since the generated electricity also highly depends on the weather variables
(not only solar irradiance, but also ambient temperature and local wind speed), and
on material and system-dependent properties [159], which are not accounted for
by Equation (8.2). However, this level of detail is not taken into account in this
illustrative case study.

8.1.3 Heat/cold supply system model

Since the focus of this study is on the electric rather than on the thermal demand,
a model of the electric heating/cooling supply system needs to be added, defining
the local electricity demand, as well as the heat/cold supply. The heat/cold supply
system is assumed to be a modulating air-to-water heat pump, assisted by a back-up
electric resistance heater.

The heat pump is used to provide hot water for space heating and DHW purposes.
Hot water temperatures up to a maximum temperature T max

hp of 55 °C can be
achieved, after which the heat pump performance significantly deteriorates2 [160].
Besides, the heat pump can also provide cold water for cooling purposes, with
2 An exception to this is the high temperature heat pump, which can achieve water temperatures

up to 80 °C [131].
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supply temperatures down to a minimum temperature T min
hp of 18 °C, where this

lower bound is imposed to prevent condensation issues.
The auxiliary electric resistance heater is mainly used for DHW purposes, to further
heat up the water above T max

hp , up to the maximum allowed temperature of the
DHW tank, T max

tank , typically 90 °C [131]. It also serves to assist the heat pump for
space heating during very cold days. Indeed, to avoid oversizing of heat pumps3,
the code of good practice in Belgium recommends to size heat pumps to meet 80%
of the nominal heat demand4, Q̇nom, where the remainder of the peak demand
is supposed to be covered by the auxiliary resistance heater, which is very seldom
necessary [160].

The electric power consumed by the heat pump, Ṗ
sh/sc/dhw
hp,k , and by the auxiliary

resistance heater, Ṗ
sh/dhw
aux,k , constitute the total local electricity demand, Ṗdem,k,

as expressed by Equation (8.5), thereby linking the PV model and the heat/cold
supply system model.

Ṗdem,k = (Ṗ sh
hp,k + Ṗ sc

hp,k + Ṗ dhw
hp,k ) + (Ṗ sh

aux,k + Ṗ dhw
aux,k) ∀k (8.5)

The electricity demand, and the associated heat/cold supply, are further elaborated
upon for each distinct technology in Sections 8.1.3.1 and 8.1.3.2.

8.1.3.1 Heat pump model

The heat pump model relates the consumed electric power, Ṗhp,k, to the delivered
thermal power, Q̇hp,k. Moreover, the technical system limits need to be accounted
for, by including the maximum electric power input to the heat pump in the model.

With the help of the coefficient of performance (COP = Q̇hp

Ṗhp
), characterizing the

heat pump efficiency, the attainable heat/cold supply of the heat pump can be
determined as follows.

3 Oversizing of heat pumps should be avoided for multiple reasons. A smaller sizing compels the
heat pump to operate over a longer time period, thereby avoiding large fluctuations in heat pump
power and in supply water temperatures, leading to a better (part load) efficiency [157,161].
Besides, regarding cooling, a more sustained operation of the heat pump over a longer period
can better control the moisture level inside [162]. Finally, smaller heat pumps also have a lower
investment cost [160].

4 The nominal heat demand is quantified following NBN EN 12831, considering an extremely
cold day (according to the Belgian climate) with an outside temperature of −8 °C, a ground
temperature of 10 °C, and an indoor temperature of 20 °C [137].
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Q̇sh
hp,k = COP sh

k Ṗ sh
hp,k ∀k (8.6)

Q̇sc
hp,k = COP sc

k Ṗ sc
hp,k ∀k (8.7)

Q̇dhw
hp,k = COP dhw

k Ṗ dhw
hp,k ∀k (8.8)

The COP of modulating heat pumps highly depends on the modulation, supply
temperature and source temperature. However, this aspect is neglected in this
dissertation. Moreover, also the dependency on the supply temperature is omitted,
since the consideration of this influence would result in a non-linear, non-convex
representation. Therefore, the supply temperature is assumed to be constant, and
equal to its nominal value, T nom

sup (i.e., 45 °C in case of radiator heating, 35 °C in
case of underfloor heating, 18 °C in case of underfloor cooling, and 55 °C in case of
DHW provision). Although this simplification is indispensable to guarantee linearity,
it should be stressed that neglecting the dependency of the heat pump efficiency
on the supply temperature leads to a control strategy that tends to concentrate the
heat pump operation in certain time periods, as shown by Verhelst et al. [157]. This
results in high actual supply temperatures, and hence, lower actual performance
and increased energy costs. This problem could be overcome by penalizing power
peaks, e.g., by considering the square of the predicted energy use/cost in the cost
function. This manipulation is nevertheless not implemented, as the focus is on the
maximization of self-consumption, thereby balancing (local) supply and demand,
for which demand peaks might actually be desirable.
The resulting COP correlation is based on the work of Verhelst et al. [157], leading
to a quadratic function of the ambient temperature, Tamb,k. This expression is
extended with one additional term in this work, containing an arc tangent, in order
to capture the efficiency drop of an air-coupled heat pump around 0 °C due to
defrosting5, resulting in Equation (8.9). The coefficients ai, listed in Table 8.1, are
determined by fitting manufacturer data at full load [163]. The deviation of the fit
from the data is at maximum 7.1%6.

COPk = a0 + a1 Tamb,k + a2 T nom
sup + a3 (Tamb,k)2 + a4 (T nom

sup )2+

a5 Tamb,k T nom
sup + a6 atan(Tamb,k) ∀k (8.9)

The COP obtained with the help of Equation (8.9) is subsequently averaged out over
the considered prediction horizon, leading to a constant value. This manipulation is
5 At temperatures around 0 °C, the relative humidity of the ambient air is rather high. As a

consequence of the low air temperature, ice is formed on the outdoor unit, which is highly
undesirable. To remove this ice, the heat pump is temporarily operated in reverse mode, sending
hot refrigerant to the outdoor unit in order to thaw it. As a consequence of this defrost cycle,
the performance is negatively affected in this specific temperature window.

6 When omitting the arc tangent, the maximum relative error of the COP correlation increases to
9.6%
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Table 8.1: The coefficients ai and bi of the fitted correlations for the
COP (Equation (8.9)) and the maximum power input Ṗ max

hp,k (Equation (8.10))
characterizing the performance of a modulating air-to-water heat pump. A
distinction is made between the supply of heat, either for space heating (SH)
or domestic hot water (DHW) purposes, and the supply of cold, for space cooling
(SC) purposes.
The Daikin Altherma heat pump ERLQ008CV03, with a heating capacity between 3.24 kW and
13.81 kW, is used as a reference. The correlations for SH and DHW are valid for a (wet bulb)
ambient temperature between −20 °C and 20 °C, and a supply water temperature between 30 °C
and 55 °C; the correlations for SC are valid for a (dry bulb) ambient temperature between 20 °C
and 43 °C, and a supply water temperature between 7 °C and 22 °C.
To model heat pumps with a different heating capacity, the same COP correlation can be used;
the correlation of the maximum power input, on the other hand, needs to be rescaled according
to the heating capacity.

SH/DHW SC SH/DHW SC
a0 6.76 -3.27×101 b0 3.10×10-2 3.82×102

a1 1.74×10-1 -1.68×10-1 b1 -5.01×10-3 1.14
a2 -1.36×10-1 8.33×10-2 b2 9.55×10-2 -2.51×10-2

a3 6.44×10-4 1.25×10-3 b3 2.51×10-4 -1.41×10-2

a4 9.22×10-4 1.99×10-3 b4 -7.03×10-4 -5.98×10-4

a5 -1.93×10-3 -1.01×10-3 b5 -3.97×10-5 6.66×10-4

a6 -4.97×10-2 2.50×101 b6 2.63×10-3 -2.61×102

based on the findings of Patteeuw [131] and Verhelst et al. [157]. Patteeuw [131]
illustrated that the simplified heat pump model using a constant, averaged COP,
instead of a COP that is a function of the ambient temperature, guarantees a
smaller deviation with respect to the results of the detailed physical emulator model,
and improves computation time. Besides, in a case study presented by Verhelst et
al. [157], a constant and linear COP formulation were shown to perform equally
when considering an optimization towards minimal cost, whereas the constant COP
formulation performed better when considering an optimization towards minimal
energy use.
As a final intervention, in order to prohibit that the heat pump delivers specific
services outside of the associated operating regions (i.e., no space heating for ambient
temperatures larger than 20 °C, and no space cooling for ambient temperatures
smaller than 22 °C [163]), the constant values of the COP (and of the maximum
power input, see further) are reduced to zero for the time instances when the
operating conditions are violated. This intervention might lead to situations where
the COP is not entirely constant over the considered prediction horizon, especially
during mid-season. Consequently, the heat pump operation might again be a bit
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more concentrated in certain time periods, which negatively affects the performance.
This is nevertheless deemed acceptable, since this intervention exactly prohibits the
heat pump from operating in very unfavorable conditions, which would not benefit
the heat pump performance either.

To model the maximum electric power input, Ṗ max
hp,k , a similar approach is pursued,

leading to an additional correlation, as presented by Equation (8.10). The numerical
values of the coefficients bi can also be found in Table 8.1. The deviation of the fit
from the data is at maximum 5.8%7.

Ṗ max
hp,k = b0 + b1 Tamb,k + b2 T nom

sup + b3 (Tamb,k)2 + b4 (T nom
sup )2+

b5 Tamb,k T nom
sup + b6 atan(Tamb,k) ∀k (8.10)

The maximum power input restricts the electricity demand of the heat pump to
provide space heating, P sh

hp,k, or space cooling, Ṗ sc
hp,k, and/or DHW, Ṗ dhw

hp,k , as
expressed by Equations (8.11) to (8.14). Note that, due to the dependency of
the maximum electric power input on the supply water temperature, individual
bounds are imposed on the power inputs for the different services, because of the
different supply water temperatures associated with the supply of space heating,
space cooling and DHW. Moreover, Equation (8.14) bounds the total power input.
This intervention serves to impede simultaneity of different services to the best
extent possible8; nevertheless, complete elimination of simultaneity can only be
achieved at the expense of introducing binary variables, resulting in a mixed-integer
problem. This is not considered in this dissertation for arguments of computational
efficiency.

Ṗ sh
hp,k ≤ Ṗ sh,max

hp,k ∀k (8.11)

Ṗ sc
hp,k ≤ Ṗ sc,max

hp,k ∀k (8.12)

Ṗ dhw
hp,k ≤ Ṗ dhw,max

hp,k ∀k (8.13)

Ṗ sh
hp,k + Ṗ sc

hp,k + Ṗ dhw
hp,k ≤ max(Ṗ sh,max

hp,k , Ṗ sc,max
hp,k , Ṗ dhw,max

hp,k ) ∀k (8.14)

Ṗ sh
hp,k, Ṗ sc

hp,k, Ṗ dhw
hp,k ≥ 0 ∀k (8.15)

7 When omitting the arc tangent, the maximum relative error of the maximum power input
correlation increases to 8.1%

8 Note that the manipulation of the COP and maximum power input to avoid that the heat pump
delivers services outside of the operating regions associated with these services also serves this
purpose. However, this manipulation mainly prohibits simultaneous space heating and cooling.
The simultaneity of heating/cooling on the one hand, and DHW provision on the other hand,
cannot be avoided by this manipulation, as their respective operating regions overlap.
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8.1.3.2 Auxiliary resistance heater model

In line with the heat pump model, the auxiliary resistance heater model needs to
relate the consumed electric power, Ṗaux,k, to the delivered thermal power, Q̇aux,k,
and needs to specify the maximum electric power that can be consumed by the
resistance heater.

With the help of the efficiency (ηaux = Q̇aux

Ṗaux
), the attainable heat supply of the

electric resistance heater can be determined, as expressed by Equations (8.16)
and (8.17). Based on the principle of conservation of energy, all incoming electric
power needs to be converted into heat, leading to a conversion efficiency of 100%;
in other words, for electric resistance heaters, the consumed electric power and
delivered thermal power always coincide.

Q̇sh
aux,k = ηaux Ṗ sh

aux,k

(ηaux=1)= Ṗ sh
aux,k ∀k (8.16)

Q̇dhw
aux,k = ηaux Ṗ dhw

aux,k

(ηaux=1)= Ṗ dhw
aux,k ∀k (8.17)

Consequently, the maximum electric power input is determined by the thermal
power output the auxiliary resistance heater is deemed to deliver.
Regarding space heating, the auxiliary resistance heater should be able to completely
replace the heat pump on very cold days. Hence, it is sized to be able to cover the
nominal heating demand, Q̇nom, as imposed by Equation (8.18).
Regarding DHW, the auxiliary resistance heater should be able to heat up the water,
with density ρ and specific heat capacity cp, contained in the (perfectly mixed)
DHW storage tank with volume Vtank, from the cold water tap temperature, T cold

tap ,
to the hot water tap temperature, T hot

tap , in a reasonable time span, as expressed by
Equation (8.19); the DHW heating time, ∆tdhw, is typically equal to 2 hours [161].
The final sizing of the auxiliary resistance heater is then determined by the maximum
of these two requisites, as presented by Equation (8.20) [161].

Ṗ sh,max
aux = Q̇sh,max

aux = Q̇nom (8.18)

Ṗ dhw,max
aux = Q̇dhw,max

aux = ρ cp Vtank

T hot
tap − T cold

tap

∆tdhw
(8.19)

Ṗ max
aux = Q̇max

aux = max(Q̇sh,max
aux , Q̇dhw,max

aux ) (8.20)

The sizing of the auxiliary resistance heater bounds its total electricity demand
to provide space heating, Ṗ sh

aux,k, and/or DHW, Ṗ dhw
aux,k, as expressed by Equation

(8.21).
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Ṗ sh
aux,k + Ṗ dhw

aux,k ≤ Ṗ max
aux ∀k (8.21)

Ṗ sh
aux,k, Ṗ dhw

aux,k ≥ 0 ∀k (8.22)

Note that the efficiency and maximum electric power input of the auxiliary heater
are independent of the supply water temperature and ambient temperature, and
hence, always have the same value. Consequently, no individual bounds are imposed
on the power inputs for the distinct services, in contrast to the heat pump model.
(Equations (8.11) to (8.13)).

8.1.4 Building and heat/cold emission system model

In order to model the space heating/cooling demand, a building model, including
a heat/cold emission system, needs to be considered, similar to what was already
done in the rest of this dissertation. In this chapter, the considered heat/cold
emission system is an underfloor heating system, as this heat/cold emission system
allows for both space heating and cooling (in contrast to radiators).

The constraints of the generic deterministic OCP formulation (2.1) described in
Chapter 2, focusing on the space heating demand, mostly still apply, and are
repeated below as Equations (8.23) to (8.29). However, note that the constraint
on the thermal power inputs (8.27) is slightly different from the original constraint
(2.1e), in order to allow the thermal power inputs to take negative values to provide
space cooling.

xsh/sc
k+1 = Ash/sc xsh/sc

k + Bsh/sc ush/sc
k + Esh/sc dsh/sc

k ∀k (8.23)

xsh/sc
k + ssh/sc

k ≥ xsh/sc,min
k ∀k (8.24)

xsh/sc
k − ssh/sc

k ≤ xsh/sc,max
k ∀k (8.25)

ssh/sc
k ≥ 0nx

∀k (8.26)

ush/sc,min
k ≤ ush/sc

k ≤ ush/sc,max
k ∀k (8.27)

xsh/sc(0) = xsh/sc
0 (8.28)

ush/sc(0) = ush/sc
0 (8.29)

Another important modification in this particular chapter compared to the rest
of this dissertation, is the consideration of a slightly more elaborate two-zones
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nine-states building controller model9. This model structure was proposed by
Reynders et al. [132] to model archetype buildings representing the Belgian residential
building stock, based on the typology data obtained from the European TABULA-
project [164,165].

The two-zones nine-states model represents a residential dwelling with two zones,
being a day zone (DZ), consisting of all rooms in which the occupants are active
during the day, and a night zone (NZ), mainly consisting of bedrooms. The
corresponding RC model structure is shown in Figure 8.2. The model set-up is
analogous to the set-up described in Section 5.1, except for the explicit distinction
between the two zones in the states, inputs and disturbances, as expressed by
Equation (8.30).

xsh/sc
k+1 = Ash/sc xsh/sc

k + Bsh/sc ush/sc
k + Esh/sc dsh/sc

k ∀k

with xsh/sc
k =



T DZ
ia,k

T DZ
w,k

T DZ
wi,k

T DZ
f,k

T DZ−NZ
f,k

T NZ
ia,k

T NZ
w,k

T NZ
wi,k

T NZ−DZ
f,k

(T DZ
rad,k)

(T NZ
rad,k)



, ush/sc
k =

[
Q̇DZ

sup,k

Q̇NZ
sup,k

]
, dsh/sc

k =



Tamb,k

Tgr,k

Q̇solN,k

Q̇solE,k

Q̇solS,k

Q̇solW,k

Q̇DZ
int,k

Q̇NZ
int,k


(8.30)

Finally, since the heat/cold supply system is explicitly accounted for in this chapter,
Q̇DZ

sup,k and Q̇NZ
sup,k can be further specified with the help of Equations (8.31)

to (8.35), thereby linking the building and heat/cold emission system model to the
heat/cold supply system model. The goal of the optimization problem is to decide
how to distribute the heat/cold supply of the heat pump and auxiliary resistance
heater over the two zones, as expressed by Equations (8.33) to (8.35).
9 The two-zones nine-states building model is the basis for the one-zone four-states building model,

introduced in Section 5.1, and considered throughout the rest of this dissertation (except for
Intermezzo 5.2, where the two-zones nine-states building controller model was already considered
to determine the impact of the parametric uncertainty on the thermal energy demand for space
heating). The reason for using the simpler one-zone model (derived from the two-zones model
by applying model order reduction) is to ensure mathematical tractability when implementing
the SMPC strategy, as explained in Section 5.1
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Figure 8.2: The model structure of the studied reduced order two-zone nine-states resistance-capacitance model, representing
a residential dwelling as two zones (a day zone (DZ) and a night zone (NZ)). Note that the shown RC model merely focuses
on the representation of the building envelope, without specifying the installed emission system; also the heat inputs coming
from the solar heat gains and the internal heat gains, are not indicated. Adapted from [132].
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Q̇DZ
sup,k = Q̇sh,DZ

hp,k + Q̇sh,DZ
aux,k − Q̇sc,DZ

hp,k ∀k (8.31)

Q̇NZ
sup,k = Q̇sh,NZ

hp,k + Q̇sh,NZ
aux,k − Q̇sc,NZ

hp,k ∀k (8.32)

Q̇sh
hp,k = Q̇sh,DZ

hp,k + Q̇sh,NZ
hp,k ∀k (8.33)

Q̇sc
hp,k = Q̇sc,DZ

hp,k + Q̇sc,NZ
hp,k ∀k (8.34)

Q̇sh
aux,k = Q̇sh,DZ

aux,k + Q̇sh,NZ
aux,k ∀k (8.35)

8.1.5 Domestic hot water storage tank model

In order to model the DHW demand, an additional energy balance for the DHW
storage tank is added, as presented in discretized form by Equation (8.36) [131].
The tank, with volume Vtank, is assumed to be perfectly stirred, meaning that
all water in the tank, with density ρ and specific heat capacity cp, is at the same
temperature Ttank,k at a certain time instance k. During a time step ∆t, the water
in the tank is heated up by the heat supply Q̇dhw

sup,k, which is either supplied by a
heat pump, or by an auxiliary resistance heater. Heat is extracted from the tank
through the demand for hot water, Q̇dhw

dem,k, or through (conductive10) heat losses
to the surroundings at a constant temperature T dhw

surr.

ρ cp Vtank
Ttank,k+1 − Ttank,k

∆t
=

Q̇dhw
sup,k − Q̇dhw

dem,k − UAtank (Ttank,k − T dhw
surr) ∀k (8.36)

Since the heat pump can only supply warm water up to a temperature T max
hp of

55 °C, whereas the auxiliary resistance can heat the water up to the maximum
allowed temperature of the DHW tank, T max

tank , typically 90 °C, the energy balance
is split up in two parts, represented by Equations (8.37) and (8.38). As such,
a distinction is being made between the part of the tank temperature that is
affected by the heat pump, T hp

tank,k, and an additional temperature increase above
55 °C, merely realized by the auxiliary resistance heater, dT aux

tank,k, as shown by
Equation (8.39). Note that the auxiliary resistance heater can affect both the
heat pump influenced temperature via Q̇dhw

aux1,k, as well as the auxiliary heater
influenced temperature via Q̇dhw

aux2,k. The heat extracted from the tank to supply
10 The thermal resistance corresponding to the insulation layer of the DHW storage tank is the

dominant resistance in the heat transfer process [131].
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DHW to the end consumer also needs to be split up, leading to a heat extraction
related to the heat pump influenced temperature via Q̇dhw

dem1,k, and one related to
the auxiliary heater influenced temperature via Q̇dhw

dem2,k. Again, it is up to the
optimization problem to decide on this allocation, as expressed by Equations (8.40)
and (8.41) [131].

ρ cp Vtank

T hp
tank,k+1 − T hp

tank,k

∆t
=

(Q̇dhw
hp,k + Q̇dhw

aux1,k) − Q̇dhw
dem1,k − UAtank (T hp

tank,k − T dhw
surr) ∀k (8.37)

ρ cp Vtank

dT aux
tank,k+1 − dT aux

tank,k

∆t
=

Q̇dhw
aux2,k − Q̇dhw

dem2,k − UAtank (dT aux
tank,k) ∀k (8.38)

Ttank,k = T hp
tank,k + dT aux

tank,k ∀k (8.39)

Q̇dhw
dem,k = Q̇dhw

dem1,k + Q̇dhw
dem2,k ∀k (8.40)

Q̇dhw
aux,k = Q̇dhw

aux1,k + Q̇dhw
aux2,k ∀k (8.41)

As already explained above, the temperatures T hp
tank,k and dT aux

tank,k are constrained
by the maximum attainable hot water temperature by the heat pump, T max

hp , and the
maximum allowed tank temperature, T max

tank , respectively, as expressed by Equations
(8.42) and (8.43).

