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Abstract

The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), is primarily known 
as a key regulator of calcium and phosphate homeostasis. It exerts its biological functions 
by binding to the vitamin D receptor (VDR), a transcription factor that regulates gene 
expression in vitamin D-target tissues such as intestine, kidney and bone. Yet, the VDR 
is expressed in many additional normal and cancerous tissues, where it moderates the 
antiproliferative, prodifferentiating and immune-modulating effects of 1,25(OH)2D3. 
Interestingly, several epidemiological studies show that low levels of 25(OH)D, a biological 
marker for 1,25(OH)2D3 status, are associated with an increased risk of breast cancer (BC) 
development. Mendelian randomization studies, however, did not find any relationship 
between single-nucleotide polymorphisms in genes associated with lower serum 25(OH)D  
and BC risk. Nevertheless, multiple in vitro and in vivo preclinical studies illustrate that 
1,25(OH)2D3 or its less calcaemic structural analogues influence diverse cellular processes 
in BC such as proliferation, differentiation, apoptosis, autophagy and the epithelial–
mesenchymal transition. Recent insights also demonstrate that 1,25(OH)2D3 treatment 
impacts on cell metabolism and on the cancer stem cell population. The presence of VDR 
in the majority of BCs, together with the various anti-tumoural effects of 1,25(OH)2D3, 
has supported the evaluation of the effects of vitamin D3 supplementation on BC 
development. However, most randomized controlled clinical trials do not demonstrate a 
clear decrease in BC incidence with vitamin D3 supplementation. However, 1,25(OH)2D3 
or its analogues seem biologically more active and may have more potential anticancer 
activity in BC upon combination with existing cancer therapies.

Introduction

Vitamin D3 (cholecalciferol), a natural form of vitamin 
D, can be obtained from dietary sources (such as fatty 
fish) but is also generated in the human skin under 
influence of sunlight (UVB radiation, 290–320 nm) from 
its precursor, 7-dehydrocholesterol (Leyssens  et  al. 2013, 
Christakos  et  al. 2016, 2019, Jeon & Shin 2018). Since 
exposure to sunlight is a major trigger for vitamin D3 
synthesis in the skin, alterations in sunlight exposure 

based on season and latitude will influence the ability 
to synthesise vitamin D3 (Spiro & Buttriss 2014). 
The biologically active form of vitamin D3, 1α,25-
dihydroxyvitamin D3 (1,25(OH)2D3), is generated by two 
hydroxylation steps. First, vitamin D3 is hydroxylated 
at carbon 25 by CYP2R1/CYP27A1 (cytochrome P450 
enzymes) in the liver to generate 25-hydroxyvitamin D3 
(25(OH)D3), a reliable serum marker for vitamin D status. 
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Next, in the kidney, CYP27B1 hydroxylates 25(OH)D3 at 
carbon 1 to generate 1,25(OH)2D3. Another important 
cytochrome P450 enzyme in the kidney is CYP24A1. This 
enzyme regulates the circulating levels of 1,25(OH)2D3 
by hydroxylating carbon 24 not only in 1,25(OH)2D3 
but also in 25(OH)D3, thereby decreasing the pool of 
25(OH)D3 available for carbon 1 hydroxylation. These 
24-hydroxylated products are excreted via urine or 
faeces (Christakos  et  al. 2016). 1,25(OH)2D3 exerts its 
functions after binding to the vitamin D receptor (VDR), 
which subsequently heterodimerizes with the retinoid 
X receptor (RXR). Both VDR and RXR are members 
of the nuclear receptor superfamily. There are three 
subtypes of RXR (-α, -β and -γ), of which RXRα is the most 
important isoform for VDR activity (Peehl & Feldman 
2004). Binding of VDR to RXR is reported to induce a 
non-permissive heterodimer complex that cannot be 
activated by the RXR ligand, 9-cis retinoic acid (RA) 
(Sanchez-Martinez et al. 2006). Moreover, in vitro studies 
have shown that 1,25(OH)2D3 enhanced the formation 
of RXR–VDR heterodimer whereas 9-cis RA reduced their 
affinity by inducing RXR–RXR homodimerization. Also, 
the availability of both receptors will influence their 
responsiveness to the ligands (Lemon & Freedman 1996). 
However, in vitro studies in MCF7 cells have shown that 
both 9-cis RA and 1,25(OH)2D3 can induce CYP24A1 gene 
activation suggesting that the VDR–RXR heterodimer is a 
conditionally permissive heterodimer rather than a non-
permissive heterodimer (Sanchez-Martinez  et  al. 2006). 
After binding of VDR to RXR, this complex will migrate 
to the nucleus and bind to vitamin D response elements 
(VDREs) in regulatory regions of target genes to regulate 
gene transcription by recruiting co-activators (p160, 
DRIP205) and by losing co-repressors (NCoR, SMRT) 
(Leyssens et al. 2013, Christakos et al. 2016, 2019, Jeon & 
Shin 2018).

The main function of 1,25(OH)2D3 is to maintain 
calcium and phosphate homeostasis in the body. Yet, the 
VDR is not only expressed in intestine, kidney and bone 
tissue, but also in many other, including cancerous, tissues. 
Both in vitro and in vivo preclinical studies have illustrated 
that 1,25(OH)2D3 modulates variable signalling pathways 
involved in cell proliferation, apoptosis, differentiation, 
inflammation, invasion and angiogenesis (Welsh 2018) 
(reviewed in Christakos et al. 2016).

In the 1980s, the group of Garland was the first to 
describe a possible association between sunlight exposure 
and breast cancer (BC) risk (Garland  et  al. 1990, 2006). 
Thereafter, different epidemiological and preclinical 
studies have investigated a possible correlation between 

25(OH)D serum concentration and the development and 
progression of BC. However, these studies have shown 
conflicting results (Hossain et al. 2019).

With 2.3 million diagnoses each year, BC is the most 
frequently diagnosed cancer in women and the leading 
cause of cancer-related mortality worldwide (Mattiuzzi 
& Lippi 2019, Sung et al. 2021). Breast tumours arise from 
the epithelial cells of the breast located in the milk ducts 
or lobules (milk-producing glands). Clinically, BC can be 
subdivided into different subtypes based on the expression 
of oestrogen receptor (ER), progesterone receptor (PR) and 
amplification of the human EGF receptor 2 (HER2). These 
markers allow histological classification of BC tumours 
into hormone receptor-positive tumours (luminal A 
and B), HER2 amplified tumours and triple-negative 
breast cancer (TNBC) tumours (Mueller  et  al. 2018). The 
luminal subtype (A–B) is the most common subtype of 
BC accounting for 60–70% of all BC diagnoses. Luminal 
A BCs have a better prognosis than luminal B BC as 
they express lower levels of Ki67-positive cells. TNBC is 
a subtype of basal-like BC and has the worst prognosis 
of all BC subtypes. Basal-like BC is characterized by the 
expression of keratin 5, 14 and 17 and occurs mainly 
in young premenopausal women under the age of 40, 
accounting for 15–20% of BC diagnoses (Yin  et  al. 2020, 
Johnson et al. 2021).

