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ARTICLE INFO ABSTRACT
Artic{e history: Background: Clinical models to predict first trimester viability are traditionally based on multivariable
Received 19 May 2021 logistic regression (LR) which is not directly interpretable for non-statistical experts like physicians. Fur-

Accepted 2 November 2021 thermore, LR requires complete datasets and pre-established variables specifications. In this study, we

leveraged the internal non-linearity, feature selection and missing values handling mechanisms of ma-

Keywords: chine learning algorithms, along with a post-hoc interpretability strategy, as potential advantages over LR
Machine learning for clinical modeling.
First trimester viability Methods: The dataset included 1154 patients with 2377 individual scans and was obtained from a

Logistic regression
Gradient boosted tree
Post-hoc interpretability
Shapley value

prospective observational cohort study conducted at a hospital in London, UK, from March 2014 to May
2019. The data were split into a training (70%) and a test set (30%). Parsimonious and complete multi-
variable models were developed from two algorithms to predict first trimester viability at 11-14 weeks
gestational age (GA): LR and light gradient boosted machine (LGBM). Missing values were handled by
multiple imputation where appropriate. The SHapley Additive exPlanations (SHAP) framework was ap-
plied to derive individual explanations of the models.
Results: The parsimonious LGBM model had similar discriminative and calibration performance as the
parsimonious LR (AUC 0.885 vs 0.860; calibration slope: 1.19 vs 1.18). The complete models did not out-
perform the parsimonious models. LGBM was robust to the presence of missing values and did not re-
quire multiple imputation unlike LR. Decision path plots and feature importance analysis revealed dif-
ferent algorithm behaviors despite similar predictive performance. The main driving variable from the
LR model was the pre-specified interaction between fetal heart presence and mean sac diameter. The
crown-rump length variable and a proxy variable reflecting the difference in GA between expected and
observed GA were the two most important variables of LGBM. Finally, while variable interactions must
be specified upfront with LR, several interactions were ranked by the SHAP framework among the most
important features learned automatically by the LGBM algorithm.
Conclusions: Gradient boosted algorithms performed similarly to carefully crafted LR models in terms
of discrimination and calibration for first trimester viability prediction. By handling multi-collinearity,
missing values, feature selection and variable interactions internally, the gradient boosted trees algorithm,
combined with SHAP, offers a serious alternative to traditional LR models.
© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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List of abbreviations

AUC area under the curve

Cl confidence Interval

CRL crown -rump length

FH fetal heart

GA gestational age (in days)

LGBM light Gradient Boosted Machine
LMP last menstruation period

LR logistic regression

MSD mean sac diameter

MYSD mean yolk sac diameter
PUQE score pregnancy-unique quantification of emesis and
nausea

SHAP SHapley additive exPlanations

1. Introduction

First trimester miscarriage is the most common complication of
early pregnancy. Although difficult to assess, its incidence in rec-
ognized pregnancies is estimated around 13-17% in recent stud-
ies [1-3]. These adverse events can be traumatizing and can cause
psychological distress for several months following a loss [4-6].
Diagnostic uncertainty in early pregnancy is associated with in-
creased anxiety [7], justifying the need for models that accurately
predict the outcome of a pregnancy. In order to predict the risk
of miscarriage, several models based on logistic regression (LR)
have been developed over the years [8-13]. Despite good dis-
criminative performance (AUC between 0.75 and 0.95), a signifi-
cant number of miscarriages remain difficult to predict using these
models.

The rise of artificial intelligence and machine learning (ML) in
recent decades has led to the development of more complex algo-
rithms which have demonstrated outstanding performance in nu-
merous settings [14-16], including diagnosis performance similar
to human medical-experts [14]. In comparison to LR, more so-
phisticated ML models are intrinsically nonlinear, avoiding the ex-
plicit formulation of interaction terms and/or nonlinear transfor-
mation of variables. In addition, some ML algorithms can also na-
tively handle missing values, i.e. they can be trained on incom-
plete datasets whereas data imputation is needed before using LR
[17]. Recently, advanced machine learning algorithms have been
applied to various pregnancy-related conditions. For instance, Liu
et al. demonstrated that tree-based ensembles outperformed tra-
ditional regression-based methods to predict early pregnancy loss
after in vitro fertilization [18], although the evaluation and hyper-
parameters tuning procedures were not reported. Moreira et al.
used averaged one-dependence estimators to predict the childbirth
outcome of pregnancies with hypertensive disorders [19]. Bruno
et al. applied Support Vector Machine to predict recurrent preg-
nancy losses [20]. Kuhle et al. compared logistic regression with
advanced machine learning algorithms for the prediction of fetal
growth abnormalities [21]. The early prediction of adverse preg-
nancy outcomes with efficient models offer the opportunity to pre-
vent a range of future complications [22]. However, despite signifi-
cant advantages, the use of advanced ML to develop clinical models
is still relatively uncommon.

