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Abstract

A conditioning on the event of having selected one model from a set of possibly misspecified nor-
mal linear regression models, leads to the construction of uniformly optimal conditional confidence
distributions. They can be used for valid post-selection inference. The constructed conditional
confidence distributions are finite sample exact and encompass all information regarding the focus
parameter in the selected model. This includes the construction of optimal post-selection confidence
intervals at all significance levels and uniformly most powerful hypothesis tests.

Keywords: confidence distribution, confidence interval, linear model, model selection, post-
selection inference, selective inference, sufficiency.

1 Introduction

We approach the question of valid inference after model selection via confidence distributions and
curves. While the well-known confidence intervals are constructed for a single fixed confidence level, a
confidence curve may be interpreted as a collection of such confidence intervals for all possible levels.
For an overview and historical details about this method see Xie and Singh (2013) and Schweder and
Hjort (2016). Cox (1958) introduced the terminology confidence distribution. Using the connection
between confidence intervals and hypothesis testing, the confidence curve contains information about
the power of the related hypothesis test while p-values are obtained using the cumulative confidence
distribution at any hypothesized value for the parameter of interest. Working with confidence distri-
butions provides a more complete picture as opposed to only studying a hypothesis test for a given
significance level or a fixed level confidence interval.

Until now, the theory on confidence distributions is based on the assumption that the model is
given and correct (Xie and Singh, 2013). In this paper we consider the pre-selection of a model or
variables and construct confidence distributions after selection. Hence a main difference between this
work and earlier methods is that the model that is used for inference is no longer given beforehand
and might be incorrect.

Several classical techniques have been developed to perform model selection. Among the most
used ones are information criteria methods (for an overview, see Claeskens and Hjort, 2008), stepwise
procedures and within high-dimensional analysis, when the number of covariates p might exceed the
number of observations n, regularized estimation procedures such as lasso and least-angle regression
(see, e.g., Hastie et al., 2009).

The use of model selection methods is not without a cost. Danilov and Magnus (2004) explicitly
warn against overinterpreting results after pretesting has been performed. Kabaila (2009) clearly
explains that using classical inference methods after having performed model selection on the same
data, can lead to inaccurate conclusions due to confidence regions for model parameters that might
have much lower coverage than the nominal coverage value suggests. A same message regarding
overoptimistic interpretations by using naive approaches that ignore the selection uncertainty has been
told by Hjort and Claeskens (2003), see also Claeskens and Hjort (2008, Chap. 7) where a simulation
approach was suggested to construct better confidence intervals post-selection. Kabaila et al. (2016)
study the coverage and scaled expected length of confidence intervals for model averaging procedures,
a concept that is related to model selection. Hong et al. (2018) provide an explanation explaining
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why in linear models the confidence intervals have too low coverage by studying the estimated error
variance in selected models that contain more parameters than strictly necessary.

There has been a big progress on the topic of post-selection inference. Most of the existing
proposals to properly handle this issue can be classified into two groups: a simultaneous inference
approach and a conditional approach. The former, proposed by Berk et al. (2013) aims to provide
valid inference without restricting to any specific selection method. An advantage of this approach
is that the results are valid even when the selection was based upon a graphical exploration of the
data. However, the price to pay is that the confidence intervals are relatively wide. Berk et al.
(2013) developed a method valid for linear regression models based on the assumption that the true
distribution is Gaussian and homoscedastic. For extensions to some other models and accounting
for misspecification, see Bachoc et al. (2020). On the other hand, the conditional approach aims to
provide valid inference by conditioning the distribution of the parameter estimator of interest by the
information that a certain model has been selected. To specify the event of selection one can make
use of a so-called selection region which is determined by the specific selection method, which may
be comprised of a combination of classical selection methods. This conditional approach is expected
to provide narrower confidence intervals than the simultaneous one. Charkhi and Claeskens (2018)
developed a conditional approach that provides valid confidence intervals for parameters in likelihood
models after model selection by Akaike’s information criterion (Akaike, 1973). In selective inference,
Lee et al. (2016) provided a method for inference when lasso is used for estimation and selection in
linear regression models. Extensions to other selection methods include forward stepwise regression,
least angle regression (Tibshirani et al., 2016), marginal screening (Lee and Taylor, 2014) and likelihood
and test-based methods (Rügamer and Greven, 2018). Tian and Taylor (2017), Tibshirani et al. (2018)
and Taylor and Tibshirani (2018) discuss extensions to non-Gaussian data within affine-selection and
Tian and Taylor (2018) provided a more powerful method by the use of randomization. These authors
have focused on providing valid p-values and confidence intervals when the significance level is set
beforehand. With the use of confidence distributions one obtains information on all significance levels
at once. Plots of confidence curves for different methods in a single graph allow for an easy visual
comparison of the methods.

Especially when several models are at play it is important to state clearly what the target of
inference is. In selective inference this target is a parameter that is present in the selected model.
One part of the statistical challenge for correct inference arises due to the fact that the target is only
determined after the selection took place. Another difficulty is due to a possible model misspecification.
In contrast, when the target is a parameter of the full model, regardless of any selection, inference
tools for the possibly misspecified full model can be used. In this paper we address the scenario of
selective inference for a focus parameter specified in a selected model.

In Section 2 we describe the modeling framework and review the definition of confidence distri-
butions for a given model. Model selection and the corresponding selection regions are introduced in
Section 3. We collect the main theoretical results in Section 4. Computational aspects are discussed
in Section 5. Section 6 contains a simulation comparison of the proposed method with some of the
methods mentioned above. For instance the simulation results showcase how most of the methods
proposed for valid post-selection inference are conservative. A data example is included in Section 7
and Section 8 concludes.

2 Framework, definitions and notation

2.1 Model specification

Let Y n = (Y1, . . . , Yn)
⊤ be a n-dimensional vector of independent random variables generated from

a multivariate normal distribution Y n ∼ Nn(µ, σ
2In). In this saturated generating distribution, the

mean vector µ = (µ1, . . . , µn)
⊤ is not further specified. Heteroscedastic errors can be dealt with, see

Section 5.
The mean is modelled in a linear way using p-vectors of covariates. Let X = (x⊤1 , . . . , x

⊤
n )

⊤ be a
n×p full rank matrix of fixed or random regressors and denote β = (β1, . . . , βp)

⊤ a p-dimensional vector
of regression parameters. The linear regression model then writes E(Yi|xi) = x⊤i β for i = 1, . . . , n. We
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do not assume that such a linear structure is true. For more explanation about the misspecification,
see Section 3. In the case of a random design we assume that (Yi, x

⊤
i ), i = 1, . . . , n are independent

and identically distributed. For a fixed design the responses remain independent though their mean
depends on the covariate value. Throughout the paper we condition on X in all expressions. To not
overload the notation, this is not always explicitly indicated.

The normal working density can be rewritten in what is called the natural parametrization of
exponential family distributions. The vector of natural parameters for the normal model is π(β, σ) =
(β⊤/σ2,−1/(2σ2))⊤, with the corresponding vector of sufficient statistics
T̃ (Y n;X) = (x⊤1 Y n, . . . , x

⊤
p Y n,Y

⊤
nY n)

⊤. With κ(π(β, σ)) =
∑n

i=1(x
⊤
i β)

2/(2σ2)+n/2 log(2πσ2), the
normal working density is thus

fn(yn|X,π(β, σ)) = exp
{
π(β, σ)⊤T̃ (yn;X)− κ(π(β, σ))

}
. (1)

We first single out one regression coefficient for inference. Linear combinations are dealt with in
Section 4.2. After a possible reordering, we denote this focus coefficient by θ and combine all other
parameters, including the variance parameter in a vector of nuisance parameters η. Thus we redefine
π(β, σ) = (θ, η⊤)⊤ and we reorder, as elsewhere conditional on X, the vector of sufficient statistics
T̃ (Y n;X) = (T (Y n;X), U⊤(Y n;X))⊤, where T = T (Y n;X) is the sufficient statistic for the scalar
parameter of interest θ, and U(Y n;X) is the vector of sufficient statistics for the nuisance parameters
η. For example, we are interested in inference for β1 and take θ = β1/σ

2. Once we condition T
on U(Y n;X), the conditional distribution of T |U(Y n;X) contains no information about σ2 as one
element of U(Y n;X), namely

∑n
i=1 Y

2
i is sufficient for the single parameter σ2 up to a known constant.