In this review, we summarize the role of vitamin D in 
processes such as proliferation, apoptosis, inflammation 
and autophagy in various in vitro and in vivo BC models. 
Moreover, we extensively focus on the more recent 
research that illustrates the effect of 1,25(OH)2D3 on 
tumour metabolism, metastasis, epithelial–mesenchymal 
transition (EMT) and cancer stem cells, which represent 
novel pathways that could be targeted to hamper BC 
progression. Finally, we discuss potential strategies to 
overcome the hypercalcaemic side effects, which are 
associated with the supraphysiological concentrations of 
1,25(OH)2D3 required to obtain its anti-neoplastic activity. 
Indeed, 1,25(OH)2D3-derived synthetic analogues have 
been developed with the rationale to design analogues 
with an optimal ratio of anti-neoplastic vs calcaemic 
effects (Leyssens et al. 2013, 2014, Duffy et al. 2017). These 
analogues are currently being tested in combination with 
selective pathway inhibitors in experimental models to 
block tumour growth and progression. An overview of the 
described cell lines with their expression of VDR, CYP24A1 
and CYP27B1 and the pathways regulated by 1,25(OH)2D3 
are presented in Table 1. We used the keywords ‘vitamin 
D and BC’ to search for papers in the MEDLINE database 
between 2015 and 2020.
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VDR expression in human breast cancer cells

The VDR is expressed in different cell types of the mammary 
gland, including the lobular and ductal epithelial cells, 
where it plays an important role in mammary gland 
development during puberty, lactation and pregnancy, 
periods of maximal tissue growth and remodelling (Zinser 
& Welsh 2004a, Huss et al. 2019). During the pubertal period 
in mice, VDR expression was highest in differentiated cells 
in the terminal end buds, while its expression was low in 
the proliferative zones of the mammary gland (Zinser et al. 
2002). In Vdr knock-out (KO) mice, ductal morphogenesis 
and branching in the mammary glands were accelerated 
compared to WT mice during the pubertal period. 
Furthermore, in transgenic MMTV-neu mice, Vdr ablation 
induced weight loss, atrophy of the mammary fat pad, 
oestrogen deficiency and reduced survival after 12 months 
of age (Zinser & Welsh 2004b).

Adipocytes also play an important role in mammary 
gland development, as Vdr deletion in adipose tissue 
enhanced the density of the mammary epithelium 
during hormonally regulated expansion of the mammary 
gland (Matthews et al. 2016). As adipose tissue is a storage 
depot for vitamin D metabolites, VDR signalling between 
adipocytes and epithelial cells plays an important role not 
only in normal mammary gland development but also in 
carcinogenesis (Welsh 2017). The VDR is also expressed in 
cancer-associated fibroblasts (CAFs), in which stimulation 
with 1,25(OH)2D3 downregulated different genes 
important during cell proliferation (e.g. Neuregulin NRG1) 
(Campos et al. 2013).

In human BC tissue, VDR expression has been reported 
to be inversely correlated with BC aggressiveness. In benign 
breast lesions, the VDR was significantly more expressed 
than in breast carcinoma lesions (in situ and invasive) 
(Lopes  et  al. 2010). Furthermore, VDR expression was 
higher in luminal A BC than in TNBC, the most aggressive 
BC subtype (Welsh 2017, Huss et al. 2019). Different groups 
demonstrated that VDR expression in BC tissue diminished 
during tumour progression, rendering them less sensitive 
to vitamin D3 (Lopes et al. 2010, Welsh 2017). Indeed, BC 
cell lines with low or no VDR expression were least sensitive 
to 1,25(OH)2D3 or its analogues (Murray et al. 2017).

Moreover, different groups investigated if VDR 
expression could be used as a potential biomarker for 
cancer progression and survival (Al-Azhri  et  al. 2017, 
Heublein  et  al. 2017, Murray  et  al. 2017, Huss  et  al. 2019, 
Xu  et  al. 2020). Recently, higher total VDR expression in 
BC lesions (both in nucleus and cytoplasm) was associated 
with tumour characteristics such as lower grade, smaller 
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size, ER/PR positivity, lower Ki67 expression and with a 
lower risk of BC mortality (Al-Azhri et al. 2017, Huss et al. 
2019). Further analysis distinguishing between BRCA1-
mutated BC and sporadic BCs showed significantly higher 
VDR expression in BRCA1-mutated BCs, which is associated 
with prolonged overall survival (OS) (Heublein et al. 2017).

A recent meta-analysis containing seven studies 
reported no correlation between VDR expression and 
BC OS and disease-free survival (DFS). However, when 
subgroup analyses based on staining location were 
performed, high total VDR expression in both nucleus and 
cytoplasm was correlated with better BC OS. Moreover, 
when cut-off values for immunoreactive score (IRS) other 
than IRS > 5 or IRS > 25 were used, high VDR expression 
was correlated with better BC OS (Xu  et  al. 2020). IRS 
is a scoring system used for quantitative evaluation of 
immunohistochemical stainings and is based on the 
multiplication of the number of positive cells (0–4) and the 
staining intensity (0–3), resulting in a score between 0 and 
12 (Fedchenko & Reifenrath 2014). Murray et al. (2017) did 
not confirm the association between VDR expression and 
BC DFS as a whole, although DFS was positively correlated 
with VDR expression in luminal A BC patients, whereas no 
association was observed with basal-like, HER2+ or luminal 
B BC subtypes. Overall, these findings suggest that VDR 
expression levels could potentially be used as a biomarker 
for tumour progression.

Analysis of CYP24A1 and CYP27B1 expression in 
human BC tissue showed that during de-differentiation 
and BC progression, vitamin D metabolism and therefore 
VDR signalling is deregulated (reviewed in Welsh 2017). 
In most analyses, CYP27B1 expression levels decreased, 
whereas those of CYP24A1 were increased in more 
invasive breast carcinomas, suggesting that cancer cells 
can evade the anti-cancer effects of 1,25(OH)2D3 by 
decreasing its local production and increasing its local 
degradation (Lopes  et  al. 2010, Zhalehjoo  et  al. 2017). 
As a result, CYP24A1 is described as an oncogene in BC 
tissue (Albertson  et  al. 2000). Next to its expression in 
breast epithelial tissue, CYP27B1 is also expressed in 
breast adipose tissue. Breast adipocytes can activate 
local 25(OH)D3 into 1,25(OH)2D3 and induce paracrine 
effects on surrounding tissues (Welsh 2017). In CAFs, 
transcriptional induction of CYP24A1 by 1,25(OH)2D3 
is more pronounced than in normal associated 
fibroblasts, suggesting a faster clearance in the tumour 
microenvironment (Campos et al. 2013).

However, a more recent study showed that CYP24A1 
mRNA levels were lower in breast tumour tissue and 
inversely correlated with OS (Cai et al. 2019).

Preclinical anti-neoplastic effects of 
1,25(OH)2D3 on breast cancer

Effects of 1,25(OH)2D3 on cell proliferation

For many years, 1,25(OH)2D3 has been recognized to 
hamper the transition of BC cells from G0/G1 to S 
phase of the cell cycle. 1,25(OH)2D3 mediates these 
antiproliferative effects through VDR binding, since VDR 
KO cells are not growth inhibited by 1,25(OH)2D3 (LaPorta 
& Welsh 2014, Zheng  et  al. 2017). 1,25(OH)2D3-mediated 
growth reduction is accompanied by an increased 
expression of cyclin-dependent kinase inhibitors (CDKIs) 
such as CDKN2D (p19), CDKN1A (p21) and CDKN1B (p27) 
and downregulation of cyclins (cyclin D1/3, cyclin A1 
and cyclin E1) and CDKs (CDK2/4) (Verlinden et al. 1998, 
Jensen et al. 2001, Lopes et al. 2012b) (Fig. 1). In addition, 
upregulation of CDKI expression levels by 1,25(OH)2D3 
decreases the activity of CDKs such as CDK4/6 and 
results in a reduced phosphorylation of retinoblastoma 
(Rb), a tumour suppressor protein with a crucial role in 
the regulation of cell cycle progression. Consequently, 
Rb remains complexed to the E2F transcription factors 
(TFs) and transcription of E2F-regulated cell cycle genes 
such as CDK2 decreases (Christakos  et  al. 2016) (Fig. 1).  
Furthermore, in ER+ MCF7 cells, the induction of  
C/EBPα expression and subsequent elevation of VDR 
transcript levels also contributed to the antiproliferative 
effects of 1,25(OH)2D3 (Dhawan  et al. 2009). In addition, 
1,25(OH)2D3 affects expression of miRNAs, short  

Figure 1
Overview of 1,25(OH)2D3-induced anti-neoplastic effects in pathways 
involved in the regulation of cell proliferation, apoptosis and 
inflammation in breast cancer cells. Created with BioRender.com.
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non-coding RNAs that regulate gene expression negatively at 
the post-transcriptional level. Treatment with 1,25(OH)2D3 
or a vitamin D3 analogue (1,24-dihydroxyvitamin D3 
(tacalcitol)) decreased the expression of miR-125b. As a 
consequence, the pro-apoptotic protein BAK1, encoded by 
the target gene of miR-125b, was increased after treatment 
with 1,25(OH)2D3 and tacalcitol (Klopotowska et al. 2019). 
Liu et  al. illustrated that increased expression of miR-
1204 promoted proliferation, EMT and invasion of BC 
cells both in vitro and in vivo. Mechanistic studies showed 
that miR-1204 inhibited VDR expression directly by 
targeting its 3’ UTR and this VDR suppression contributed 
to the oncogenic activity of miR-1204. Indeed, silencing 
of miR-1204 resulted in elevated VDR expression levels 
and reduced proliferation and invasiveness of BC cells 
(Liu et al. 2018).

