1 2 3

INSTANTANEOUS HYDROLYSIS OF PET BOTTLES: AN EFFICIENT PATHWAY TO THE CHEMICAL RECYCLING OF CONDENSATION POLYMERS

4 Jose Jonathan Rubio Arias¹ josejonathan.rubioarias@kuleuven.be

5 Wim Thielemans¹ wim.thielemans@kuleuven.be

7 ¹ Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak

8 Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium

10 ABSTRACT

11 Restoring the environmental balance that was disturbed by the rise of plastic commodities is a must for researchers and the wider community. It is imperative that the increasing amount of plastic waste 12 and that the high amount of petrochemical resources consumed during the constant replacement of 13 single-use plastics is reduced. Poly(ethylene terephthalate) (PET) is one of the most commonly 14 15 produced single-use polymers in the world, and its mechanical recycling is challenging due to the loss of properties during reprocessing. Chemical recycling is a feasible alternative to reclaim the 16 17 monomers, however, its viability relies on establishing a straightforward, fast, and inexpensive 18 procedure to turn the end-of-use polymer into new pure monomers. This work reports on the fastest 19 known procedure for PET chemical recycling to produce terephthalic acid and ethylene glycol in an efficient and straightforward manner, thanks to microwave-assisted heating that permitted 100 % 20 21 PET conversion into TPA in just 1 minute at 120°C. The depolymerization kinetics of this new 22 procedure were studied and its improved efficiency over other reported hydrolyses procedures was 23 attributed to a thicker shrinking layer. This new procedure may form a major breakthrough in chemical depolymerization. Evidence pointing to the higher reactivity of free OH species, enabled 24 25 us also to obtain dimethyl terephthalate (DMT) through the use of an anhydrous depolymerization 26 system that is able to convert PET into DMT in 4 min at 80 °C, but requiring careful humidity 27 control. The activation energy for the proposed depolymerization system was estimated in 120 kJ/mol. An additional advantage of the proposed process is the production of potassium sulfate as a 28 29 side-product, a valuable fertilizer with high market value. This product compensates for the lack of 30 recoverability of the catalyst. Our KOH-in-Methanol Hydrolysis (KMH) process has the potential 31 to become a widely used depolymerization solution for a wide range of (heterogeneous)

32 condensation polymers, which is currently under study by our research group.

33 Keywords: Hydrolysis, PET, Terephthalic acid, Microwaves
34

35 1. Introduction

Poly(ethylene terephthalate) is one of the most consumed polymers in the world. While leading to a 36 37 large reduction in CO₂ emissions from manufacturing and weight reduction during transport over 38 glass, its use has also led to significant, and growing, environmental issues coming to the fore. 39 Contamination of marine and land ecosystems by micro and macro plastics is an urgent threat, as it 40 has been reported that microplastics are present in at least 12 species of fish in the North Sea, of 41 which at least 3 % is PET¹. Not only animals are affected by micro-plastics in the ecosystem, 42 drinking water can also be affected as demonstrated recently.² These problems arise from inadequate disposal of plastic waste, to a significant extent caused by poorly managed recycling. Currently, a 43 44 magnifying effect is the accelerated increase of single-use plastics consumption for personal protection, caused by the COVID-19 pandemic.³ Despite increased awareness about selective 45 collection of plastics and the availability of a growing number of biodegradable plastics,⁴ the 46 reduction of the environmental impact of plastics usage in society remains an important challenge. 47 Different ways in which plastics can be recycled include re-use, mechanical recycling (re-48 49 processing), energy recovery (burning the plastics to use the energy), or chemical recycling

1 (reclaiming the original components of the polymer). Mechanical recycling is the traditional 2 pathway for plastics recycling, however, it tends to involve significant loss of properties, triggered 3 by chain scission or degradation during re-melting, and removal of additives may be complex or not 4 cost-effective. Reduction in mechanical performance makes it necessary to incorporate fresh 5 feedstock in order to reach the desired properties for new fabricated products from recycled 6 polymer.⁵ Chemical recycling of polymers breaks the polymer back into its constituents (or other 7 precursors), making it possible to separate the monomers and remove additives by traditional 8 separation techniques, after which a new polymer can be produced, indistinguishable from non-9 recycled polymer.