A common barrier to the adoption of more advanced ML mod-
els in clinical practice is often explained by their lack of trans-
parency regarding predictions [23,24]. However, more recently, a
model-agnostic framework based on Shapley values has emerged
that explains individual predictions [25]. Methods based on Shap-
ley values decompose each model’s prediction as a collaboration
of individual variables. It is therefore straightforward to perceive
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the contribution of each individual variable to the final predic-
tion. This approach has a solid theoretical foundation derived from
game theory to provide useful post-hoc model explanations and
make ML models more interpretable.

In this study, we aimed to assess the utility of interpretable ma-
chine learning for first trimester viability prediction. We first com-
pared the predictive and calibration performance of LR models and
gradient boosted trees. We then derived meaningful explanations
at the patient-level and compared the global behavior of both al-
gorithms. Finally, we highlighted the potential benefits of machine
learning with post-hoc interpretability strategy for clinical model-
ing.

The paper is organized as follows: in Section 2, we first intro-
duce the data cohort and the sets of variables. We then describe
the two models used to predict the first trimester viability, as well
as the performance metrics and the validation strategy employed,
before introducing the SHAP post-hoc interpretability framework.
The Section 3 reports the results in terms of models performance
and interpretability. In Section 4, we discuss the main findings of
this study and we elaborate on the different levels of post-hoc
interpretability and its application to clinical predictive modeling.
Finally, we highlight the advantages and limitations of both pre-
dictive modeling approaches, before addressing our concluding re-
marks.

2. Materials and methods
2.1. Data and study design

The study was based on data derived from a prospective obser-
vational cohort study based at Queen Charlotte’s & Chelsea Hos-
pital, London, conducted between March 2014 and May 2019. The
study had been approved by NHS National Research Ethics Service
(NRES) Riverside Committee London (REC 14/LO/0199) and NHS
North East - Newcastle and North Tyneside 2 Research Ethics Com-
mittee (17/NE/0121). All participants provided written informed
consent. Details on the study design and recruitment criteria can
be found in [26].

Women with intrauterine pregnancies (either a confirmed vi-
able pregnancy or pregnancy of unknown viability) were recruited
and followed up with serial ultrasound scans in the first trimester.
Demographic, clinical and ultrasound scan data were collected. The
main outcome was defined as the presence of viable pregnancy at
11-14 weeks of gestational age (GA). All scans when a diagnosis of
miscarriage was made were excluded. Participants with unknown
date of last menstrual period (LMP) were also excluded. Due to the
progressive drop out of miscarriage patients from the cohort, data
at more advanced GA are biased towards viable pregnancies. In the
present dataset, 15.5% of samples are associated with a miscarriage
before 70 days of gestational age, whereas this proportion drops to
6.3% after 70 days.

To avoid the algorithms learning that these pregnancies are at
less risk of miscarriage, we focused on the first half of the first
trimester: scans with GA greater than 70 days were therefore ex-
cluded.

2.2. Variables and univariates analysis

Two sets of variables were used in the models. To limit the
risk of overfitting, a restricted set of predefined variables was cho-
sen based on expert opinion and previous published studies [8-
13,15,27]. This parsimonious features set contained: maternal age,
number of previous miscarriages, worst bleeding score reported, dif-
ference in estimated GA between LMP and mean sac diameter (MSD),
GA by LMP, the Pregnancy-Unique Quantification of Emesis and Nau-
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sea (PUQE) score, crown-rump length (CRL), MSD, fetal heart (FH) and
MSD*FH. This last term models an interaction between MSD and
the presence of FH. Since advanced ML algorithms should model
such interaction without explicit formulation, this term was omit-
ted with the gradient boosted trees algorithm.

To assess the internal feature selection mechanism of gradient
boosted trees algorithm, a more complete set of variables was also
used in parallel, independently of expert knowledge. This complete
set includes the parsimonious set augmented by: maternal ethnic-
ity, gravida, parity, supplementation with folic acid, smoking status,
certainty of LMP, previous cesarian section, bleeding score at presen-
tation’, number of bleeding days, pain score at presentation, no of
days with pain, worst pain score, mean yolk sac diameter (MYSD),
presence of amnion sign, GA by MSD, GA by CRL. A detailed de-
scription of the symptom variables can be found in [26]. Uni-
variate analysis of the cohort characteristics with regard to the
main outcome were performed with the Student’s t-test for con-
tinuous variables and the chi-square test for binary or categorical
variables.