T hp
tank,k ≤ T max

hp ∀k (8.42)

T max
hp + dT aux

tank,k ≤ T max
tank ∀k (8.43)

The tank temperature is also restricted by a lower bound, which is determined by
the DHW demand. Indeed, given that this chapter considers a deterministic OCP
formulation, the DHW demand is assumed to be perfectly known, and hence, can
be used to derive temperature setpoints for the DHW tank11, as follows. Since the
tank is assumed to be perfectly mixed, the whole tank has to be heated up to at
least the hot water tap temperature T hot

tap , whenever there is a demand for DHW by
the end consumer. On the other hand, whenever there is no DHW demand, the
tank temperature is allowed to decrease down to the cold tap water temperature,
11 The derivation of setpoints for the DHW tank temperature based on the DHW demand is a quite

contrived intervention, as it is rather unlikely that the DHW demand can be accurately predicted,
let alone be perfectly known, beforehand. The difficulty to come up with appropriate DHW
demand forecasts is also the reason why the DHW supply is not considered in the remainder of
this dissertation, when focusing on a stochastic, instead of a deterministic, setting.
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T cold
tap . This requirement is imposed by Equations (8.44) and (8.45), where bdem

dhw,k

is a binary parameter, which is equal to one whenever DHW is requested, and zero
otherwise [131]. Note that the hot and cold water temperatures are assumed to be
constant, and equal to 50 °C and 10 °C, respectively.

T min
tank,k = T hot

tap bdem
dhw,k + T cold

tap (1 − bdem
dhw,k) (8.44)

T min
tank,k ≤ Ttank,k ∀k (8.45)

8.1.6 Resulting OCP formulation

The resulting deterministic OCP formulation, combining all component models
introduced above, and used to assess the maximally attainable self-consumption
with residential HP-PV systems, is summarized below. Note that a distinction is
being made between expressions that do not contain any decision variables, and
hence can be evaluated in a pre-processing step prior to solving the OCP, and actual
constraints supplementing the OCP formulation.

Pre-processing (generating inputs):

• Solar PV model: (8.2)

• Heat pump model: (8.9) and (8.10)

• Auxiliary resistance heater model: (8.18) to (8.20)

• DHW storage tank model: (8.44)

Optimal control problem formulation:

• Objective function: (8.1)

• Independent decision variables:
{Ṗ sco

pv,k}k=0...K , {xsh/sc
k }k=0...K , {ssh/sc

k }k=0...K , {Q̇sh,DZ
hp,k }k=0...K ,

{Q̇sh,NZ
hp,k }k=0...K , {Q̇sc,DZ

hp,k }k=0...K , {Q̇sc,NZ
hp,k }k=0...K , {Q̇sh,DZ

aux,k }k=0...K ,
{Q̇sh,NZ

aux,k }k=0...K , {T hp
tank,k}k=0...K , {dT aux

tank,k}k=0...K , {Q̇dhw
hp,k}k=0...K ,

{Q̇dhw
aux1,k}k=0...K , {Q̇dhw

aux2,k}k=0...K , {Q̇dhw
dem1,k}k=0...K , {Q̇dhw

dem2,k}k=0...K

• Constraints:

– Solar photovoltaic model: (8.3) and (8.4)
– Heat/cold supply system model: (8.5)
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– Heat pump model: (8.6) to (8.8) and (8.11) to (8.15)
– Auxiliary resistance heater model: (8.16), (8.17), (8.21) and (8.22)
– Building and heat/cold emission system model: (8.23) to (8.35)
– Domestic hot water storage tank model: (8.37) to (8.43) and (8.45)

8.2 Case study

To investigate the (un)reasonableness of maximizing the self-consumption of
residential HP-PV systems coupled to TES, a case study is set-up. The case
study considers a HP-PV installation installed in a typical Belgian residential
building, for which the achievable self-consumption is determined by solving the
deterministic open-loop OCP, described in Section 8.1, over an entire year12, with
an additional week for initialization purposes13. The optimization time step is equal
to one hour.

The PV installation considered in this study is oriented southwards14, with a tilt
angle of 35° [166,167,168,169]. The solar panels have a surface area of 1.6 m2, and
a peak power of 295 Wp. To maximize insight, different PV systems of increasing
size are being considered, as summarized in Table 8.215. The solar irradiance on the
tilted PV panels is derived from historical weather data of the year 2017 provided
by Darksky [170], with the help of processing code developed by Damien Picard.

The considered residential building is a typical Belgian, detached, single-family
dwelling, built after 2005, as identified in the Tabula project [132,165]. The most
important characteristics are summarized in Table 8.3. The building is assumed
to be equipped with an underfloor heating/cooling system, supplied by an air-to-
water heat pump16, which is sized to meet 80% of the nominal heat demand and
is assisted by an auxiliary resistance heater, as explained in Section 8.1.3. The
heating/cooling system is assumed to be ideal, with a perfect modulation. For the
12 To ensure mathematical tractability, the full-year optimization is performed by considering

consecutive weekly optimizations, with a receding horizon of 7 days, and a prediction horizon of
7.5 days (to impede end-of-horizon effects).

13 For the one-week initialization problem, cyclic boundary conditions are imposed.
14 The orientation of the PV panels is an important parameter affecting the attainable self-

consumption. In the considered case study, a south-facing set-up is chosen, since this guarantees
the highest total electricity generation. However, admittedly, from a building-level perspective,
it might be better to opt for a combination of east- and west-facing panels, resulting in a
smoothened generation curve with more production during the morning and evening hours
(instead of a peak at noon), possibly better matching the time-dependent demand.

15 The upper bound restricting the considered capacity is very loosely based on [168].
16 Another possibility is the consideration of an air-to-air heat pump, which can also provide both

space heating and cooling. However, since these systems more directly interact with the indoor
air, they are less suited for flexibility purposes.
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Table 8.2: The different considered sizes of the PV system, in terms of number
of panels, total surface area and peak capacity, when assessing the attainable
self-consumption with HP-PV systems.

Number of panels
[-]

Total area
[m2]

Peak capacity
[Wp]

Scenario 1 0 0 0
Scenario 2 5 8 1475
Scenario 3 10 16 2950
Scenario 4 15 24 4425
Scenario 5 20 32 5900

Table 8.3: The most important characteristics regarding construction year, geometry
and thermal quality of the typical Belgian single-family dwelling for which the
attainable self-consumption of the PV system, generating electricity to be used
by an air-to-water heat pump providing space heating, cooling and DHW, is
investigated.

Construction year [-] >2005
Detachment level [-] Detached
Net floor area [m2] 269.6

Protected volume [m3] 741.4
Ground floor area [m2] 132.0

Façade area [m2] 173.2
Roof area [m2] 152.3

UA building [W/K] 312.6

weather data affecting the building indoor climate (i.e., ambient temperature and
solar heat gains, see Equation (8.30)), Darksky data of the year 2017 are used [170].
For the occupancy behavior (i.e., internal heat gains and comfort requirements in
terms of setpoint temperatures for different zones), StROBe profiles characterizing
a four-persons-household, consisting of two full-time employed adults and two
school-age children, are used [146]. The setpoint temperatures are used as a lower
thermal comfort bound. The maximum allowed indoor temperature, on the other
hand, is set to 26 °C [83].

Finally, the considered DHW tank is selected from the Vitocell 100V series of
Viessmann. This type of storage tank contains an internal heat exchanger, and
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hence, is suited to be combined with a heat pump [171]. The selected tank has a
volume of 300 L and a UA-value of 1.53 W

K [172,173]. It is assumed to be located in
an environment at a constant temperature of 15 °C17. The DHW demand is obtained
with the help of the StROBe toolbox [146], similar to the other occupancy-related
parameters.

8.3 Results and discussion

The aim of this section is to gain insight in the realizable self-consumption for
the case study described in Section 8.2, as well as in how the system behavior is
altered to accomplish this. Recall that the assessment uses a deterministic optimal
control problem approach, based on perfect disturbance predictions, aiming at the
maximal exploitation of the locally available electricity, resulting in an ultimate
best-case assessment of the attainable self-consumption. Hence, the emphasis is
rather on the trends and insights, instead of on the exact numerical values. Besides,
it is important to stress that the results are strictly related to the considered case
study, and thus correspond to heating-dominated climate conditions, which highly
influence the energy use profile as well as the PV generation profile. Finally, note
that an explicit distinction is being made between the case without and with active
cooling, as cooling is in general not implemented in Belgian households.

Figure 8.3 shows the share of the attainable self-consumption in the total local
PV generation (i.e., adopting a supply perspective), as well as in the total local
electricity consumption (i.e., adopting a demand perspective), for an increasing
PV capacity, for a whole year. This information is merged in Figure 8.4 in relative
terms. Note that the self-consumption relative to the local PV generation shown in
Figure 8.4 is very high (amounting to 73.2% for the case without cooling and a PV
area of 32 m2, and 81.6% for the equivalent case with cooling), due to the optimal
control approach assuming perfect knowledge, striving for maximal exploitation of
the locally available electricity; the exact impact of this approach will become more
clear throughout the discussion below, when analyzing the system behavior in more
detail.
When assessing the self-consumption from a supply perspective, Figure 8.3a shows
that an increasing PV capacity elevates the self-consumption, but also increases
the grid injection due to an oversupply, resulting in a decreasing share of the
self-consumption relative to the PV generation in Figure 8.4. The increasing grid
injection is less pronounced in the cases with cooling. Nevertheless, despite the higher
level of self-consumption, the relative share with respect to the local generation is
17 This is for example approximately the case when the DHW storage tank is located in the

basement.
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(a) The yearly self-consumption as part of the yearly local PV generation.
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(b) The yearly self-consumption as part of the yearly total electricity consumption.

Figure 8.3: The attainable yearly self-consumption for a PV installation with
increasing capacity, installed in a typical Belgian detached single-family dwelling
equipped with an air-to-water heat pump. A distinction is being made between the
case where the heat pump merely provides heat for space heating and DHW, and
the case where the heat pump additionally provides active cooling.

still decreasing for increasing PV capacities, as can be seen in Figure 8.4.
When assessing the self-consumption from a demand perspective, Figure 8.3b
demonstrates that an increasing PV capacity results in a decreasing grid electricity
consumption, as well as an increasing self-consumption. Interestingly, Figure 8.3b
also indicates that the total electricity consumption is slightly increasing.
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Figure 8.4: The attainable yearly self-consumption, relative to the yearly local PV
generation and the yearly total electricity consumption, for a PV installation with
increasing capacity, installed in a typical Belgian detached single-family dwelling
equipped with an air-to-water heat pump. A distinction is being made between the
case where the heat pump merely provides heat for space heating and DHW, and
the case where the heat pump additionally provides active cooling.

To get more insight in the trends described above, Figures 8.5 and 8.6 assess the
attainable self-consumption in more detail on a monthly basis, for the case without
and with active cooling, respectively.
When again looking at the results from a supply perspective, Figures 8.5a and
8.6a show that in winter and mid-season, the locally generated electricity is (quasi)
completely locally consumed for all considered cases. However, in summer, there
is a clear oversupply, which already materializes for the smallest installed PV
capacities for the case without cooling. For the case with cooling, the take-up of
the locally generated electricity is slightly better, but is nevertheless not enough
to avoid oversupply. This can be explained by the fact that the majority of the
demand concerns space heating in winter, as also clearly demonstrated by Figure 8.7,
showing the heat/cold supply by the heat pump and/or auxiliary resistance heater
for the different end uses (i.e., space heating, space cooling and DHW). These
results pinpoint that the underlying problem explaining the decreasing share of self-
consumption relative to local PV generation is the seasonal mismatch between the
PV electricity production and the demand, indicating the unsuitability of maximizing
self-consumption with HP-PV systems.
The seasonal mismatch can also be clearly discerned in Figures 8.5b and 8.6b,
assessing the attainable self-consumption on a monthly basis from a demand
perspective. Both figures clearly show that in winter, the total electricity
consumption is much higher than the available local PV generation. Consequently,
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for increasing PV capacities, a part of the electricity requested from the grid is simply
replaced by the locally generated electricity, without altering the total electricity
demand. Hence, an increase in PV capacity unequivocally results in an increase in
self-consumption, and a decrease in grid electricity consumption, substantiating,
and already partly explaining, the trends observed in Figures 8.3b and 8.4. In
mid-season, on the other hand, the local PV generation does not suffice to cover
the demand, but the local supply and demand are nevertheless close together. For
increasing PV capacities, the system is shown to be able to guarantee a higher
self-consumption. As can also be seen in Figures 8.5b and 8.6b, this increased
take-up of local generation goes along with an increase in total electricity demand.
Finally, in summer, the electricity consumption can be completely covered by the
local generation in most cases. Also here, the self-consumption, as well as the total
electricity consumption, are rising for an increasing PV capacity. The observations
for the mid-season and summer again confirm the trends observed in Figures 8.3b
and 8.4.

Finally, to provide insight in how the increase in self-consumption in mid-season
and summer is exactly achieved, and what is causing the increase in total electricity
demand, Figures 8.8 and 8.9 show the detailed time-dependent system behavior
throughout the day for a week during mid-season (13/03/2017-19/03/2017), and a
week during summer (17/07/2017-23/07/2017), for the case with active cooling18.
More specifically, Figures 8.8 and 8.9 depict the detailed time profiles of the indoor
air temperature in the day zone, and of the DHW tank temperature, together with
the associated heat/cold supply. Also relevant boundary conditions are shown, such
as the ambient air temperature, serving as an indicator of the heating/cooling
need19, and the incoming solar irradiance on a tilted surface, serving as an indicator
of the availability of locally generated electricity. In order to be able to investigate
how the system behavior is being altered to increase self-consumption, Figures 8.8
and 8.9 compare two cases, presented in different colors in the same plot. The
first case (PV 0 m2) is the case where no PV is being installed, meaning that
the controller simply aims to minimize the energy use, and as such, reflects the
minimal needs of the system to guarantee thermal comfort (both in terms of indoor
temperature and in terms of DHW temperature). The second case (PV 32 m2) is
the case with the largest installed PV capacity, meaning that the controller aims to
maximize the exploitation of the locally generated electricity.
When comparing the results without and with PV for the considered week during
mid-season, shown in Figure 8.8, we can see that the heat supply for space heating
and for DHW (and hence, also the associated electricity consumption) is shifted for
18 The results for the case without active cooling are not shown, as they would not provide any

additional insight.
19 The heating/cooling need is determined by many external factors, including the ambient

temperature, the ground temperature, the solar heat gains, and the internal heat gains. However,
in order not to overload the figures, not all of these factors are shown.
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(b) The monthly self-consumption versus the monthly total electricity consumption.

Figure 8.5: The attainable monthly self-consumption for a PV installation with increasing capacity, installed in a typical
Belgian detached single-family dwelling equipped with an air-to-water heat pump, for the case without active cooling.
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(b) The monthly self-consumption versus the monthly total electricity consumption.

Figure 8.6: The attainable monthly self-consumption for a PV installation with increasing capacity, installed in a typical
Belgian detached single-family dwelling equipped with an air-to-water heat pump, for the case with active cooling.
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Figure 8.7: The heat/cold supply by the air-to-water heat pump and/or auxiliary resistance heater installed in a typical
Belgian detached single-family dwelling.
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the case with PV to better match the solar irradiance, and thus, the local electricity
generation. In other words, the demand profile is adapted to increase the self-
consumption, by exploiting the flexibility offered by the building thermal mass and the
DHW storage tank. This TES utilization results in momentary temperature increases,
both for the indoor climate and the DHW tank. These elevated temperatures go
along with increased storage losses, explaining the increased electricity consumption
during mid-season.
Figure 8.9 shows the equivalent results for the summer week. Here, the heat/cold
supply is not only shifted compared to the case without PV, but also significantly
increased. In order to make as much use of the locally available PV generation
as possible, even unnecessary measures are being implemented, such as heating
during summer20,21, needlessly pushing the indoor temperature towards the upper
temperature bound by the end of the prediction horizon. Also the temperature of
the DHW tank is now increased well above 55 °C, by activating the less efficient
electric resistance heater, fed by locally generated PV electricity.
Summarizing, the increase in self-consumption, as well as the increase in total
electricity consumption during mid-season and summer can be attributed to two
effects, being the exploitation of demand side flexibility and the associated storage
losses, as well as the additional unnecessary measures further using (and even
spilling) the available electricity. Consequently, it should be stressed that the values
in Figure 8.4 are definitely putting a gloss on the attainable self-consumption, in
addition to the fact that the optimal control approach assuming perfect knowledge
already results in a best-case assessment.

20 Nevertheless, recall that space heating is only allowed for ambient temperatures up to 20 °C.
21 The paradoxal emergence of space heating during summer for increasing PV capacities is also

clearly visible in Figure 8.7.
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(a) The indoor temperature in the day zone.

. .

(b) The heat/cold supply to the heat emission system in the day zone.

(c) The DHW storage tank temperature.

. .

(d) The heat supply to the DHW storage tank.

Figure 8.8: The detailed time-dependent system behavior of the HP-PV system
installed in a typical Belgian detached single-family dwelling, during a week in
mid-season (13/03/2017-19/03/2017), for the case with active cooling.
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(a) The indoor temperature in the day zone.

. .

(b) The heat/cold supply to the heat emission system in the day zone.

(c) The DHW storage tank temperature.

. .

(d) The heat supply to the DHW storage tank.

Figure 8.9: The detailed time-dependent system behavior of the HP-PV system
installed in a typical Belgian detached single-family dwelling, during a week in
summer (17/07/2017-23/07/2017), for the case with active cooling.
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8.4 Conclusion

After having merely focused on the application of MPC for individual building
climate control, this chapter moves to another application domain of MPC in
buildings, being the exploitation of demand side flexibility to aid the balancing
between supply and demand.

In this context, a popular approach is to use MPC to maximize the self-consumption
of residential HP-PV systems coupled to thermal energy storage. The main aim
of this chapter is to investigate the (un)reasonableness of such individual, isolated
approaches. To this end, an assessment method is proposed to evaluate the
attainable self-consumption, and the associated dynamic system behavior, with the
help of a deterministic optimal control problem. This method is applied to a case
study, considering a typical Belgian detached residential single-family home, built
after 2005, equipped with an air-to-water heat pump that provides heat/cold to
the underfloor heating/cooling system, and supplies DHW to a storage tank. To
maximize insight, the attainable self-consumption is determined for different PV
capacities. Additionally, a distinction is made between the case without and with
active cooling.

A detailed analysis of the results of the case study, on a yearly, monthly and daily
basis, leads to multiple observations demonstrating the impracticality of individually
optimizing residential HP-PV systems, aiming at a maximal usage of the locally
generated electricity. A first important observed problem is the seasonal mismatch
between the solar availability and the demand, which predominantly concerns space
heating. Hence, in summer, there is a clear oversupply, for which the end-use is
not being considered. Besides, in winter, there is a large residual demand, which is
currently not being optimized to match the available supply at grid level, leaving
the demand side flexibility untapped. In addition, the analysis also reveals that
maximizing the self-consumption ultimately leads to a waste of energy, especially in
mid-season and summer, for which other useful applications (e.g., cooling dominated
buildings) might exist when considering the larger energy system, and thus results
in a non-optimal exploitation of the available electricity generation.

These insights substantiate the switch from a building-level perspective towards a
system-level perspective, properly accounting for the interaction between supply
and demand, which is the focus of the last part of this dissertation.



Chapter 9

Optimal collective control
under uncertainty of TCLs in
a group of buildings

RQ 5: How does the proposed SMPCap strategy alter the demand profile, and how
can this altered demand profile be coordinated for the benefit of the central energy

system?

This chapter is based on A. Uytterhoeven, R. Van Rompaey, K. Bruninx, and
L. Helsen, “Distributed Optimization of the Stochastic Load of Residential Heat
Pumps for Demand Response,” in progress, to be submitted to Applied Energy.

The aim of this chapter is to assess the added value of the proposed SMPCap strategy
for DR under additive (disturbance forecast) and parametric (model) uncertainty,
and to investigate how the response of a group of TCLs, each controlled by the
SMPCap strategy, can be coordinated for the benefit of the central energy system.
As such, the focus in this chapter is shifted from the building-level perspective,
where the main concern was thermal comfort, towards the system-level perspective,
where the detailed demand profiles provoked by the SMPCap strategy become of
prime importance, since they need to be balanced by the available supply. Therefore,
Section 9.1 first investigates in more detail the impact of the SMPCap strategy on
the resulting demand profile for an individual building, and which opportunities this
presents. Section 9.2 discusses the adopted method to evaluate the added value
of the proposed SMPCap strategy for DR under uncertainty. More particularly, an

145
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integrated system-level optimization problem is set up, linking the demand side with
the supply side, to investigate in detail whether the day-ahead coordination of the
particular demand profile induced by the SMPCap strategy can benefit the central
energy system. The analysis considers an electrification scenario of the residential
heating sector, where the demand side is constituted by a set of residential buildings
equipped with compression heat pumps for space heating (thus neglecting DHW
production), and the supply side is constituted by electricity generating facilities.
Section 9.3 sets up a case study used to evaluate the attainable benefits. The
results of this case study are discussed in Section 9.4. Finally, the most important
conclusions are summarized in Section 9.5.

9.1 Demand profile induced by the SMPCap strategy

When deriving the stochastic OCP formulation in Chapter 4, ADF was incorporated
in the open-loop OCP in order to reduce conservatism of the SMPCap strategy.
This particular intervention fundamentally impacts the resulting control strategy
and associated demand profiles, which will be analyzed in detail in this section1.

The impact of incorporating ADF is clearly illustrated in Figure 9.1, showing the
stochastic open-loop indoor temperature profiles and heat input profiles induced by
the SMPCap strategy developed in this dissertation which incorporates ADF (right
hand side of Figure 9.1), and an equivalent strategy without ADF (left hand side of
Figure 9.1), for an illustrative example. More particularly, the results correspond to
an open-loop energy use minimization for the terraced, small, older (but renovated)
dwelling equipped with radiators, inhabited by a four-persons-household consisting
of two full-time employed adults and two school-age children, during the 18th of
January 2016, for a risk-averseness level regarding thermal comfort of 1 − ϵ = 0.99.