10 Chemical recycling of PET can be performed via a nucleophilic or an electrophilic attack on the 11 carbonyl by several different agents. This kind of process can render monomers for PET production or terephtalamides (for synthesis of other high added-value materials). The advantages of chemical 12 recycling include the reduction in oil feedstock consumption, along with its versatility to produce 13 high added-value materials, the possibility of producing new polymers with the same properties of 14 15 the ones produced using petrochemical feedstock, and relative ease of removal of cumbersome additives and colorants. Life Cycle assessments have previously demonstrated that chemical 16 recycling of plastics offer high potential for reducing CO2 emissions compared to mechanical 17 recycling, based on the quality of the obtained products that can directly be used to produce virgin-18 19 like materials, while mechanical recycling offers, most of the time, downgraded pellets that 20 underperform the original materials, making a constant input of new petroleum-based monomers 21 necessary. Furthermore, it is expected that a chemical recycling process involving low or zero 22 organic solvents, will increase the energy economy of the process and consequently diminish the environmental impact of a recycling plant.⁶ 23

Figure 1 Illustration of chemical depolymerization of PET via hydrolysis of ester bond by acid or basic catalysts

27 Hydrolysis is the chemical reaction that produces chain scission in the PET chain, producing 28 terephthalic acid (TPA) and ethylene glycol (EG) as final products (Figure 1). This reaction can be 29 achieved either by acidic or basic aqueous processes. Many reports exist in the literature, reporting on a wide variety of different depolymerization conditions, covering inorganic acids to alkaline 30 31 hydroxides, phase transfer catalysts, as well as microwave heating and ultrasound. Table 1 32 summarizes a selection of important works and conditions found in literature for the hydrolysis of PET⁷, including the values of environmental factors calculated following the description in section 33 34 2.2.1. One can see that on average, using aqueous solutions of alkaline hydroxides or concentrated acids, 100 % PET conversion is only possible at temperatures above 100°C and for several hours 35 (which can be reduced down to 1-2 h by incorporation of a phase transfer catalyst). 36

37

24 25

- 38
- 39
- 40

1	Table 1. Summary of the most outstanding PET hydrolysis processes found in literature for complete depolymerization
2	of PET

2

Ref	Catalyst	Co-catalyst/conditions	T (°C)	Reaction time (min)	E factor (a.u)	€ (°С*-1min ⁻¹)	ξ (°C*min)
8	H ₂ SO ₄ (aq)	N.R	135	300	8,87	2,22E-05	3,99E+05
9	HNO ₃	DMSO Na ₂ SO ₄	98	140	5,86	5,07E-05	1,16E+05
9	HNO ₃	DMSO Na ₂ SO ₄	110	140	5,33	4,97E-05	1,07E+05
9	HNO ₃	DMSO Na ₂ SO ₄	120	140	4,68	5,19E-05	9,01E+04
10	NaOH (aq)	TBAI	90	45	3,9	2,44E-04	1,60E+04
11	NaOH (aq)	EtOH:water 80:20	110	30	12,28	2,70E-04	4,55E+04
12	NaOH (aq)	Microwave	220	2	1,72	2,20E-03	7,80E+02
13	HNO ₃	DMSO Na ₂ SO ₄ H ₃ PO ₄	140	160	5,6	4,37E-05	1,28E+05

³

4 The aqueous hydrolysis of PET is a heterogeneous reaction between two incompatible phases: a 5 solid (PET) suspended in an aqueous phase. One of the biggest issues for hydrolysis in aqueous 6 media is the incompatibility between the liquid phase and the polymer. Consequently, the 7 incorporation of a phase transfer catalyst has proven to be an important strategy to improve the 8 reaction efficiency, as observed by several research groups.^{10,14} An alternative way to improve 9 reaction efficiency includes the use of microwaves, which reduces the environmental energy impact 10 by increasing heating efficiency, thereby diminishing reaction time¹². The present work explores the 11 combined use of microwave irradiation and a solution of potassium hydroxide in anhydrous alcohol to develop an energy efficient non-aqueous hydrolysis process. We believe that the *in-situ* formed 12 13 potassium methoxide will have improved diffusivity into the polymer matrix further speeding up the 14 depolymerization reaction. The viability of the proposed method is completed by the formation of potassium sulfate, the byproduct generated by neutralization of the reaction mixture. Potassium 15 sulfate is an important fertilizer used to provide sulfur and potassium to soil.¹⁵ Hence, the proposed 16 17 process has two valuable outputs that have the potential to be a game changer in polymer recycling. 18 2 Materials and methods

19 2.1 Materials

20 Methanol (>99.9%) was provided by Fischer Scientific. Transparent PET bottles were cut in

rectangular flakes of around 0.5 cm², washed with soap, distilled water, and dried under vacuum 21

22 before reaction. Potassium and sodium hydroxide were provided by VWR chemicals (89.3 %).