In the context of model selection when there is more than one model at play, see Section 3,
the notation may indicate the specific model as a subscript. For example, in the linear model with
mean XMβM and the natural parameters ordered as (θM , η

⊤
M )⊤, the vector TM (Y n;XM ) indicates

the sufficient statistic for θM and UM (Y n;XM ) is the vector of sufficient statistics for the nuisance
parameters in this model. ModelM ’s density may also be indicated by fn,M to avoid possible confusion.

2.2 Review of confidence distributions for a parameter - classic case of a given
model

A confidence distribution is an inferential tool which summarizes all the information about the pa-
rameters of interest carried in the data. As discussed by Singh et al. (2005), Xie and Singh (2013) and
Schweder and Hjort (2002, 2016), confidence distributions provide a complete picture for frequentist
inference in terms of p-values, confidence intervals and point estimators. We revise first the definition
in the case of a correctly specified model, see Schweder and Hjort (2002). See Singh et al. (2005) for
an extension to the asymptotic case. In Section 4 we extend this framework to be valid after selection.

Definition 1 Let Y be the sample space for the sample data Y n = (Y1, . . . , Yn)
⊤ from a parametric

distribution Fθ0,η0 where η0 is the true vector of nuisance parameters and θ0 is the true value of the
parameter of interest with Θ ⊆ R as its parameter space. A function Cn : Θ×Y → [0, 1] is a confidence
distribution for θ ∈ Θ if it satisfies:

(R1) For each given Y n = yn ∈ Y, the function θ 7→ Cn(θ;yn) is a cumulative distribution function
on Θ.

(R2) As a function of Y n, Cn(θ0,Y n) follows a uniform distribution U [0, 1], where θ0 is the true value
of θ.

Condition (R2) states that at the true parameter value θ = θ0 the confidence distribution has a
uniform distribution under Fθ0,η0 whatever the true value (θ0, η0). This requirement is crucial because
it ensures, for instance, that for α ∈ (0, 1) the coverage probability of a 100(1−α)% confidence interval
equals (1− α) and that the size of a hypothesis test is correct.

The quantiles qα/2 = {θ ∈ Θ : Cn(θ,Y n) = α/2} and q1−α/2 = {θ ∈ Θ : Cn(θ,Y n) = 1− α/2} are
the endpoints of the two-sided 100(1− α)% confidence intervals. The confidence curve (cc) is defined
as follows.
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Definition 2 A confidence curve is the following function of a confidence distribution Cn(θ,Y n),

ccn : Θ → [0, 1] : θ 7→ ccn(θ) = |1− 2Cn(θ,Y n)| =

{
1− 2Cn(θ,Y n) if θ ≤ θ̂0.5

2Cn(θ,Y n)− 1 if θ ≥ θ̂0.5

where θ̂0.5 = C−1
n (12) is the median of confidence distribution and can be used as a point estimator.

Confidence distributions can be obtained using the information contained in the likelihood or
via a pivotal quantity when it is available. For instance, for any pivot, piv(Y n, θ), we can define
G(u) = P (piv(Y n, θ) ≤ u), then Cn(θ,Y n) = G(piv(Y n, θ)) if the pivot is increasing in θ (Schweder
and Hjort, 2002) and Cn(θ,Y n) = 1−G(piv(Y n, θ)) if the pivot is decreasing in θ.

When Fθ0,η0 is an exponential family distribution in its natural parametrization, we can use the
information contained in the likelihood and construct Cn(θ,Y n) using the sufficient statistic for θ0
conditioning on the sufficient statistics for η0. In normal linear regression models Y = Xβ + ε
with β = (β1, . . . , βp)

⊤ and ε ∼ N(0, In) with n the sample size, the confidence distribution for

a regression parameter βr (r = 1, . . . , p) can be obtained using the t-statistic Tr = (β̂r − βr)/σ̂r
where β̂ and σ̂2 are the maximum likelihood estimators of β and σ2, σ̂2r is the (r, r)th diagonal
element of Σ̂ = σ̂2(X⊤X)−1. In this case Cn(βr,Y n) = Fn−p(Tr) where Fn−p is the cumulative
distribution function of a t-distribution with n − p degrees of freedom (Schweder and Hjort, 2002).
The confidence distribution can also be constructed as Cn(βr,Y n) = P (T > tobs | U = uobs) with T
the sufficient statistic for βrσ

−2 with observed value tobs and U the sufficient statistic vector for the
nuisance parameters (β⊤−rσ

−2,−1/2σ−2)⊤ with observed value uobs and where the vector β−r denotes
the subvector of β that omits the rth component. In this example, both constructions are connected
as the maximum likelihood estimator is a function of the sufficient statistics.

It is important to remark that confidence distributions depend on the model and as mentioned by
Xie and Singh (2013) the theory on confidence distributions developed until now assumes a correct and
pre-specified model. When the working model has been selected using data-driven methods on Y n and
the same data are used for producing the confidence distribution, for example Cn(βr,Y n) = Fn−p(Tr)
or Cn(βr,Y n) = P (T > tobs | U = uobs) after selection might not longer satisfy (R2) in Definition 1
as we can we see in the next example.

Example. Naive confidence distributions after selection. Figure 1 summarizes the empirical ev-
idence of a small simulation study for inference after variable selection in a linear model. For i =
1, . . . , n = 100, the covariates are independently generated as xi,1 = 1 and (xi,2, . . . , xi,6)

⊤ ∼ N(05,Ω)
where Ω is the variance-covariance matrix with diagonal entries equal to 1 and off-diagonal elements
equal to 0.25. The true values for the parameters are β = (2,−1.5, 0.8,−0.02, 0, 0)⊤ and σ2 = 1.
Akaike’s information criterion (AIC) (Akaike, 1973, see also Section 3) is used to select a best model
from the set of 32 models consisting of all possible submodels of the largest model which has all
six covariates; all models include the intercept. The error variance σ2 is unknown but consistently
estimated. In the simulation study we took the case of an overparametrized selected model with
parameters (β1, . . . , β5)

⊤.
With Tr the t-statistic with n − p degrees of freedom, we use Cn(βr,Y n) = Fn−p(Tr) for the

selected model and ignore that the variable selection took place. We obtain the cumulative confidence
distributions for 1000 samples for which this model is selected.

The drastic effect of selection in naive inference can be clearly observed from the left panel of
Figure 1. While naive inference for the parameters β2 and β3 is alright, the simulated coverage of
the confidence intervals for the truly zero parameter β5 and for β4, which has a relatively small value
indicates a failure of naive inference. In this case the t-distribution with 95=100-5 degrees of freedom
was used to produce confidence intervals for the model parameters. Strikingly, the coverage is zero
for all 1 − α confidence intervals up to about 0.8 as confidence level. On the q-q plot at the right
we can clearly observe that the simulated distributions of the confidence distributions for β4 and β5
evaluated at their true value are highly non-uniform, indicating problems with naive inference ignoring
the selection and a violation of condition (R2) in Definition 1.
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Figure 1: Left: Mean simulated coverage of 1−α confidence intervals with α = [0, 1] for the regression
parameters β2, . . . , β5 in the selected linear model for a naive method that ignores selection. Each
line corresponds to one of the four regression parameters subject to selection. Right: Quantiles of the
simulated distribution of Cn(β0,r,Y n) versus expected quantiles of a U [0, 1], showing a clear deviation
from uniformity and failure of naive inference for β4 and β5.

3 Model selection methods and regions

We perform selection within a model selection set M = {M1, . . . ,Mm} with a finite number, m,
candidate normal linear models. Each model M ∈ M uses its own full rank n×pM design matrix XM

to specify E[Y n | XM ] = XMβM . Thus pM denotes the number of regression coefficients for model M
such that βM is a vector of length pM . The models in M do not need to be nested and we explicitly
do not assume the linear structure to be true.

Since the true data generating density corresponds to a saturated model, all linear models in M
are possibly misspecified. The estimator of βM targets the pseudo-true parameter β∗M , that is, the
parameter value which minimizes the Kullback-Leibler distance between the model density and the
true data generating density (White, 1994). For the normal model with mean vector µ, the target is
explicitly obtained as β∗M = (X⊤

MXM )−1X⊤
Mµ, see also Lee et al. (2016).

Each model selection method comes with its own partitioning of the data sample space Y = ∪mj=1Aj
with Ak ∩ Al = ∅ if k ̸= l such that the result of selecting model Mj is equivalent with Y n ∈ Aj .
Indeed, model selection corresponds to picking a single model as the selected one. Charkhi and
Claeskens (2018) find regions for AIC selection characterized via inequalities using quadratic forms.
Selection regions corresponding to model selection based on likelihood ratio testing, F-tests or more
general ‘significance hunting’ by t-tests are described by Rügamer and Greven (2018). Lee et al. (2016)
obtain polyhedral regions for lasso selection, while Loftus and Taylor (2015) characterizes selection
via cross-validation.