1,25(OH)2D3 has also clear in vivo antiproliferative 
effects as demonstrated in different (transgenic) mouse 
models (Welsh 2018). Recently, Rossdeutscher et  al. 
(2015) demonstrated the growth-inhibitory effects of 
1,25(OH)2D3 in an MMTV-PyMT model. Mice were 
subcutaneously implanted with a minipump, delivering 
continuous doses of 25(OH)D3 or 1,25(OH)2D3. Both 
treatments significantly decreased cell proliferation (Ki67, 
ErbB2, cyclin D1) and tumour growth. Interestingly, 
continuous supplementation with 25(OH)D3 increased 
local 1,25(OH)2D3 levels in tumour tissues without 
causing hypercalcaemia, whereas 1,25(OH)2D3 perfusion 
did induce hypercalcaemia (Rossdeutscher  et al. 2015). In 
contrast, in a xenograft mouse model, derived from highly 
proliferative tumour tissues, intra-tumoural administration 
of 1,25(OH)2D3 was unable to decrease BC cell proliferation 
(BrdU incorporation, Ki67, CDKN1A, CDKN1B) or 
apoptosis (Bcl-2 expression) (Fonseca-Filho  et  al. 2017). 
Next to 1,25(OH)2D3, also its metabolites such as 24R,25-
dihydroxyvitamin D3 (24R,25(OH)2D3) regulate BC cells in 
vitro and in vivo. 24R,25(OH)2D3 stimulated DNA synthesis 
in ER+ MCF7 and T47D cells, acting through a caveolae-
associated phospholipase D-dependent mechanism 
via cross-talk with ERs. However, in vivo analysis of an 
MCF7 xenograft model showed that treatment with 
24R,25(OH)2D3 reduced tumour burden and increased 
animal survival by reducing markers of invasion and 
metastasis (Snail1, CXCR4/CXCL12) (Verma et al. 2019).

Effects of 1,25(OH)2D3 on apoptosis and autophagy

1,25(OH)2D3 regulates different apoptotic pathways in a 
BC cell type-dependent manner. In general, 1,25(OH)2D3 
decreases the expression of anti-apoptotic factors (Bcl-2, 

Bcl-XL) and/or increases the pro-apoptotic equivalents 
(Bax, Bak), which direct cells towards cell death rather 
than to cell survival (Vanoirbeek et al. 2011). In addition, 
1,25(OH)2D3 targets the RAS/MEK/ERK signalling pathway 
which is an important regulator of cell proliferation 
and anti-apoptosis (Christakos  et  al. 2016). Indeed, 
treatment of MCF7 (ER+) and MDA-MB-453 (ER−) cells 
with 1,25(OH)2D3 decreased expression of RAS and 
phosphorylation of MEK and ERK1/2. Furthermore, 
upregulation of RAS abrogated the antiproliferative effect 
of 1,25(OH)2D3 (Zheng  et  al. 2019). In MCF7 cells, pre-
treatment with 1,25(OH)2D3 sensitized to reactive oxygen 
species (ROS)-induced cytotoxicity through a reduction 
in the inner membrane potential of mitochondria, a 
subsequent release of cytochrome c and eventually cell 
death (Weitsman et al. 2005) (Fig. 1).

TP53, encoding for the tumour suppressor gene p53, is 
often mutated in BC cells. TP53 mutations are most common 
in TNBC (80%) and HER2-positive cancers (70%), while the 
prevalence is lower in patients with luminal A type (10%) and 
luminal B type (30%) BC (Duffy  et  al. 2018). Interestingly, 
several studies demonstrated that the VDR gene is a direct 
target of p53 and its family members (Reichrath et al. 2014). 
Mutant p53 (mutp53) can interact both functionally and 
physically with the VDR, thereby converting local vitamin 
D into an anti-apoptotic agent. This effect was also observed 
in TNBC cell lines, MDA-MB-231 and MDA-MB-468, that 
endogenously express mutp53R280K and mutp53R273H, 
respectively. The exact mechanism responsible for this 
conversion is not yet known, although in ovarian carcinoma 
cells, which endogenously express mutp53, vitamin D3 
suppressed death receptor-mediated apoptosis. Indeed, 
additional alterations most likely cooperate with mutp53 
to generate the anti-apoptotic response to vitamin D3 
(Stambolsky et al. 2010).

Next to apoptosis, treatment of BC cells with 
1,25(OH)2D3 affects the autophagy pathway, a well-
conserved process aimed at eliminating cellular waste 
products and dysfunctional organelles (Abu El Maaty 
& Wolfl 2017). Mammary gland tissue is reported to lose 
its induced profile of autophagy during BC progression. 
Mechanistically, in luminal BC cells, VDR constitutively 
repressed the expression of MAP1LC3B (LC3B), a key gene 
in the process of autophagy. However, treatment with 
1,25(OH)2D3 partially relieved its repression (de-repressed), 
thereby slightly increasing its expression (Tavera-
Mendoza  et  al. 2017). Another mechanism by which 
autophagy is induced by 1,25(OH)2D3 in MCF7 cells is via 
the activation of 5' AMP-activated protein kinase (AMPK) 
and calcium/calmodulin-dependent protein kinase 2 
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(CAMKK2), both mediating calcium-induced autophagy 
(Hoyer-Hansen et al. 2007) (Fig. 1).

Effects of 1,25(OH)2D3 on inflammation

1,25(OH)2D3 has well-known anti-inflammatory 
effects, which are mediated by stimulation of the 
innate and suppression of the adaptive immune system 
(Christakos et al. 2016).

Within the adaptive immune system, cytotoxic 
(CD8+) T lymphocytes are important for the protection 
against intracellular pathogens including cancer cells. It 
was previously described that tumour-infiltrating CD8+ 
lymphocytes (TILs) have anti-tumour activities that are 
induced by different mechanisms (Martinez-Lostao  et  al. 
2015). Because of the anti-tumour activities of TILs, 
high tumour infiltration of TILs is associated with better 
prognosis in TNBC and HER2-enriched BC but not for ER+ 
BC (Stanton & Disis 2016, Kurozumi et al. 2019, Gao et al. 
2020, Oshi  et  al. 2020). In a recent study, the effect of 
vitamin D3 supplementation (cholecalciferol, 40 IU/
day) on CD8+ T cell infiltration was investigated using a 
mouse model where murine E0771 (ERβ

+, PR+, HER2+) (Le 
Naour et al. 2020) BC cells were injected in the mammary 
fat pad (Karkeni et al. 2019). Vitamin D3 supplementation 
reduced tumour growth and induced the number and 
activity of CD8+ T cells within the tumour. In contrast, in 
high-dietary fat conditions, tumour growth was enhanced 
and CD8+ T cell infiltration was reduced after vitamin D3 
supplementation.

The difference in responsiveness to vitamin D3 
supplementation between low- and high-dietary fat 
conditions is probably due to induced expression of 
Cyp27a1 in the adipocytes of obese mice, which led to 
elevated local levels of 25(OH)D3 but reduced systemic 
levels (because 25(OH)D3 is diluted in a higher body 
volume), which could influence CD8+ T cell infiltration. In 
addition, adipocytes are able to secrete pro-inflammatory 
cytokines such as IL-6 and CCL5. However, vitamin D3 
treatment is able to limit the secretion of inflammatory 
cytokines from adipose tissue. These data show that the 
effect of vitamin D3 supplementation on tumour growth 
and tumour infiltration with cytotoxic T cells is dependent 
on the fat content of the diet and demonstrated the 
importance of dietary intake (Karkeni et al. 2019).