2.3. Internal validation

The initial dataset was split into a training (70%) and test set
(30%), stratified according to the main outcome to preserve a sim-
ilar outcome prevalence between both sets. To avoid data leakage,
i.e. the contamination of the training set with information from
the test set in case data are not independent, the ultrasound scans
from the same patients were strictly allocated to either the train-
ing or the test set,

2.4. Predictive models

1. Logistic regression

Multivariable logistic regression was used as a baseline model
against more advanced ML models. Logistic regression is a statisti-
cal model used to perform regression analyses on binary outcomes.
More specifically, logistic regression is a generalized linear model
defined as : logit(p(y = 1)) = XB, where p € [0, 1], y is the de-
pendent binary variable, X is the matrix of independent predictors,
also known as explanatory variables and 8 is the vector of param-
eters, or coefficients, optimized during model training. The binary
dependent variable y is related to the linear model X8 through the
logit link function defined as:

logit(p(y = 1)) ZIO‘g(%)’
_1yo  APXB)
where p(y =1) = 1+exp(XB)

As a generalized linear model, logistic regression does not re-
quire a normal distribution of the residuals. In addition, unlike or-
dinary linear regression, logistic regression models do not rely on
homoscedasticity. The additive constraint of multivariable regres-
sion restricts the model capacity but facilitates the understanding
of the prediction process.

To account for repeated measurements (e.g. clustered data), LR
was trained using the cluster robust variance-covariance matrix.
Multiple imputation was used to accommodate the presence of
missing values. The training set was imputed 20 times using Multi-
ple Imputation by Chained Equations and predictive mean match-
ing [28]. Missingness was assumed to be at random.

2. Light gradient boosted machine (LGBM)

We used a gradient boosted trees algorithm as the advanced
ML model. Gradient boosted trees is a tree-based ensemble algo-
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rithm that produce prediction by averaging a large number of in-
dividual decision trees predictions. The individual decision trees
are constructed sequentially with the goal to reduce the error of
the previous model at each iteration. With gradient boosting, the
structure of the next tree to add to the current ensemble is deter-
mined through the optimization of an objective function £ via its
gradient [29]. However, converting a decision tree learning algo-
rithm into an optimization problem is not straightforward as the
gradient with respect to the model's parameters is not directly
computable. With special formulations of £, it is possible to opti-
mize the construction of a new tree such that for each node split,
the best split is chosen, taking into account the model complex-
ity. Turning the objective function into a splitting criterion avoids
the intractable problem of constructing all possible trees at each
iteration.

If the function f; represents the structure of a single decision
tree, each new tree is added to the previous fixed ensemble as fol-
lows:

7@ —0

i
U =39+ f(X)

9P =9 ¢ (X

... where ¥, and X; represent the prediction and the vector of ex-
planatory variable for patient i, respectively.

The final predictions after adding t trees to the ensemble are
given by:

t
I =3 flX) = 5V + £
k=1

Tree-based ensembles have demonstrated state-of-the-art per-
formance in various settings, frequently outperforming neural net-
works in tabular datasets (e.g. [30]). They are often easier to op-
timize than neural networks which require additional architecture
specifications. Tree-based ensembles also benefit from an existing
implementation for the exact calculation of Shapley values (see be-
low) in the SHAP package [31]. LightGBM [32] was used to imple-
ment the gradient boosted trees. The number of trees was cho-
sen with early stopping. The optimization of the other hyperpa-
rameters was performed with tree-structured parzen estimators
through 5-folds cross validation of the training set [33]. The list of
hyperparameters tuned is reported in Table S2, other parameters
were used with their default settings. Models are referred as par-
simonious or complete following the dataset on which they were
trained.

2.5. Performance

The predictive performance of the models was assessed on the
test set. Overall performance was assessed with the Brier score
which measure the accuracy of probabilistic predictions, the lower
the score, the better [34]. Discriminative performance was assessed
with the area under the curve (AUC) of ROC curves. Statistical
comparisons between two models AUC was performed with the
DeLong method [35]. Calibration was assessed with the calibra-
tion slope and the calibration-in-the-large [34]. For the calibration
slope, a significant departure from the perfect calibration slope of
1 was assessed by the Wald-test [34].

We reported those metrics in two different forms: (1) raw met-
ric evaluated on the whole test set, not adjusted for the presence
of repeated measurements from the same patients: (2) longitudinal
metrics: for each GA t, the corresponding metric was computed on
the subset of samples included in a time window of 20 days, cen-
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tered on t. In case of repeated measurements per patient within
that time window, only the closest prediction to t was included
to compute the metric. All metrics are reported with a 95% confi-
dence interval (CI).