The plots on the left hand side of Figure 9.1 clearly demonstrate the conservative
system behavior when omitting ADF, caused by prohibiting the closed-loop feedback
aspect of MPC (meaning that all uncertainty needs to be managed at building level,
as also discussed in Section 3.3). In this case, the uncertainty on the indoor air
temperature is steadily growing as time proceeds, due to the accumulative effect
of the additive and/or parametric uncertainties over the whole prediction horizon.
This growing uncertainty results in an increasing constraint tightening level (see
Equations (4.15) and (4.16)), which requires the mean indoor temperature T̄ia,k

to be progressively pushed further away from the lower bound, resulting in a rather
high thermal energy demand.
1 Recall that this was already briefly touched upon in Intermezzo 7.1.
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With ADF

. .

._

._

.

.

_

_

Without ADF

Figure 9.1: The impact of incorporating ADF in SMPC on the open-loop indoor
temperature profile and heat input profile (averaged over one hour) realized by an
SMPCap

1−ϵ=0.99 strategy, aiming to minimize energy use during the 18th of January
for the terraced, small, older (but renovated) dwelling equipped with radiators.

When incorporating ADF, on the other hand, the time profiles of both the indoor
temperature and the heat input, shown on the right hand side of Figure 9.1, differ
significantly from their equivalent profiles on the left hand side, which can be
explained as follows. In order to account for the closed-loop feedback aspect
of MPC in the open-loop control problem, intermediate reactions against the
additive and/or parametric uncertainties are enabled by ADF (meaning that the
load uncertainty needs to be (partly/completely) managed at system level, as also
discussed in Section 3.3). This is achieved by reformulating the control inputs as
an affine function of the preceding perturbations with the help of the feedback gain
matrix Tu (see Equation (4.17)), serving as an additional optimization variable
in case ADF is incorporated. This enables a reduction of the uncertainty on the
system states (see Equation (4.20)), explaining the reduced conservativeness of this
approach. Since the actually required corrective action depends on how severely the
additive and/or parametric uncertainties manifest themselves in real time, which
is not known beforehand, the heat input now also becomes a stochastic variable
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(in contrast to the case without ADF), represented by a mean value ¯̇Qsup,k, and a
variance ΣQ̇sup,k

at each time step k, which can be interpreted as follows. The time
profile established by the mean values { ¯̇Qsup,k}k=0...K should be viewed as the heat
supply profile sustaining the optimized mean/reference indoor air temperature profile
{T̄ia,k}k=1...K+1. The variance ΣQ̇sup,k

at each time step k, on the other hand,
characterizes the distribution of the possibly required real-time reaction against
additive and/or parametric uncertainties that actually manifest themselves during
t = [0, k − 1] in real time, in order to bring the perturbed temperature each time
back to its reference profile at time step k + 1.

Note that in Figure 9.1, and in all subsequent figures that will follow throughout
this chapter, the uncertainty is comprehensibly represented by an uncertainty band,
referred to as ∆(.), surrounding the mean/reference profile. Instead of considering
a band of ± one standard deviation2, it is chosen to consider the band set by
the constraint tightening level of the chance constraints, i.e., ∆Tia,k = ∆xi,k =
± Φ−1(1 − ϵxi,k

) qi,k and ∆Q̇sup,k = ∆uk = ± Φ−1(1 − ϵuk
) rk (see Equation

(4.21); the index j is omitted here since only one heat input is considered). As such,
the uncertainty bands delineate the intervals within which the actual values of the
indoor temperature and heat input will fall with a probability of 1 − 2 ϵxi,k

and
1 − 2 ϵuk

, respectively3. This particular choice for the uncertainty band is made for
arguments of interpretability, as the constraint tightening level unequivocally reflects
the operational freedom - either in the form of allowed temperature deviations or
in the form of spare capacity - that needs to be provided to guarantee constraint
satisfaction when subject to real-time perturbations in correspondence with the
imposed risk-averseness level4.

The observations above reveal a very important asset of the SMPCap strategy
incorporating ADF. Indeed, thanks to the incorporation of ADF in the open-loop
2 It should be stressed that the optimized auxiliary variables qi,k and rk determining the constraint

tightening level of the considered chance constraints on the states and control inputs are linked
to their respective standard deviation via inequality constraints (see Equation (4.21)), meaning
that they are strongly related, but not necessarily equal. Hence, be aware when interpreting
the figures throughout this chapter that the course of the uncertainty band over the prediction
horizon is partly determined by the evolution of the associated standard deviation, but also partly
due to additional, not necessarily physically explainable effects triggered by the optimization
procedure, which might especially appear when the tightened chance constraints affecting the
uncertainty band are not binding.

3 Analogously, a band of ± one standard deviation defines the interval within which the actual
value of the stochastic variable will fall with a probability of 68.27%.

4 Consequently, this particular choice for the uncertainty band also allows to clearly discern
whether the chance constraints are satisfied or not. This is especially important for the chance
constraints on the indoor temperature, as these constraints are allowed to be relaxed with the
help of slack variables. This constraint relaxation might for example be required in case ADF is
disabled, since the accumulative effect of the additive and/or parametric uncertainties can in
that case result in a wide uncertainty band towards the end of the prediction horizon exceeding
the allowed temperature range as imposed by the lower and upper bounds (as can for example
be discerned in Figure 9.1).
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OCP, not only the flexible5 demand for energy (determined by ¯̇Qsup,k during a time
step ∆t), but also the flexible demand for reserve capacity and real-time flexibility
i.e., the activation of the scheduled reserve capacity in real time (both determined by
ΣQ̇sup,k

)6 are made explicit in the open-loop OCP, thereby disclosing very valuable
information regarding system planning and operation. More importantly, since not
only the mean { ¯̇Qsup,k}k=0...K , but also the covariance {ΣQ̇sup,k

}k=0...K can now
be optimized (via the feedback gain matrix Tu), an additional controllable/price-
responsive demand becomes available, which enables a trade-off between the
degree of uncertainty management at building level versus at system level7, while
guaranteeing thermal comfort (in correspondence with the imposed risk-averseness
level). In other words, the incorporation of ADF unlocks an additional degree of
freedom characterizing the demand side flexibility that can be can be coordinated
for the benefit of the central energy system when harnessing the DR capability of
the SMPCap strategy.

The controllability of both { ¯̇Qsup,k}k=0...K and {ΣQ̇sup,k
}k=0...K is demonstrated

in Figure 9.2, showing the stochastic open-loop indoor temperature profiles and
heat input profiles resulting from an open-loop operational cost minimization by
the SMPCap strategy incorporating ADF for three different cases8: in the first
case, a constant cost is attributed to {ΣQ̇sup,k

}k=0...K , which is twice as high
as the constant cost attributed to ¯̇Qsup,k; in the second case, this price ratio
is reversed, making {ΣQ̇sup,k

}k=0...K twice as cheap as { ¯̇Qsup,k}k=0...K ; in the
third and final case, {ΣQ̇sup,k

}k=0...K can be provided for free whereas a constant
cost is still attributed to { ¯̇Qsup,k}k=0...K . The results are again presented for the
terraced, small, older (but renovated) dwelling equipped with radiators, inhabited
by a four-persons-household consisting of two full-time employed adults and two
school-age children, during the 18th of January 2016, for a risk-averseness level
regarding thermal comfort of 1 − ϵ = 0.99.

Figure 9.2 confirms that the relative cost ratio has an indisputable impact on
the share of the demand for energy versus the demand for reserve capacity and
real-time flexibility, thereby demonstrating their controllability/price-responsiveness,
and their interchangeability. Indeed, either the energy demand for space heating is
5 Recall that the demand side flexibility stems from the inherent flexibility offered by the thermal

storage capability of the building thermal mass, as explained in Intermezzo 8.1.
6 The demand for reserve capacity and for real-time flexibility both stem from the uncertainty

on the energy demand, where the first one is related to the forward planning aspect (i.e., the
open-loop OCP), and the second one is related to the real-time operational aspect (i.e., the
closed-loop OCP).

7 Recall the discussion in Section 3.3.
8 In all three cases, the cost of providing ¯̇Qsup,k during a time step ∆t is taken equal to

1 EUR/MWh. However, note that the exact value of this absolute cost level is of minor
importance compared to the relative cost ratio of ¯̇Qsup,k and ΣQ̇sup,k

.
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SMPCap
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renovated) dwelling equipped with radiators, for three different (constant) cost levels attributed to ¯̇Qsup,k and ΣQ̇sup,k

.
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higher, in order to steer the temperature further away from its lower bound, so that
thermal comfort is still guaranteed despite downward perturbations without requiring
any further actions, or the energy demand is exchanged for real-time flexibility,
which can be exploited to counteract the detrimental impact of additive and/or
parametric uncertainty manifestations in real time. It is exactly this controllability
and interchangeability of the demand for energy and the demand for reserve capacity
and real-time flexibility that will be further exploited throughout this chapter in a
DR context.

9.2 Demand response performance assessment
method

As Section 9.1 unveiled, the proposed SMPCap strategy is not only able to optimize
the demand for energy, but also the demand for reserve capacity and real-time
flexibility, thanks to the incorporation of ADF in the open-loop control problem.
The main aim of this section is to analyze in detail whether the exploitation of
this additional degree of freedom, unlocked by the proposed SMPCap strategy, can
benefit the central energy system in a DR context.

To this end, it is investigated whether the coordination of the demand of a group of
TCLs controlled by the proposed SMPCap strategy can reduce the overall system
operating cost compared to an equivalent case without ADF, where the coordination
of the demand for reserve capacity and real-time flexibility is disabled. The strategy
without ADF can be considered as the current state-of-the-art for DR with MPC
under uncertainty [41,120,121], albeit with the additional consideration of parametric
uncertainties. The overall system operating cost serves as the key performance
indicator (KPI) of the DR performance assessment9.

Given the expected increase in market penetration of heat pumps for residential
space heating [76, 77], the analysis considers an electrification scenario, where
residential buildings are equipped with compression heat pumps that can deliver
services to the electric power system (shortly, power system).

Since the interaction between the demand side and the supply side is of paramount
importance when investigating the effects of DR [24,34,174], an integrated system-
level optimization problem needs to be considered to properly determine the overall
system operating cost. This problem formulation is set up in Section 9.2.1, linking
the demand side, consisting of residential buildings equipped with heat pumps,
each controlled by the SMPCap strategy, to the supply side, consisting of electricity
9 The overall system operating cost will be further defined in Section 9.2.1.2.
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generation units. Subsequently, in Section 9.2.2, a distributed solution approach is
proposed to solve this mathematically complex problem.

9.2.1 Integrated system-level optimization problem

The integrated system-level optimization problem merges two problems. The first
one is the optimization problem representing the demand side, which is an extended
version of the stochastic OCP formulation derived in Chapter 4. The second one
is the optimization problem representing the supply side, which is an economic
dispatch problem. This problem mimics the day-to-day operation of the power
system, and schedules available electricity generation assets to meet the demand
at minimum cost. In the considered context, this day-ahead generation schedule
comprises of a supply of energy for the upcoming day, as well as of a supply of
reserve capacity, where the latter is a common way to cope with load uncertainty
(and thus, to accommodate demand for real-time flexibility).

The integrated system-level optimization problem, resulting from the combination
of these two subproblems, can be represented in a simplified form as in Problem
(9.1)10.

min
{χb}b=1...B

{χg}k=1...G

G∑
g=1

cEN
g + cREp

g + cREa
g (9.1a)

subject to 

Demand side constraints:(
D̄b, Rb,⋊b

)
= χb ∈ Xb ∀b

Supply side constraints:(
S̄g, Vg,⋊g

)
= χg ∈ Xg ∀g

Coupling constraints:

{S̄g}g=1...G ↔ {D̄b}b=1...B , D̄trad

{Vg}b=1...G ↔ {Rb}b=1...B , σsys

(9.1b)

In Equation (9.1), the objective is to minimize the total operating cost of the electric
power supply system, comprising of the day-ahead (and hence expected) costs of
10 Note that the notation adopted in Problem (9.1) to refer to the demand and supply variables

does not comply with the convention to use upper case letters for matrices, and lower case
letters for vectors or scalars, as introduced in Section 4.1. However, this intervention is inevitable
to guarantee a clear and unambiguous naming of the different variables.
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energy, cEN
g , reserve capacity provision, cREp

g , and reserve capacity activation (i.e.,
balancing actions in real time), cREa

g . These costs are determined by the stochastic
supply scheduled for each generator g, S̃g = {S̄g,k + δSg,k}k=0...K , which is split
up in a supply of energy, S̄g, and a supply of reserve capacity, Vg (related to ΣSg ).
The same distinction is made for the stochastic, flexible demand of each building b
accommodating flexible heat pumps for space heating, D̃b = {D̄b,k +δDb,k}k=0...K ,
resulting in a demand for energy D̄b, and a demand for reserve capacity, Rb (related
to ΣDb

). Since the focus of the integrated system-level problem is on the day-ahead
scheduling, the actual activation of the scheduled reserve capacity in real time, or
said differently, the demand for real-time flexibility, is not further considered11.

The supply of energy, {S̄g}g=1...G, is supposed to cover the flexible demand
for energy, {D̄b}b=1...B, as well as the traditional electricity demand, D̄trad,
encompassing all residual12 electricity demand (i.e., the remaining demand after the
subtraction of the available renewable generation) apart from the flexible demand of
the heat pumps. This traditional demand is assumed to be fixed (i.e., non-flexible),
since only heat pumps are allowed to offer flexibility in this dissertation13.

The supply of reserve capacity, {Vg}g=1...G, is in turn supposed to cover the
demand for reserve capacity of the flexible heat pumps, {Rb}b=1...B , as well as the
system-level uncertainty, w̃sys = {δwsys,k}k=0...K . This system-level uncertainty
represents the uncertainty on the traditional demand, the uncertainty on the
renewable power generation14, as well as the uncertainty related to the conventional
generation, such as unplanned outages and the like. It is assumed to be Gaussian,
with a zero mean, and variance Σsys,k.

Note that the operational decisions, or said differently, the strategy χ of each
building (subscript b) at the demand side, or each generator (subscript g) at the
supply side not only determine the demand for/supply of energy and reserve capacity,
but also some other (more local) operational decisions that are not directly involved
in the coupling constraints. These are represented by ⋊.

Each strategy χ belongs to a set of strategies X, which is defined by a number of
equality and inequality constraints, constituting the subproblems of each building or
generator. In the following sections, each of these subproblems is further elaborated
on, thereby defining the demand side constraints (set by the demand side problem
discussed in Section 9.2.1.1), as well as the supply side constraints, coupling
constraints, and the objective function (set by the supply side problem discussed
11 In contrast to the day-ahead, expected cost associated with this reserve capacity activation.
12 The analysis considers the residual electricity demand, such that the uncertainty related to the

renewable electricity generation can be incorporated in the system-level uncertainty.
13 In other words, the flexibility offered by among others white good appliances, battery storage,

electric vehicles, or flexible industrial processes is neglected here.
14 Recall that the renewable power generation is incorporated in the residual, traditional demand.
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in Section 9.2.1.2). The resulting OCP formulation of the integrated system-level
optimization problem combining these subproblems is summarized in Section 9.2.1.3.

9.2.1.1 Demand side problem

The demand side problem determines the demand side constraints in the integrated
system-level optimization problem. As the demand side is assumed to be a group
of buildings equipped with heat pumps for space heating, each controlled by the
SMPCap strategy (in interaction with the supply side), the demand side constraints
correspond to an altered/extended (and repeated) version of the stochastic OCP
formulation derived in Chapter 415.

Since the stochastic OCP formulation (4.21) does not specify the heat supply
system, this component model needs to be added to the OCP formulation. More
particularly, the OCP formulation is extended with a slightly adapted version of the
heat pump model described in Section 8.1.3.1. The required adaptations to the
heat pump model include the following. First, the heat pump model considered in
this chapter should merely consider space heating; the demand for space cooling
and domestic hot water are omitted here. Second, for arguments of convenience,
the assistance by an auxiliary resistance heater is neglected in this chapter. Finally,
since this chapter considers a stochastic instead of a deterministic approach (as
was the case in Chapter 8), the pre-processing step to determine the COP with
the help of Equation (8.9), and the electric power input with the help of Equation
(8.10), should now make use of the weather forecasts. However, the fact that these
weather forecasts are uncertain, and hence turn the COP and the maximum electric
power input into stochastic variables is neglected, as the COP and maximum electric
power input are averaged out over the considered prediction horizon anyhow (as
discussed in Section 8.1.3.1), making the exact value of these parameters at each
time instant of less importance.

Taking into account the extensions and alterations introduced above, the following
set of constraints defining the set of feasible strategies Xb for a particular building
b is obtained16.
15 Note that the stochastic OCP formulation derived in Chapter 4 incorporates ADF. The equivalent

case without ADF can be seen as a special form of this problem formulation, which is obtained
by forcing the transformation matrix Tub to be a zero matrix.

16 Note that in Equation (9.2), it is acknowledged that only one heat input is considered.
Consequently, the index j is omitted, and the variable representing the heat inputs is converted
from a vector ub,k into a scalar ub,k. The index b, on the other hand, is added, in order to
account for the fact that a group of multiple, distinct buildings is considered in this chapter.
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x̄b,k+1 = Āb x̄b,k + B̄b ūb,k + Ēb d̄b,k ∀k (9.2a)

Σr
xb,k+1

= (x̄T
b,k ⊗ Inx)Σr

Ab
+ Āb Σr

xb,k
+

ūb,k Σr
Bb

+ B̄b Σr
ub,k

+

(d̄T
b,k ⊗ Inx)Σr

Eb
+ Ēb Σr

db,k
∀k (9.2b)

x̄b,i,k + sb,i,k ≥ xmin
b,i,k + Φ−1(1 − ϵxb,i,k

) qb,i,k ∀i, k (9.2c)

x̄b,i,k − sb,i,k ≤ xmax
b,i,k − Φ−1(1 − ϵxb,i,k

) qb,i,k ∀i, k (9.2d)

qb,i,k ≥ ∥Σr
xb,i,k

∥2 ∀i, k (9.2e)

sb,i,k ≥ 0 ∀i, k (9.2f)

ūb,k ≥ 0 + Φ−1(1 − ϵub,k
) rb,k ∀k (9.2g)

ūb,k ≤ umax
b,k − Φ−1(1 − ϵub,k

) rb,k ∀k (9.2h)

rb,k ≥ ∥Σr
ub,k

∥2 ∀k (9.2i)

Σr
ub

= Tub
Σr

pb
(9.2j)

xb(0) = xb,0 (9.2k)

ub(0) = ub,0 (9.2l)

ūb,k = ¯̇Qsup,b,k = COP
sh

b,k Ṗ
sh

hp,b,k ∀k (9.2m)

umax
b,k = COP

sh

b,k Ṗ
sh,max

hp,b,k ∀k (9.2n)

Based on the OCP formulation described above, the demand for electric energy is
equal to the heat pump electricity consumption during a time step ∆t, as summarized
by Equation (9.2o). The demand for reserve capacity, on the other hand, can be
represented with the help of the auxiliary variable rb,k, which is closely related to
(i.e., bound from below by) the standard deviation of the stochastic demand D̃b,k.
Note that rb,k is chosen as a proxy for the standard deviation (see also Footnote 2),
instead of the root form Σr

Db,k
, since rb,k represents the uncertainty at a certain

time step with the help of one single value, whereas in Σr
Db,k

, the uncertainty is
distributed over multiple vector elements, making it less comprehensible. Since rb,k

is tailored to the uncertainty on the heat input in Equation (9.2), it still needs to
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be converted to an uncertainty related to the electricity demand. This can be done
with the help of the COP, as expressed by Equation (9.2p).

D̄b,k = Ṗ
sh

hp,b,k ∆t ∀k (9.2o)

Rb,k = rb,k

COP
sh

b,k

∀k (9.2p)

As already mentioned in Section 9.2.1, the demand for real-time flexibility is not
accounted for, since the focus is on the day-ahead scheduling, and hence, the
open-loop OCP is considered; the subsequent solution of the closed-loop OCP
throughout the day is not further considered. This is justified if the closed-loop
control merely comes down to the implementation of the optimized ADF strategy in
real time, since in this case, the additional consideration of this real-time behavior
does not add any new information to the discussion17.

In the integrated system-level optimization problem, the above-mentioned set of
constraints is repeated multiple times to model the demand side flexibility of a
limited number of distinct buildings. The demand of each of these buildings is
scaled up by a constant factor, in order to obtain a higher share of flexible demand
in the integrated system-level problem that can have a significant and observable
impact on the electricity generation system.

9.2.1.2 Supply side problem

The supply side problem determines the supply side constraints, the coupling
constraints, as well as the objective function of the integrated system-level
optimization problem (9.1). The considered problem formulation is a stylized
version of an economic dispatch problem, stripped down to its essence, where
ramping constraints, minimum on- and off-times, and start-up costs are neglected.
This problem aims to minimize the overall operating cost of the electricity generation
while meeting the demand, subject to techno-economic constraints of the involved
(aggregated) generating units.

A first important set of constraints determining the optimal schedule for the
generating units consists of the coupling constraints imposing the required balance
between supply and demand. It should be acknowledged that the coupling
constraints are actually not a strict part of the supply side problem, but rather
17 Be aware that this argument does not hold if one decides to deviate from the prescribed reaction

by the ADF strategy in real time. In this case, the demand projection in terms of the reference
profile and associated uncertainty band is no longer valid. This implies that the control strategy
for the building needs to be re-optimized, and that the consented DR strategy might be voided.
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serve as a link between the demand and supply side problem. However, due to the
specific approach we pursue to align the generator operation with the available
bottom-up characterization of the uncertain demand, the technical constraints of
the generators and the coupling constraints are intertwined, as will become clear
throughout the discussion below.

For the coupling constraints, an explicit distinction needs to be made between the
supply of and demand for electric energy on the one hand, and the supply of and
demand for reserve capacity on the other hand.

The coupling constraint for the energy component can be straightforwardly
expressed with the help of Equation (9.3), stating that the electricity generation
under expected conditions should meet the expected demand18.