Contrary to previous findings, in another BC mouse 
model where murine 4T1 (TNBC) cells were subcutaneously 
injected into the flanks, oral treatment with vitamin 
D3 resulted in accelerated tumour growth and reduced 
survival. In this model, vitamin D3 suppressed the T 

helper lymphocytes type 1 (Th1) response, which are TILs 
with important anti-tumour activities, both systemically 
and in the tumour microenvironment, which resulted in 
promotion of tumorigenesis (Cao et al. 2018) (Fig. 1).

Effects of 1,25(OH)2D3 on cell metabolism

Glycolysis
Cancer cell metabolism is characterized by an enhanced 
uptake of glucose, even in the presence of oxygen (the 
Warburg effect) (Jang et al. 2013). Aerobic glycolysis enables 
cancer cells to maintain their energy level and production 
of nucleotides, amino acids and fatty acids in order to 
sustain their proliferation capacity (Christakos et al. 2016).

The role of 1,25(OH)2D3 on energy metabolism is 
an interesting research area as alterations in cellular 
metabolism might explain its antiproliferative effect 
(Christakos  et  al. 2016). Studies in H(arvey)-ras-
transformed MCF10A breast epithelial cells illustrated 
that 1,25(OH)2D3 treatment resulted in an altered glucose 
consumption. More specifically, 1,25(OH)2D3 treatment 
reduced glycolysis and lactate production with a reduced 
tricarboxylic acid (TCA) cycle activity as a consequence. 
Treatment with 1,25(OH)2D3 reduced the flux of glucose to 
3-phosphoglycerate and resulted in decreased intracellular 
lactate levels by suppressing lactate dehydrogenase (LDH) 
activity. In addition, the glucose flux to acetyl-coA and 
oxaloacetate is reduced. Together, these data suggest that 
1,25(OH)2D3 has a preventive role in the use of glucose 
for rapid proliferation during BC progression in a H-ras 
oncogene-dependent manner (Zheng et al. 2013) (Fig. 2).

The effect of 1,25(OH)2D3 on glucose metabolism 
appears to be cell type-dependent. Indeed, differences 
in metabolic response and cellular ATP levels have been 
demonstrated between luminal BC (MCF7−T47D) and 
TNBC (MDA-MB-231) cells. However, treatment of both 
luminal and TNBC cell lines with 1,25(OH)2D3 upregulated 
the pentose phosphate pathway (PPP) and increased the 
expression levels of G6PD, a putative oncogene encoding 
the glucose-6-phosphate dehydrogenase that catalyses the 
first rate-limiting step of the PPP. Yet, the induction of G6PD 
by 1,25(OH)2D3 did not hamper the anticancer effects of 
genetic or pharmacological inhibition of G6PD. Treatment 
of MCF7 cells with 1,25(OH)2D3 resulted furthermore in 
increased levels of intracellular serine and ROS (Abu El 
Maaty  et  al. 2018). In addition, 1,25(OH)2D3 treatment 
activated the AMPK signalling in MCF7 and MDA-MB-231 
cells while levels of thioredoxin-interacting protein 
(TXNIP), a regulator of redox balance and glucose uptake, 
were reduced in MCF7 cells (Abu El Maaty et al. 2018) (Fig. 2).
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Similar effects of 1,25(OH)2D3 on glycolysis were 
recently reported in MCF7 and MDA-MB-231 cells 
(Santos  et  al. 2018). In a subsequent study, the authors 
demonstrated that 1,25(OH)2D3 was a potent inhibitor 
of the V-H+-ATPase proton pump, located at the plasma 
membrane of metastatic cancer cells, of which the activity 
is regulated by glucose. Hence, the 1,25(OH)2D3-mediated 
decrease in glycolytic flux is suggested to contribute to 
the inhibition of the V-H+-ATPase proton pump. As a 
result, the extracellular pH increased after treatment with 
1,25(OH)2D3, disturbing the optimal pH for cancer cells 
and ultimately leading to cell death and decreased cancer 
progression (Santos & Hussain 2019) (Fig. 2).

Glutamine
Treatment of H-ras-transformed MCF10A cells with 
1,25(OH)2D3 reduced intracellular glutamine/glutamate 
and α-ketoglutarate levels, leading to a reduced activity 
of the TCA cycle. Both mRNA and protein levels of the 

glutamine transporter, solute linked carrier family 1, 
member A5 (SLC1A5), were significantly decreased after 
treatment with 1,25(OH)2D3. Furthermore, reporter 
studies identified a negative VDRE in the promotor region 
of the SLC1A5 gene (Zhou et al. 2016). Knockdown (KD) of 
SLC1A5 increased the number of apoptotic cells in H-ras-
transformed MCF10A cells, suggesting that targeting 
the glutamine pathway with vitamin D decreased BC 
cell growth. The effect of 1,25(OH)2D3 on glutamine 
metabolism was also demonstrated in non-transformed 
mammary epithelial cells (hTERT-HME1). Treatment 
of hTERT-HME1 cells with 1,25(OH)2D3 decreased 
the expression of glutamine synthetase (GLUL) and 
glutaminases (GLS1/2), reducing the amount of glutamine 
shunt to the TCA cycle (Beaudin & Welsh 2017) (Fig. 2).

TCA cycle
During TCA cycle progression, pyruvate carboxylase 
(PC) regulates the ATP-dependent carboxylation of 

Figure 2
Overview of the effects of 1,25(OH)2D3 on cell metabolism in non-transformed mammary epithelial cells (effects shown with blue arrows), transformed 
mammary epithelial cells (effects shown with orange arrows) and breast cancer cells (effects shown with purple arrows). G6P, glucose 6-phosphate; 
G6PD, glucose-6-phosphate dehydrogenase; PPP, pentose phosphate pathway; 3PG, 3-phosphoglyceric acid; LDH, lactate dehydrogenase; MCT, 
monocarboxylate transporter; PC, pyruvate carboxylase; FA, fatty acid; αKG, alpha-ketoglutaric acid. Created with BioRender.com.
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pyruvate to oxaloacetate. In BC, PC overexpression is 
correlated with aggressiveness (Phannasil  et  al. 2017). 
1,25(OH)2D3 decreased PC mRNA and protein expression 
and thereby induced oxidative stress in H-ras-transformed 
MCF10A and MCF10A-ErbB2 (HER2) breast epithelial 
cells (Wilmanski  et  al. 2017b). In addition, 1,25(OH)2D3-
mediated repression of PC led to reduced synthesis of 
fatty acids and lipid accumulation in another transformed 
epithelial cell line, MCF10CA1a (Wilmanski  et  al. 2017a). 
Because a functional VDRE is described in the P2 promotor 
of the PC gene, vitamin D3 is suggested to be an important 
regulator of epithelial BC cell metabolism (Wilmanski et al. 
2017b) (Fig. 2).

Oxidative stress
Ageing Cyp27b1 KO mice, which are deficient in circulating 
1,25(OH)2D3, had increased oxidative stress and develop 
BC among other types of cancer. The increased ROS levels 
in these mice were accompanied by elevated DNA damage 
and accelerated ageing. Moreover, cellular senescence was 
increased in the tumour microenvironment. Interestingly, 
administration of 1,25(OH)2D3 prevented spontaneous 
tumour development in ageing Cyp27b1 KO mice, 
illustrating the importance of vitamin D deficiency in 
cancer tumorigenesis (Chen et al. 2018a). Collectively, these 
data illustrate that the anti-tumour effects of 1,25(OH)2D3 
could – at least partially – be explained by modulating 
metabolic networks of BC cells (Abu El Maaty  et al. 2018) 
(Fig. 2).