2.6. Post-hoc interpretability

To derive explanations of the model’s individual predictions, we
used the SHAP framework: an additive feature attribution method
[25]. These model-agnostic methods rely on explanation models to
decompose each prediction as a sum of individual feature contri-
butions. Following the notation of Lundberg and Lee [25], the ex-
planation model g of additive feature attribution methods takes the
form:

d
g(z) =¢o+) ¢z
j=1

where z/ € {0, 1}4is a simplified version of z, represented by a bi-
nary vector of dimension d, which simulates any subset of predic-
tors from z by indicating their presence or their absence. z;’ repre-
sents therefore the presence (=1) or absence (=0) of feature j in z.
@; € R represents the feature attribution of the j™ variable of z.

In the SHAP method, those feature attributions ¢; are repre-
sented by Shapley values, derived from the collaborative game the-
ory where a game payout is fairly distributed among the players
of a game, taking into account the possible combinations of play-
ers. In the predictive analytics context, the game payout is the pre-
diction and the players are the variables. The computation of the
Shapley values guarantees a fair decomposition of the final pre-
diction among the set of variables values. The Shapley value of a
variable value represents its contribution to the current prediction.
With SHAP, this contribution is expressed as a relative contribution
between the current prediction and a baseline prediction value of-
ten set to E[f(X)] Therefore, the SHAP values estimate the contri-
bution of each variable to explain the difference between f(X) and
E[f(X)], the averaged prediction of the model. As a result, the ex-
planations provided under the SHAP frameworks are contrastive
which makes them more intuitive to understand for non-expert
users[36]. In addition, SHAP is the only additive attribution method
that remains locally faithful to the black box model prediction.

d
y=fx) =g(x)=¢o+ Y b/
j=1

where ¢ corresponds to a baseline prediction, often set to E[f(X)].
A more detailed explanation with theoretical formulation can be
found in [25,30].

In order to derive meaningful comparisons amongst different
models, we set the common baseline value to the outcome preva-
lence in the training set (0.88), which estimates the overall prior
probability of miscarrying in the study-population. The Shapley
values can be obtained from two different methods. The interven-
tional approach breaks the potential inter-variables dependency to
compute the features SHAP values, referred in the text as inde-
pendent SHAP, while the correlated approach relies on the condi-
tional expectation, which takes into account inter-features corre-
lations. Recent studies suggest [37,38] that the conditional expec-
tation approach can be misleading as some variables that are not
used explicitly by the model can receive credits if they correlate
with some other important variables. Where appropriate, we used
the training set as background dataset for feature perturbation to
compute the SHAP values using the interventional approach. For
tree-based ensemble models, first order interaction SHAP values
[31] were also computed.

The aggregation of SHAP values from individual predictions pro-
vides global model explanations. Global feature importance was
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obtained as the mean of absolute SHAP value across all instances
for each variable. Similarly to the longitudinal visualization for
the model performances, longitudinal features importance was also
computed.

2.7. Software

All analysis have been performed with Python 3.6.6.

3. Results

1. Study cohort

Fig. 1 displays the study flowchart. Patients who underwent ter-
mination of pregnancy (n = 28), withdrew from the study (n = 7),
and who were lost to follow up (n = 40) were excluded. Addi-
tionally, patients with unknown or missing LMP (n = 50) were
also excluded. A total of 1154 patients (986 viable pregnancies
and 168 miscarriage) were available for the analysis. On average,
each patient underwent 2.05 (+ 0.83 SD) ultrasound scans (mis-
carriages: 1.70 (£ 0.73 SD); viable pregnancies: 2.65 (+ 0.83 SD)).
After stratified splitting, the training set and the test set con-
sisted in 807 and 347 patients respectively. Table S1 summarizes
the descriptive statistics of the cohort at the patient and ultra-
sound scan levels, including the number of missing values per
variable.

2. Model performances

The overall performance metrics (with 95% CI) for parsimo-
nious and complete models are reported in Table 1. Compared to
the parsimonious LR, the parsimonious LGBM model had similar
overall (Brier scores: 0.078 vs 0.076), discriminative (AUC 0.860 vs
0.885; p-value: 0.279) and calibration performance (calibration
slope: 1.183, p-value: 1.222 vs 1.195, p-value: 0.098; calibration in
the large: 0.001 vs 0.001). Furthermore, our results did not demon-
strate the need to impute the training and testing data when us-
ing LGBM (Table 1). Therefore, all subsequent analysis and figures
are based on LGBM without imputation. The models based on a
preselected set of meaningful variables had similar discriminant
performances as models based on the complete set of variables
(LR models AUC: 0.886 vs 0.876, p-value: 0.348; LGBM models
AUC: 0.885 vs 0.889, p-value: 0.574, Table 1). Moreover, the par-
simonious LGBM had slightly better calibration performances than
the complete LGBM (Slope: 1.195, p-value: 0.098 vs 1.298, p-value:
0.019, cal. in the large: 0.001 vs 0.010). Fig. 2 displays the parsi-
monious models performances longitudinally, based on the GA by
LMP at the time of the scan. This longitudinal metrics assessment
demonstrates similar behavior between LR and LGBM. Fig. S1 dis-
plays the same metrics for the complete models. Complete LGBM
model demonstrated slightly worse calibration performance than
complete LR model which can be explained by a greater flexibility
of LGBM models. However, the discriminative performance of com-
plete LGBM model was higher than complete LR, probably due to
the built-in feature selection mechanism of LGBM.