G∑
g=1

S̄g,k =
B∑

b=1
D̄b,k + D̄trad,k ∀k (9.3)

In order to schedule the supply of reserve capacity, on the other hand, information
about the real-time situation needs to be included in the open-loop OCP formulation
of the supply side problem. This can be done by implementing an affine control
scheme, in analogy with ADF incorporated in the SMPCap strategy at the demand
side. By doing this, the generator output can be written as a function of the uncertain
demand, thus exploiting its available substantiated, bottom-up characterization
(described by Equations (9.2o) and (9.2p)). Following Bienstock et al. [175], all
conventional generators are assumed to modulate their output { ˜̇Pgen,g,k}k=0...K =
{ ¯̇Pgen,g,k +δṖg,k}k=0...K in response to real-time fluctuations in a proportional way
with the help of the proportionality coefficients αg,k, as expressed by Equations (9.4a)
to (9.4c), where these proportionality coefficients serve as additional optimization
variables in the supply side problem.

˜̇Pgen,g,k = ¯̇Pgen,g,k + αg,k

( B∑
b=1

δDb,k

∆t
+ δwsys,k

)
∀g, k (9.4a)

αg,k ≥ 0 ∀g, k (9.4b)

G∑
g=1

αg,k = 1 ∀k (9.4c)

18 If one wishes to include the curtailment of renewables, this equality constraint should be replaced
by an inequality constraint, as the right hand side of Equation (9.3) might become negative in
case of an overproduction of RES. This is nevertheless not further considered in this dissertation.
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As such, the output of each generator becomes a function of the Gaussian random
variables δDb,k and δwsys,k. Because of its consequent stochasticity, the constraints
regarding the output of a particular generator g can no longer be imposed as hard
constraints, but instead need to be expressed as chance constraints, as done by
Equations (9.5a) and (9.5b). To prevent a generator to produce power beyond its
capacity capg, small values are assigned to ϵṖgen,g,k

19, so that the chance constraints
closely resemble the original hard constraints.

P ( ˜̇Pgen,g,k ≥ 0) ≥ 1 − ϵṖgen,g,k
∀k (9.5a)

P ( ˜̇Pgen,g,k ≤ capg) ≥ 1 − ϵṖgen,g,k
∀k (9.5b)

Using Equation (9.4a) to further specify ˜̇Pgen,g,k in Equations (9.5a) and (9.5b),
and reformulating the chance constraints into deterministic constraints following
the same procedure as adopted in Chapter 4, the following expressions constraining
the generator output are obtained.

¯̇Pgen,g,k ≥ 0 + Φ−1(1 − ϵṖgen,g,k
) Vg,k ∀k (9.6a)

¯̇Pgen,g,k ≤ capg − Φ−1(1 − ϵṖgen,g,k
) Vg,k ∀k (9.6b)

Vg,k ≥ αg,k
1

∆t

∥∥∥∥∥∥∥∥∥∥
R1,k

...
RB,k

∆t σsys,k

∥∥∥∥∥∥∥∥∥∥
2

∀k (9.6c)

αg,k ≥ 0 ∀k (9.6d)

Note that the elaboration of the 2-norm in Equation (9.6c) results in the more
comprehensible expression for the reserve capacity given by Equation (9.7); the
reformulation of this expression into the SOC constraint of Equation (9.6c) is
nevertheless required to guarantee the convexity of the optimization problem.

V 2
g,k ≥ α2

g,k

1
∆t2

(
B∑

b=1
ΣDb,k

+ Σsys,k∆t2

)
(9.7)

19 Throughout this dissertation, ϵṖgen,g,k
is consistently equal to 0.999.
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Based on Equations (9.6a) to (9.6d), the scheduled supply of electric energy and of
reserve capacity can then be defined as follows.

S̄g,k = ¯̇Pgen,g,k ∆t ∀k (9.8a)

Vg,k ∀k (9.8b)

Equations (9.6a) to (9.6d) represent a set of technical constraints (Equations (9.6a)
and (9.6b)), and a set of balancing related constraints (Equations (9.6c) and (9.6d)).
The summation of Equations (9.6c) and (9.6d) over all generators, in order to
represent the overall provided reserve capacity, finally results in an additional
coupling constraint, being Equation (9.9), supplementing Equation (9.3).

G∑
g=1

Vg,k ≥ 1
∆t

∥∥∥∥∥∥∥∥∥∥
R1,k

...
RB,k

∆t σsys,k

∥∥∥∥∥∥∥∥∥∥
2

∀k (9.9)

Now that the technical constraints and coupling constraints of the supply side
problem are specified, the final aspect that still needs to be devised is the formulation
of the objective function. As already stated above, the integrated system-level
optimization problem aims to minimize the overall system operating cost. Given
the considered problem setting, the relevant operating costs include the day-ahead
(and hence, expected) costs of energy, cEN

g , reserve capacity provision, cREp
g , and

reserve capacity activation, cREa
g .

The day-ahead energy and reserve capacity activation costs for a particular generator
g are both determined by the expected cost of the stochastic generation, expressed by
Equation (9.10). The generation cost function cGEN

g is assumed to be a quadratic
function (characterized by three cost coefficients c2,g, c1,g and c0,g), in accordance
with standard power system engineering practice [175,176].

E[cGEN
g (S̃g,k)] = E

[c2,g

2 S̃2
g,k + c1,g S̃g,k + c0,g

]
∀k

= c2,g

2 E[S̃2
g,k] + c1,g E[S̃g,k] + c0,g ∀k (9.10)

Taking into account the definition of the stochastic generation as introduced by
Equation (9.4a), the expected values E[S̃g,k] and E[S̃2

g,k] can be written as

E[S̃g,k] = E
[
S̄g,k + αg,k

( B∑
b=1

δDb,k + δwsys,k∆t
)]

= S̄g,k ∀k (9.11a)
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and

E[S̃2
g,k] =E

[
S̄2

g,k + α2
g,k

( B∑
b=1

δDb,k

)2
+ α2

g,k

(
δwsys,k∆t

)2
+

2 α2
g,k

( B∑
b=1

δDb,k

)(
δwsys,k∆t

)
+

2 S̄g,k αg,k

( B∑
b=1

δDb,k

)
+ 2 S̄g,k αg,k

(
δwsys,k∆t

)]
∀k

= S̄2
g,k + α2

g,k

( B∑
b=1

ΣDb,k
+ Σsys,k∆t2

)
∀k

(9.11b)

where it is acknowledged that δwsys,k ∀k and δDb,k ∀b, k are all independent
stochastic random variables, and all have zero mean20.

Consequently, the expected cost of the stochastic generation can be expressed as
follows.

E
[
cGEN

g (S̃g,k)
]

=c2,g

2 S̄2
g,k + c1,g S̄g,k + c0,g+

c2,g

2 α2
g,k

( B∑
b=1

ΣDb,k
+ Σsys,k∆t2

)
∀k (9.12)

By finally implementing Equation (9.7) into Equation (9.12), the following
expressions for the day-ahead expected cost of energy cEN

g , and the day-ahead
expected cost of real-time reserve capacity activation cREa

g for a particular generator
g are obtained.

cEN
g =

K∑
k=1

c2,g

2 S̄2
g,k + c1,g S̄g,k + c0,g (9.13a)

cREa
g ≥

K∑
k=1

c2,g

2 V 2
g,k ∆t2 (9.13b)

20 Due to the explicit distinction between the mean D̄b and uncertain portion δDb of the stochastic
variable D̃b, this uncertain portion δDb can be interpreted as a segregated stochastic variable
with zero mean and variance ΣDb

.
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The cost to keep aside spare capacity (i.e., reserve capacity provision), on the other
hand, is assumed to be a percentage of the generation cost, as suggested by Pandz̆ić
et al. [177]; more particularly, the reserve capacity provision cost is taken equal to
30% of the average marginal generation cost [177]. This leads to the expression
given by Equation (9.13c) for the day-ahead cost of reserve capacity provision cREp

g .
Note that this cost is based on the constraint tightening level Φ−1(1−ϵṖgen,g,k

) Vg,k

of the generator power constraints (Equations (9.6a) and (9.6b)), instead of Vg,k,
as this expression reflects how much capacity actually needs to be kept aside.

cREp
g =

K∑
k=1

0.30
(

c2,g
capg

2 + c1,g

) (
Φ−1(1 − ϵṖgen,g,k

) Vg,k

)

=
K∑

k=1
c3,g Φ−1(1 − ϵṖgen,g,k

) Vg,k (9.13c)

The summation of these three cost components for all involved electricity generation
units characterizes the total system-level operating cost, and defines the objective
function of the integrated system-level optimization problem.

G∑
g=1

cEN
g + cREa

g + cREp
g ≥

G∑
g=1

K∑
k=1

c2,g

2 S̄2
g,k + c1,g S̄g,k + c0,g+

G∑
g=1

K∑
k=1

c2,g

2 V 2
g,k ∆t2+

G∑
g=1

K∑
k=1

c3,g Φ−1(1 − ϵṖgen,g,k
) Vg,k (9.14)

9.2.1.3 Resulting integrated system-level problem

The combination of the demand side constraints, supply side constraints, coupling
constraints and objective function derived in Sections 9.2.1.1 and 9.2.1.2, results
in the below mentioned accurate and detailed representation of the integrated
system-level optimization problem. This OCP formulation will be used for the DR
performance assessment in this dissertation, in order to verify the added value of
the proposed SMPCap strategy for DR under uncertainty.
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Optimal control problem formulation:

min
{χb}b=1...B

{χg}g=1...G

G∑
g=1

K∑
k=1

((c2,g

2 S̄2
g,k + c1,g S̄g,k + c0,g

)
+
(c2,g

2 V 2
g,k ∆t2

)
+ (9.15)

(
c3,g Φ−1(1 − ϵṖgen,g,k

) Vg,k

))
(9.16)

with

χb =
(
D̄b, Rb,⋊b

)
∀b (9.17a)

D̄b =
{

Ṗ
sh

hp,b,k ∆t
}

k=0...K
∀b (9.17b)

Rb =
{

rb,k

COP
sh

b,k

}
k=0...K

∀b (9.17c)

⋊b =
{

{x̄b,k}k=0...K+1, {Σr
xb,k

}k=0...K+1,

{qb,k}k=0...K+1, {sb,k}k=0...K+1,

{ūb,k}k=0...K , Tub

}
∀b (9.17d)

χg =
(
S̄g, Vg

)
∀g (9.17e)

S̄g =
{ ¯̇Pgen,g,k ∆t

}
k=0...K

∀g (9.17f)

Vg = {Vg,k}k=0...K ∀g (9.17g)
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subject to demand side constraints χb ∈ Xb ∀b

x̄b,k+1 = Āb x̄b,k + B̄b ūb,k + Ēb d̄b,k ∀b, k (9.18a)

Σr
xb,k+1

= (x̄T
b,k ⊗ Inx

)Σr
Ab

+ Āb Σr
xb,k

+

ūb,kΣr
Bb

+ B̄b Σr
ub,k

+

(d̄T
b,k ⊗ Inx

)Σr
Eb

+ Ēb Σr
db,k

∀b, k (9.18b)

x̄b,i,k + sb,i,k ≥ xmin
b,i,k + Φ−1(1 − ϵxb,i,k

) qb,i,k ∀b, i, k (9.18c)

x̄b,i,k − sb,i,k ≤ xmax
b,i,k − Φ−1(1 − ϵxb,i,k

) qb,i,k ∀b, i, k (9.18d)

qb,i,k ≥ ∥Σr
xb,i,k

∥2 ∀b, i, k (9.18e)

sb,i,k ≥ 0 ∀b, i, k (9.18f)

ūb,k ≥ 0 + Φ−1(1 − ϵub,k
) rb,k ∀b, k (9.18g)

ūb,k ≤ umax
b,k − Φ−1(1 − ϵub,k

) rb,k ∀b, k (9.18h)

rb,k ≥ ∥Σr
ub,k

∥2 ∀b, k (9.18i)

Σr
ub

= Tub
Σr

pb
(9.18j)

xb(0) = xb,0 ∀b (9.18k)

ub(0) = ub,0 ∀b (9.18l)

ūb,k = ¯̇Qsup,b,k = COP
sh

b,k Ṗ
sh

hp,b,k ∀b, k (9.18m)

umax
b,k = COP

sh

b,k Ṗ
sh,max

hp,b,k ∀b, k (9.18n)

subject to supply side constraints χg ∈ Xg ∀g

¯̇Pgen,g,k ≥ 0 + Φ−1(1 − ϵṖgen,g,k
) Vg,k ∀g, k (9.19a)

¯̇Pgen,g,k ≤ capg − Φ−1(1 − ϵṖgen,g,k
) Vg,k ∀g, k (9.19b)
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subject to coupling constraints

G∑
g=1

S̄g,k =
B∑

b=1
D̄b,k + D̄trad,k ∀k (9.20a)

G∑
g=1

Vg,k ≥ 1
∆t

∥∥∥∥∥∥∥∥∥∥
R1,k

...
RB,k

∆t σsys,k

∥∥∥∥∥∥∥∥∥∥
2

∀k (9.20b)

Summary:

Simplifying the integrated system-level optimization problem to its essence leads
to the concise representation expressed by Equation (9.21), serving as a refined
version of Equation (9.1).

min
{χb}b=1...B

{χg}g=1...G

G∑
g=1

fg(S̄g, Vg) (9.21a)

with

fg(S̄g, Vg) =
K∑

k=1

((c2,g

2 S̄2
g,k + c1,g S̄g,k + c0,g

)
+
(c2,g

2 V 2
g,k ∆t2

)
+

(
c3,g Φ−1(1 − ϵṖgen,g,k

) Vg,k

))
∀g (9.21b)

subject to

Demand side constraints:

χb =
(
D̄b, Rb,⋊b

)
∈ Xb ∀b (9.21c)

Supply side constraints:

χg =
(
S̄g, Vg

)
∈ Xg ∀g (9.21d)
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Coupling constraints:

G∑
g=1

S̄g,k =
B∑

b=1
D̄b,k + D̄trad,k ∀k (9.21e)

G∑
g=1

Vg,k ≥ 1
∆t

∥∥∥∥∥∥∥∥∥∥
R1,k

...
RB,k

∆t σsys,k

∥∥∥∥∥∥∥∥∥∥
2

∀k (9.21f)

9.2.2 Distributed solution strategy using ADMM

The integrated system-level optimization problem is a fairly large problem, with
a large number of optimization variables (recall among others the discussions in
Section 4.4 and Section 6.3.2). To ensure mathematical tractability, this section
proposes a distributed solution approach for the integrated problem, splitting up
the original problem into smaller subproblems, each of which are easier to manage,
and can be solved in parallel.

A particular algorithm that is well suited for distributed convex optimization [178,
179], and which has been gaining increasing popularity in a DR context [121,180,
181,182], is the alternating direction method of multipliers. The general working
principle of this algorithm is briefly explained in Intermezzo 9.1, after which the
implementation of this algorithm to solve the integrated system-level optimization
problem is discussed in detail in the remainder of this section.

Intermezzo 9.1

The alternating direction method of multipliers
The alternating direction method of multipliers (ADMM) is a simple but
powerful algorithm that can be used to solve convex optimization problems of
the form of Problem (9.22), where f(y) and g(z) represent convex functions,
and Y and Z represent convex sets, that can be represented using convex
equality and inequality constraints. The targeted problems are separable in the
optimization variables y and z, except for the coupling constraints (9.22d) [178].
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min
y,z

f(y) + g(z) (9.22a)

s.t. y ∈ Y (9.22b)

z ∈ Z (9.22c)

Fy + Gz = h (λλλ) (9.22d)

The solution approach of ADMM makes use of the augmented Lagrangian
Lρ(y, z,λλλ) of Problem (9.22), which is defined as follows.

Lρ(y, z,λλλ) =

f(y) + g(z) + λλλT (Fy + Gz − h) + ρ

2
∥∥Fy + Gz − h

∥∥2
2 (9.23)

Here, λλλ is the vector of dual variables, or Lagrange multipliers, associated
with the coupling constraints (9.22d), and ρ > 0 is a (user-defined) penalty
parameter.

ADMM solves Problem (9.22) in an iterative way, and in doing so, exploits
its decomposability for the separable optimization variables y and za. The
procedure to obtain the next ADMM-iterates starting from the current iterates
(yl, zl,λλλl), can be summarized as follows.

y-minimization step:

yl+1 = arg min
y∈Y

Lρ(y, zl,λλλl)

= arg min
y∈Y

f(y) + λλλT Fy + ρ

2
∥∥Fy + Gzl − h

∥∥2
2 (9.24a)

z-minimization step:

zl+1 = arg min
z∈Z

Lρ(yl+1, z,λλλl)

= arg min
z∈Z

g(z) + λλλT Gz + ρ

2
∥∥Fyl+1 + Gz − h

∥∥2
2 (9.24b)

dual variable update:

λλλl+1 = λλλl + ρ(Fyl+1 + Gzl+1 − h) (9.24c)
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The convergence of the iterative procedure towards the optimal solution is
tracked with the help of the primal and dual residuals, i.e., the residuals for the
primal and dual feasibility conditions, defined by Equations (9.25a) and (9.25b),
respectively; the derivation of these expressions can be found in the work of
Boyd et al. [178]. The primal residual is a measure for the satisfaction of
the coupling constraint. The dual residual, on the other hand, indicates how
much the optimization variables still change from one iteration to the next. As
imposed by Equations (9.25c) and (9.25d), these residuals should be sufficiently
small, in order for the iterative optimization to be terminated, indicating that
the algorithm is converged to the global optimum.

resl+1
prim = Fyl+1 + Gzl+1 − h (9.25a)

resl+1
dual = ρ FT G (zl+1 − zl) (9.25b)

∥∥resl+1
prim

∥∥
2 ≤ ϵprim (with ϵprim > 0) (9.25c)

∥∥resl+1
dual

∥∥
2 ≤ ϵdual (with ϵdual > 0) (9.25d)

The penalty parameter ρ has an important impact on the convergence of
ADMM. To improve convergence in practice, and to make the performance
of the ADMM procedure less dependent on the initially imposed value, the
penalty parameter can be updated with the help of the scheme presented by
Equation (9.26). This adaptive update scheme ensures that the norms of the
primal and dual variables stay within a factor ν from one another while they
both converge to zero [178].

ρl+1 =


τ incr ρl if

∥∥resl
prim

∥∥
2 > ν

∥∥resl
dual

∥∥
2

ρl/τdecr if
∥∥resl

dual

∥∥
2 > ν

∥∥resl
prim

∥∥
2

ρl otherwise

(9.26)

Here, ν > 1, τ incr > 1 and τdecr > 1 serve as parameters, for which the
following values are recommended: ν = 10, and τ incr = τdecr = 2 [178].
a Note that the augmented Lagrangian (in contrast to the optimization problem) is not

separable for y and z. Nonetheless, ADMM ensures a decoupling of these optimization
variables by alternately minimizing the augmented Lagrangian for y and z, respectively.
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9.2.2.1 Reformulation of the integrated system-level optimization problem
in ADMM form

The integrated system-level optimization problem in the form of Equation (9.21)
does not comply with the required ADMM structure to allow for a decomposition
of the problem into distinct subproblems for all different generators and buildings
(due to the considered formulation of the coupling constraints, Equations (9.21e)
and (9.21f)). This issue can be overcome by creating copies of the optimization
variables involved in the coupling constraints, as for example done by Mhanna et al.
[183] in the context of a quadratic second order cone constrained problem for optimal
power flow. This duplication introduces additional auxiliary optimization variables
zEN

g = {zEN
g,k }k=0...K ∀g, zEN

b = {zEN
b,k }k=0...K ∀b, zRE

g = {zRE
g,k }k=0...K ∀g, and

zRE
b = {zRE

b,k }k=0...K ∀b, resulting in a reformulated problem in the required
ADMM form, as presented by Equation (9.27). Here, the equality constraints
establishing the duplication of the coupling variables can be considered as the
renewed coupling constraints (Equations (9.27f) to (9.27i)). The original coupling
constraints, on the other hand, are now fully attributed to the auxiliary optimization
variables (Equations (9.27d) and (9.27e)). The problem formulation thus obtained
is adequately separable for the primal and auxiliary variables, as we will further
discuss below.

min
{χb}b=1...B ,ZEN

BU ,ZRE
BU

{χg}g=1...G,ZEN
GE ,ZRE

GE

G∑
g=1

fg(S̄g, Vg) (9.27a)

subject to

χb =
(
D̄b, Rb,⋊b

)
∈ Xb ∀b (9.27b)

χg =
(
S̄g, Vg

)
∈ Xg ∀g (9.27c)

G∑
g=1

zEN
g =

B∑
b=1

zEN
b + D̄trad (9.27d)

G∑
g=1

zRE
g,k ≥ 1

∆t

∥∥∥∥∥∥∥∥∥∥
zRE

1,k
...

zRE
B,k

∆t σsys,k

∥∥∥∥∥∥∥∥∥∥
2

∀k (9.27e)
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zEN
g = S̄g (λλλEN

g ) ∀g (9.27f)

D̄b = zEN
b (λλλEN

b ) ∀b (9.27g)

zRE
g = Vg (λλλRE

g ) ∀g (9.27h)

Rb = zRE
b (λλλRE

b ) ∀b (9.27i)

with

S̄GE = [S̄1 ... S̄G] D̄BU = [D̄1 ... D̄B ]

VGE = [V1 ... VG] RBU = [R1 ... RB ]

ZEN
GE = [zEN

1 ... zEN
G ] ZEN

BU = [zEN
1 ... zEN

B ]

ZRE
GE = [zRE

1 ... zRE
G ] ZRE

BU = [zRE
1 ... zRE

B ]

ΛΛΛEN
GE = [λλλEN

1 ... λλλEN
G ] ΛΛΛEN

BU = [λλλEN
1 ... λλλEN

B ]

ΛΛΛRE
GE = [λλλRE

1 ... λλλRE
G ] ΛΛΛRE

BU = [λλλRE
1 ... λλλRE

B ] (9.27j)

The augmented Lagrangian Lρ of Problem (9.27) is then defined by Equation
(9.28)21.