Effects of 1,25(OH)2D3 on cancer stem cells

Cancer stem cells (CSCs) were first described in acute 
myeloid leukaemia as a small subpopulation of cells playing 
an important role in tumour initiation, progression and 
recurrence (Bonnet & Dick 1997, Saeg & Anbalagan 2018). 
Different pathways such as the Notch, Wnt/Frizzled/β-
catenin, Hippo and Hedgehog signalling cascades are 
involved in the formation of CSCs and dysregulation of 
these pathways is linked to the development of BC. Breast 
CSCs are characterized by high CD44 and low CD24 
expression levels (CD44+/CD24−). CD44, a cell surface 
adhesion receptor important for recruitment to cell surfaces, 
is the most commonly used marker for detection of breast 
CSCs (Senbanjo & Chellaiah 2017, Saeg & Anbalagan 2018). 
CD24 is a glycosylated cell surface protein that regulates BC 
metastasis and proliferation because it can function as an 
alternative ligand of P-selectin, an adhesion receptor on 
activated endothelial cells, which facilitates the passage 

of tumour cells in the blood stream during metastasis 
(Kristiansen et al. 2003, Jaggupilli & Elkord 2012). As CD24 
is coexisting with CD44 in different cancers, it gained 
new interest as CSC marker (Jaggupilli & Elkord 2012). 
When Al-Hajj et al. (2003) reported that CD44+/CD24−/low  
cells exhibited more tumorigenic and CSC properties than 
CD44+/CD24+ cells, CD44+/CD24−/low was widely accepted 
as breast CSC marker. Next to CD44 and CD24, other 
markers such as aldehyde dehydrogenase-1 (ALDH-1),  
EpCAM, CD133 (Prominin-1) and CXCR4 are also used to 
detect breast CSCs (Song & Farzaneh 2021) (reviewed in  
So & Suh 2015) (Fig. 3).

Treatment of basal-like MCF710DCIS cells with a 
Gemini vitamin D3 analogue, BXL0124, reduced mRNA 
and protein expression of CD44 (So et al. 2011, Wahler et al. 
2015). In addition, in TNBC SUM159 cells, 1,25(OH)2D3 
and BXL0124 treatment decreased mammosphere 
formation, a characteristic feature of CSCs, in association 
with the downregulation of different CSC markers 
involved in their maintenance (CD44, OCT4; Notch1/2/3; 
JAG1/2 and NFκB) (Shan et al. 2017). The mammospheres 
formed after treatment with 1,25(OH)2D3 or BXL0124 
had a more organized, symmetrical shape, which was 
similar to the spheres formed from the non-malignant 
cell line MCF10A (Wahler  et  al. 2015). More detailed 
analysis showed that BXL0124 inhibited the Notch1 
signalling pathway in basal-like BC cells by upregulation 
of HES1, which is an inhibitor of JAG2, ligand for Notch1 
(So  et  al. 2015). Recently, a transcriptomic analysis was 
performed in MCF10DCIS mammospheres to investigate 
which pathways were affected by 1,25(OH)2D3 or BXL0124 
treatment. Vitamin D3 compounds reduced expression of 
genes involved in the maintenance of BC stem-like cells 
(e.g. GDF15), EMT, invasion, metastasis (e.g. LCN2 and 
S100A4) and chemoresistance (e.g. NGFR, PPP1R1B, and 
AGR2), while they upregulated genes associated with a 
basal-like phenotype (e.g. KRT6A and KRT5) and negative 
regulators of breast tumorigenesis (e.g. EMP1). More 
detailed pathway analysis identified TP63, a member 
of the TP53 family of TFs essential for epithelial stem 
cell development and maintenance, as a major target of 
vitamin D3 compounds (Shan et al. 2020).

Jeong et  al. (2015) investigated the effect of vitamin 
D3 treatment in an MMTV-wnt1 xenograft mouse 
model, in which treatment with 1,25(OH)2D3 or vitamin 
D3 supplementation decreased tumour growth and 
appearance. From these tumours, CD49fhigh/Epcamlow cells 
were isolated and spheroid cultures were generated in vitro. 
Treatment of these spheroids with 1,25(OH)2D3 decreased 
the capacity of the cells to generate secondary spheroids, 
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suggesting that 1,25(OH)2D3 decreases the self-renewing 
capacity of CSCs in these tumours. This inhibitory effect 
of 1,25(OH)2D3 on CSCs is suggested to be regulated by 
inhibition of the Wnt/β-catenin pathway, an important 
pathway for the maintenance of CSCs (Jeong et al. 2015). In 
MCF7 cells, treatment with 1,25(OH)2D3 inhibited Wnt/β-
catenin signalling thereby decreasing the population 
of CSCs (CD133+ cells) and increasing the sensitivity of 
MCF7 cells to therapy with the ER inhibitor tamoxifen 
(Zheng et al. 2018). Moreover, 1,25(OH)2D3 affects different 
pathways of CSC development in other types of cancer 
(reviewed in So & Suh 2015, Fernandez-Barral et al. 2020).

Effects of 1,25(OH)2D3 on EMT and metastasis

In total, 20–30% of patients with early-stage BC develop 
metastatic disease. The most common site of metastatic 

lesions for BC is bone, followed by brain, liver and lung. 
However, which organ is affected by BC metastasis is highly 
dependent on the BC subtype (Chen et al. 2018b).

Tumoural VDR expression is reported to protect 
against BC metastasis in an orthotopic transplantation 
model of murine 168FARN BC cells, in which Vdr 
expression was silenced with shRNA. Tumours from Vdr 
KD cells not only grew significantly faster than tumours 
from control or Vdr rescue cells but also metastasized to the 
liver. Gene analysis identified Id1 (DNA-binding protein 
inhibitor ID-1) as a direct mediator of VDR signalling in 
murine BC cells, and this relationship was confirmed in 
humans (Williams et al. 2016).

An important process in the formation of metastatic 
lesions is EMT. During this process, epithelial cells lose their 
cell–cell and cell–matrix junctions and undergo a change 
in gene signature (downregulation of epithelial genes–

Figure 3
Schematic overview of the different effects of VDR signalling on the epithelial–mesenchymal transition process in breast cancer cells. CSCs, cancer stem 
cells; MMPs, matrix metalloproteinases. Created with BioRender.com.
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upregulation of mesenchymal genes) to eventually convert 
into mesenchymal cells (Larriba et al. 2016) (Fig. 3). The EMT 
process is activated by different agents and signals, such 
as the TGF-β, Wnt and Notch signalling, which activate 
TFs that are important for EMT (EMT-TFs) (Fernandez-
Barral  et  al. 2020). These EMT-TFs include the zinc finger 
proteins SNAIL1 and SNAIL2, the double zinc finger and 
homeodomain ZEB1 and ZEB2 as well as TWIST1 and E47, 
members of the basic-helix-loop family (Larriba et al. 2016). 
Proteins important for cell adhesion include E-cadherin 
(hallmark of the epithelial phenotype), the tight junction 
proteins claudins, occludins and cytokeratins. The 
mesenchymal phenotype has more fibroblastic-like 
characteristics with markers such as N-cadherin, vimentin 
and matrix metalloproteases (MMPs) (Fig. 3).

An association between vitamin D signalling and the 
EMT process was demonstrated by the finding that the 
EMT-TF SLUG, member of the SNAIL zinc finger family, 
repressed the VDR gene in human BC cells, and reduced 
their sensitivity to the anti-tumour activity of 1,25(OH)2D3. 
Indeed, introduction of SLUG expression in MDA-MB-468 
and MCF7 cells resulted in significant reduction of VDR 
levels. Moreover, the invasive TNBC BT549 cell line has 
a high SLUG expression, whereas VDR is not expressed 
(Mittal et al. 2008).

In an MDA-MB-231 xenograft mouse model, 
downregulation of miR-1204 decreased distant metastasis 
not only by reducing cell proliferation after increased VDR 
expression as described above but also by downregulation 
of mesenchymal markers (N-cadherin/vimentin), which 
reduces the EMT process. The critical role of the VDR in the 
process of EMT was also demonstrated in vivo by injecting 
MDA-MB-231 cells expressing anti-miR-1204 into nude 
mice. In these mice, silencing of the VDR increased tumour 
growth and distal metastasis (Liu et al. 2018).