In summary, LGBM models performed as good as LR ap-
proaches, without the need of missing values imputation and ex-
plicit specifications of variable interactions.

3. Post-hoc interpretability

The feature importance expressed as the mean of individual ab-
solute SHAP values per variable are displayed in Fig. 3 for the par-
simonious models and in Fig. S2 for the complete models. The pre-
selected variables were mostly associated with a high feature im-
portance in the complete models (Fig. S2). These results also reflect
the univariate analysis as reported in Table S1. A notable exception
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n=1757
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Recr
n=1

uited
403

Exclusions : n=249
Unknown GA by LMP : n=50
LTFU: n=49
™ TOP : n=28
Withdrawal : n=7
GA >70 days at 1st scan: n=124
A A
Included
n=1154

N\

Miscarriage
n=168
n scans=289

Viable
n=986
n scans=2088

e e

Training set
n=807
n scans=1667
Proportion of miscarriage :
14.5 % (117/807)
Mean GA by LMP indays (SD): 53.3 (9.9)

Test set
n=347
nscans=710
Proportion of miscarriage :
14.7% (51/347)
Mean GA by LMP indays (SD): 52.8 (9.7)

Fig. 1. Study flowchart n represents the number of unique patients and n scans the number of scans, All repeated scans of a given patient were strictly allocated to either
the training or the test set. GA: gestational age; LMP: last menstruation period; LFTU: lost to follow-up, TOP: termination of pregnancy.

Table 1

Predictive performances of the models on the test set - raw metrics with 95% Cl. The Brier score assesses the accuracy of probabilistic predictions, the lower the score the
better. AUC evaluates the discrimination performance. The calibration in the large evaluates the mean calibration and corresponds to the difference between the averaged
binary outcome and the averaged prediction. The calibration slope summarizes how the predicted risks correspond to the observed risks. An ideal calibration slope is
equal to 1 and departures from 1 indicate potential model miscalibration (e.g. due to overfunderfitting). Overall, LR and LGBM performed similarly in terms of calibration
and discrimination. Complete LGBM models demonstrated similar discriminative performances as parsimonious models but their calibration was slightly worse, probably

resulting from a too large flexibility compared to LR models.

Parsimonious Models

Complete Models

LR + MICE LGBM with missing data

LGBM + MICE

LR + MICE LGBM with missing data ~ LGBM + MICE

0.076 (0.062 0.090)
0.885 (0.8480.922)
0.001 (—0.021 0.020)
1195 (0.964 1.424)

Brier score

AUC

Calibration in the large
Calibration slope

0.078 (0.065 0.093)
0.886 (0.852 0.919)
0.001 (—0.022 0.019)
1.183 (0.950 1.415)

0.078 (0.063 0.092)
0.881 (0.845 0.918)
0.002 (0,023 0.019)
1.158 (0.934 1.380)

0.080 (0.066 0.095)
0.876 (0.841 0.911)
0.005 (—0.026 0.016)
1.030 (0.824 1235)

0.076 (0.062 0.090)
0.889 (0.854 0.924)
0.010 (~0.031 0.010)
1.208 (1.048 1.547)

0.076 (0.063 0.090
0.892 (0.852 0.926)
0.014 (—0.035 0.006)
1.344 (1087 1.599)

is the worst bleeding score variable. Although an important po-
tential predictor for miscarriage, this variable was associated with
poor feature importance in most of the models (Fig. 3).