We assume that all models in M have a nonzero selection probability and that the selection regions
are expressible in terms of the sufficient statistics for the model parameters. We state some examples.

Examples. (1) Selection by AIC or BIC. Penalized likelihood-based information criteria such as
AIC (Akaike, 1973) which uses penMj

= 2|Mj |, with |Mj | the number of estimated parameters in
model Mj and BIC (Schwarz, 1978) with penMj

= log(n)|Mj | attach a value to each model. The
model with the lowest such value is selected. For selecting model Mj ∈ M with j ∈ {1, . . . ,m} the
selection region which indicates for which sample values this model gets selected is obtained as

Aj = {yn ∈ Rn : −2 log fn,Mj (yn|XMj , π(β̂Mj , σ̂Mj )) + penMj

< −2 log fn,Mk
(yn|XMk

, π(β̂Mk
, σ̂Mk

)) + penMk
, for all Mk ∈ M \Mj}.

Maximum likelihood estimators are used to estimate each model’s parameters. The inequalities defin-
ing Aj can equivalently be expressed in terms of sufficient statistics. Indeed, since maximum likelihood

estimators are functions of the sufficient statistics too, Aj = {yn ∈ Rn : 2π(β̂Mk
, σ̂Mk

)⊤T̃Mk
(yn;XMk

)−
2π(β̂Mj , σ̂Mj )

⊤T̃Mj (yn;XMj )+2κ(π(β̂Mj , σ̂Mj ))−2κ(π(β̂Mk
, σ̂Mk

))+penMj
−penMk

< 0, for all Mk ∈
M \Mj}.
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In a similar way one obtains selection regions in terms of sufficient statistics when a likelihood
ratio test determines the best model in a set of nested models.

(2) Backward selection via t-tests. Another commonly used selection procedure, even despite the
criticism it received, is backward variable selection by using the significance of t-tests. This procedure
is an example of “significance hunting” described in Berk et al. (2013) and Rügamer and Greven
(2018). The method starts with a full model M1 with p parameters. At each step s = 1, . . . , p,
there are p − s + 1 null hypotheses tested H0,r : β∗M,r = 0 for r = 1, . . . , p − s + 1 at significance
level α and the parameter with the largest p-value indicating insignificance is discarded. Define

TM,r = Σ̂
−1/2
M,r β̂M,r, the t-statistic for the rth component of the estimated parameter vector in model

M , I(·) the indicator function and tα/2 the critical value given by the (1−α/2)-quantile of a Student’s

t-distribution with n − (p − s + 2) degrees of freedom. Both the estimator β̂M,r and its estimated

variance Σ̂M,r can be expressed in terms of sufficient statistics. Thus βM,d is omitted from the model
when d = argminr{|TM,r| I(|TM,r| ≤ tα/2)}. This testing procedure is repeated until all indicators
equal 0 leading to the selected model Mȷ̂. Note that M is not fixed beforehand but it is updated at
each step. An illustration of the procedure is as follows. Starting with the full model M1, parameter
β[1] is discarded from the model when⋂

r∈{1,...,p}\{[1]}

{
|TM1,[1]| ≤ |TM1,r|

}
∩
{
|TM1,[1]| ≤ tα/2

}
.

The model without β[1] is denoted by M2. A variable β[2] is omitted from M2 when⋂
r∈{1,...,p−1}\{[2]}

{
|TM2,[2]| ≤ |TM2,r|

}
∩
{
|TM2,[2]| ≤ tα/2

}
,

etc. until no variables are insignificant. The combination of such events defines the selection regions
in terms of the sufficient statistics T̃M (yn;XM ) in each model M ∈ {M1, . . . ,Mp}. □

4 Optimality results of post-selection conditional confidence distri-
butions

A model selection procedure is carried out and one observes which parameters appear in the selected
model. At that moment one decides to perform inference for one of these parameters, say θ. In this
case the framework of selective inference applies.

For a given sample Y n = yn , we denote the selected model by Mȷ̂, which is equivalent to stating
that yn ∈ Aȷ̂. The notation with the hat on the subscript j should remind us that the model was
selected based on the sample. Let θ be the parameter of interest in this model with parameter space Θ.
Conditional on the selection and under a possibly misspecified model Mȷ̂, we define the conditional
post-selection confidence distribution as follows.

Definition 3 Let M = {M1, . . . ,Mm} be a model selection set to which a selection criterion with
sample space partitioning Y = ∪mj=1Aj is applied. Conditional on the selected model Mȷ̂ with pseudo

true-parameter vector (θ∗Mȷ̂
, η∗⊤Mȷ̂

), a function Cn|̂ȷ : Θ × Aȷ̂ → [0, 1] : (θ,Y n) 7→ Cn|̂ȷ(θ,Y n) is a
conditional post-selection confidence distribution if it satisfies:

(R3) For each given Y n = yn ∈ Aȷ̂, the function Θ → [0, 1] : θ 7→ Cn|̂ȷ(θ,yn) is a cumulative
distribution function on Θ.

(R4) As a function of Y n ∈ Aȷ̂, Cn|̂ȷ(θ
∗
Mȷ̂
,Y n) follows a uniform distribution U [0, 1] whatever the

value of the pseudo true parameter vector for this model.

Note that the subscript ‘|̂ȷ’ reminds about the conditioning on the selection event. Conditioning
on the selection is needed to avoid that the function domain changes for each sample. When Mȷ̂ is
the selected model we only consider the samples in Aȷ̂, thus for which the selection leads to the same
selected modelMȷ̂. By working with the pseudo-true parameters, we take into account that the models
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do not need to be correctly specified. Thus (R4) guarantees the correct coverage of the confidence
curves as in (R2) but with respect to the pseudo true-value θ∗Mȷ̂

.
A conditional post-selection confidence curve is defined in analogy to Definition 2 as a function from

Θ → [0, 1] such that θ 7→ ccn|̂ȷ(θ) = |1− 2Cn|̂ȷ(θ,Y n)|. For example, for α = 0.95, the distinct values
θ1 < θ2 such that ccn|̂ȷ(θ1) = ccn|̂ȷ(θ2) = 0.95 form the endpoints of the 95% confidence interval [θ1, θ2]
for θ∗Mȷ̂

. One strong advantage of working with a confidence curve is that it contains all information
regarding confidence and is not restricted to a single pre-specified confidence level.

4.1 Uniformly most powerful confidence distributions

Since the selection of a model Mȷ̂ depends on the set of models M, this information is taken into
account by conditioning the sufficient statistic T = T (Y n;XMȷ̂

) for the focus parameter θ on a
vector of sufficient statistics for all nuisance parameters. We define UM = UM(Y n) the vector with
components in some arbitrary but fixed order from the collection {UM (Y n;XM ) for allM ∈ M} where
duplicated items are removed. We use the distribution of T conditional on both UM and the selection
event Y n ∈ Aȷ̂ to obtain the conditional post-selection confidence distribution. After conditioning the
domain of T is restricted to dom(T |UM = uobs,Y n ∈ Aȷ̂) = {yn ∈ Aȷ̂ : UM(yn) = uobs}, which is
fixed. Let yn denote the observed value of Y n. We denote by uobs = UM(yn) the vector that consists
of the observed values of the sufficient statistics for the nuisance parameters for all models in M.
For normal linear regression models this domain can be exactly computed. For some examples, see
Rügamer and Greven (2018) when the selection is by likelihood based model selection procedures for
Gaussian data and explicit derivations are obtained in simple two-model comparisons.

The optimality properties for hypothesis testing in an exponential family have been widely studied
(Lehmann and Scheffé, 1955; Lehmann and Romano, 2006) and such properties can be extended to
confidence distributions. Optimality for a confidence distribution is expressed in terms of confidence
loss, loss(θa, C) =

∫
B(θ

′
a− θa) dC(θ

′
a, Y ) associated with a function B, nondecreasing on the positive

half-axis, nonincreasing on the negative half-axis and B(0) = 0. For instance, B(x) = x2 is the
quadratic function for which loss(θa, C) is the squared loss. A confidence distribution is uniformly
optimal if (Schweder and Hjort, 2016, Def 5.9) for every B, defined as above, loss(θa, Copt) ≤ loss(θa, C)
for any other C, for every value θa.

The propositions below are an extension of Theorem 5.11 of Schweder and Hjort (2016) for the case
of post-selection inference. In proposition 1, we first work under the assumption that σ2 is known or
estimated independently of the data Y n used for inference. We relax that assumption in proposition
2 at the cost of a extra conditioning. Note that these are a exact finite sample results, no asymptotic
statements are involved. The proofs are contained in the Appendix.