The induction of epithelial markers such as 
E-cadherin represents an additional mechanism by which 
1,25(OH)2D3 regulates the EMT process and may inhibit 
cancer progression (Larriba  et  al. 2016). Also, in TNBC 
MDA-MB-231 cells, 1,25(OH)2D3 upregulates E-cadherin 
by CDH1 promoter demethylation (Lopes  et  al. 2012a) 
(Fig. 3). Furthermore, 1,25(OH)2D3 decreased the bone 
metastatic potential of MCF10CA1a and MDA-MB-231 
cells as illustrated in an in vitro metastasis model. Also, an 
increased expression of the epithelial marker E-cadherin 
and decreased expression of N-cadherin suggested a 
decrease in the process of EMT (Wilmanski et al. 2016).

A recent study described the effect of dietary vitamin 
D3 deficiency on the CXCL12-CXCR4 axis in MMTV-PyMT 
mice. CXCL12 is a chemokine involved in cancer progression 

and increased levels are associated with poor prognosis in 
BC patients. The receptor of CDXL12, CXCR4, is involved 
in tumour growth and metastasis. The MMTV-PyMT mouse 
model spontaneously develops distant metastasis in the 
lung after 9–10 weeks on a normal diet. However, when 
mice were fed a vitamin D3-deficient diet, lung metastasis 
arose already from 8 weeks. Li et al. have demonstrated that 
vitamin D3 deficiency increased the levels of EMT markers 
(ZEB1) in the primary tumour tissue and CXCL12 expression 
in the metastatic long stromal tissue. In addition, vitamin 
D3 deficiency enhanced CXCL12/CXCR4 colocalization in 
the lung metastatic tumours, which enhances metastasis 
formation (Li et al. 2021a).

Furthermore, VDR KD in MDA-MB-231 BC cells 
promoted cancer cell motility and invasiveness and 
elevated the bone metastatic potential of MDA-MB-231 
cells. VDR KD in MDA-MB-231 cells was accompanied by a 
reduced expression of epithelial markers such as β-catenin, 
E-cadherin and F-actin, while mesenchymal markers 
such as vimentin were increased. These results show that 
loss of VDR expression in MDA-MB-231 cells induced 
EMT progression and facilitated the formation of tumour 
colonies in bone (Horas et al. 2019) (Fig. 3).

In contrast, in young (6–8 weeks old) BALB/c-
female mice, treatment with 1,25(OH)2D3 and its low-
calcaemic analogues, PRI-2191 and PRI-2205, enhanced 
the metastatic potential of 4T1 mouse mammary gland 
cancer cells to the lung without affecting the primary 
tumour. In tumours from treated mice, osteopontin (OPN, 
Spp1) secretion was increased (pro-metastatic), while TGFβ 
(Tgfb) levels were decreased (anti-metastatic). Additionally, 
treatment with 1,25(OH)2D3 and analogues increased 
the expression of mesenchymal markers such as SNAIL1 
and N-cadherin during tumour progression, whereas 
E-cadherin expression decreased (Anisiewicz  et  al. 2018). 
Further analysis of the immune response in splenocytes and 
lymph nodes of these mice showed an increased response 
of T helper lymphocytes type 2 (Th2) with increased 
activity of regulatory T (Treg) lymphocytes, suggesting 
that both analogues have an immunosuppressive effect 
in these mice. Also, the expression of Spp1 and Tgfb in the 
lung was upregulated by the treatment and was responsible 
for the immunosuppressive metastatic niche formation 
(Pawlik et al. 2018). In contrast to these findings, the same 
research group showed that in old ovariectomized (OVX) 
mice, 1,25(OH)2D3 and both its analogues reduced the 
metastatic spread of 4T1 breast carcinoma cells to the 
lung by decreasing OPN levels. Also, in aged OVX mice, 
1,25(OH)2D3 and analogue treatment decreased bone 
mineralization while this effect was not seen in young mice 
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(Anisiewicz et al. 2019). These data suggest that the activity 
profile of 1,25(OH)2D3 and analogues is dependent on the 
age of the mice. However, the researchers do not provide 
an explanation for the finding that old OVX treated mice 
responded differently to vitamin D3 treatment than young 
mice. Important to note is that 4T1 cells are not responsive 
to 1,25(OH)2D3 treatment in vitro or in vivo, as primary 
tumour growth was not affected. This suggests that the 
antimetastatic effects of 1,25(OH)2D3 and analogues were 
induced by cells in the tumour microenvironment such as 
fibroblasts or immune cells. Also, previous studies with the 
same model (4T1) have shown conflicting results regarding 
the effect of 1,25(OH)2D3 or analogue treatment on 
primary tumour growth and metastatic formation. Zhang 
et  al. (2014) reported a decrease in the number of lung 
metastases in 4T1-tumor bearing mice after 1,25(OH)2D3 
treatment, while Cao et  al. (2018) reported a stimulation 
of primary tumour growth after treatment with vitamin 
D3 in an 4T1-subcutaneous mouse model. However, the 
difference in results could be explained by the different 
treatment schedules used. Zhang et  al. (2014) used an 
orthotopic model and treated the mice IP once every other 
day with 1,25(OH)2D3 at a dose of 0.3 µg/kg body weight 
during 8 weeks while Cao et al. (2018) used a subcutaneous 
model and treated the mice daily through gavage with 
vitamin D3 at a dose of 5 µg/kg during 7 days.

Finally, 1,25(OH)2D3 also influences EMT by inhibiting 
inflammatory cytokines such as IL-6. Previously, Sullivan 
et al. (2009) have shown that IL-6 induces EMT by activation 
of STAT3 and downregulation of E-cadherin in ER+ BC cells. 
In vitro analysis of HCC1806 TNBC cells demonstrated 
that combined treatment with IL-6 and 1,25(OH)2D3 
suppressed the inhibitory effect of 1,25(OH)2D3 on EMT 
and stemness as E-cadherin was more upregulated after 
treatment with 1,25(OH)2D3 alone, while IL-6 had no 
effect on E-cadherin expression (Abdel-Mohsen et al. 2019). 
Since IL-6 is known to be secreted by adipocytes into the 
tumour microenvironment in BC, it may impair the anti-
cancer effect of 1,25(OH)2D3. However, the exact interplay 
between IL-6 and 1,25(OH)2D3 was not investigated by the 
researchers. The downregulation of CYP27B1 by IL-6, as 
was observed in colon cancer cells, may contribute to these 
antagonizing effects of IL-6 (Hummel et al. 2014) (Fig. 3).

Combination therapies with 1,25(OH)2D3 
or analogues

As 1,25(OH)2D3 and vitamin D3 analogues reduce tumour 
progression by blocking different pathways, multiple 

studies investigated possible combinations of approved 
chemotherapies or other compounds with 1,25(OH)2D3 
or vitamin D3 analogues to find a synergistic combination 
therapy.