The features importance as described above was not neces-
sarily constant through time as reported in Fig. 4. The longitudi-
nal assessment of features importance from the LR model demon-
strates that, under the independent assumption, the interaction
term MSD*FH was the determining variable throughout all gesta-
tional ages, far above the other predictors, although its importance

decreases in the second half of the examined period. Taking into
account correlated variables, it remained the first driving variable
but its importance decreased as the credit was shared among other
variables. On the LGBM model, this analysis demonstrated that the
CRL globally stayed the most significant variable while the impor-
tance of the MSD variable decreased with GA. In the opposite, the
difference in estimated GA between LMP and ultrasound measure-
ments became more important in the second half of the examined
period.
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Fig. 2. Longitudinal assessment of the performance metrics for the parsimonious models. AUC, calibration slope and calibration in the large are displayed depending on
the GA by LMP at the date of scan using a time window of 30 days around the GA. Both LR and LGBM display similar profiles in terms of discrimination and calibration
performance. Note that the proportion of pregnancies remaining at risk of miscarriage naturally decreases with time, which partly explains the increase of AUC for higher
GA. AUC: area under the curve; GA: gestational age; LGBM: light gradient boosted machine; LMP: last menstruation period; LR: logistic regression.
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Fig. 3. Raw features importance measured with averaged absolute SHAP values per variable,

Variables that contribute significantly to the model’s predictions for many patients have a high importance depicted as a large averaged absolute SHAP value. Main effects
are colored in blue, interaction effects (first order variable interaction) are colored in orange. For LR models, the correlated SHAP approach (first column) takes variables
collinearity into account when computing the SHAP values. The resulting feature importance is more balanced among correlated variables than the independent SHAP
approach (second column) which directly reflects the LR coefficients. LGBM are reported with main effect only (third column) and with first order interactions (fourth
and fifth columns, only the top 20 features). Despite similar performances, the algorithms have a different internal use of the same set of features. For example, the
interaction MSD*FH is the main driving force of the LR model but appears as the 7th most important variable (second interaction term) in LGBM. CRL: crown-rump length;
GA: gestational age; LGBM: light gradient boosted machine; LMP: last menstruation period; LR: logistic regression; MSD: mean sac diameter; PUQE: Pregnancy-Unique

Quantification of Emesis.

The decision paths followed by the LR and LGBM parsimonious
models for three patients with different predicted risks are dis-
played in Fig. 5. Finally, the three main first-order interaction ef-
fects modeled by LGBM were CRL*MSD, FH*MSD and Maternal Age
* Difference in GA, and are displayed in Fig. 6.

4. Discussion

In this paper, we compared the predictive performance and the
interpretability of an advanced ML algorithm over a carefully spec-
ified LR model. Overall, the different models demonstrated similar
predictive performances. Both algorithms, although delivering dif-
ferent explanations, were intuitively explained by the SHAP frame-
work at the local-level, i.e. for each individual patient prediction,
and at the global or model-level. While LR models remain sim-
ple to implement and to train, gradient boosted trees algorithms
demonstrated additional potential benefits for clinical modeling. A
comparative on the use of LR vs LGBM for clinical modeling is re-
ported in Table 2.

4.1. Predictive performance

For the specific problem of first trimester viability, and given
the dataset available, more advanced models such as gradient
boosted trees did not demonstrate outstanding benefit in terms
of predictive performance over a simple linear model carefully
crafted with an interaction term. The raw and longitudinal perfor-
mance metrics on the test set were similar for both algorithms
(Table 1 and Figs. 2, S1), with the exception of the complete
LGBM model’s calibration slope which was worse than with the
complete LR model (calibration slope of 1.298, p-value: 0.019 vs
1.030, p-value: 0.776, respectively and Fig. 1b). This corrobo-
rates previous studies which found the absence of performance

gain from advanced models compared to LR in clinical modeling
[21,39,40].

4.2. Interpretability

4.2.1. Model-level interpretability with SHAP feature importance

Although both algorithms displayed similar performances, par-
simonious LR and LGBM demonstrated different behaviors when
inspecting the models under the SHAP framework. The predic-
tions from the LR model are mostly driven by the interaction term
MSD*FH (Figs. 3,4), whereas LGBM predictions are mostly driven
by CRL and the difference in estimated GA (Figs. 3,4). This phe-
nomenon is known as the Rashomon effect [41], where multiple
algorithms with similar performances can have completely differ-
ent internal mechanism to derive their final predictions. The SHAP
framework remains a method to derive individual explanations re-
garding a specific model. As a result, it should not be regarded as
a way to derive absolute (causal) explanations. Model dependency
should therefore be kept in mind when delivering post-hoc expla-
nations to physicians.

4.3. Longitudinal SHAP feature importance and GA-dependence

Variables such as maternal age or the history of previous mis-
carriages are naturally independent of GA and display therefore a
constant feature importance throughout the range of GA (Fig. 4).
On the other hand, some variables demonstrate changes in their
feature importance depending on the GA (Fig. 4). This phenomenon
is partly explained by the specificities of the dataset and the en-
coding of the data. For instance, the fetal heartbeat is frequently
absent (FH=0) on ultrasound scans performed at very early GA, ir-
respective of the future pregnancy outcome. Therefore, the inter-
action term MSD*FH of the LR model is encoded as zero, even if
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Fig. 4. Longitudinal features importance measured as averaged absolute SHAP values per variable. In the LR model, under the independent SHAP values computation,
the interaction term MSD*FH is much more important in the beginning than in the second half of the examined period, although it remains from far the main driving
variable throughout all gestational ages. Under the correlated approach, this interaction term remains the most important variable, but the credit is now shared among
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in estimated GA becomes more important in the second half of the examined period. CRL: crown-rump length; FH: fetal heart; GA: gestational age; LGBM: light gradient
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Table 2
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A comparison of logistic regression models and gradient boosted trees for clinical modeling.