Proposition 1 Let Mȷ̂ be selected from a set of linear models M for the data Y n conditional on
covariates X. We assume that all models in M have a nonzero selection probability and that the
selection regions can be expressed in terms of the sufficient statistics for the model parameters. We
assume σ2 is known or independently estimated for all models in M. Let θMȷ̂

be the univariate
parameter of interest in Mȷ̂ with parameter space Θ and sufficient statistic T = T (Y n;XMȷ̂

). The
corresponding pseudo-true parameter value is denoted by θ∗Mȷ̂

. Let UM = UM(Y n) be the combined
vector of sufficient statistics for the nuisance parameters η∗ in M. The observed values of T and UM
are denoted by tobs and uobs. The conditional post-selection confidence distribution:

Cn,|̂ȷ : Θ×Aȷ̂ → [0, 1] : (θ,Y n) 7→ P (T > tobs | UM = uobs,Y n ∈ Aȷ̂) (2)

is the uniformly most powerful (UMP) conditional post-selection confidence distribution for θ∗Mȷ̂
.

When σ2 is unknown, which is more common in practice, an additional conditioning is required.
Define the projection matrix in model M by PXM

= XM (X⊤
MXM )−1X⊤

M and define for the selected
modelMȷ̂ the statistic V = V (Y n) = (I−PXMȷ̂

)Y n. To account for the estimation of σ2 a conditioning

on V is required as stated in Proposition 2. This conditioning is also used in selective inference (see,
e.g. Fithian et al., 2017; Tian et al., 2018).
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Proposition 2 Let Mȷ̂ be selected from a set of linear models M for the data Y n conditional on
covariates X. We assume that all models in M have a nonzero selection probability and that the
selection regions can be expressed in terms of the sufficient statistics for the model parameters. Let
θ∗Mȷ̂

be the univariate pseudo-true parameter in Mȷ̂ that is of interest with parameter space Θ and

sufficient statistic T = T (Y n;XMȷ̂
). Let UM = UM(Y n) be the combined vector of sufficient statistics

for the nuisance parameters η∗ in M and V = (I − PXMȷ̂
)Y n . The observed values of T , UM and V

are denoted by tobs, uobs and vobs. We assume that the (n + p + 1)-dimensional parameter space for
(θ∗Mȷ̂

, η∗⊤, µ⊤)⊤ contains an open rectangle in Rn+p+1 and that the sample space does not depend on
the parameters. The conditional post-selection confidence distribution:

Cn,|̂ȷ : Θ×Aȷ̂ → [0, 1] : (θ,Y n) 7→ P (T > tobs | UM = uobs, V = vobs,Y n ∈ Aȷ̂) (3)

is the uniformly most powerful (UMP) conditional post-selection confidence distribution for θ∗Mȷ̂
.

Corollary 1 Propositions 1 and 2 imply that for a selected model Mȷ̂ with pseudo-true parameter of
interest θ∗Mȷ̂

conditional on this model being selected:

(i) For each value θ ∈ Θ, Cn,|̂ȷ(θ,yn) is the p-value of the uniformly most powerful unbiased test for
testing H0 : θ

∗
Mȷ̂

= θ against θ∗Mȷ̂
> θ.

(ii) The confidence curve Θ → [0, 1] : θ 7→ ccn,|̂ȷ(θ) provides the shortest 100(1 − α)% confidence
intervals for the pseudo-true value θ∗Mȷ̂

for every 0 < α < 1 among all other coverage proper
confidence curves.

Another interesting consequence from Propositions 1 and 2 is that we can construct an alternative
estimator for the focus parameter using the post-selection confidence distribution Cn,|̂ȷ. A graphical
representation of the confidence curve which shows the confidence interval boundaries versus the
confidence level when considered at level zero immediately points towards the median confidence
estimator for the focus parameter θ∗Mȷ̂

defined by θ̃n,0.5 = C−1
n,|̂ȷ(0.5). Yet alternative estimators are

the mean of the post-selection confidence distribution and the mode of the post-selection confidence
density. Xie and Singh (2013) in their theorem 1 show the consistency of these estimators under a
given parametric data generating density.

In particular, for the median post-selection confidence estimator we have the following result,
adapted from Singh et al. (2007, Theorem 3.1) to the misspecified case using the pseudo-true parameter
vector.

Corollary 2 Under the assumptions of Propositions 1 or 2. For any ϵ ∈ (0, 0.5), if Ln(ϵ) = C−1
n,|̂ȷ(1−

ϵ) − C−1
n,|̂ȷ(ϵ) → 0 in probability as n → ∞, then the median post-selection confidence estimator θ̃n,0.5

is consistent for θ∗Mȷ̂
. If additionally Ln(ϵ) = Op(an) for a non-negative sequence an → 0, then

θ̃n,0.5 − θ∗Mȷ̂
= OP (an).

One crucial assumption regarding the model selection methods is that the selection regions which
form a partition of the sample space can be expressed in terms of the sufficient statistics of the model
parameters; see Section 3 for some examples. This is the case for selection methods using information
criteria that are maximum likelihood-based, such as AIC and BIC. Also the forward and backward
search procedures using t-tests, F-tests or likelihood ratio tests are included (Rügamer and Greven,
2018), as is the selection by cross-validation or k-fold cross-validation (see Loftus, 2015). Some methods
that cannot be expressed using sufficient statistics of the model parameters include model changes after
visual inspections of the data via, for example, residual plots or histograms. Tibshirani et al. (2016)
obtain selection regions in the form of polyhedral sets for forward stepwise regression, least angle
regression, and the lasso. They used an additional conditioning on the active signs of the estimates in
the selected model and mentioned that this is merely out of computational convenience. In Rügamer
and Greven (2018) for inference on a linear combination of the form v⊤µ with µ the unspecified true
mean vector there is a conditioning on the quadratic inequality that determines which model is selected
as well as on a projection of the response Y on the space orthogonal to the vector v. Our result shows
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that a conditioning on the sufficient statistics for the nuisance parameters in the complete model set
M leads to optimal results. This agrees with the recommendation of Tibshirani et al. (2016) for the
use of forward stepwise regression to obtain the most powerful selective test for a given level α. The
conditioning on all sufficient statistics, not only those of the selected model is necessary in order to
fix the domain which otherwise might depend on random quantities. Our results are valid for all
α ∈ [0, 1] and provide a complete picture for optimal post-selection inference for the focus parameter,
both regarding hypothesis testing as well as the construction of confidence intervals at all confidence
levels.

4.2 Linear combinations of parameters

As in Section 2.1, we consider a linear model with a p-vector β of regression parameters and with
variance σ2. The k = (p+1)-dimensional vector of natural parameters π(β, σ) = (β⊤/σ2,−1/(2σ2))⊤.
Consider now the linear combination ψ =

∑J
r=1 crπr(β, σ), where the cr are given constants and

πr(β, σ) are the elements of π(β, σ) for r = 1, . . . , R ≤ k. A typical example is a linear combination
of the form x⊤0 β. Without loss of generalization, let c1 ̸= 0 and R = k then

π1(β, σ) =
ψ −

∑k
r=2 crπr(β, σ)

c1
,

and we may write

(π(β, σ)⊤T̃ (yn;X)) =
ψ −

∑k
r=2 cjπr(β, σ)

c1
T1(yn;X) +

k∑
r=2

πr(β, σ)Tr(yn;X)

= ψ
T1(yn;X)

c1
+

k∑
r=2

πr(β, σ)

(
Tr(yn;X)− crT1(yn;X)

c1

)
,

which shows that, under a reparametrization, the distribution in (1) is also of the exponential family
form in its natural parametrization with the k-dimensional vector of natural parameters
(ψ, π2(β, σ), . . . , πk(β, σ))

⊤ with sufficient statistics

(Tψ, U
⊤
ψ ) =

(
T1(Y n;X)

c1
,

(
T2(Y n;X)− c2T1(Y n;X)

c1

)
, . . . ,

(
Tk(Y n;X)− ckT1(Y n;X)

c1

))
,

with Tψ = c−1
1 T1(Y n;X) and Uψ the vector of sufficient statistics for the nuisance parameters for the

linear combination (Young and Smith, 2005, Chap. 7).
Now we consider a set of models M, perform model selection and consider the focus parameter

ψ in the selected model Mȷ̂. Similar as before, we denote by UM,ψ the combined vector of sufficient
statistics for the nuisance parameters appearing in the model selection set M.