As it was previously shown that 1,25(OH)2D3 
treatment decreased ERα protein and mRNA levels in 
MCF7 cells (Swami et al. 2000) and aromatase expression 
in MCF7 tumour xenografts and surrounding adipose 
tissue (Krishnan  et  al. 2010), the combination of 
1,25(OH)2D3 with endocrine therapy such as aromatase 
inhibitors (anastrozole and letrozole) was investigated 
in an MCF7 xenograft mouse model. Combined 
treatment with anastrozole was able to significantly 
reduce tumour volume compared to mono-treatment, 
and the combination with letrozole significantly 
decreased tumour volume compared to vehicle treatment 
(Swami et al. 2011) (Table 2). This suggests that 1,25(OH)2D3 
improves the sensitivity to endocrine therapy such as 
aromatase inhibitors. The combination of 1,25(OH)2D3 
with the anti-oestrogen compound tamoxifen showed 
additive anti-proliferative effects in MCF7 cells (Vink-
van Wijngaarden et al. 1994). Also in vivo, combination of 
tamoxifen with the vitamin D3 analogue 22-oxa-calcitriol 
(OCT) showed synergistic anti-tumour effects in an MCF7 
xenograft model (Abe-Hashimoto  et  al. 1993) (Table 2). 
Interestingly, combined targeting of the VDR and the 
androgen receptor (AR) with agonists proved effective 
in VDR+ and AR+ TNBC cells by decreasing cell viability, 
which was even further decreased in combination with 
chemotherapy (Thakkar  et  al. 2016) (Table 2). Recently, 
small molecules affecting cell proliferation and/or cell 
death pathways were investigated in combination with 
1,25(OH)2D3 or vitamin D3 analogues. One such molecule, 
ruxolitinib, a Janus kinase (JAK) 1 and JAK2 inhibitor, 
reduced cell proliferation synergistically in combination 
with 1,25(OH)2D3 in an MCF7-HER18 (ER+, HER2+) BC 
model by activation of apoptosis and sub-G1 arrest 
(Lim et al. 2018). Other small molecules such as lapatinib 
and neratinib, inhibitors of tyrosine kinase activity of 
the ERBB family (EGFR, HER2 and HER4), inhibited 
cell growth as well as AKT and ERK phosphorylation 
(pathways activated by ERBB family members) more 
effectively after combination with the vitamin D3 
analogue, EB1089, in EGFR and/or HER2+ breast cancer 
cell lines. In addition, apoptosis was increased after these 
combination treatments in both 2D and 3D cultures 
(Segovia-Mendoza  et  al. 2017). In the same subset of BC 
cell lines, the same group analysed the combination of 
1,25(OH)2D3 and vitamin D3 analogues, calcipotriol and 
EB1089, with another tyrosine kinase inhibitor, gefitinib. 
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Again, the growth inhibitory effect of the combination 
therapy (1,25(OH)2D3/vitamin D3 analogues and 
gefitinib) was elicited by downregulation of ERK1/2 MAPK 
signalling and induction of apoptosis by upregulation of 
BIM and caspase 3 (Segovia-Mendoza et al. 2015) (Table 2). 
The same vitamin D3 analogue, EB1089, combined with 
ionizing radiation reduced tumour growth in an MCF7 
breast tumour xenograft model by promoting apoptotic 
cell death (Sundaram et al. 2003) (Table 2).

Also, chloroquine, an inhibitor of autophagosome 
acidification, synergistically inhibited cell proliferation 
in combination with 1,25(OH)2D3 in MCF7 cells not only 
in vitro but also in vivo. The size of tumour xenografts was 
substantially smaller after the combination treatment 
than after the mono-treatment (Tavera-Mendoza  et  al. 
2017) (Table 2).

In addition, combining 1,25(OH)2D3 with 
curcumin or resveratrol, both angiogenesis blockers, 
potentiated the action of 1,25(OH)2D3 by facilitating 
the heterodimerization of VDR with RXR, resulting in 
a cooperative effect on gene transactivation (Garcia-
Quiroz et al. 2019). In an MBCDF-T TNBC xenograft model, 
combination therapy of 1,25(OH)2D3 with curcumin 
delayed tumour onset and reduced tumour volume and 
microvessel density. In addition, tumour endothelial cells 
were less activated as illustrated by reduced expression 
and activity of the vitronectin receptor (αvβ3) in the 
combination groups of 1,25(OH)2D3 with curcumin or 
resveratrol (Garcia-Quiroz  et  al. 2019). The combination 
of curcumin with 1,25(OH)2D3 was also investigated in 
MCF7 cells in vitro, in combination with paclitaxel. The 
triple combination reduced gene and protein expression 
of resistance markers such as multidrug resistance complex 
1 (MDR-1) and ALDH-1, suggesting that the addition of 
curcumin and 1,25(OH)2D3 enhanced the tumour response 
to paclitaxel treatment by decreasing chemoresistance 
(Attia et al. 2020) (Table 2).

Another target important in the process of 
inflammation is cyclooxygenase 2 (COX2). 1,25(OH)2D3 
was combined with the COX2 inhibitor, celecoxib, in 
MCF7 and MDA-MB-231 cells, causing a synergistic 
growth inhibitory effect in both BC cell lines 
(Friedrich  et  al. 2018). Interestingly, 1,25(OH)2D3 
regulated the production and secretion of cytokines 
such as IL-1β and TNF-α in TNBC SUM-229PE cells. 
Moreover, when combining 1,25(OH)2D3 with TNF-α, the 
combination was more potent to reduce cell proliferation 
than either compound alone, probably by potentiating 
the cytotoxic effect of TNF-α on BC cells (Martinez-
Reza et al. 2019) (Table 2).

Epidemiological studies of vitamin D and 
breast cancer

In the 1980s, the association between sunlight exposure 
and cancer incidence was suggested based on the 
observation that geographical areas located far from the 
equator have a higher incidence of cancer, which could be 
associated with a decrease in sunlight exposure or vitamin 
D status (Garland  et  al. 1990, 2006). This association was 
further analysed in epidemiological studies in which 
baseline 25(OH)D levels were measured before start of any 
treatment (Bilinski & Boyages 2013). Vitamin D deficiency 
is often seen in BC patients at diagnosis (Peppone  et  al. 
2011, Karthikayan  et  al. 2018, Machado  et  al. 2019) and 
can be correlated to BC subtype, as patients with higher 
tumour grade, non-luminal and ER− BCs have lower serum 
25(OH)D levels than their opposing groups (Peppone et al. 
2012, Karthikayan et al. 2018).

Observational studies

Observational studies were set up to investigate a possible 
causal relationship between different factors such as 
25(OH)D levels and vitamin D intake on BC risk, survival 
and progression. However, these studies often lack 
sufficient power to prove any association. Therefore, meta-
analyses were set up to further investigate this relationship 
by combining different studies conducted in a specific time 
frame. Recently, such meta-analysis studies described the 
association between serum 25(OH)D levels and BC risk and 
survival (Vaughan-Shaw  et  al. 2017, Estebanez  et  al. 2018, 
Song  et  al. 2019, Hossain  et  al. 2019). A protective effect 
of 25(OH)D levels on BC development was reported in 
pre-menopausal women (Estebanez  et  al. 2018), whereas 
a different meta-analysis described a 6% decrease in BC 
risk when blood vitamin D levels increased by 5 nmol/L 
in both pre-and post-menopausal women (Song  et  al. 
2019). However, no association between vitamin D intake 
and BC risk or development was found in those studies 
(Estebanez  et  al. 2018, Song  et  al. 2019). In addition, 
another meta-analysis pointed to an association between 
higher 25(OH)D levels and reduced risk of BC death and 
disease progression (Vaughan-Shaw et al. 2017). In contrast, 
Hossain et al. (2019) did not confirm this association, they 
did however report an association between vitamin D 
deficiency and BC occurrence. As vitamin D deficiency is 
often more pronounced in African women, the effect of 
vitamin D supplementation was specifically investigated 
in this group of patients. An inverse association between 
vitamin D supplementation and BC risk was found, with 
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the strongest effect for TNBC in Black individuals. Increased 
sun exposure was also associated with reduced cancer risk 
in specific BC subtypes: ER+, ER− and TNBC among Black 
women (Qin  et  al. 2020). Although observational studies 
and their meta-analyses often suggest an association 
between serum 25(OH)D and BC risk, it remains difficult to 
prove the causal relationship between vitamin D deficiency 
and BC risk (Bilinski & Boyages 2013, Feldman et al. 2014).

Mendelian randomization studies

Another way to investigate the effect of vitamin D status on 
BC risk is by performing Mendelian randomization (MR) 
studies. These studies analyse the association between 
single-nucleotide polymorphisms (SNPs) in different 
genes important in the vitamin D pathway and BC risk. 
Previously, genetic variants in four genes (GC (vitamin D  
binding protein), DHCR7 (7-dehydrocholesterol 
reductase), CYP2R1 and CYP24A1) of the vitamin D 
signalling pathway were associated with plasma 25(OH)D  
concentrations. Recently, large-scale genome-wide 
association studies (GWAS) were performed in 79,366 
individuals, which identified 2 additional loci (SEC23A 
and AMDHD1) associated with serum 25(OH)D levels 
(Jiang et al. 2018). These 6 loci were then further analysed in 
122,977 breast cancer cases, but no association between the 
genetic variants and BC risk could be observed (Jiang et al. 
2019). The latest MR analysis of the same group investigated 
138 SNPs in 69 vitamin D-associated loci. Again, there was 
no evidence for a causal effect of 25(OH)D concentrations 
on BC risk (Jiang et al. 2021). Despite the increased power 
of the recent studies performed, until now, no causal 
association between reduced circulating vitamin D levels 
and BC risk could be proven (Bouillon et al. 2019).