Logistic Regression

Gradient boosted trees

Predictive performance
Discrimination
Calibration
Interpretability

Raw interpretability

Comparable if models correctly specified
Comparable if models correctly specified

Under the SHAP framework

Model-level SHAP feature importance
Patient-level
Collinearity Handled by correlated SHAP

Variable interactions
Specificities

Missing values
Feature selection
Non-linearity (e.g.
interactions)
Optimization

Based on the pre-specified interactions
Require complete datasets
Possible with 11-regularization

Pre-specified

Careful variable specifications

Based on model's coefficients, Subject to: multicollinearity, various unit
scales, logit transform,... Not straightforward for physicians

Complex, possibility to extract feature
importance. Not straightforward for
physicians

Decision path plots Individual predictions explained as a sum of SHAP values

Less affected by collinearity
Possible with SHAP interaction values

Handle missing data internally
Internal

Internal

Require hyper-parameters tuning

MSD is observed. As the pregnancy evolves, it becomes unlikely
not to observe a fetal heartbeat. As a result, for more advanced
GA, a smaller proportion of pregnancies displays a null value for
the interaction term FH*MSD. Because the overall feature impor-
tance is expressed as a mean of absolute values, the highly nega-
tive SHAP values associated with MSD*FH=0 are counterbalanced
by the large positive SHAP values when both MSD and FH are ob-
served in the second half of the period (Fig. 4A). When the credit
is shared among correlated variables, this phenomenon is signifi-
cantly reduced (Fig. 4B). A similar phenomenon explains why the
importance of the CRL variable increases with higher GA in the
LGBM maodel (Fig. 4C). For early GA, the embryo is often not visible.
Therefore, the proportion of pregnancies where the CRL variable
is encoded as zero is higher for early GA compared to advanced
pregnancies. The positive discrepancy in GA estimation, a strong
predictor of miscarriage, increases with GA. Hence, the large posi-
tive differences in GA, associated with large negative SHAP values,
are mostly observed in the second half of the period explaining the
constant increase in variable importance for the discrepancy in GA
(Fig. 4C).

These considerations highlight a drawback of the SHAP
framework: the measure of feature importance, computed as
mean(|SHAP values|), is directly dependent on the composition of
the sample. The data used to compute the feature importance
should be representative of the targeted population. The aggrega-
tion of individual SHAP explanations under the absolute operator
might also obfuscate complex patterns of variable importance.

4.4. Interpretability under multicollinearity

Interestingly, CRL had a very low importance in the parsimo-
nious LR model under the independent SHAP approach (Fig. 3,
coefficient’s p-values = 0.532 from Table $3). This is mostly ex-
plained by the collinearity with other variables (especially MSD)
and highlights the limitations of LR in presence of correlated vari-
ables which disturbs the relationship between independent and
dependent variables. Although this problem does not necessarily
impact the prediction performance, it infringes the interpretabil-
ity of LR models. Thoughtful variables selection a priori, dimen-
sionality reduction or regularization can alleviate this phenomenon
[42]. However, the correlated method for SHAP values presents an
interesting alternative to display interpretable feature importance
in the presence of collinearity as it shares credits among corre-
lated variables, even if not explicitly used by the model. Under this
method, the CRL variable importance drastically increased and re-
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flected a more realistic view of this ultrasound parameter impor-
tance (Fig. 3). On the other hand, LGBM, due to its boosted nature,
is more robust to the multicollinearity problem, as depicted in the
feature importance analysis even under the independent SHAP ap-
proach (Fig. 3).

4.5. Interpretable individual predictions with decision path plots

At the individual prediction level, the SHAP framework decom-
poses each prediction into a sum of Shapley values. This sum ex-
plains the departure of the current prediction from a baseline pre-
diction. The SHAP values attributed to each variable value can be
organized into a meaningful visualization plot to derive the deci-
sion path followed by the model to reach the current prediction.
Examples of such decision paths plots are reported in Fig. 5. Those
plots constitute a meaningful way to translate complex algorithms
decisions into interpretable predictions. As a model-agnostic ex-
plainer relying on the original variables additively, it allows for
meaningful comparisons between different algorithms.