To apply our theory to obtain post-selection confidence distributions for ψ, note that under the
same assumptions as in Proposition 1 the selection region Aȷ̂ is also a function of (Tψ, U

⊤
M,ψ) after

the reparametrization, which means that after selection the domain of Tψ|(UM,ψ = uψ,obs,Y n ∈ Aȷ̂)
becomes dom(Tψ|UM,ψ = uψ,obs,Y n ∈ Aȷ̂) = {yn ∈ Aȷ̂ : UM,ψ(yn) = uψ,obs}. This can be extended
to the extra conditioning on V = vobs as in Proposition 2.

Corollary 3 Under the assumptions of Propositions 1 or 2, the confidence distribution for ψ∗
Mȷ̂

=∑R
r=1 crπr(β

∗
Mȷ̂
, σ∗Mȷ̂

) in the selected model Mȷ̂ with known or independently estimated variance,

Cn,|̂ȷ(ψ,Y n) = P (Tψ > tψ,obs | Uψ = uψ,obs,Y n ∈ Aȷ̂)

or in the selected model Mȷ̂ with estimated variance,

Cn,|̂ȷ(ψ,Y n) = P (Tψ > tψ,obs | Uψ = uψ,obs, V = vobs,Y n ∈ Aȷ̂) (4)

are the uniformly most powerful (UMP) conditional post-selection confidence distributions for ψ∗
Mȷ̂

for

the cases when σ2 is known or unknown.
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Example. Let Mȷ̂ be the selected linear normal model Y n = XMȷ̂
βMȷ̂

+ ε, with ε ∼ N (0n, σ
2In)

and pMȷ̂
= q with covariates x1, . . . , xq in the design matrix XMȷ̂

. We are interested in inference for
ψ∗
Mȷ̂

=
∑q

j=1 cjβ
∗
Mȷ̂,j

, a linear combination of the pseudo-true regression parameters for the selected

model. Define ψ =
∑q

j=1 cjβj/σ
2, then β1/σ

2 = ψ/c1 −
∑q

j=2 cjβj/(c1σ
2) and we can write

π(β, ϕ)⊤T̃Mȷ̂
(yn;XMȷ̂

) =
−1

2σ2

n∑
i=1

y2i + ψ

∑n
i=1 x1iyi
c1

+

q∑
r=2

βr
σ2

( n∑
i=1

xriyi − cr

∑n
i=1 x1iyi
c1

)
.

We take σ2 as unknown and estimated using the data. Set TMȷ̂,ψ =
∑n

i=1 x1iyi/c1 and UMȷ̂,ψ =(∑n
i=1 y

2
i ,

(∑n
i=1 x2iyi − c2

∑n
i=1 x1iyi/c1

)
, . . . ,

(∑n
i=1 xqiYi − cq

∑n
i=1 x1iyi/c1

))
. Since the selec-

tion region can be written in function of the sufficient statistics, the event Y n ∈ Aȷ̂ implies a truncated
domain of Tψ|(UM,ψ = uψ,obs, V = vobs,Y n ∈ Aȷ̂) after selection of Mȷ̂. We obtain the Cn,|̂ȷ(ψ,Y n) in
(4) which is also a UMP conditional post-selection confidence distribution for ψ∗

Mȷ̂
. The post-selection

confidence distribution Cn,|̂ȷ(ψ
∗,Y n), as the conditional distribution of Tψ|(UM,ψ = uobs, V = vobs),

contains no information about σ2 once we have conditioned on
∑n

i=1 Y
2
i .

5 A Monte-Carlo sampling approach

While for some model selection sets the conditional post-selection confidence distribution might be
explicit to get, we here provide a simulation approach in case the exact calculation might be difficult
to derive explicitly. We can approximate the confidence distribution by using a Monte-Carlo resam-
pling method conditional on the sufficient statistics (Lindqvist and Taraldsen, 2005) as explained by
Schweder and Hjort (2016, Ch. 8) with, however, an additional constraint given by the selection event
Y n ∈ Aȷ̂, expressed in terms of the sufficient statistics, see Section 3.Let Mȷ̂ be the selected model.
The procedure is as follows:

1. For the observed sample (yn, XMȷ̂
) calculate the observed values of the sufficient statistics in the

selected model: tobs = TMȷ̂
(yn;XMȷ̂

), uM,obs = UM(yn) and vobs = V (yn).

2. We choose a set of candidate values for the parameter of interest θ∗Mȷ̂
.

3. For each candidate parameter value ϑ a big enough number, say B, of samples yn,b = (y1,b, . . . , yn,b)
for b = 1, . . . , B, are generated with density fn,Mȷ̂

(y|X,ϑ, ηoMȷ̂
) which specifies the parameters

in the original density fn,Mȷ̂
(y|X, θMȷ̂

, ηMȷ̂
) by the values of the candidate ϑ and the vector ηoMȷ̂

such that the following constraints hold: UM(yn,b) is equal to uM,obs, V (yn,b) is equal to vobs and
yn,b ∈ Aȷ̂. The constraint V (yn,b) = vobs is only necessary when σ2 is unknown and estimated
using the observed data, otherwise, it can be omitted.

4. For each generated sample yn,b, calculate TMȷ̂
(yn,b;XMȷ̂

) and obtain r(ϑ) =
∑B

b=1 I{TMȷ̂
(yn,b;XMȷ̂

) >
tobs}/B, which is the simulated cumulative confidence distribution at value ϑ.

5. We obtain an approximation of the function Θ → [0, 1] : θ 7→ Cn,|̂ȷ(θ,yn) by a linear interpolation
of the set of points (ϑ, r(ϑ)).

Due to the simulation variability, this approximation may lead to simulated distributions that are not
exactly monotone, which might be remedied by smoothing the approximate confidence distribution
under monotonicity constraints (see, e.g. Pya and Wood, 2015).

The constrained sample generation in the second step can be done in two steps. First we generate
under the constraints UM(yn,b) = uM,obs and V (yn,b) = vobs which can be done by fine-tuning η
until the equalities hold, see for example Schweder and Hjort (2016, Section 8.5) or we can transform
it into an optimization problem in which we minimize the squared difference between the observed
uM,obs, vM,obs and the values UM(yn,b), V (yn,b) computed by the simulated value, where the minimiza-
tion is over the nuisance parameters η as to satisfy a virtually zero tolerance for the minimized value.
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In a second step, we check whether the generated sample which already satisfies UM(yn,b) = uM,obs

and V (yn,b) = vobs also belongs to the selection region Aȷ̂ by applying the selection procedure to that
generated sample. We redo this until we have B samples satisfying all constraints.

In case of misspecification due to heteroscedasticity, the distribution of T conditional on UM =
uM,obs and V = vobs has more variability than accounted for by the sufficient statistic of the scale
parameter in the selected model. In this case, we might increase the variability in step 3 above by
generating B times ϑb from N(ϑ, σ̃2(θMȷ̂

)) for each candidate value ϑ. Here, σ̃(θMȷ̂
) is an estimate

of the standard error of θ̂Mȷ̂
using a heteroscedastic-consistent robust estimator in the selected model

such as the classical White’s sandwich estimator or one of its improved versions (see, e.g. MacKinnon
and White, 1985; Long and Ervin, 2000). In Step 3, we generate yn,b from fn,Mȷ̂

(y|X,ϑb, ηoMȷ̂
) for

b = 1, . . . , B. This might lead to conservative inference as observed from the simulation study, where
the resulting function is denoted as C̃n,|̂ȷ(·, ·).

6 Simulation study

To obtain the post-selection conditional confidence distribution we apply the numerical procedure
provided in Section 5 with B = 1000. We refer to our proposed method as Post-cc1 when we assume
homoscedasticity for the selected model and Post-cc2 when we allow for possible heteroscedasticity in
the true generating density and hence increase the variability of the simulated conditional distribution
of the sufficient statistics for the interest parameter as explained in Section 5. To obtain the post-
selection confidence curves we use ccn|̂ȷ(θ) = |1− 2Cn|̂ȷ(θ,Y n)|.

A comparison is made with some of the available methods for producing valid post-selection in-
ference. We compare our post-cc methods to a simultaneous inference method, namely PoSI (Berk
et al., 2013) for the homoscedastic case and PoSI (Bachoc et al., 2020) for the heteroscedastic case
and a selective inference method with quadratic constraints (Rügamer and Greven, 2018). All these
methods have as a target the pseudo-true parameter value in the selected model. The procedure of
Rügamer and Greven (2018), see also Tibshirani et al. (2016) and Lee et al. (2016), inverts the cumula-
tive distribution function of a truncated normal distribution in order to obtain the confidence interval
bounds. To obtain approximate confidence curves using these other methods, we use the endpoints
of a set of 1 − α confidence intervals obtained by those methods for a grid of 99 values of α ∈ (0, 1),
spaced by 0.01 using an early concept suggested by Cox (1958). A naive approach that ignores the
effect of selection and acts as if the selected model is correct, is presented in the comparison too.