Randomized controlled trials

To prove a causal role between vitamin D and breast cancer 
risk, response rate or survival, randomized controlled 
trials (RCTs) with sufficient power are needed. Recently, 
the VITamin D and OmegA-3 TriaL (VITAL) was finalized, 
which is one of the biggest RCTs conducted until now 
with 25,871 subjects included. This randomized, double-
blind, placebo-controlled, 2 × 2 factorial clinical trial 
investigated the effect of daily vitamin D3 supplementation 
(2000 IU) alone or combined with marine n-3 (1 g) 
supplementation, on the prevention of cancer. Of the 
25,871 trial participants, 51% were women and the mean 
age of the participants was 67.1 years. In the cohort, 20% 
of the participants were Black and 71% were self-declared 

non-Hispanic White participants. At baseline, the mean  
25(OH)D level was 30 ± 10 ng/mL, and after 1 year, the mean 
25(OH)D level increased to 41.8 ng/mL in the vitamin D3 
group, while there was a minimal change in the placebo 
group (subgroup analysis of 1644 participants). In the first 
analysis, where vitamin D3 supplemented patients were 
compared with placebo controls, the VITAL study did not 
find any difference in BC incidence between those groups 
(Manson et al. 2019) (Table 3). Cancer was confirmed based 
on histological or cytological data.

However, in a secondary analysis, focusing on the 
incidence of advanced cancers (metastatic or fatal) and 
after correcting for BMI, a significant risk reduction was 
found in the vitamin D3-supplemented group compared 
to the placebo control group. The strongest risk reduction 
for advanced cancers was seen in the normal weight 
group (BMI <25) after supplementation with vitamin 
D3. Stratification by race did not change the risk for total 
metastatic or fatal cancer between vitamin D3 or placebo 
group (Chandler et al. 2020).

A similar RCT conducted by Lappe et  al. (2017) 
aimed at investigating the effect of the same amount of 
vitamin D3 supplementation (2000 IU/day) but combined 
with calcium supplementation (1500 mg/day) instead 
of supplementation with fatty acids. A total of 2303 
postmenopausal women were investigated for 4 years, but 
again, supplementation with vitamin D3 and calcium did 
not significantly reduce all-type cancer risk over a period of 
4 years (Lappe et al. 2017) (Table 3). Recently, in the vitamin 
D assessment (ViDa) study, a double-blind placebo-
controlled trial, the effect of monthly supplementation 
with vitamin D3 (100,000 IU) on the incidence of acute 
and chronic diseases was investigated. Also, this study 
did not support any effect of vitamin D3 supplementation 
on overall cancer incidence (Scragg 2019) (Table 3). In 
another RCT, high-dose vitamin D3 supplementation 
(40,000 IU/day) was given to patients prior to breast 
cancer surgery to analyse its effect on cell proliferation 
(Ki67) and apoptosis (cleaved caspase 3). After 2–6 weeks 
of daily supplementation, there was no effect on BC cell 
proliferation and apoptosis, despite increased levels of 
25(OH)D (Arnaout et al. 2019) (Table 3). Also, the study of 
Crew et al. (2019) examining vitamin D3 supplementation 
(20,000 IU/week) in high-risk premenopausal women failed 
to show a reduced BC risk after 12 months of treatment, 
as assessed by mammographic density (Table 3). The latter 
is a well-established predictor for BC risk, as women with 
higher breast density (75% or more) have four to six times 
more risk to develop breast cancer (Yaghjyan  et  al. 2012). 
In addition, meta-analysis studies performed on eight and 
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seven pooled RCTs could not prove any association between 
vitamin D3 supplementation and BC risk (Zhou et al. 2020, 
Li et al. 2021b). During the last 5 years, no RCTs investigated 
the effect of vitamin D3 supplementation on BC survival 
or response rate. Currently, one clinical trial is evaluating 
the effect of neoadjuvant vitamin D3 administration on 
DFS (5 years) in locally advanced BC (NCT01608451; 
ClinicalTrials.gov). Another study currently evaluates 
the effect of adding weekly vitamin D3 supplementation 
(50,000 IU) to neoadjuvant therapy on pathological 
complete response (NCT03986268; ClinicalTrials.gov).

So, until now, RCTs do not support any effect for vitamin 
D3 supplementation on BC risk or incidence. However, as 
vitamin D3 is a nutrient, a lot of confounders will influence 
the results of vitamin D3 RCTs. There is still discussion 
on the optimal threshold for 25(OH)D and the optimal 
supplementation dose for vitamin D3 (daily/monthly). In 
addition, the continued self-supplementation and dietary 
factors during the trial are possible confounding factors 
(Boucher 2020).

Prevention vs treatment

While in vitro and animal studies show potential anti-
cancer effects of 1,25(OH)2D3 in BC, human studies 
(observational and RCTs) often do not show these 
effects. However, it is important to acknowledge the 
differences between the two types of studies. Most 
preclinical studies investigate the effect of treatment 
with the active 1,25(OH)2D3 compound either in vitro 
in BC cell lines or in animal models with existing BC, 
which enables to study the therapeutic effect of vitamin 
D3 treatment. In addition, animal studies are performed 
in a homogenous population under uniform conditions 
such as cancer type, vitamin D3 status, age of the mice. 
Moreover, only short time effects are studied in animal 
experiments due to limited follow-up time. While in 
human studies, the prevention effects of vitamin D3 
supplementation are studied by patient’s follow-up 
and evaluation of their BC development during a long 
follow-up period. Furthermore, in animal models, high 
doses of the active form of vitamin D3, 1,25(OH)2D3, are 
often used, while this is not possible in human studies 
due to calcaemic side effects and therefore the dose of 
active 1,25(OH)2D3, which is targeting the cancer cells 
and tumour microenvironment is different in animal vs 
human studies. Importantly, cell culture studies do not 
encompass the complex cell–cell interactions which may 

influence the anti-neoplastic effects of 1,25(OH)2D3. For 
example, adipocytes in breast tissue express CYP27B1, 
which enables local regulation of 1,25(OH)2D3 synthesis. 
These autocrine and paracrine effects are important to 
consider as also CYP24A1 and CYP27B1 are expressed in 
both normal and cancerous breast tissue.

General conclusions

Numerous preclinical studies illustrated the anti-neoplastic 
effects of 1,25(OH)2D3 or its less calcaemic structural 
analogues on cell proliferation, apoptosis, autophagy and 
inflammation in BC. In addition, 1,25(OH)2D3 influences 
cellular processes such as CSCs, EMT and cell metabolism, 
thereby hampering BC progression. Indeed 1,25(OH)2D3-
induced downregulation of CD44 and mammosphere 
formation capacities results in a decreased formation of 
breast CSCs. Also, upregulation of epithelial markers and 
downregulation of mesenchymal markers after 1,25(OH)2D3 
treatment inhibits the EMT process. Furthermore, 
1,25(OH)2D3 affected the PPP pathway and ROS levels in 
BC cells. These in vitro and in vivo analyses illustrate the 
importance of VDR expression on the progression of BC 
and the possible anti-tumour applications for 1,25(OH)2D3 
or analogues in BC treatment. However, both observational 
studies and RCTs in humans do not support a protective 
role of vitamin D3 on BC risk and development.

Although a possible application for vitamin D3 in the 
field of BC could be by the use of vitamin D3 analogues 
in combination with existing cancer therapies such as 
chemotherapy or small molecules. Nevertheless, more 
research is required to prove the effectiveness of vitamin 
D3 analogues in combination therapies to treat different 
BC subtypes. Although, in vitro and in vivo studies describe 
promising results for the use of 1,25(OH)2D3 or analogues 
to decrease BC growth and progression, the translation to 
humans still needs to be further investigated.
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