Lρ =
G∑

g=1
fg(S̄g, Vg) +

G∑
g=1

(
(λλλEN

g )T (zEN
g − S̄g) + ρ

2
∥∥zEN

g − S̄g

∥∥2
2

)
+

B∑
b=1

(
(λλλEN

b )T (D̄b − zEN
b ) + ρ

2
∥∥D̄b − zEN

b

∥∥2
2

)
+

G∑
g=1

(
(λλλRE

g )T (zRE
g − Vg) + ρ

2
∥∥zRE

g − Vg

∥∥2
2

)
+

B∑
b=1

(
(λλλRE

b )T (Rb − zRE
b ) + ρ

2
∥∥Rb − zRE

b

∥∥2
2

)
(9.28)

21 Note that the local (i.e., not coupling) constraints should actually be included in the augmented
Lagrangian via their indicator function, where the indicator function IA of a subset A of a
set X indicates whether an element x in X belongs to A (IA(x) = 1) or not (IA(x) = 0).
Nevertheless, for the ease of notation, these indicator functions are omitted in Equation (9.28).
The local constraints will later on be explicitly included for each of the subproblems aiming to
minimize part of the augmented Lagrangian.
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By regrouping the different terms of the augmented Lagrangian in Equation (9.28), it
can be rewritten from the point of view of the primal optimization variables, as done
in Equation (9.29a), as well as from the point of view of the auxiliary optimization
variables, as done in Equation (9.29b). In these equations, O1 and O2 represent
all terms that are not depending on the primal or auxiliary variables, respectively.
Note that the reformulation from the point of view of the auxiliary variables is not
a mere regrouping of terms, but also involves some additional (straightforward)
manipulations regarding special products. As such, the reformulation more clearly
indicates that the update of the auxiliary variables actually comes down to a
Euclidean projection of the demand side and supply side variables onto the set
described by the original coupling constraints.

Lρ =
G∑

g=1

fg(S̄g, Vg) − (λλλEN
g )T S̄g − (λλλRE

g )T Vg + ρ

2

∥∥∥∥∥zEN
g − S̄g

zRE
g − Vg

∥∥∥∥∥
2

2


︸ ︷︷ ︸

Lg
ρ(S̄g,Vg,zEN

g ,zRE
g ,λλλEN

g ,λλλRE
g )

+

B∑
b=1

(λλλEN
b )T D̄b + (λλλRE

b )T Rb + ρ

2

∥∥∥∥∥D̄b − zEN
b

Rb − zRE
b

∥∥∥∥∥
2

2


︸ ︷︷ ︸

Lb
ρ(D̄b,Rb,zEN

b
,zRE

b
,λλλEN

b
,λλλRE

b
)

+O1 (9.29a)

=ρ

2

(
G∑

g=1

∥∥∥∥zEN
g −

(
S̄g −

λλλEN
g

ρ

)∥∥∥∥2

2
+

B∑
b=1

∥∥∥∥(D̄b + λλλEN
b

ρ

)
− zEN

b

∥∥∥∥2

2︸ ︷︷ ︸
LEN

ρ (S̄GE ,D̄BU ,ZEN
GE

,ZEN
BU

,ΛΛΛEN
GE

,ΛΛΛEN
BU

)

+

G∑
g=1

∥∥∥∥zRE
g −

(
Vg −

λλλRE
g

ρ

)∥∥∥∥2

2
+

B∑
b=1

∥∥∥∥(Rb + λλλRE
b

ρ

)
− zRE

b

∥∥∥∥2

2︸ ︷︷ ︸
LRE

ρ (VGE ,RBU ,ZRE
GE

,ZRE
BU

,ΛΛΛRE
GE

,ΛΛΛRE
BU

)

)
+

O2 (9.29b)

The iterative ADMM solution procedure for the integrated system-level optimization
problem can then be set up as Problem (9.30). Note that the different steps are
now more adequately named compared to Intermezzo 9.1, in order to make a clear
distinction between the actual optimization variables of interest, and the auxiliary
variables that were merely introduced to make the problem separable, and compliant
with the required ADMM structure.
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Primal variables update:

[
{χl+1

g }g=1...G, {χl+1
b }b=1...B

]
=

arg min
G∑

g=1
Lg

ρ(S̄g, Vg, zEN,l
g , zRE,l

g ,λλλEN,l
g ,λλλRE,l

g ) +

B∑
b=1

Lb
ρ(D̄b, Rb, zEN,l

b , zRE,l
b ,λλλEN,l

b ,λλλRE,l
b ) + O1

s.t. {χg ∈ Xg}g=1...G

{χb ∈ Xb}b=1...B (9.30a)

⇒ ∀g : χl+1
g = arg min Lg

ρ(S̄g, Vg, zEN,l
g , zRE,l

g ,λλλEN,l
g ,λλλRE,l

g )

s.t. χg ∈ Xg (9.30b)

⇒ ∀b : χl+1
b = arg min Lb

ρ(D̄b, Rb, zEN,l
b , zRE,l

b ,λλλEN,l
b ,λλλRE,l

b )

s.t. χb ∈ Xb (9.30c)

Auxiliary variables update:[
ZEN,l+1

BU , ZRE,l+1
BU , ZEN,l+1

GE , ZRE,l+1
GE

]
=

arg min LEN
ρ (S̄l+1

GE , D̄l+1
BU , ZEN

GE , ZEN
BU ,ΛΛΛEN,l

GE ,ΛΛΛEN,l
BU ) +

LRE
ρ (Vl+1

GE , Rl+1
BU , ZRE

GE , ZRE
BU ,ΛΛΛRE,l

GE ,ΛΛΛRE,l
BU ) + O2

s.t.

G∑
g=1

zEN
g =

B∑
b=1

zEN
b + D̄trad

G∑
g=1

zRE
g,k ≥ 1

∆t

∥∥∥∥∥∥∥∥∥∥
zRE

1,k
...

zRE
B,k

∆t σsys,k

∥∥∥∥∥∥∥∥∥∥
2

∀k (9.30d)
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⇒

[
ZEN,l+1

GE

ZEN,l+1
BU

]
= arg min LEN

ρ (S̄l+1
GE , D̄l+1

BU , ZEN
GE , ZEN

BU ,ΛΛΛEN,l
GE ,ΛΛΛEN,l

BU )

s.t.

G∑
g=1

zEN
g =

B∑
b=1

zEN
b + D̄trad (9.30e)

⇒

[
ZRE,l+1

GE

ZRE,l+1
BU

]
= arg min LRE

ρ (Vl+1
GE , Rl+1

BU , ZRE
GE , ZRE

BU ,ΛΛΛRE,l
GE ,ΛΛΛRE,l

BU )

s.t.

G∑
g=1

zRE
g,k ≥ 1

∆t

∥∥∥∥∥∥∥∥∥∥
zRE

1,k
...

zRE
B,k

∆t σsys,k

∥∥∥∥∥∥∥∥∥∥
2

∀k (9.30f)

Dual variables update:

λλλEN,l+1
g = λλλEN,l

g + ρ(zEN,l+1
g − S̄l+1

g ) ∀g (9.30g)

λλλEN,l+1
b = λλλEN,l

b + ρ(D̄l+1
b − zEN,l+1

b ) ∀b (9.30h)

λλλRE,l+1
g = λλλRE,l

g + ρ(zRE,l+1
g − Vl+1

g ) ∀g (9.30i)

λλλRE,l+1
b = λλλRE,l

b + ρ(Rl+1
b − zRE,l+1

b ) ∀b (9.30j)

The iterative solution procedure can be summarized in words as follows.

Thanks to the decomposability of the problem, the primal variables update breaks
down into B individual subproblems for the different buildings, and G individual
subproblems for the different generators, all of which can be solved in parallel22.

The auxiliary variables update, on the other hand, breaks down into two larger
separable subproblems for each time step, one per original coupling constraint.
These problems cannot be further simplified, since their exact aim is to bring
all primal variables together, and make them comply with the original coupling
constraints, which are not separable. Consequently, the auxiliary variables update
can be considered as a more centralized two-part subproblem, which collects and
brings together information of all different buildings and generators.
22 This specific form of ADMM, where more than two separable problems are involved, is also

known as multi-block ADMM.
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Throughout this iterative solution procedure, the auxiliary and dual variables serve
as coordination signals for the generators and buildings, in order to ultimately
align the supply and demand, while minimizing the overall system operating cost.
Nevertheless, note that the communication of both the auxiliary and dual variables
to a particular building or generator is redundant, because of the explicit relations
between both, as expressed by Equations (9.30g) to (9.30j). Hence, in this work,
it is chosen to only communicate the dual variables as independent coordination
signals. This choice is prompted by their straightforward physical interpretation as
proxies for energy and reserve capacity prices, as we will further discuss below. The
associated auxiliary variables, on the other hand, can then be locally computed by
each of the generators and buildings based on the dual variables with the help of
Equation (9.31), which is a reformulation of Equations (9.30g) to (9.30j).

zEN,l+1
b = D̄l+1

b + λλλEN,l − λλλEN,l+1

ρ
, zRE,l+1

b = Rl+1
b +

λλλRE,l
b − λλλRE,l+1

b

ρ
∀b

zEN,l+1
g = S̄l+1

g − λλλEN,l − λλλEN,l+1

ρ
, zRE,l+1

g = Vl+1
g −

λλλRE,l
GE − λλλRE,l+1

GE

ρ
∀g

(9.31)

Although all subproblems defined in Problem (9.30) could be directly used for the
iterative ADMM solution procedure, the auxiliary subproblems can still be further
revised, improving the interpretability of the ADMM procedure.

9.2.2.2 Further revision of the auxiliary subproblems

The fact that the auxiliary subproblems can be further revised is particularly true for
the update of the auxiliary variables related to the energy balancing constraint23,
Equation (9.30e). As we will devise below, this optimization problem can be
rewritten in the form of two explicit expressions for zEN,l+1

g and zEN,l+1
b . In

addition, the dual variables {λλλEN,l+1
g ∀g} and {λλλEN,l+1

b ∀b} can be reduced to a
single dual variable λλλEN,l, which can be interpreted as the price for electric energy.

Since the subproblem to determine the auxiliary variables related to the energy
balancing constraint represents a Euclidean projection onto an affine set, it has
a clear-cut closed-form solution [184], which is given by Equation (9.32). Note
that this closed-form solution can also be straightforwardly derived by applying the
23 Be aware that the further revision discussed in this section is tailored to the case where the

energy balancing constraint is imposed as an equality constraint (only then, the particular
derived closed-form solution holds), and hence, is not applicable if one wishes to account for
the curtailment of RES.
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method of Lagrange multipliers to the optimization problem defined by Equation
(9.30e).

zEN,l+1
g = S̄l+1

g −
λλλEN,l

g

ρ
− 1

G + B
IMBl+1 ∀g (9.32a)

zEN,l+1
b = D̄l+1

b +
λλλEN,l

b

ρ
+ 1

G + B
IMBl+1 ∀b (9.32b)

with

IMBl+1 =
G∑

g=1

(
S̄l+1

g −
λλλEN,l

g

ρ

)
−

B∑
b=1

(
D̄l+1

b +
λλλEN,l

b

ρ

)
− D̄trad

=
G∑

g=1
S̄l+1

g −
B∑

b=1
D̄l+1

b − D̄trad −
∑G

g=1 λλλEN,l
g +

∑B
b=1 λλλEN,l

b

ρ

(9.32c)

The insertion of these expressions for zEN,l+1
g and zEN,l+1

b into the associated
updates of the dual variables, Equations (9.30g) and (9.30h), results in the renewed
update equations for the energy related dual variables, given by Equations (9.33a)
and (9.33b).

λλλEN,l+1
g = λλλEN,l

g + ρ(zEN,l+1
g − S̄l+1

g ) ∀g

= 1
G + B

(
G∑

g=1
λλλEN,l

g +
B∑

b=1
λλλEN,l

b

)
︸ ︷︷ ︸

λλλEN,l

−

ρ

G + B

(
G∑

g=1
S̄l+1

g −
B∑

b=1
D̄l+1

b − D̄trad

)
∀g

= λλλEN,l − ρ

G + B

(
G∑

g=1
S̄l+1

g −
B∑

b=1
D̄l+1

b − D̄trad

)
∀g (9.33a)

λλλEN,l+1
b = λλλEN,l

b + ρ(D̄l+1
b − zEN,l+1

b ) ∀b

= λλλEN,l − ρ

G + B

(
G∑

g=1
S̄l+1

g −
B∑

b=1
D̄l+1

b − D̄trad

)
∀b (9.33b)
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Equations (9.33a) and (9.33b) show that, irrespective of the initialization of
{λλλEN,0

g ∀g} and {λλλEN,0
b ∀b}, the dual variables {λλλEN,l+1

g ∀g} and {λλλEN,l+1
b ∀b}

become equal after the first iteration step, and remain equal for the remainder
of the solution procedure. Hence, all dual variables {λλλEN,l

g ∀g,λλλEN,l
b ∀b} can be

replaced by one dual variable λλλEN,l in Equation (9.30), which is updated depending
on the overall imbalance between the supply of and demand for electric energy.

This unique dual variable λλλEN,l can be readily interpreted as the price for electric
energy. Indeed, in general, the value of the dual variable at the optimal solution
corresponds to the change in the optimal value of the objective function by relaxing
the constraint by an infinitesimal unit [185]. Accordingly, the particular dual
variable associated with the energy balance constraint in the integrated system-
level optimization problem, which aims to minimize the overall operating cost,
corresponds to the marginal cost of generating one extra unit of electric energy.
The interpretation of this dual variable as the price for electric energy is moreover
further substantiated by looking at the objective functions of the generator and
building subproblems, given by Equation (9.29a), which clearly shows that the
generators and buildings are exchanging commodities S̄g and D̄b at a particular
price λλλEN,l

g = λλλEN,l
b = λλλEN,l.

Finally, note that based on the derived expression for λλλEN,l+1 in Equations (9.33a)
and (9.33b), the closed-form solution of the update of the auxiliary variables related
to the energy balancing constraint can be further simplified to Equations (9.34a)
and (9.34b), serving as the final substitute of Equation (9.30e).

zEN,l+1
g = S̄l+1

g − 1
G + B

(
G∑

g=1
S̄l+1

g −
B∑

b=1
D̄l+1

b − D̄trad

)
∀g (9.34a)

zEN,l+1
b = D̄l+1

b + 1
G + B

(
G∑

g=1
S̄l+1

g −
B∑

b=1
D̄l+1

b − D̄trad

)
∀b (9.34b)

For the update of the auxiliary variables related to the reserve capacity balancing
constraint, Equation (9.30f), on the other hand, no closed-form solution is derived
in this dissertation. Although there exist closed-form solutions for projections
onto second order cones (see e.g., [186]), the particular form considered in this
dissertation is even more involved due to the presence of the constant ∆t σsys,k in
the 2-norm in the constraint. Therefore, the auxiliary problem is retained in the
form of Equation (9.30f), which is a well-manageable optimization problem with a
low number of optimization variables.

Although no closed-form solution is derived here, before finalizing the discussion
about the revision of the subproblems, it is still useful to consider the reserve
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capacity related dual variables {λλλRE,l
g ∀g,λλλRE,l

b ∀b}, as was done for the energy
related auxiliary problem. Due to the specific problem structure, the dual variables
related to the reserve capacity balancing constraint cannot be reduced to a single dual
variable24. Nevertheless, in analogy with the aforementioned discussion regarding
the energy related auxiliary problem, the dual variables can still be interpreted as
price signals, steered by the imbalance between supply and demand, albeit this time
with an additional, intermediate step. Indeed, the dual variables {λλλRE,l

g ∀g} are
now updated based on the imbalance between the projection of the demand for
reserve capacity onto the set defined by the original coupling constraints, zRE,l+1

g ,
and the actual demand for reserve capacity, Vl+1

g (which might not satisfy the
original coupling constraint while searching for the optimal solution). Analogously,
the dual variables {λλλRE,l

b ∀b} are updated based on the imbalance between the
actual demand for reserve capacity, Rl+1

b , and the projected demand for reserve
capacity, zRE,l+1

b . The balance between the projected supply and the projected
demand is in turn enforced by solving the auxiliary problem related to the reserve
capacity balancing constraint.

9.2.2.3 Resulting ADMM algorithm for the integrated system-level
optimization problem

Taking all the aforementioned considerations into account, the final algorithm to
solve Problem (9.21) in an efficient, distributed way is given by Algorithm 9.1. The
ADMM procedure corresponding to Algorithm 9.1 is schematically represented in
Figure 9.3 for one iteration step.

24 It can be shown that {λλλRE,l
g ∀g} can be reduced to one and the same dual variable for all

generators, λλλRE,l+1
GE . For {λλλRE,l

b
∀b}, on the other hand, this does not hold.
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Algorithm 9.1

The ADMM procedure for the integrated system-level optimization
problem

Initialization
λλλEN,0,λλλRE,0

b ,λλλRE,0
g , zEN,0

b , zEN,0
g , zRE,0

b , zRE,0
g ← 0K ∀g, b

l← 0

while
∥∥resl+1

prim

∥∥
2

> ϵprim and
∥∥resl+1

dual

∥∥
2

> ϵdual

Primal variables update

Buildings

∀b : χl+1
b = arg min (λλλEN,l)T D̄b + (λλλRE,l

b )T Rb + ρ

2

∥∥∥∥D̄b − zEN,l
b

Rb − zRE,l
b

∥∥∥∥2

2

s.t. χb ∈ Xb

Generators

∀g : χl+1
g = arg min

K∑
k=1

(
c2,g

2 S̄2
g,k + c1,g S̄g,k + c0,g + c2,g

2 V 2
g,k ∆t2+

c3,g

(
Φ−1(1− ϵṖgen,g,k

) Vg,k

))
−

(λλλEN,l)T S̄g − (λλλRE,l
g )T Vg + ρ

2

∥∥∥∥zEN,l
g − S̄g

zRE,l
g −Vg

∥∥∥∥2

2

s.t. χg ∈ Xb

Auxiliary variables update

Energy

zEN,l+1
b = D̄l+1

b + 1
G + B

(
G∑

g=1

S̄l+1
g −

B∑
b=1

D̄l+1
b − D̄trad

)
∀b

zEN,l+1
g = S̄l+1

g − 1
G + B

(
G∑

g=1

S̄l+1
g −

B∑
b=1

D̄l+1
b − D̄trad

)
∀g
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Reserve capacity

∀k :
[
zRE,l+1

1,k , ..., zRE,l+1
G,k , zRE,l+1

1,k , ..., zRE,l+1
B,k

]
=

arg min
z

G∑
g=1

∥∥∥∥zRE,l
g,k −

(
V l+1

g,k −
λRE,l

g,k

ρ

)∥∥∥∥2

2
+

B∑
b=1

∥∥∥∥
(

Rl+1
b,k +

λRE,l
b,k

ρ

)
− zRE

b,k

∥∥∥∥2

2

s.t.

G∑
g=1

zRE
g,k ≥

1
∆t

∥∥∥∥∥∥∥∥
zRE

1,k

...
zRE

B,k

∆t σsys,k

∥∥∥∥∥∥∥∥
2

Dual variables update

Energy

λλλEN,l+1 = λλλEN,l − ρ

G + B

(
G∑

g=1

S̄l+1
g −

B∑
b=1

D̄l+1
b − D̄trad

)
Reserve capacity

λλλRE,l+1
g = λλλRE,l

g + ρ
(
zRE,l+1

g −Vl+1
g

)
∀g

λλλRE,l+1
b = λλλRE,l

b + ρ(Rl+1
b − zRE,l+1

b ) ∀b

Continuation∥∥resl+1
prim

∥∥
2

=

∥∥∥∥∥∥∥
zEN,l+1

g − S̄l+1
g

D̄l+1
b − zEN,l+1

b

zRE,l+1
g −Vl+1

g

Rl+1
b − zRE,l+1

b

∥∥∥∥∥∥∥
2

∥∥resl+1
dual

∥∥
2

=

∥∥∥∥∥∥∥∥
ρ
(
zEN,l+1

g − zEN,l
g

)
ρ
(
zEN,l+1

b − zEN,l
b

)
ρ
(
zRE,l+1

g − zRE,l
g

)
ρ
(
zRE,l+1

b − zRE,l
b

)
∥∥∥∥∥∥∥∥

2

l← l + 1

end
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Generator subproblem

Primal variables update∀g

Building subproblem

Primal variables update∀b

Master problem

Auxiliary variables update

Energy

Reserve capacity

Dual variables update

Energy

Reserve capacity

ത𝑺𝑔
𝑙+1, 𝑽𝑔

𝑙+1

ഥ𝑫𝑏
𝑙+1, 𝑹𝑏

𝑙+1

𝝀𝐸𝑁,𝑙 , 𝝀𝑔
𝑅𝐸,𝑙

𝝀𝐸𝑁,𝑙, 𝝀𝑏
𝑅𝐸,𝑙

𝝀𝐸𝑁,𝑙+1, 𝝀𝑔
𝑅𝐸,𝑙+1

𝝀𝐸𝑁,𝑙+1, 𝝀𝑏
𝑅𝐸,𝑙+1

Figure 9.3: Schematic representation of all different (primal/auxiliary/dual) update
steps within one iteration of the distributed ADMM procedure, illustrating its
hierarchical structure.

Figure 9.3 clearly shows that due to the implementation of ADMM, the global,
integrated system-level optimization problem discussed in Section 9.2.1 breaks down
into a hierarchical structure. This hierarchical structure can be interpreted as a
day-ahead coordination framework between a master problem (i.e., the update
of the auxiliary variables as well as of the dual variables/prices), which collects
and brings together information about all different buildings and generators, and
individual subproblems for all participants (i.e., the update of the primal variables
for all distinct generators and buildings), which individually optimize their operating
schedule for the upcoming day based on the prices they receive. The exchange
of the dual variables (i.e., price information) between the master problem and the
generator and building subproblems is used to converge towards the optimal solution.
As such, the ADMM procedure can be viewed as a form of tâtonnement or price
adjustment process, where the price is increased or decreased depending on whether
there is an excess demand or supply, respectively, ultimately aiming to converge
towards a balance between the supply of and demand for electric energy as well as
between the supply of and demand for reserve capacity [121,178,187].