6.1 Homoscedastic normal regression

We simulate data from a linear regression model Yi =
∑10

j=1 βjxi,j+εi, i = 1, . . . , n = 100 where εi ∼
N (0, σ2). The true values for the parameters are β = (1.8,−0.3, 1.4,−2.5,06)

⊤ and σ2 = 1. The vector
06 has length 6 and all components are equal to zero. The covariates are generated as xi,1 = 1 and
(xi,2, . . . , xi,10)

⊤ ∼ N(09,Ω) where Ω is the variance-covariance matrix with correlation everywhere
equal to 0.25. We generated 1000 data sets for which a certain correct, but overparametrized, model
with parameters (β1, . . . , β4, β6)

⊤ is selected. For model selection, we use a backward elimination
procedure based on a sequence of t-tests that we call significance hunting at a 5% level with no
correction for multiple testing as described in Section 3. This imitates common practice. For all
methods except for Post-cc2 the variance σ2 is treated as known. This allows for a fair comparison
with the other methods where this is required for best performance. Therefore Post-cc1 in this
simulation setting approximates the confidence distribution in (2). The approximation is due to the
Monte-Carlo simulation which is used in the algorithm whenever the exact limits of the truncation
are not easily derived. Estimation of the variance and allowing the εi, i = 1, . . . , n to be possibly
heteroscedastic is included when using Post-cc2. In this case we obtain conservative confidence curves
when we use as σ̃(θ) in the modified sampling procedure of Section 5, the estimated standard error in
the selected model for β̂Mȷ̂,r, r = 1, . . . , 6.

In this scenario, the targets of inference which are the pseudo-true values coincide with the true
parameter values. We show the results for the truly nonzero big effect β4 and for the truly zero β6.

11



For each of the 1000 data sets we obtain confidence curves for the two parameters of interest β4 and
β6. Figure 2 shows the average confidence curves, the q-q plots for the quantiles of the simulated
distribution of Cn(−2.5,Y n) for β4 and Cn(0,Y n) for β6 versus the expected quantiles of a uniform
distribution U [0, 1] and simulated mean coverage probabilities of the 1 − α confidence intervals with
α ∈ [0, 1].

We observe that the average confidence curve’s width using our proposed methods are between
that of the naive approach which ignores the selection and pretends the selected model to be given
beforehand and true, and the width of the other methods. Only our proposed method Post-cc1 and the
selective approach lead to confidence distributions that in this setting satisfy condition (R2). Post-cc2
is slightly conservative as expected, that is the price to pay for the uncertainty in the correctness of
the model. PoSI (Berk et al., 2013) is shown to be even more conservative, however it seems to fail
for the inference of the truly zero βMȷ̂,6.

In this case, allowing for possible heteroscedasticity in Post-cc2, leads to a loss of power and
correspondingly wider confidence intervals. On the contrary, Post-cc1 produces valid post-selection
confidence distributions for a correctly specified selected model, as it is an approximated uniformly
most powerful confidence distribution.
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Figure 2: Left: Average confidence curves over 1000 replications for the linear regression parameters
β4 and β6 when the selection is done by backward elimination based on a sequence of t-tests and the
selected linear model is correctly specified. The true parameter values, which in this case coincide with
the pseudo-true values, are indicated with a dashed vertical line. Center: Simulated mean coverage
of the 1 − α confidence intervals with α = [0, 1], for βMȷ̂,4 = −2.5 and βMȷ̂,6 = 0. Right: Quantiles
of the simulated distribution of Cn,|̂ȷ(−2.5,Y n) and Cn,|̂ȷ(0,Y n) , for βMȷ̂,4 and βMȷ̂,6, respectively,
versus expected quantiles of a U [0, 1]. Both Post-cc1 and the selective inference method have the
correct coverage, though Post-cc1 has narrower intervals and is correctly centered. Post-cc2 is slightly
conservative, which is the price to pay for allowing heteroscedasticity.

We remark that the selective method by Rügamer and Greven (2018) produced infinite intervals in,
respectively, 7 and 12 data sets for β4 and β6, respectively. The problem appears when the estimated
parameter is too close to the truncation limits and might indicate that there is little information in
the data. This issue was studied for the polyhedral constraints by Kivaranovic and Leeb (2021) who
showed that the expected length of the confidence intervals in the worst case scenario is infinite in
this type of computation. We removed the data sets with infinite intervals to calculate the selective
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method’s results shown in Figure 2. For β4 the average confidence curve using the selective inference
method is wider than PoSI curves for 1 − α > 0.6, this is caused by data sets whose estimated
parameters are close to the truncation limits and produce large but finite confidence intervals (some
are even constant over all 1− α).

We use the same simulation setting to study the coverage of confidence intervals post-selection
for a linear combination of the parameters. We consider x⊤0 β with x0 = (1, 1.5, 0.5, 2, 1.5, 1, 1, 1, 1)⊤,
where the first element corresponds to the intercept. We generate 1000 datasets with the same model
specifications as specified above, except that for each dataset the selection procedure in 6.1 is performed
and a model is selected. The target of inference is calculated based on the selected model. To obtain
the post-selection confidence distributions, the algorithm in section 5 is used with the corresponding
sufficient statistics as in section 4.2. Figure 3 shows the simulated versus nominal mean coverage for
the pseudo-true values of the linear combination. It is compared to naive inference using a confidence
distribution based on the t-statistic for the linear combination in each selected model. Both methods
give satisfying results with a slight undercoverage for the naive methods at the most commonly used
nominal coverage values. As discussed in Section 2.2, failure of naive methods depend on the value
of the parameters to be estimated. In this scenario as the target is a linear combination of the β
parameters, it involves several relatively big true values and it is expected for the naive method to
perform well. However, as in practice we do not know the true or pseudo-true value of the parameters,
it is always preferred to use a method which provides valid inference uniformly over the parameter
space.
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Figure 3: Simulation results with significance hunting at the 5% level. Mean simulated coverage of con-
fidence intervals for a linear combination x⊤0 β with covariate vector x0 = (1, 1.5, 0.5, 2, 1.5, 1, 1, 1, 1)⊤.
In each replication the target of interest is calculated based on the selected model.

Table 3 in the Appendix provides computation times. Improvements to the algorithm to make it
faster are currently under investigation.

6.2 Heteroscedastic normal regression

Data are simulated repeating the setting above but with Var(εi) = σ2i non-constant and dependent on

one of the covariates of interest. In particular, σ2i = |x(3/2)i,4 |. The sequence of models included in M
is given for the same backward elimination procedure as in the previous setting based on a sequence
of t-tests at a 5% level but this time the data are generated to select an underparametrized model
in the mean with parameters (β1, β3, β4, β6). To generate the conservative confidence curves using
Post-cc2 we use the HC3 estimator (Long and Ervin, 2000) in the selected model. We compare our
results with PoSI for heteroscedastic data (Bachoc et al., 2020) and selective inference (Rügamer and
Greven, 2018). We remark that the latter method assumes homoscedasticity, therefore our purpose is
to assess how it behaves when the assumptions are not correct. We also include the naive approach
with t-statistics using the estimated standard error for the coefficient of interest in the selected model
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ignoring heteroscedasticity (referred as naive) and with the HC3 covariance matrix estimator (referred
as naive HC3).

Figure 4 provides the graphical summary for all methods. The average confidence curves using
our proposed method are wider than the naive HC3 but much narrower than PoSI. The selective
inference method fails in coverage and uniformity of the confidence curves at the pseudo true values.
The same conclusion holds for the naive approach. PoSI produces extremely wide confidence curves
with coverage close to 1 for all 1 − α confidence intervals. An interesting analysis is of the inference
for β∗Mȷ̂,6

. The naive approach leads to a biased point estimator and that also affects the PoSI curves.
As our method and that of selective inference by construction are not centered at the maximum
likelihood estimator, they are shifted to the averaged pseudo-true value of β∗Mȷ̂,6

(averaged over the

1000 replications). For our method, using the HC3 estimated covariance matrix leads here to over-
coverage and the quantiles of the post-selection conservative confidence curves are smaller than the
quantiles of U [0, 1] as expected.
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Figure 4: Left: Average confidence curves over 1000 replications for the regression paramaters β4
and β6. The data are generated using a linear model with heteroscedastic errors correlated with X4

and the selected model assumes constant error variance and sets β2 to zero. The selection procedure
is backward elimination based on a sequence of t-tests. The averaged pseudo-true values are indicated
with a dashed vertical line. Center: Simulated mean coverage of the 1 − α confidence intervals with
α = [0, 1], for β∗Mȷ̂,4

and β∗Mȷ̂,6
. Right: Quantiles of the simulated distribution of C̃n,|̂ȷ(β

∗
Mȷ̂,j

), for

j = 4, 6 versus quantiles of a U [0, 1]. POSI is overly conservative for both cases, while the naive
methods have drastic undercoverage for β6. The selective inference method slightly undercovers.
Post-cc2 has correct coverage and narrow intervals for β4 and is slightly conservative for β6, still with
narrow intervals.