4.6. Exploring interaction effects

The SHAP values from non-linear models can be computed tak-
ing first order interactions into account [31]. The interaction plots,
based on Shapley values, provide a clever alternative to partial de-
pendence plots. In the parsimonious LGBM, the interaction effect
between MSD and FH ranked 6th in terms of feature importance
and constitutes the 2nd most important interaction term (out of 36
possible combinations) which corroborates its use in the LR model
(and in previous study [27]). The interaction between CRL and MSD
was the most important interaction effect and bears similar in-
terpretation as the interaction between MSD and FH: intrauterine
pregnancy without visible embryo is at higher risk of miscarriage
when MSD increases. In the third interaction effect, a large discrep-
ancy in GA appears to be modeled as a protective variable in young
women while it becomes a risk factor in older women. Such inter-
action has never been reported and its clinical relevance remains
uncertain as it might result from spurious findings based on the
specificity of the training set.

4.7. SHAP framework for LR models
While LR models are often labeled as interpretable models, it is

yet to demonstrate that every clinician fully understands the intri-
cacy of such models, especially in the presence of non-linear terms
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Fig. 6. Top three of interaction effects learned from LGBM and measured with the SHAP
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discrepancy in GA is modeled as a protective variable in young women while it be-
comes a risk factor in older women. CRL: crown-rump length; FH: fetal heartbeat,
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and multicollinearity. We have demonstrated that the SHAP frame-
work provides straightforward visualization of the feature impor-
tance and individual prediction explanations with decision path
plots, irrespective of the variables’ scales and collinearity. Intu-
itive decision path plots are easy to understand and do not require
deep knowledge of LR formulation. Therefore, we believe that, as a
post-hoc explanation method, the SHAP framework can also ben-
efit simple clinical models such as LR models in complement to
traditional coefficients analysis.

1
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4.8. Gradient boosted trees advantages

Besides models’ performance and interpretability, we also
demonstrated that LGBM produced similar results on incomplete
datasets compared to imputed data. The internal handling of miss-
ing values by LGBM constitutes therefore a potential advantage
over LR where (multiple) imputation should be carefully performed
beforehand. Furthermore, the inherent non-linearity of LGBM algo-
rithms facilitates the development of efficient models as it does
not require explicit interaction terms like LR models.

Finally, while a clever preselection of meaningful variables by
expert knowledge is often recommended to prevent unnecessar-
ily complicated models with an increased risk of overfitting [43],
without prior knowledge it can be difficult to establish such pre-
defined set of variables. Despite its flexibility, LGBM models main-
tained good discriminative performance even with a large set
of variables on the complete dataset. This demonstrates the ef-
ficient internal feature selection/weighting mechanism of gradi-
ent boosted trees. The high ranking of the pre-specified variables
within the complete LGBM model also reflected this feature selec-
tion mechanism.

4.9. Strengths and limitations

To the best of our knowledge, this study is one of the first to
apply interpretable ML to first trimester viability prediction. The
models were trained on a qualitative dataset from a well-defined
prospective study using of validated symptom scores from early
on in the first trimester. The models development included proper
missing values imputations and hyper-parameters tuning. Unlike
many previous comparative studies, this paper provides a rigorous
models comparison through an extensive performances assessment
beyond simple discriminative performance, including calibration
and longitudinal visualizations of the performance metrics based
on the GA.

One of the limitations of this study is the absence of a proper
external validation set. However, we should note that the focus of
this paper is not on building the ultimate predictive model but
rather to demonstrate the potential of ML with post-hoc inter-
pretability methods for early pregnancy predictive analytics. Sec-
ondly, our models use an estimation of GA by LMP, which is, how-
ever, not always available or accurate in practice [44]. Lastly, we
would like to point out some practical limitations of the Shap-
ley values approach. Because of its feature perturbation nature,
the computation of Shapley values often need access to a back-
ground dataset (unless using the specific approach for tree en-
sembles [31]), which might impinge its use for model deployment.
Moreover, depending on the dataset dimensionality, this perturba-
tion step can be computationally expensive due to the combinatory
nature of the Shapley value computation.

5. Conclusion

In this paper, we have demonstrated and assessed the use of
machine learning enhanced by a post-hoc interpretability method
for first trimester viability prediction. Gradient boosted algorithms
performed as good as carefully crafted LR models in terms of dis-
crimination and calibration. Furthermore, gradient boosted trees
algorithms present several advantages over traditional LR models,
such as the handling of missing values and the internal modeling
of non-linearity, making them serious candidates for future works
on first trimester prediction. Finally, we showed that the under-
standing of clinical models, including traditional LR models, can be
improved by the use of additive feature attribution frameworks.
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