This hierarchical coordination framework can be interpreted as a solid basis for
more dedicated research regarding system operation, market design, consumer
coordination and tariff structures for DR under uncertainty. Indeed, additional
modifications and extensions are required to improve the validity of the coordination
framework, such as a correct representation of all underlying markets and associated
market mechanisms, and the inclusion of all relevant market players (such as
aggregators). Although this is not further pursued in this dissertation, it is
recommended as a valuable track of future research.
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In a next step, the integrated system-level optimization problem is solved in Section
9.3 to investigate the beneficial impact of the coordination of the demand for
reserve capacity in addition to the demand for electric energy on the overall system
operating cost.

9.3 Case study

In this section, the added value of the proposed SMPCap strategy for DR under
uncertainty is evaluated. This is done by comparing the overall system operating
cost, obtained by solving the integrated system-level optimization problem, for two
cases: one where the demand side is controlled by the proposed SMPCap strategy
incorporating ADF, and one where ADF, and thus also the coordination of the
demand for reserve capacity, is prohibited.

The considered flexible demand side in this study consists of the nine residential
buildings for which the parametric uncertainty was characterized in Chapter 5; since
the focus is on the day-ahead scheduling, only the open-loop stochastic OCP is
considered, meaning that all these buildings are represented by their reference SSM
combined with the corresponding covariance matrix. All buildings are equipped with
a compression heat pump, which is sized according to the nominal heat demand
with an additional safety factor of 1.5, to account for the additive as well as
parametric uncertainties. For the installed heat emission system, both radiators and
floor heating are looked at, albeit in two distinct analyses, in order to be able to
distinguish the added value of the SMPCap strategy for DR under uncertainty for
either of these cases.

All buildings are assumed to be subject to the same weather conditions, for which the
weather data of 2016 are used. The expected value and covariance of the weather
forecasts are again determined by applying the methods described in Chapter 5.

Regarding the occupant behavior, each of the nine buildings is combined with
a different25 StROBe profile, in order to further increase the diversification (and
hence representativeness) of the demand side. This StROBe profile is this time
not only used to define the internal heat gains (where the expected value and
covariance of the internal heat gains are again determined as prescribed in Chapter
5), but also the indoor temperature set-points, serving as the lower thermal comfort
bound. In contrast to previously considered case studies26, the maximum allowed
temperature also plays an important role here, as it defines the allowable temperature
fluctuations when the building is occupied, thereby impeding the operational freedom
25 Different, both in terms of magnitude, and in terms of timing.
26 Recall that in all previously considered case studies (except for Chapter 8), the upper thermal

comfort bound was of minor importance, since the control strategy was aiming to minimize the
energy use, and consequently, was trying to stick to the lower temperature bound.
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of the control strategy for DR. The upper temperature bound is determined as
follows27: T max

ia = max({T min
ia,k }k=0...K+1) + ∆TDR, where ∆TDR defines the DR

temperature band28. In this work, ∆TDR is set equal to 4 °C [24]. This choice is
further substantiated in Intermezzo 9.2.

Each of the nine considered buildings is either controlled by the SMPCap strategy
incorporating ADF, developed in this dissertation, or by an equivalent strategy where
ADF is disabled; both strategies consider a risk-averseness level regarding thermal
comfort of 1 − ϵ = 0.99. The demand determined by these control strategies is
for each building scaled up by a constant factor, in order to guarantee that the
demand side flexibility can have a significant impact on the electricity generation
system. To maximize insight, three different scaling factors, representing different
market penetration levels, are considered, being 1000, 10,000 or 100 000. This
leads to a demand side consisting of 9000, 90 000 or 900 000 flexible heat pumps29,
representing a heat pump market penetration level of approximately 0.2, 2 or 20%,
respectively. As these heat pumps can either be coupled to radiators or floor heating,
and can either be controlled by a strategy with or without ADF, a total number of
12 scenarios for the flexible demand side are considered, which are summarized in
Figure 9.4. For each of these scenarios, the integrated system-level optimization
problem is being solved, in order to determine the overall system operating cost.
The analysis is supplemented with one additional scenario, without any heating
demand, serving as a reference. Note that this final scenario can be calculated
by centrally solving the integrated system-level optimization problem (9.21), with
D̄b = Rb = 0K ∀b; no distributed solution strategy is required in this case.

Radiators

1000 10000 100000

Without

ADF
With

ADF

Floor heating

1000 10000 100000

Emission system

Scaling factor

Control strategy

Flexible demand side

Figure 9.4: The different scenarios for the flexible demand side as part of the
integrated system-level problem.

27 The chosen approach acknowledges that the maximum allowed temperature for DR merely
needs to be based on the temperature set-points during the occupied period.

28 This approach implies that only upward flexibility is considered in this dissertation.
29 These numbers should be weighed against the total number of households in Belgium, amounting

to ≳ 5 000 000 in 2021 [188].
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Intermezzo 9.2

Selection of the DR temperature band
In this work, the DR temperature band ∆TDR is set equal to 4 °C. Although
narrower DR temperature bands are possible (see e.g., [18,189]), this would
hamper a fair comparison between the case without and with ADF. This
statement is clarified by Figure 9.5, which shows the temperature profiles
obtained from a small, illustrative analysis, where all buildings considered in
this case study are equipped with radiators and controlled by an SMPCap

strategy without ADF, aiming to minimize the energy usea during the 18th of
January 2016. As can be seen from the left hand side of Figure 9.5, a DR
temperature band ∆TDR < 4 °C is not able to guarantee thermal comfort
towards the end of the prediction horizon, resulting in a control-in-the-middle
approach, where the uncertainty band surrounding the reference temperature
profile equally violates the lower and upper bound. The energy use, and thus
also the operational cost, associated with this control-in-the-middle approach
are unfairly low, especially when comparing them with the energy use and
operational cost associated with an SMPCap strategy incorporating ADF which
does succeed to guarantee thermal comfort. A relaxation of the upper comfort
bound by increasing the DR temperature range would push the reference profile
upwards, to prevent the uncertainty band from crossing the lower temperature
bound, leading to a duly higher energy use for the SMPCap strategy without
ADF.

One important drawback of allowing a wide DR temperature band is that
it can result in large temperature fluctuations, which might be perceived as
uncomfortable. The ASHRAE standard 55-2004 for example prescribes that
the rate of change of the indoor temperature should be limited to 2.1 °C in 1 h,
although larger changes might be tolerated if these fluctuations are under the
direct control of the user [190]. Here, it might be argued that the temperature
adjustments for DR purposes correspond to the latter category. However, it
should be stressed that this is a significant assumption.
a Be aware that the objective function minimizing energy use is only considered in this small,

illustrative analysis. For the actual case study, the objective functions of the building
subproblems correspond to Equations (9.29a) and (9.30c).
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(a) Narrow thermal comfort band (∆TDR = 2 °C) (b) Wide thermal comfort band (∆TDR = 4 °C)
Figure 9.5: The open-loop indoor temperature profiles and associated uncertainty bands (averaged over one hour)
realized by an SMPCap strategy without ADF for two selected thermal comfort bands ∆TDR, during the 18th of January
for nine different dwellings equipped with radiators.
Note that the different plots do not have the same y-axis, in order to better visualize the thermal discomfort for the distinct cases.
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Figure 9.6: The convex approximation of the merit order curve in the form of a
piece-wise, linear function, with three segments, used to characterize the supply
side. The supply side is assumed to consist of three aggregated generators, GEN1,
GEN2 and GEN3, each representing a group of technologies.

The fixed, traditional demand, supplementing the flexible demand of the heat pumps,
is taken equal to the total load profile of the Belgian power system, reduced by the
renewable supply. To ensure consistency, the used time series are also based on data
for the year 2016, and are collected from the ENTSOE Transparancy Platform [191].
The time series of the renewable supply is rescaled in accordance with the currently
installed capacities. Finally, the system-level uncertainty is assumed to be fixed,
with 3 σsys equal to 1 GW. This value reflects the largest contingency in the Belgian
power system, being either the loss of a nuclear power plant, or the outage of the
NEMO-link between Belgium and the UK serving as an important transmission
asset [192].

The supply side considered in this case study is inspired by the Belgian power
system, such that it reflects the same orders of magnitude. It is modeled by a
convex approximation of the merit order curve in the form of a piece-wise, linear
function, with three segments30, as shown in Figure 9.6. As such, three aggregated
generators (GEN1, GEN2 and GEN3) are discerned. The first two aggregated
generators each represent a group of technologies with a total capacity of 5 GW; the
capacity of the third, most expensive generator, on the other hand, is unbounded,
to prevent feasibility issues. The cost coefficients c2,g, c1,g and c0,g describing
the day-ahead expected cost of energy (see Equation (9.13b)) for each of these
aggregated generators are summarized in Table 9.1. Table 9.1 also shows the cost
30 The points demarcating the different segments of the piece-wise linear approximation of the

merit order curve are (0,0), (5,40), (10,200) and (15,600), where the first value corresponds to
the generation capacity (expressed in GW), and the second one to the marginal generation cost
(expressed in EUR/MWh).
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Table 9.1: The cost coefficients describing the day-ahead cost of electric energy
(c2,g, c1,g and c0,g) and reserve capacity provision (c3,g) of the three aggregated
generators constituting the supply side of the integrated system-level problem.

GEN1 GEN2 GEN3
c0,g [EUR] 0 0 0
c1,g [EUR/MWh] 0 40 200
c2,g [EUR/MWh2] 0.008 0.032 0.08
c3,g [EUR/MW] 6 36 120

Table 9.2: The four representative days for which the integrated system-level
optimization problem is solved. The system behavior over the entire heating season
can be appraised with the help of the weighting factors associated with each
representative day.

Day index Date Weighting factor
18 18th of January 2016 8.0
60 29th of February 2016 73.3
86 26th of March 2016 34.1
307 2nd of November 2016 95.6

coefficients for the day-ahead cost of reserve capacity provision, which is assumed
to be 30%31 of the average marginal generation cost [177].

To maintain tractability, the system-level operating cost is calculated for a set of
representative days, rather than for each distinct day of the entire heating season (1st

of October – 1st of April). These representative days are determined with the method
of Poncelet et al. [193], based on the time series for the ambient temperature, solar
heat gains and residual loads throughout the heating season, resulting in a final
set of four days, summarized in Table 9.2. With the help of the weighting factors
defined in Table 9.2, these four days can be used to appraise the system behavior
over the entire heating season. The associated weather conditions and non-flexible
residual load profiles are depicted in Figure 9.7 for the four representative days.

For each of the four representative days, the operating schedules for all generators
and buildings are determined for hourly time steps, over a time span of 24 hours.
31 Be aware that the chosen percentage has an important impact on the trade-off between the

supply of energy and the supply of reserve capacity. Consequently, the presented results should
be interpreted in light of this choice.
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Figure 9.7: The time profiles of the weather conditions (i.e., ambient temperature and solar heat gains) and of the non-flexible,
residual load during the four representative days for which the integrated system-level optimization problem is being solved.
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Although only the first 24 hours of the building response matter for the balance
between supply and demand, it should be acknowledged that buildings typically
have time constants that well exceed this time span. Therefore, the prediction
horizon of the building subproblems is prolonged to 60 hours (again restricted by
the characteristics of the available disturbance forecasts). In line with this, also the
coordination signals (prices) need to be prolonged. To avoid end-of-horizon effects,
the value at the end of the day is retained for the remainder of the prolonged
prediction horizon.

Finally, the convergence related parameters for the ADMM procedure are set as
follows. The primal and dual stopping criteria are set to 10-3, the maximum number
of iterations is set to 400, the initial value for the penalty parameter ρ is set to 1,
and it is updated according to the adaptive scheme discussed in Intermezzo 9.1.

9.4 Results and discussion

As we will illustrate below, the day-ahead coordination of the demand for reserve
capacity, in addition to the demand for energy, enables a reduction of the system-level
operating cost compared to the case where only the energy demand is coordinated;
in the considered stylized case studies, cost reductions up to 10.7% are achieved.
These results indicate the added value of using the proposed SMPCap strategy for
DR under uncertainty.

Figure 9.8 compares the system operating cost for the entire heating season in case
the flexible demand side in the integrated system-level optimization problem is
controlled by the proposed SMPCap strategy, or by an equivalent strategy without
ADF. As explained in Section 9.3, the analysis is performed for the case where
all buildings are equipped with radiators (Figure 9.8a), and the case where the
buildings are equipped with underfloor heating (Figure 9.8b). In both Figures 9.8a
and 9.8b, the system operating cost is shown from three different points of view.
The leftmost plots show the absolute operating cost, the plots in the middle show
the relative cost increase compared to the reference case without heat pumps, and
the rightmost plots depict the additional cost per heat pump compared to the same
reference case. Within each plot, different market penetration levels of the flexible
heat pumps are considered.

All plots in Figure 9.8 clearly indicate that the day-ahead coordination of the demand
for reserve capacity, in addition to the demand for energy, enables an operating
cost reduction, which becomes more significant for increasing heat pump market
penetration levels. This indicates that the implementation of the proposed SMPCap

strategy for DR under uncertainty contributes to a more cost-efficient electrification
of the residential space heating sector, thus substantiating its added value.
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(a) In case of radiators.
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(b) In case of floor heating.

Figure 9.8: The comparison of the total system operating cost over the entire
heating season in case the demand side in the integrated system-level optimization
problem is controlled by the proposed SMPCap strategy, or by an equivalent strategy
without ADF, for increasing heat pump market penetration levels. The figure shows
the absolute operating cost, the relative cost increase compared to the reference
case without flexible heat pumps, and the absolute additional cost per heat pump
compared to the reference case.
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A comparison of Figures 9.8a and 9.8b demonstrates that the cost reductions
induced by using the SMPCap strategy incorporating ADF are most pronounced
for a demand side equipped with radiators. In the case of a flexible demand
side consisting of 9000, 90 000 or 900 000 heat pumps combined with radiators,
the incorporation of ADF can induce an operating cost reduction of 0.2%, 1.1
% or 10.7%, respectively, relative to the case without ADF; for the analogous
case with floor heating, on the other hand, relative cost reductions of 0.1%,
0.4% and 8.1% can be attained by incorporating ADF. In absolute terms,
for a flexible demand side consisting of 9000, 90 000 or 900 000 heat pumps
combined with radiators, the cost per heat pump per year32 is thanks to the
incorporation of ADF reduced from 1747 EUR/HP/y to 1347 EUR/HP/y (reduction
of 400 EUR/HP/y), from 1699 EUR/HP/y to 1404 EUR/HP/y (reduction of
295 EUR/HP/y), and from 2450 EUR/HP/y to 1907 EUR/HP/y (reduction of
543 EUR/HP/y); for the analogous case with floor heating, the cost per heat pump is
reduced from 1407 EUR/HP/y to 1190 EUR/HP/y (reduction of 217 EUR/HP/y),
from 1355 EUR/HP/y to 1235 EUR/HP/y (reduction of 120 EUR/HP/y), and
2151 EUR/HP/y to 1761 EUR/HP/y (reduction of 390 EUR/HP/y), respectively.
The difference between the attainable gains for a demand side equipped with
radiators or with floor heating is to be expected, since radiators are fast, responsive
systems, which predominantly interact with the indoor air, meaning that their
shift in operation is limited compared to the slower floor heating systems that
interact through the building thermal mass, and hence have much larger time
constants [130, 153]. Consequently, an additional degree of freedom for these kind
of systems can still induce a more significant improvement of the system operation.

To be able to better understand the trends observed in Figure 9.8, Figure 9.9 shows
the supply side operation determining the costs depicted in Figure 9.8. Figure 9.9
shows that for low market penetration levels (i.e., 9000 or 90 000 flexible heat
pumps), the changes in operation of the different generators due to the additional
coordination of the demand for reserve capacity are very small. Consequently,
the marginal costs for the provision of energy and reserve capacity remain quasi
unaltered, explaining the rather flat trends for the intermediate market penetration
levels in the rightmost plots in Figure 9.8. However, for the highest heat pump
market penetration levels, the additional demand side flexibility made available
by the SMPCap strategy with ADF is able to trigger significant changes at the
supply side. Indeed, Figure 9.9 clearly shows that for the case where the flexible
demand side is controlled by an SMPCap strategy incorporating ADF, the third,
most expensive generating unit (GEN3) is considerably less used. In the case of a
flexible demand side consisting of 900 000 heat pumps combined with radiators, the
total energy supply by GEN3 over the entire heating season is reduced by 19.5%,
and the reserve capacity provision is reduced by 22.7% relative to the case without
32 It is assumed that the heat pumps only operate during the heating season, such that the

operating cost during the heating season coincides with the yearly cost.
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Figure 9.9: Comparison of the optimized supply of electric energy and reserve
capacity provision by the three aggregated generating facilities over the entire
heating season in case the flexible demand side in the integrated system-level
optimization problem is controlled by the proposed SMPCap strategy, or by an
equivalent strategy without ADF, for increasing heat pump market penetration
levels.
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ADF; the energy supply by GEN2, on the other hand, is reduced by 4.1%, whereas
the reserve capacity provision is increased by 26.2%. For the analogous case with
floor heating, the energy supply by GEN3 is reduced by 15.8%, and the reserve
capacity provision is reduced by 16.9%; the energy supply by GEN2 is reduced by
3.4%, whereas the reserve capacity provision is increased by 23.0%.

Supplementing the information depicted in Figure 9.9, Table 9.3 moreover illustrates
that GEN3 is not only used less in terms of overall supply, but also in terms of
instantaneous capacity (except for the 18th of January 2016 for the demand side
equipped with radiators). This observation suggests that the day-ahead coordination
of the demand for reserve capacity, in addition to the demand for energy, is not
only able to reduce the operating cost, but also might enable a reduction of the
required generation capacity, and hence, of the associated investment cost33. The
attainable peak capacity reduction is the largest for a demand side equipped with
floor heating, as floor heating systems are able to better spread their operation in
time thanks to the large time constants, thereby reducing demand peaks, which
directly affects the required peak capacity at the supply side.

These different aspects regarding the altered supply side operation are also clearly
visible in Figure 9.10, showing the time-dependent stochastic34 generation profiles
(averaged over one hour) of the three aggregated generating facilities during the
29th of February, in case the flexible demand side consists of 900 000 heat pumps
(arbitrarily chosen as an example). For the cases with ADF, the energy profiles are
clearly shifted downwards for GEN3; moreover, around t = 1417 h and t = 1427
h, it can be observed that the more expensive reserve capacity provided by GEN3
is replaced by cheaper reserve capacity provided by GEN2. Finally, the peaks in
required capacity are also slightly lower in case ADF is enabled.

The above discussed changes regarding the supply side operation are enabled by
the fundamentally different system behavior induced by incorporating ADF at the
flexible demand side, as already discussed in detail in Section 9.1, and as again
illustrated by Figure 9.11, showing the open-loop indoor temperature profiles and
heat input profiles realized by an SMPCap strategy without or with ADF on the
29th of February for the detached, small, ageing dwelling as part of the flexible
demand side in the integrated system-level problem; note that the depicted situation
is arbitrarily chosen as an example. The incorporation of ADF allows for a less
conservative control strategy. Hence, the energy demand is reduced, obviating the
deployment of the more expensive generation units. On top of that, the uncertainty
33 However, keep in mind that these cost reductions should be weighed against the investments in

communication, measurement and control, required to enable DR [34], which are nevertheless
not further considered in this dissertation.

34 Recall from the discussion in Section 9.1 that the shown uncertainty band surrounding the profile
of the expected energy supply corresponds to the constraint tightening level of the generator
power constraints, and thus reflects how much reserve capacity needs to be kept aside.
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._ ._ . .

(a) In case of radiators.

._ ._ . .

(b) In case of floor heating.

Figure 9.10: Comparison of the open-loop stochastic generation profiles (averaged
over one hour) of the three aggregated generating facilities during the 29th of
February, in case the flexible demand side in the integrated system-level optimization
problem, consisting of 900 000 flexible heat pumps, is controlled by the proposed
SMPCap strategy, or by an equivalent strategy without ADF.
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Figure 9.11: The open-loop indoor temperature profiles and heat input profiles (averaged over one hour) realized by an
SMPCap strategy without or with ADF during the 29th of February for the detached, small, ageing dwelling.
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on the temperature can be reduced in exchange for an increased uncertainty on
the heat input35. Consequently, the demand for energy can be partly traded for
demand for reserve capacity, allowing the more expensive supply of energy to be
replaced by cheaper supply of reserve capacity.

Finally, Figure 9.11 also clearly demonstrates the exploitation of the flexibility offered
by the DR temperature band. This is especially visible for the case where the flexible
demand side is equipped with floor heating and is controlled by the SMPCap strategy
with ADF, where the stochastic temperature profile no longer necessarily sticks to
the lower bound, such that a more desirable demand profile can be obtained to
improve the system-level performance. What is also interesting to see is that in all
cases in Figure 9.11, the uncertainty band surrounding the mean temperature profile
does not yet simultaneously hit the lower and upper temperature bounds at the
end of the prediction horizon. This implies that there is still additional operational
flexibility available. Note that this remaining operational flexibility could not only be
used to further adapt the profile of the demand for energy and reserve capacity, but
can moreover also be exploited for reserve provision [117,194]. Although this aspect
could be straightforwardly incorporated in the integrated system-level optimization
problem, and in the associated hierarchical coordination framework, with the help
of the worst-case reserve activation calculation proposed by Bruninx [117,119], it
is not further considered in this dissertation. Instead, it is recommended as an
interesting extension for future studies.

9.5 Conclusion

As a third MPC application domain, this chapter investigates the added value of
using the SMPCap strategy for DR under uncertainty.

To this end, first, the impact of the SMPCap strategy on the resulting demand profile
is evaluated. It is shown that due to the incorporation of ADF in the open-loop
control problem, the SMPCap strategy is not only able to optimize the demand for
energy, but also the demand for reserve capacity and real-time flexibility. In other
words, an additional degree of freedom is unlocked, which can be exploited in a DR
context.