A comparison with sample size=30 in both settings of simulation 1 is provided in the Appendix,
see Figures 6 and 7. As expected a smaller sample size leads to wider confidence curves. These results
show that the methods also perform well regarding coverage for the smaller sample size of 30.

7 Application: The container terminals data

Lu and Park (2010) studied some factors affecting the productivity of Chinese major container ter-
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M1 : E(Y |XM1) = β1yard + β2Q/C + β3T/C + β4Y/T + β5Length + β6Depth
M2 : E(Y |XM2) = β1yard + β2Q/C + β3T/C + β5Length + β6Depth
M3 : E(Y |XM3) = β2Q/C + β3T/C + β5Length + β6Depth
M4 : E(Y |XM4) = β2Q/C + β3T/C + β5Length

Table 1: List of structures for the mean in normal linear models in M obtained by a backward model
selection via t-tests at a 5% level in the container terminals data.

minals by linear regression models. The authors performed a backward model selection via t-tests
at a 5% level as exemplified in Section 3 and reported the naive p-values for the coefficients in the
selected model. We construct conditional post-selection confidence distributions and provide new
post-selection estimates, p-values and confidence curves for this study.

The data set consists of 15 observations. The dependent variable is a productivity indicator defined
as the annual throughput divided by number of berth. There are 6 covariates, Yard: the yard area in
km2 per berth, Q/C: number of quay cranes per berth, T/C: number of yard cranes per berth, Y/T:
number of quay tractors per berth, Length: length of berth in meters , Depth: water depth in meters.
Table 1 gives the list of models M ∈ M, starting with the full standardized model (without intercept)
at step 1. In each step the coefficient βd is discarded, with d = argminr{|TMs,r| I(|TMs,r| ≤ tα/2)},
TMs,r = Σ̂

−1/2
Ms,r

β̂Ms,r the t-statistic in model Ms and tα/2 equal to the 0.975-quantile of a Student’s
t-distribution with n − (p − s + 2) degrees of freedom. At step 4 all remaining covariates have a
corresponding t-statistic larger than the 0.975-quantile of a Student’s t-distribution with 11 degrees
of freedom so the procedure stops and M4 is selected.

We obtain the conditional post-selection confidence distributions by method Post-cc1, see Section 5
as there is no evidence of possible heteroscedasticity in the residual plots. Table 2 provides the naive
versus the new post-selection estimates and p-values for the coefficients in the selected modelM4. The
post-selection estimates are defined as β̃r,n,0.5 = C−1

n,|̂ȷ(0.5), the median of the conditional post-selection
confidence distributions. The p-values for testing H0 : βr = 0 against H1 : βr ̸= 0 are obtained as
2min(Cn,|̂ȷ(0,yn), 1−Cn,|̂ȷ(0,yn)). Figure 5 illustrates the confidence curves in comparison with PoSI
Berk et al. (2013) and the naive t-distribution. Our method coincides with selective inference of
Rügamer and Greven (2018) as the estimates are far from the limits of truncation and both reach
optimal inference.

After accounting for the model selection step, the only significant variable at 5% level is the number
of yard cranes per berth, T/C. Its post-selection estimate is even bigger than the naive estimate and
therefore further away from zero. On the other hand, the whole post-selection confidence curve for
T/C is shifted towards zero, while for the covariate Length only the upper part of the post-selection
confidence curve includes zero.

Covariate
Standardized Coefficient p-value
Naive Post-cc1 Naive Post-cc1

Q/C 0.458 0.360 0.009 0.134
T/C 0.591 0.640 0.002 0.004
Length -0.350 -0.330 0.004 0.066

Table 2: Naive and post-selection (Post-cc1) estimates and p-values for the coefficients in the selected
model M4 for the container terminals data.

8 Discussion

Our results show that for the normal linear models we can obtain an exact post-selection confidence
distribution for the parameter of interest θMȷ̂

in the selected model Mȷ̂. This approach provides
uniformly most powerful hypothesis tests and the tightest valid confidence curves.

As different statistics and methods lead to different confidence curves for the parameter of interest,
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Figure 5: Confidence curves for the standardized coefficients in the selected modelM4 for the container
terminals data.

we could formally compare different methods by a measure of tightness given by the area within
the confidence curve

∫
Θ(1 − |1 − 2Cn,|̂ȷ(θMȷ̂

,yn)|)dθMȷ̂
. In addition to such a tightness number a

validity check, which implies proper coverage, is needed as the tightness by itself is not sufficient for
comparison. Because confidence distributions and curves might not be easy to obtain explicitly, except
for simple models and selection methods, we provide a simulation algorithm too. We show through
simulations that our method produces tighter confidence curves than some other valid methods even
in the misspecified setting.

In this paper we took the conditional point of view, following the methodology of selective inference,
by explicitly conditioning on the event Y n ∈ Aȷ̂, leading to valid conditional inference using the
selected model Mȷ̂. Alternatively, by using the law of total probability, for any event B we can write
the marginal probability P (B) =

∑
Mj∈M P

(
B|Y n ∈ Aj

)
P
(
Y n ∈ Aj

)
, where the selection region

Aj corresponds to selecting model Mj . For confidence intervals and curves, if all of the conditional
probabilities provide valid and exact coverage, the same property holds for the marginal statement. In
addition, when all conditional statements provide conservative results, again the same result holds for
the marginal statement. However, in order to guarantee conservative probabilities, it is not required
in a marginal setup that all conditional results are conservative.
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A Appendix

Proof of Proposition 1

We condition everywhere on X. Without loss of generality, the combined design matrix is reorganized
as X = (XMȷ̂

, Xc
Mȷ̂

). Under the working selected model, β∗Mȷ̂
= (X⊤

Mȷ̂
XMȷ̂

)−1X⊤
Mȷ̂
µ and we take

θ∗ = β∗Mȷ̂,1
/σ2. Let T = X⊤

Mȷ̂,1
Y n, where XMȷ̂,1 is the first column of X and UM = X⊤

−1Y n where

X−1 is the design matrix without the first column. Note that when σ2 is known or when we plug in
an independent estimator, UM does not include Y ⊤

nY n. With Uȷ̂ = U(Y n;XMȷ̂
) the subvector of UM

consisting of the sufficient statistics for the nuisance parameters η∗ȷ̂ in the selected model and with

observed value uȷ̂, we can reorganize UM =
(
Uȷ̂, U

c
ȷ̂

)⊤
. For the nuisance parameters not appearing in

the selected model ηc∗ȷ̂ = 0, a vector of all zeros.

In addition, denote PXMȷ̂,−1
= XMȷ̂,−1(X

⊤
Mȷ̂,−1XMȷ̂,−1)

−1X⊤
Mȷ̂,−1 a projection matrix, A = X⊤

Mȷ̂,1
XMȷ̂,1−

X⊤
Mȷ̂,1

PXMȷ̂,−1
XMȷ̂,1 and C = X⊤

Mȷ̂,1
XMȷ̂,−1(X

⊤
Mȷ̂,−1XMȷ̂,−1)

−1. Then, the parameter of interest is

θ∗ = 1/σ2A−1[X⊤
Mȷ̂,1

µ− CX⊤
Mȷ̂,−1µ].

The joint distribution of (T,Uȷ̂, U
c
ȷ̂ ) is normal with mean X⊤µ and variance σ2(X⊤X). The

conditional distribution of T |Uȷ̂ = uȷ̂ is again a normal distribution of the form

fT |Uȷ̂
(t;XMȷ̂

, θ) = exp
{
− 1

2σ2
t2 + θt+

1

σ2
A−1C⊤uȷ̂t− κ′(θ,XMȷ̂

)
}

with κ′(·) a generic function of the exponential family. When σ2 is known the density can be rewritten
as fT |Uȷ̂

(t;XMȷ̂
, θ) = h′(t) exp

{
θt − κ′(θ,XMȷ̂

)
}
. If an estimator σ̂2 is plugged in which is estimated

independently of T and UM, the conditional distribution of T |(Uȷ̂, σ̂
2) equals the distribution of T |Uȷ̂.