In a next step, it is investigated whether the coordination of the stochastic demand
of a group of TCLs managed by the proposed SMPCap strategy (thus exploiting
the new degree of freedom) can benefit the energy system as a whole compared to
an equivalent case without ADF, where the coordination of the demand for reserve
capacity and real-time flexibility is disabled; the latter strategy can be considered
35 Recall that by enabling ADF, the uncertainty on the heat input/demand becomes controllable.
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as the current state-of-the-art for DR with MPC under uncertainty, albeit with the
additional consideration of parametric uncertainties. In this context, an integrated
system-level optimization problem is considered, linking the demand side with the
supply side, and aiming for a minimal system operating cost. The considered cost
components include the day-ahead expected cost of electric energy, reserve capacity
provision, and reserve capacity activation.

To ensure mathematical tractability, a distributed solution approach is proposed,
using the alternating direction method of multipliers. By implementing this
distributed solution strategy, the integrated system-level optimization problem
is converted into an hierarchical coordination framework that is communicating
prices as a coordination signal to the different buildings and generators, to converge
towards a balance between supply and demand. Although additional modifications
and extensions are required to improve the framework, it is a solid basis for
more dedicated research regarding system operation, market design, consumer
coordination and tariff structures for DR under uncertainty.

The integrated system-level optimization problem is subsequently adopted in a
case study, considering an electrification scenario of the residential heating sector.
The flexible demand side, supplementing a fixed demand side characterized by a
non-flexible demand and fixed system-level uncertainty, is constituted by a group of
heterogeneous buildings equipped with compression heat pumps for space heating,
each controlled by either the proposed SMPCap strategy, or by an equivalent strategy
without ADF. To maximize insight, different heat emission systems, and different
market penetration levels are considered. The supply side, on the other hand,
is constituted by three aggregated electricity generating facilities, whose techno-
economical characteristics are inspired by the Belgian power system. To maintain
tractability, the integrated system-level optimization problem is solved for a set
of four representative days (18th of January 2016, 29th of February 2016, 26th of
March 2016 and 2nd of November 2016), which can be used to appraise the system
behavior over the entire heating season.

The results of this case study illustrate that the day-ahead coordination of the
demand for reserve capacity, in addition to the demand for energy, enables a
reduction of the system-level operating cost. The attainable gains in operating cost
become more significant as the heat pump market penetration level increases, and
are most prominent for a demand side where all buildings are equipped with radiators.
In that case, relative cost reductions up to 10.7% are attainable, compared to 8.1%
in case of floor heating. In absolute terms, the cost per heat pump per year can be
reduced from 2450 EUR/HP/y to 1907 EUR/HP/y for a demand side consisting
of 900 000 flexible heat pumps coupled to radiators, and from 2151 EUR/HP/y
to 1761 EUR/HP/y for an analogous demand side equipped with floor heating.
Besides, it is shown that also a reduction in the required generation capacity might
be achieved, impacting the system investment cost. These beneficial effects are
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shown to be caused by the fundamentally different demand side behavior induced
by the proposed SMPCap strategy, allowing for reduced conservatism, and for a
possible interchange of the demand for electric energy and the demand for reserve
capacity, compared to an equivalent strategy without ADF. This modified demand
side behavior induced by the SMPCap strategy enables a more cost-efficient use of
the available generating facilities and guarantees a more cost-efficient electrification
of the residential space heating sector, thus indicating the added value of the
SMPCap strategy developed in this dissertation for DR under uncertainty, and for
integrating heat pumps into our future electricity systems.





Chapter 10

Conclusions and suggestions
for future work

Since real-time uncertainty realizations are known to give rise to increased
energy costs and comfort violations if not properly accounted for, the prevalent,
deterministic model predictive control (MPC) approach needs to be replaced by a
control strategy that explicitly hedges against the detrimental impact of uncertainties.
Where the current state-of-the-art has primarily focused on the uncertainty on
the disturbance forecasts, i.e., weather conditions and occupant behavior, this
dissertation acknowledges that also uncertainty on the building model parameters
is plausible, and hence, should be additionally accounted for. This is especially
relevant when considering the implementation of MPC involving the older, existing
building stock, e.g., in case of a large-scale roll-out of smart meters and controllers.

Therefore, the main goal of this dissertation is to develop and assess a stochastic
MPC (SMPC) strategy for building climate control and demand response (DR)
under combined additive (disturbance forecast) and parametric (model) uncertainty,
more specifically referred to as the SMPCap strategy.

In this final chapter, the main findings and conclusions regarding this development
and assessment are summarized in Section 10.1. This is done by answering the
research questions defined in Chapter 1, where the discussion subsequently considers
the research questions related to the SMPC development (Section 10.1.1), the
SMPC assessment at building level (Section 10.1.2), and the SMPC assessment
at system level (Section 10.1.3). Moreover, the main contributions of this work
regarding each of these three aspects are highlighted. Finally, possible future
research tracks are suggested in Section 10.2.

199
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10.1 Conclusions

10.1.1 Development of the SMPCap strategy

RQ1: How does the conventional deterministic OCP formulation for building
climate control need to be reformulated in order to explicitly account for
additive (disturbance forecast) and parametric (model) uncertainties?

To cope with additive and parametric uncertainties, this dissertation develops a
chance constrained SMPC with affine disturbance feedback (ADF) in a convex
formulation. For the SMPC strategy to be able to hedge against both additive and
parametric uncertainties, the conventional deterministic optimal control problem
(OCP) formulation tailored to the class of systems represented by a linear time-
invariant state space model (SSM), discussed in Chapter 2, is reformulated in
Chapter 4, by explicitly taking into account the impact of uncertainties in all
relevant parts of the OCP, being the state space equation, the state constraints
and the input constraints. Consequently, the states and inputs are transformed
into stochastic variables, characterized by a mean and covariance. The hard state
and input constraints are in turn transformed into probabilistic chance constraints,
for which an analytical reformulation is derived. To reduce conservatism, the
analytically reformulated chance constraints are combined with ADF, mimicking the
closed-loop behavior of the MPC strategy in the open-loop optimal control problem.
As such, uncertainty on the system states can be exchanged for uncertainty on the
inputs, where the latter represents the possibly required real-time modifications of
the control strategy to react against uncertainty manifestations.

The derivation of the convex stochastic OCP formulation, explicitly accounting
for both additive and parametric uncertainties, requires three main assumptions.
First, it is assumed that the conventional deterministic OCP formulation is convex.
Second, the products of stochastic variables are neglected, in order to ensure
mathematical tractability. Finally, the chance constraints are reformulated for every
distinct state and input based on their marginal distribution, which is assumed
to be normal. Although especially the latter two assumptions entail important
simplifications, the results in Chapter 6 show that despite these assumptions, the
developed SMPCap approach is still able to guarantee improved thermal comfort
compared to the state-of-the-art, and this at a limited increase in energy cost.

One important downside of the presented SMPCap approach is its limited scalability.
To allow for a reaction against the parametric uncertainty via ADF, the uncertainty
on each of the SSM elements has to be repeated for each time step in the latent
variable p̃, which markedly increases the problem size.
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RQ 2: How can all relevant uncertainties affecting the building indoor
climate be appropriately mathematically modeled in order to include them
in the stochastic OCP formulation?

Chapter 5 derives a substantiated characterization (in terms of a mean value and
associated covariance matrix) of the uncertainty on the building model parameters,
on the weather forecasts, and on the occupant behavior forecasts.

The model parameter uncertainty is derived with the help of the probabilistic building
characterization method of De Jaeger et al. [62, 63]. This method generates a
statistical characterization of the building envelope based on the building location,
geometry and construction year, without additional on-site data collection, by
leveraging governmental databases of the energy performance of buildings. With
the help of the theoretical physics-based modeling approach of Reynders et al. [132],
this information can be subsequently converted into a reduced order one-zone
four-states RC model, from which the uncertainty on the parameters of the building
model in state-space form can be straightforwardly derived. This approach results
in a worst-case estimation of the parametric uncertainty, acknowledging the possible
lack of information about the building envelope, e.g., in case the older, existing
building stock is involved. This point of view is especially relevant when aiming
for a fast, widespread adoption of MPC (instead of only in deep renovations
and/or new homes), and is fundamentally different from what is done in current
research, where the uncertainty characterization is typically derived based on detailed
(building-specific) information and/or experts’ knowledge.

To come up with a substantiated estimate of the weather forecast uncertainty,
this dissertation builds further on the work of Lambrichts [148]. Based on real
measurement data and weather forecasts, mean vectors and covariance matrices
describing the forecast errors are derived. As such, the presented uncertainty
characterization takes into account the auto- and cross-correlation of the forecast
errors, which are most often disregarded.

However, the uncertainty on the occupant-related disturbance forecasts, and on the
internal heat gains in particular, is much harder to characterize, due to the complex
nature of human behavior, but also due to the lack of measured profiles. As a
workaround, a yearly profile, simulated with the open web tool StROBe (Stochastic
Residential Occupancy Behaviour) of Baetens et al. [146], is used to deduce a
daily average profile and associated variance, to get a loose representation of the
occupancy-related uncertainty. Clearly, the uncertainty characterization of the
occupant behavior is of inferior quality compared to the uncertainty characterization
of the building model parameters and weather forecasts. Nevertheless, this does
not detract from the general purpose of this dissertation, which is to develop and
assess an SMPC strategy that is able to cope with different types of discrepancies
between the actual situation and the model assumptions.
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Main contributions related to the SMPC development (RQ 1 and RQ 2)

Regarding the SMPC development, our main contribution is the derivation of
a novel convex chance constrained stochastic OCP formulation incorporating
ADF, which enables the explicit quantification, and manipulation of both the
mean and covariance of the system states and inputs, to guarantee a better
control performance under combined additive and parametric uncertainties.
The presented approach is tailored to the class of systems represented by a
linear time-invariant SSM.

The implementation of the developed SMPCap strategy is enabled by a
substantiated characterization of the parametric uncertainty, which is derived
based on the building geometry, location and age, without intensive on-site
data collection, by combining the probabilistic building characterization method
of De Jaeger et al. [62,63], with the theoretical physics-based building modeling
approach of Reynders et al. [132].

10.1.2 Assessment of the potential added value of the SMPCap

strategy at building level

RQ 3: Does the SMPCap strategy guarantee a thermal comfort improvement
compared to the current-practice deterministic MPC (DMPC) strategy,
and the state-of-the-art SMPCa strategy only accounting for additive
uncertainties, and at what cost is this improvement obtained?

The results of the case study in Chapter 6 indicate that the enhanced uncertainty
anticipation of the developed SMPCap strategy brings about an improvement in
thermal comfort compared to the current-practice DMPC strategy and the state-
of-the-art SMPCa strategy, and this at the expense of a limited increase in energy
use; for all considered cases, 90% of the thermal comfort improvement compared
to the DMPC strategy can be attained with a relative increase of at most 9%
in energy use, irrespective of the installed heat emission system. Apart from the
increased energy use, also the increased computational complexity should be taken
into account as an additional cost.

The thermal comfort gains are shown to be most prominent in buildings equipped
with floor heating and characterized by the combination of a large model uncertainty
and a large nominal heat demand. Also for buildings equipped with radiators,
irrespective of the magnitude of the nominal heat demand and/or model uncertainty,
thermal comfort can be improved by implementing the developed SMPCap strategy,
although the thermal comfort gains compared to the MPCa strategy are smaller
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here. This can be explained by the fact that the SMPCap strategy is hampered
to fully distinguish itself from the SMPCa approach in this case, for three reasons,
namely i) because of the small time constants associated with radiators, ii) because
the stochastic OCP is re-solved for every subsequent time step, and iii) because
the heat supply system is oversized. These three aspects all limit the added value
of a correct uncertainty anticipation, which is the most important asset of the
SMPCap approach. Finally, for buildings with a small heat demand equipped with
floor heating, the thermal comfort gains by switching to a stochastic approach
(either an SMPCa or an SMPCap strategy) are shown to be negligible; in this case,
the combination of the large time constants and the overestimation of the heat
demand already implicitly triggers a considerable amount of anticipation, even
without actually hedging against the impact of uncertainties.

RQ 4: Does the SMPCap strategy allow for obtaining a more appropriate,
yet robust, sizing of the heating system when embedded in an integrated
optimal control and design (IOCD) approach?

In an exploratory case study, the suitability of incorporating the SMPCap strategy
in an IOCD approach for obtaining a more appropriate, yet robust, heat supply
system size is demonstrated, by comparing it to an IOCD approach incorporating the
current state-of-the-art PBMPC strategy, the DMPC strategy, the SMPCa strategy
or the SMPCap strategy. Rather than fully implementing a nested design-control
optimization, the outer optimization loop steering the design decisions is replaced
by a set of predetermined design scenarios, focusing on high-level decisions about
the size of the heat supply system. For the lower-level control loop, the different
MPC approaches are considered and compared.

The case study shows that the incorporation of the developed SMPCap strategy in
an IOCD approach leads to a robust sizing of the heat supply system, able to truly
guarantee thermal comfort under combined additive and parametric uncertainty for
(almost) all possible building realizations. Moreover, the results of the case study
demonstrate that the SMPCap strategy (as well as the SMPCa strategy) allows for a
more appropriate system sizing (i.e., a right-sizing, rather than an over-/undersizing
of the system) compared to the DMPC strategy. Since the SMPCap strategy already
explicitly takes into account the possibly required real-time reactions to uncertainty
manifestations when optimizing its open-loop control strategy (via ADF), it deploys
the available thermal power in a better way, and consequently does not require
spare capacity in the form of an oversized system to be able to accommodate these
real-time changes, in contrast to the DMPC strategy.
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Main contributions related to the SMPC assessment at building level
(RQ 3 and RQ 4)

Regarding the SMPC assessment at building level, our main contribution is the
demonstration of the added value of the developed SMPCap strategy, compared
to the state-of-the-art, for both building climate control under uncertainty,
and integrated optimal control and design under uncertainty.

Moreover, we also pinpoint for which specific cases/conditions this added value
is most pronounced. This is especially the case for situations where a correct
anticipation is crucial, i.e., for systems with large time constants, for properly
(not over-)sized heating systems, and for situations where longer intervals are
considered between (re)solving the OCP.

Finally, we also clearly indicate at which cost this added value is obtained,
being an increase in energy use as well as in computational complexity (see
RQ 1).

10.1.3 Assessment of the potential added value of the SMPCap

strategy at system level

RQ 5: How does the proposed SMPCap strategy alter the demand profile,
and how can this altered demand profile be coordinated for the benefit of
the central energy system?

Since the SMPCap strategy is not only able to optimize the demand for energy,
but also the demand for reserve capacity and real-time flexibility (thanks to the
incorporation of ADF), an additional degree of freedom is unlocked, which can be
exploited in a DR context.

To investigate whether the central energy system can benefit from the coordination
of the stochastic demand of a group of TCLs managed by the developed SMPCap

strategy (thus exploiting the unlocked degree of freedom) compared to an equivalent
case without ADF, where the coordination of the demand for reserve capacity and
real-time flexibility is disabled, an integrated system-level optimization problem is
set up, linking the demand side with the supply side, and aiming to minimize the
overall system operating cost. To ensure mathematical tractability, a distributed
solution approach is proposed, using the alternating direction method of multipliers
(ADMM). By implementing this distributed solution strategy, the integrated system-
level optimization problem is converted into a hierarchical coordination framework
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that sends prices as a coordination signal to the different buildings and generators,
to work towards a balance between supply and demand under uncertainty.

With the help of a case study, considering an electrification scenario of the residential
heating sector, it is shown that the coordination of the stochastic demand of a
group of compression heat pumps for space heating, managed by the developed
SMPCap strategy (thus exploiting the unlocked degree of freedom) can lower the
overall system operating cost compared to an equivalent case without ADF, where
the coordination of the demand for reserve capacity and real-time flexibility is
disabled; the latter strategy can be considered as the current state-of-the-art for DR
with MPC under uncertainty, albeit with the additional consideration of parametric
uncertainties. It is shown that the attainable gains in operating cost become more
significant as the heat pump market penetration level increases, and are most
prominent for a demand side where all buildings are equipped with radiators; in that
case, relative cost reductions up to 10.7% are attainable. Moreover, it is shown that
a reduction in the required generation capacity might be achieved, impacting
the system investment cost. These results demonstrate that the widespread
implementation of the developed SMPCap strategy can aid a more cost-efficient
electrification of the residential space heating sector.

Main contributions related to the SMPC assessment at system level
(RQ 5)

Regarding the SMPC assessment at system level, a first important contribution
is the development of a hierarchical coordination framework for DR under
combined additive and parametric uncertainty, leveraging the developed
SMPCap strategy. This framework not only balances the supply of and demand
for energy, but also (simultaneously) the demand for and supply of reserve
capacity, while guaranteeing end-user thermal comfort. As such, a trade-off
between the degree of uncertainty management at building versus at system
level is enabled. The developed coordination framework is an important
stepping stone for future research regarding system operation, market design,
consumer coordination and tariff structures for DR under uncertainty.

A second important contribution is the demonstration of the added value of
the developed SMPCap strategy, compared to the state-of-the-art, for demand
response under uncertainty. Here, we showed that the modified demand side
behavior induced by the SMPCap strategy, allowing for an optimization of
the load uncertainty, enables a more cost-efficient operation of the available
generating facilities and hence, guarantees a more cost-efficient electrification
of the residential space heating sector. The largest operating cost reductions
were shown to be achievable for a demand side equipped with radiators.
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10.2 Suggestions for future work

Based on the findings of this dissertation, several paths for future research are
recommended.

A first interesting future research track would be to combine the SMPCap strategy
developed in this dissertation with machine learning to derive the stochastic
building model and/or the additive uncertainty representation. In this setting, the
uncertainty characterizations derived in this dissertation can serve as substantiated
initial guesses, which can be subsequently updated in an online fashion. This could
either be done in a simulation environment, focusing on closed-loop simulations
with more detailed emulator models, or even in a real-life setting. As this adaptive,
learning-based SMPCap approach allows for a trade-off between model complexity
and uncertainty management, it may enable a more widespread adoption of MPC,
where the focus can be extended beyond new homes and/or deep renovations, since
a detailed characterization of the building envelope might no longer be a strict
requisite.

Future research may also focus on (the re-thinking of) the required regulation and
market design to leverage flexible demand, given the insight that the uncertain
demand can be split up in an interchangeable demand for energy and for reserve
capacity. To this end, the developed hierarchical coordination framework can be
further extended with a more correct representation of the relevant markets and
market mechanisms.
In this context, it might be relevant to supplement the day-ahead analysis considered
in this dissertation with the consideration of the intraday and real-time operational
stage, where consumers can still further adapt/optimize their demand in real time
within the operational limits set by the purchased electric energy and reserve capacity,
in order to additionally participate in short-term markets (e.g., intraday markets,
real-time markets or balancing settlement schemes).
Also the consideration of all important market players (such as aggregators) and
their business models would be of great value. Here, a particularly interesting
future research track might be the development of a monetary remuneration scheme
to reward the DR participants, where it might be required to make a distinction
between the coordination signal/prices used by an aggregator to steer the demand,
and the actually charged end-user tariff, in order to prevent consumers from being
exposed to extremely high or fluctuating prices [34].

Finally, it would be interesting to extend the presented research regarding optimal
control, optimal design, and demand response under uncertainty, to energy systems
involving district heating and cooling networks, or even multi-energy vector
systems. This can be achieved by altering the considered heat supply system
in the buildings and by adding more energy conversion and (thermal/electric)
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storage models in the stochastic OCP formulation, by adapting the local and
coupling constraints to correctly represent the underlying physics for these cases
(it will for example no longer necessarily be required that demand and supply are
quasi-instantaneously balanced), and by adapting the communicated variables (the
demand can for example be expressed in terms of temperatures and mass flow rates,
rather than in terms of energy, in case of a district heating and cooling network).
In this context, it would also be interesting to consider the impact of collective
conversion or storage assets as additional (competing) flexibility providers.
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Abstract

Current model predictive control (MPC) applications
for residential space heating typically rely upon ac-
curate building models, obtained via extensive data
acquisition and/or experts’ knowledge. However, in
the context of older residential buildings, one needs
to rely upon sparse, publicly available data. There-
fore, the aim of this paper is to come up with an
estimate of the parametric uncertainty of building
controller models in case neither detailed informa-
tion about the building thermal properties nor ex-
perts’ knowledge is available. In addition, the im-
pact of this uncertainty on the optimal space heating
strategy is investigated. The results show that the
considered approach gives rise to rather large para-
metric uncertainty. The obtained variation in model
parameters is shown to markedly affect the optimal
space heating control, both in terms of dynamic ef-
fects (i.e., peak demand and timing) and yearly en-
ergy use, thereby indicating the need for improved
data acquisition and/or dedicated control strategies
that operate robustly under uncertainty.

Key innovations

Data-driven, worst case estimation of the paramet-
ric uncertainty of building models based on sparse,
publicly available data.

Practical implications

This contribution highlights that the lack of infor-
mation about the thermal performance of older res-
idential buildings gives rise to non-negligible uncer-
tainty on building energy simulation models and on
controller models derived therefrom. To cope with
this, improved data acquisition and/or dedicated ro-
bustified control strategies are needed.

Introduction

Model predictive control is gaining widespread atten-
tion as an advanced control strategy for residential
heating systems, and heat pumps in particular, since
it can systematically improve thermal comfort with
simultaneous energy and/or cost savings, as well as

enable the provision of services to the rest of the en-
ergy system (Serale et al. (2018); Drgoňa et al. (2020);
Oldewurtel et al. (2010); Avci et al. (2013); Bianchini
et al. (2016)).

The performance of any MPC strategy is dependent
on the accuracy of the mathematical model describing
the thermal loads and the forecasts of disturbances,
such as weather and user behavior. Deviating model
parameters and inaccurate predictions are shown to
result in increased energy costs and comfort violations
if not properly accounted for (Bengea et al. (2011);
Oldewurtel et al. (2010, 2012)). Nevertheless, the un-
certainty on the building model parameters in MPC
is only occasionally explicitly addressed (Oldewurtel
et al. (2010); Maasoumy et al. (2014); Tanaskovic
et al. (2017); Nagpal et al. (2020)). The main rea-
son is that current research often employs accurate
physics-based building models, obtained via exten-
sive data acquisition combined with experts’ knowl-
edge, for which the feedback mechanism of the reced-
ing horizon implementation of MPC offers sufficient
robustness against the small remaining uncertainties.