The fact that the conditional distribution of T |Uȷ̂ = uȷ̂ constitutes a one-parameter exponential
family and that Uȷ̂ is a complete sufficient statistic for η∗ȷ̂ parallels the framework for obtaining the
Neyman–Pearson optimality of conditional tests for θ∗, the parameter of interest, when Uȷ̂ = uȷ̂ is
given, see Theorem 4.4.1 of Lehmann and Romano (2006).

Conditioning additionally on U cȷ̂ keeps the same generic form of the working conditional density,
and with some algebra we see that the functions h′(·) and κ′(·) now depend on the combined design
matrix X. So the density of T | UM = uobs is still depending on the single parameter θ∗ and is denoted
by

fT |UM(t;X, θ) = h′(t,X) exp
{
θt− κ′(θ,X)

}
. (5)

After selection, without loss of generality, assume that the domain is of the following form dom(T |UM =
uobs,Y n ∈ Aȷ̂) = {t = t(y;XMȷ̂

) ∈ R : a ≤ t ≤ b}, with a and b determined by the specificities of the
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selection procedure and fixed after conditioning on UM = uobs. Then T |(UM = uobs,Y n ∈ Aȷ̂) follows
a truncated exponential family distribution of the form

fT |UM ,̂ȷ(t;X, θ) =
h′(t,X) exp

{
θt− κ′(θ,X)

}
I(a ≤ t ≤ b)

GT |UM(b; θ)−GT |UM(a; θ)
, (6)

where GT |UM is the cumulative distribution function of T |UM and I(·) is the indicator function. For
any θ2 > θ1 ∈ Θ, the likelihood ratio fT |UM ,̂ȷ(t;XMȷ̂

, θ2)/ fT |UM ,̂ȷ(t;XMȷ̂
, θ1) is equal to

LR(θ1, θ2, t) = exp

{
κ′(θ1, X)

κ′(θ2, X)

}
·
[GT |UM(b; θ1)−GT |UM(a; θ1)]

[GT |UM(b; θ2)−GT |UM(a; θ2)]
· exp

{
(θ2 − θ1)t

}
.

The first and second factors of the right-side are constant in t while the third factor is increasing in t
for every θ2 > θ1 ∈ Θ. Therefore LR(θ1, θ2, t) is everywhere increasing.

Finally, denote the cumulative distribution function of (6) by GT |UM ,̂ȷ,θ. For any loss function
loss(θ, C) =

∫
B(θ′ − θ) dC(θ′, Y ), with B nondecreasing on the positive half-axis, nonincreasing

on the negative half-axis and B(0) = 0, by Schweder and Hjort (2016, Theorem 5.10), the confidence
distribution Cn,|̂ȷ(θ,Y n) = 1−GT |UM ,̂ȷ,θ, which is based on a sufficient statistic in which the likelihood
ratio is everywhere increasing, minimizes the confidence loss uniformly over Θ. The same applies to
any fixed limits that truncate the domain of T |(UM = uobs,Y n ∈ Aȷ̂). □

Proof of Proposition 2

We condition everywhere on X. As in proof of Proposition 1, we reorganize UM =
(
Uȷ̂, U

c
ȷ̂

)⊤
,

with Uȷ̂ = U(Y n;XMȷ̂
) the subvector of UM consisting of the sufficient statistics for the nuisance

parameters in the selected model η∗ȷ̂ and with observed value uȷ̂. Note that ηc∗ȷ̂ = 0. Denote

PXMȷ̂
= XMȷ̂

(X⊤
Mȷ̂
XMȷ̂

)−1X⊤
Mȷ̂

the projection matrix using XMȷ̂
.

We reparametrize the joint density of Y n given X as

exp

{
− 1

2σ2
y⊤
n yn +

1

σ2
y⊤
nPXMȷ̂

µ+
1

σ2
y⊤
n (I − PXMȷ̂

)µ− 1

2σ2
µ⊤PXMȷ̂

(I − PXMȷ̂
)µ+

n

2
log(2πσ2)

}
,

which can be rewritten as a exponential family in its natural parametrization:

exp

{
− 1

2σ2
y⊤
n yn+

1

σ2
(X⊤

Mȷ̂
yn)

⊤βMȷ̂
+

1

σ2
y⊤
n (I−PXMȷ̂

)µ− 1

2σ2
X⊤
Mȷ̂
β⊤Mȷ̂

(I−PXMȷ̂
)µ+

n

2
log(2πσ2)

}
, (7)

with natural parameters (β⊤Mȷ̂
/σ2,−1/(2σ2), µ⊤/σ2) and sufficient statistics

(T̃ (Y n;XMȷ̂
), V ) = (X⊤

Mȷ̂
Y n,Y

⊤
nY n, (I−PXMȷ̂

)Y n). Now, reorder T̃ (Y n;XMȷ̂
) = (T,U⊤

ȷ̂ )⊤ such that

the parameter of interest θ = β⊤Mȷ̂,1
/σ2 or θ = −1/(2σ2).

Because the parameter space for (θ∗, η∗⊤ȷ̂ , µ⊤)⊤ contains an open rectangle in R
n+pMȷ̂

+1
with

pMȷ̂
≤ p and the joint density of Y n under reparametrization in (7) represents an exponential family

density in its natural parameterization, it follows that (U⊤
ȷ̂ , V

⊤)⊤ is a complete sufficient statistic for

(η∗⊤ȷ̂ , µ⊤)⊤ (Lehmann and Romano, 2006, Th. 4.3.1). By Lemma 2.7.2 of Lehmann and Romano
(2006), T conditioned on (Uȷ̂ = uȷ̂, V = vobs) is again in the exponential family. The density of
T |(Uȷ̂ = uȷ̂, V = vobs) is hence denoted by h′(t(yn;XMȷ̂

)) exp
{
θt(yn;XMȷ̂

) − κ′(θ,XMȷ̂
)
}

for some
functions h′(·) and κ′(·). Due to the sufficiency of Uȷ̂ and V , the above density depends on θ∗ but not
on η∗ or µ. Conditioning additionally on U cȷ̂ keeps the same generic form of the working conditional
density. So the density of T | (UM = uobs, V = vobs) is still depending on the single parameter
θ∗ and is denoted by the right-side of (5). We continue now as in the proof of Proposition 1 by
replacing T | (UM = uobs) by T | (UM = uobs, V = vobs) and dom(T |UM = uobs,yn ∈ Aȷ̂) by
dom(T |UM = uobs, V = vobs,yn ∈ Aȷ̂) which is fixed after conditioning on UM = uobs. □
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Sample size effect: Comparison simulation studies
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Figure 6: Simulation under homoscedasticity. Effect of sample size. Confidence curves, mean simulated
coverage of confidence intervals and quantiles of simulated distributions of confidence distributions at
true value vs expected quantiles of a U [0, 1] for the parameters of interest when the selected linear
model is correctly specified with sample size=100 (solid line) and 30 (dashed line). The darker colored
confidence curves are obtained using the sampling approach for correctly specified models in Section 5
and the lighter colored when we allow for possible misspecification and use the robust HC3 estimator
for the covariance matrix. The coverage results are accurate also for n = 30, while as expected, a
tighter confidence distribution is obtained for larger sample sizes.
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Figure 7: Simulation under heteroscedasticity. Effect of sample size. Confidence curves, mean simu-
lated coverage of confidence intervals and quantiles of simulated distributions of confidence distribu-
tions at pseudo-true value versus expected quantiles of a U [0, 1] for the parameters of interest when
the selected linear model is misspecified with sample size=100 (solid line) and 30 (dashed line). We
adjust the sampling approach with the robust HC3 estimator for the covariance matrix. The coverage
results are accurate for β4 and conservative for β6, for both sample sizes, while as expected, a tighter
confidence distribution is obtained for larger sample sizes.
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Computation times

Table 3 shows the average run-time over 5 replications to obtain a confidence curve for a regression
parameter of interest, βMȷ̂,6, after the data were generated with the settings of simulation 6.1. (*Com-
putations were performed in a single core AMD Ryzen 5 5500U 2.10 GHz, parallel computing speeds
up computations.)

Post-cc* 7. 711 (sd=2.729) mins
selective 1.792 (sd=0.029) mins
PoSI 0.638 (sd=0.079) secs

Table 3: Average run-time over 5 replications to obtain a confidence curve in simulation 6.1.
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