In contrast, in case of a large-scale implementation
of MPC, a lack of information is plausible, espe-
cially if also the older, existing building stock is in-
volved. In that case, the parametric uncertainty of
the controller model can become non-negligible, and
additional measures might be necessary (Ioannou and
Itard (2015)). However, precisely because of the lack
of information, a scientifically sound characterization
of the building model and associated parametric un-
certainty, as well as an assessment of the impact of
the uncertainty, is a challenging task. In this con-
text, one may opt for statistical, data-driven building
characterization methods (De Jaeger et al. (2021)),
which leverage publicly available data, to generate
high-quality controller models.

Given the aforementioned challenges and trends, the
aim, and main novelty, of this paper is to come
up with a substantiated, data-driven estimate of the
parametric uncertainty when deriving a physics-based
building controller model, to be used in MPC, start-
ing from publicly available data (i.e., location, geom-



etry and construction year). Since neither detailed,
building-specific information on the thermal proper-
ties nor experts’ knowledge is incorporated, this can
be seen as a worst-case assessment. In addition, this
paper investigates the impact of the obtained varia-
tion in model parameters on the energy demand pro-
file determined by optimal control, and on the re-
sulting yearly energy use, via a Monte Carlo analy-
sis. This is a first step in assessing the importance
of building model parametric uncertainty regarding
MPC performance.

The following research questions will be answered.
RQ1 What statistical variation in the parameters of
a building controller model is to be expected when
merely starting from publicly available data?
RQ2 How does the optimal energy demand profile,
and related to that, the yearly energy use alter for
this variation in building model parameters?

In the next section, the methodology to convert pub-
licly available information into a building controller
model is explained, as well as the set-up of the opti-
mal control problem in which the building controller
model will be incorporated. Subsequently, nine exist-
ing buildings are presented as case studies for which
the parametric uncertainty is determined. Next, the
obtained variation in building model parameters, and
in energy use, is discussed and compared for these
nine dwellings. Finally, the conclusions are drawn.

Methods

Figure 1 summarizes the workflow of the paper.

0. Building address

Location, geometry, construction year

1. Building thermal quality data

Distribution of U-values of external wall, roof, ground floor and

windows, and of window-to-wall ratio

Probabilistic building envelope characterization method

by De Jaeger et al. (2021)

2. Building construction

Set of possible constructions in terms of materials and layer

thicknesses

3. Building controller model

Set of possible RC parameters of reduced order

building controller model

Probabilistic approach to allocate building parameters

by De Jaeger et al. (2018)

Theoretical reduced order RC modelling approach

by Reynders et al. (2014)

Optimal control

4. Energy use

Set of possible optimal energy demand profiles and

associated yearly energy use

RQ1

RQ2

Focus of this paper

Figure 1: The workflow of the paper.

1. Extracting building thermal quality data

To be able to answer the first research question, the
publicly available data need to be transformed into a

building controller model. This can be achieved via
following procedure.

Based on the building location, geometry and con-
struction year (where the latter two characteristics
can be derived from the building address based on
geospatial and cadastral data), information on the
building thermal properties can be obtained with the
help of the probabilistic building envelope character-
ization method developed by De Jaeger et al. (2021).
This method generates distributions of the U-values
of the external walls, roof, ground floor and windows,
as well as of the window-to-wall ratio (WWR), by ap-
plying a quantile regression method on the Flemish
energy performance certificates database, which con-
tains building envelope thermal quality data of Flem-
ish single-family dwellings. The correlations between
the different variables are included by building mul-
tivariate distributions from the distinct marginal dis-
tributions, and by subsequently drawing correlated
samples of the U-values and WWR on building level.
These correlated samples can be seen as possible re-
alizations of a specific dwelling with a fixed location,
geometry and age.

Since this paper focusses on building models to
be used in advanced controllers for residential heat
pumps, only the realizations with a sufficiently low
nominal heat demand1 are considered (i.e., Q̇nom <
15 kW), restricting the considered domain of the ob-
tained distributions.

2. Converting building thermal quality data
to building construction

In order to be able to derive a building controller
model, the obtained U-values and WWR need to be
converted to material layers composing the building
envelope. Following De Jaeger et al. (2018), we de-
rive the building construction, in terms of materi-
als and layer thicknesses, by gradually adjusting an
initial (heavy-weight) construction, representative for
Flemish buildings, with predefined upgrades until the
targeted U-values are reached. More specifically, for
the roof and for the ground floor, these adjustments
imply gradually adding insulation. For the wall, first,
the thickness of the heavy masonry composing the in-
ternal walls is increased up to a maximum value, after
which a non-ventilated air cavity is provided between
the internal and external walls; finally, if needed, an
insulation layer with appropriate thickness is added
between the internal walls and the air cavity. For the
windows, the most appropriate glazing out of a list of
discrete options is chosen.

This conversion process is repeated for the domain of
the distribution of the U-values and WWR obtained
in the previous step, leading to a set of possible con-
structions for a dwelling with a fixed location, geom-
etry and age.

1The nominal heat demand is quantified following NBN EN
12831 (NBN (2017)).



3. Converting building construction to build-
ing controller model

The building controller model can be obtained based
on the specified construction, by using a theoretical,
physics-based modeling approach. In this paper, the
approach of Reynders et al. (2014) is used, resulting
in a reduced order RC model, with a model structure
as shown in Figure 2.

The model represents a residential dwelling with two
thermal zones: a day zone, consisting of all rooms in
which the occupants are active during the day, and a
night zone, mainly consisting of the bedrooms. Figure
2 shows all states representing the building structure,
being the temperatures – in both zones (indicated by
either ’D’ or ’N’) – of the indoor air, Ti, of the ex-
ternal walls (or of the combination of the external
walls and roof in case of the night zone), Tw, of the
interior walls, Twi and of the floors, Tf . Also the as-
sociated thermal capacities and resistances (same in-
dices) are shown. The windows are not represented by
an individual state, because of their negligible ther-
mal mass compared to the massive building struc-
ture; as such, the resistance Rinf,win not only refers
to the heat losses via infiltration/ventilation, but also
to the transmission losses via the windows and doors.
Also the external boundary conditions are included
in Figure 2, being the ambient and ground temper-
ature. Note that the heat inputs, emitted by low-
temperature radiators, solar gains and internal gains
are not explicitly shown; they are all distributed over
the capacities of all different states by using distribu-
tion coefficients (Reynders et al. (2014)).

The building model RC parameters are related to the
building construction as follows. The thermal capac-
ities, representing the active thermal mass, are de-
termined by the material layers within the insulation
barrier. In line with this, the thermal resistances of
the external walls and ground floor are split in two
components: an internal resistance (index 1) up to,
but excluding, the insulation layer, and an external
resistance (index 2). For the internal walls, the ther-
mal resistance is taken equal to 50% of the total re-
sistance of the wall, since the thermal mass is equally
accessible from both sides. Finally, the UA-values of
the windows and doors are combined with the ventila-
tion and infiltration losses to represent an additional
thermal resistance.

By repeating the model identification for the whole
set of possible constructions, the resulting set of RC
parameters may be interpreted as a statistical char-
acterization of the building controller model.

To summarize the whole conversion process, Table
1 clarifies the relation between the probabilistic U-
values and WWR, and the RC parameters of the
building controller model, illustrating the probabilis-
tic character of the latter.

4. Using building controller model to deter-
mine energy use via optimal control

To understand how the variations in building con-
troller model parameters translate to variations in op-
timal energy use, a Monte Carlo analysis (MCA) is
performed. As such, an optimal space heating strat-
egy is determined for a large set of possible building
controller models that may be representative for a
specific dwelling with a fixed geometry, location and
age.

The formulation of the considered optimal control
problem (OCP), aiming at guaranteeing thermal
comfort at minimal energy use, is shown below.

min
ut

n∑

t=1

((
1T
n · ut

)
·∆t+ c · st

)

s.t. Tt+1 = fRC (Tt,ut,dt,∆t) ∀t = 1...n

Tzone,t + st ≥ T zone,t ∀t = 1...n

Tzone,t − st ≤ T zone,t ∀t = 1...n

1T
n · ut ≤ umax,t ∀t = 1...n

where 1n is an all-ones vector of size n

In this OCP, ut represents the thermal power in-
puts delivered by the heating system to the low-
temperature radiators in the day and night zone dur-
ing time step ∆t, in order to keep the temperature of
each zone Tzone,t in between its comfort limits T zone,t

and T zone,t. The imposed thermal comfort require-
ments can not always be satisfied, especially during
mid-season and summer months, when, e.g., over-
heating can occur if no cooling system is present. To
prevent the model from becoming infeasible in these
cases, the comfort constraints are relaxed with the
help of a slack variable st that is penalized in the ob-
jective function at a very high cost c. The heat inputs
are in turn limited by a maximum power bound, taken
equal to the nominal heat demand of the building; as
such, the heating system is assumed to be ideal, with
a 100% efficiency and perfect modulation. The final
important constraint is set by the building dynamics,
determining the temperatures Tt+1 of all states rep-
resenting the building structure based on the building
RC model fRC , the preceding building temperatures
Tt, the heat inputs ut, the disturbances dt (such as
weather and occupant behavior), and the length of
the time step ∆t.

The optimization considered in this paper spans a
whole year, with an additional week for initializa-
tion purposes2. The time step is equal to one hour.
Perfect predictions of the disturbances are assumed,
resulting in a theoretical bound on the performance
that any real controller can achieve3. For the weather

2For the one-week initialization problem, cyclic boundary
conditions are imposed.

3Note that the absence of a receding horizon approach with
closed-loop disruptions is why the considered implementation
is referred to as optimal control, rather than as MPC.
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Figure 2: The model structure of the reduced order RC model, where a residential building is modeled as two
zones (a day and night zone), represented by nine states (adapted from Reynders et al. (2014)).

Table 1: The dependency of the RC parameters on the U-values and WWR, illustrating their probabilistic
character.
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data (i.e., ambient temperature and solar heat gains),
measurement data of the year 2016 of the Vliet test
building of the KU Leuven Laboratory of Building
Physics, located in Leuven (Belgium), are used. For
the occupancy behavior (i.e., internal heat gains and
comfort requirements in terms of setpoint temper-
atures for different zones), profiles characterizing a
four-person household are generated with the help of
the StROBe toolbox of Baetens and Saelens (2016).

Case study

To maximize insight, the statistical characterization
of a building controller model and its subsequent ap-
plication in an optimal control problem is repeated
for multiple dwellings for which the main character-
istics determining the thermal quality (i.e., geometry
and construction year) are sufficiently different.

Nine buildings of varying age (old (<1950), ageing
(1950-1990) or more recent (>1990)) are selected
from the suburban residential areas of the City of
Genk in Flanders (Belgium). For each building type
(i.e., terraced, semi-detached and detached), three
buildings are selected with a varying floor area, rang-
ing from small, over medium, to large. Their main
characteristics are summarized in Table 2.

As a final remark, it should be noted that all build-
ings are assumed to have the same air infiltration rate
of 0.4 h−1; this assumption is based on the fact that,
in case of renovation, the decrease of infiltration is
compensated by the introduction of mechanical ven-
tilation, which is assumed to result in a similar total

air change rate.

For each dwelling in Table 2, 100 correlated samples
of the U-values and WWR are generated, leading to
100 possible building controller models per considered
dwelling.

Results and discussion

In this section, the uncertainty of the building model
parameters derived from publicly available data is de-
termined, together with its impact on the optimal
space heating strategy. Since the different uncer-
tain variables have different orders of magnitude, the
whole assessment is done in terms of the standardized
coefficient of variation (CV)4.

RQ1 - Variation in building model parameters

Figure 3 and 4 respectively show the distributions
of the U-values and WWR, and the resulting set of
RC parameters for the nine considered dwellings; in
order not to overload Figure 4, only the most im-
portant uncertain parameters characterizing the day
zone are shown. To be able to analyze the results,
first, a proper understanding of the uncertainty on
the building thermal properties is needed, followed
by an in-depth assessment of how this uncertainty
propagates into the model parameters.

When comparing the thermal properties of the dif-
ferent dwellings, an interesting trend can be observed
(Figure 3). Because of the imposed cap on the nom-

4The coefficient of variation is equal to the ratio of the stan-
dard deviation to the mean, and serves as a unit-independent
statistical measure of the dispersion of a variable.



Table 2: Overview of the main characteristics of the nine studied dwellings. The label refers to the building type,
size, and age, and will be used throughout the paper.

label
building
type
[-]

net floor
area
[m2]

protected
volume
[m3]

ground floor
area
[m2]

façade
area
[m2]

roof
area
[m2]

construction
year
[-]

T S O terraced (T) 129 (S) 406 87 80 95 <1950 (O)
T M O terraced (T) 193 (M) 531 97 92 116 <1950 (O)
T L A terraced (T) 244 (L) 844 145 116 161 1950-1990 (A)
SD S A semi-detached (SD) 155 (S) 546 96 171 101 1950-1990 (A)
SD M A semi-detached (SD) 210 (M) 692 105 140 122 1950-1990 (A)
SD L O semi-detached (SD) 275 (L) 742 200 226 154 <1950 (O)
D S A detached (D) 163 (S) 559 94 202 112 1950-1990 (A)
D M O detached (D) 260 (M) 716 139 181 187 <1950 (O)
D L R detached (D) 301 (L) 752 151 167 173 > 1990 (R)

inal heat demand, the total heat loss coefficient of
transmission (i.e., the total sum of the UA-values of
the building), presented in the last plot of Figure 3,
spans approximately the same range for all consid-
ered dwellings (although terraced dwellings can have
slightly smaller heat losses because of the smaller to-
tal loss area). These similar UA-values break down
in small buildings with a large range of admissible
U-values, or in larger, renovated buildings, for which
only the lowest U-values are allowed. Due to this
effect, the nine considered dwellings can also be in-
terpreted as nine cases of increasing confidence about
the building thermal quality. This is confirmed by
Table 3 and Figure 5. Figure 5 clearly shows that
this effect predominantly manifests itself for the U-
value of the external walls (CV 0.30–0.61) and roof
(CV 0.43–0.99). For the U-value of the ground floor
(CV 0.31–0.49), the tendency is less clear, since the
low probability of invasive floor renovations leads to
more similar distributions for all dwellings, which is
confirmed by Figure 3. Also for the windows (CV
0.23–0.30), the difference in uncertainty is less pro-
nounced, since window glazing can only have a lim-
ited number of discrete U-value options; the signif-
icantly lower absolute value of the CV of the U-
value of the window compared to the other U-values,
on the other hand, can be explained by the signifi-
cantly higher average U-value for windows compared
to opaque parts.

The minimal bounds of the CV ranges for all U-
values are of the same order (∼ 0.3) as the values re-
ported in literature for older buildings (Ioannou and
Itard (2015)), and as such, can be roughly consid-
ered as expected values of the uncertainty for existing,
(partly) renovated, heavy-weight dwellings. It should
be stressed that these expected values are worst case
estimates, since the followed approach relies upon
very limited building-specific information.

When converting the U-values of the different con-
struction elements into RC parameters for a partic-
ular dwelling, the uncertainty is affected by the dif-
ferent processing operations. First, the uncertainty

is altered due to the conversion of U-values into UA-
values describing the heat transfer with the surround-
ings. This operation only has an impact in case of a
variable area (i.e., for the external walls and windows
due to the variable WWR); otherwise, the mean and
standard deviation are simply scaled by the same fac-
tor. Next, the split up of the heat transfer by setting
apart the material layers inside and outside the in-
sulation barrier further impacts the CV. Finally, an
inverting operation is needed, since the heat transfer
coefficients are related to the inverse of the R and C
parameters. However, the inverting operation is not
considered here, since it results in distorted distri-
butions with increased skewness due to exacerbated
outliers, thereby making the analysis more difficult.

For the external walls, the CV of the UA-value is
slightly increased compared to the U-value due to the
impact of the WWR, resulting in a variation between
0.31 and 0.62 (see Table 3). The internal resistance
1/RwD1 and the capacitance 1/CwD are hardly im-
pacted by this uncertainty, with a CV in the order of
10−2. This is to be expected, since the large differ-
ences in U(A)-values are mainly attributed to differ-
ent insulation levels of the exterior, whereas the inner
parts don’t change much when converting U-values
to layers and materials with the method of De Jaeger
et al. (2018). Hence, the uncertainty is mainly trans-
ferred to the external resistance 1/RwD2, as can also
clearly be seen in Figure 5. Remarkably, the con-
version from U to 1/R results in an even higher CV
for all nine cases, with values ranging from 0.40 to
0.93. For the analogous resistances and capacitances
in the night zone, similar and even more pronounced
effects are visible, since here, also the uncertainty of
the U-value of the roof is incorporated.

For the ground floor, the uncertainty of the U-values
does not affect the internal resistance 1/RfD1 (CV =
0), since the corresponding material layers, tiles and
screed, are fixed. The external resistance 1/RfD2,
on the other hand, has a mildly varying CV ranging
from 0.22 to 0.32, which is a clear decrease compared
to the CV of the U-value.
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Figure 3: The distribution of the U-values, window-to-wall ratio and heat loss coefficient of transmission for the
nine considered dwellings.
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Figure 4: The distribution of the inverse of the most significant uncertain RC parameters characterizing the day
zone of the nine considered dwellings.

Finally, for the windows and doors, the CV of the
UA-value is increased compared to the U-value due
to the varying WWR, resulting in a CV in the range
of 0.35 up to 0.46. This uncertainty is then absorbed
by the resistances 1/Rinf,winD and 1/Rinf,winN , re-
sulting in a CV between 0.14 and 0.21, and 0.14 and
0.22, respectively. This reduction in CV is due to the
fact that Rinf,win does not only account for trans-
mission losses via windows and doors, but also for
infiltration losses, which are assumed to be known.

The key takeaway from the analysis above is the in-
sight in how the uncertainty on the building thermal
properties propagates into the building model param-
eters for the different construction elements. It should
nevertheless be stressed that these insights depend on
i) the underlying input data (being the energy perfor-
mance data of the Flemish building stock), ii) the sub-
sequent processing (being the methods of De Jaeger
et al. (2018) and De Jaeger et al. (2021)), and iii) the
imposed building model structure (being the 9-state
reduced order RC model developed by Reynders et al.

(2014)). In order to further consolidate the presented
results, a more differentiated assessment is recom-
mended, where the uncertainty on the U(A)-values
and derived model parameters is further explored for
different U-value distributions, and for other building
model structures.

RQ2 - Variation in optimal energy demand
profile and yearly energy use

Figure 6 illustrates how the different realizations of
the detached, midsize, old dwelling result in different
energy demand profiles for a particular day (start of
January). The different model realizations entail dif-
ferent estimates of the time constants of the building,
thereby requiring a different heat supply to the radi-
ator system, both in terms of timing, and in terms
of peak demand. The difference in peak demand be-
tween the considered 100 possible dwelling realiza-
tions exceeds 4 kW for the shown 24h-profile.

The yearly energy use for the 100 dwelling realiza-
tions of the D M O case ranges from 9757 kWh to



Table 3: The coefficient of variation of the U-values and window-to-wall ratio, the UA-values, and the RC
parameters for the nine considered dwellings.
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Figure 5: The coefficient of variation of the U-values
and of (the inverse of) the derived RC parameters for
the nine considered dwellings.

26702 kWh, resulting in a CV of 0.22. For the other
considered dwellings, the CV is higher; their variation
in yearly energy use is summarized in Figure 7.

The substantial variation in resulting space heating
control strategies, both in terms of dynamic effects
and total yearly energy use, is a first indication that
the obtained uncertainty characterization is not ac-
curate enough to be directly used for deterministic
building level control, and that additional data acqui-
sition (e.g., via experts or learning) narrowing down
the range of feasible model parameters, and/or an
adapted control strategy explicitly accounting for the
uncertainty, is needed. This will be further investi-
gated in future research; this follow-up work will first
assess in more detail the impact of the uncertainty
on the MPC performance in terms of thermal com-
fort and cost by considering a closed loop receding
horizon approach correcting for model mismatch by
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Figure 6: 24h-profiles of the indoor temperature TiD

and heat input Q̇D (averaged over 1 hour) for the
day zone for five dwelling realizations of the detached,
midsize, old dwelling; the blue shaded area indicates
the range of solutions spanned by all possible dwelling
realizations.

state updates. Subsequently, it will be investigated to
what extent the detrimental effects can be alleviated
by an adapted, robustified control strategy that is in-
corporating the uncertainty characterization derived
in this paper.

Summary and conclusion

For older residential buildings, a lack of informa-
tion about the building thermal properties hampers
the construction of accurate building simulation or
controller models. As a worst case estimation, this
work investigates the uncertainty if building con-
troller models for model predictive control applica-
tions are derived based on sparse, publicly available
data.
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Figure 7: The distribution of the optimized yearly en-
ergy demand for space heating for the nine considered
dwellings.

The proposed approach first uses the method of
De Jaeger et al. (2018) to determine distributions of
the building thermal properties based on statistical
data of the energy performance of the Flemish resi-
dential heavy-weight building stock. A detailed com-
parison of the results for nine disparate, (partly) ren-
ovated dwellings shows that the proposed approach
results in rather large distributions for the thermal
properties. A coefficient of variation in the order of
0.3 is observed as a minimal bound for all U-values
for all considered dwellings. The uncertainty on the
U-values of the ground floor and windows is found to
fluctuate around the same value, whereas the uncer-
tainty on the U-values of the external walls and roof
can vary considerably.

The obtained building thermal properties are subse-
quently converted into a 9-states reduced order RC
model. Since the exact set of building model param-
eters depends on the imposed building model struc-
ture, the most important takeaway is the insight in
how the uncertainty on the building thermal prop-
erties propagates into RC model parameters, rather
than exact values for the parametric uncertainty. It is
observed that the uncertainty is predominantly trans-
ferred to the external resistances containing the insu-
lation layer; more specifically, for the ground floor and
windows, the coefficient of variation decreases when
moving from U to 1/R, whereas for the external walls
and roof, it increases.

Finally, the derived uncertainty is shown to affect the
optimal control strategy, both in terms of dynamic
effects and yearly energy use, thereby indicating the
need for improved data acquisition and/or dedicated
control strategies under uncertainty; this will be more
detailedly investigated in future research.
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