23 2.2 Methods

24 2.2.1 Synthesis of terephthalic acid from PET waste

25 Approximately 0.5 g of the cut PET flakes were charged into a high-pressure vial along with 10 ml

26 of the KOH-in-Methanol (KMH) solution. The vial was closed with a hermetically sealed metallic

27 lid and placed into the microwave reactor (Initiator+ Microwave System, Biotage, Sweden). The

power was supplied in pulses until a stable temperature response was achieved. The reaction time 28 29

was taken from the moment the system reached 5 °C below the programmed temperature. The 30 system was stirred magnetically at 600 rpm. After the reaction time, 10 ml of distilled water was

31 added to dilute the "salted out" potassium methoxide that precipitated along with terephthalate salts.

32 The insoluble unreacted PET was filtered off, washed with distilled water (200 ml), dried under

33 vacuum at 80 °C, and weighed. Acid addition was stopped around pH 4. The white solid was filtered

34 off, washed with distilled water (200 ml) and methanol, dried under vacuum, and weighed.

35 PET conversion was calculated following Equation 1, where m_{un.PET} is the mass of unreacted polymer and mPET is the mass of initial polymer. TPA yield was calculated using Equation 2, where 36

- 1 m_{TPA} is the mass of TPA obtained after the reaction. The 0.874 coefficient corresponds to the ratio 2 of molar mass of TPA and the molar mass of PET-mere. The balance for mass determination of PET 3 before and after the reaction, had a resolution of ± 0.0001 g. $PET \ conversion \ (\%) = \frac{m_{un.PET}}{m_{PET}} * 100$ $TPA \ yield \ (\%) = \frac{m_{TPA}}{m_{PET} * 0.874} * 100$ 4 (1) 5 (2) 6 2.2.2 Production of dimethyl terephthalate 7 In an oven-dried high-pressure vial, approximately 2.48 g of metallic sodium was left to react with 8 methanol under an argon flux. Once the sodium was consumed, approximately 0.5 g of PET was 9 added and the system was sealed and further taken to the microwave reactor. After the reaction time, 10 ml distilled water was added. The remaining white solid was filtered off, dried and weighed, 10 while the remaining solution was neutralized to pH 4 and processed as described in 2.2.1. 11 12 2.2.3 Green chemistry calculations The energy efficiency coefficient ε is a way in which the proposed method can directly be compared 13 14 to others to verify its efficiency, and it is defined by Equation (3) where t is the reaction time (in minutes), T the reaction temperature in degrees Celsius, and Y is the yield of the main monomer in 15 mass fraction⁷. The lower the temperature and the reaction time, the higher the relative value of E. 16 The E factor is based on the environmental factor (E), proposed by Prof. Sheldon in 1992¹⁶ which 17 18 has been used in green chemistry metrics with success¹⁷ and corresponds to a simple mathematical 19 relation defining the amount of waste generated per unit product. In this work, we propose a modification of the E factor, considering that it has been established that 90 % of solvent can be 20 recycled in industrial processes¹⁸, leading to Equation (4), used to compare the E factor of different 21
- PET depolymerization works in the literature and the ones presented here. The environmental energy
 impact corresponds to the combined effect of the mass input and the energy economy as described
 in (5).

$$\mathcal{E} = \frac{Y}{T \times t} \tag{3}$$

$$E_{factor} = \frac{\left[0.1*\left(\frac{solvent}{PET}ratio\right) + \left(\frac{cat}{PET}ratio\right) + \left(other\frac{subst}{PET}ratio\right)\right]*mPET}{Vield_{Product}*\frac{MM_{Product}}{mPET}}$$
(4)

$$= \frac{E_{factor}}{2}$$
(5)

$$\xi = \frac{E_{factor}}{\varepsilon}$$

29 30

28

26

27

31

32 2.2.3 Characterizations

33 2.2.3.1 Fourier Transform Infrared (FTIR) Spectroscopy

- FTIR analyses were performed on an Alpha 1 spectrophotometer (Bruker) operated in Attenuated
 Total Reflection mode with single reflection on unreacted polymers and depolymerization products
- 36 combining 24 scans between wavenumbers 450 and 4000 cm⁻¹.

37 2.2.3.2 Thermogravimetric analysis (TGA)

- 38 TGA was performed on a Netzsch Tarsus TG209F3 using platinum pans for the polymers and
- 39 alumina pans for depolymerization product. The apparatus was equipped with a differential thermal
- 40 accessory for determination of thermal transitions. Amounts ranging from 5-10 mg were loaded in
- 41 the pans and the analyses were carried out using air as carrier gas and nitrogen as protective flow
- 42 gas for the microbalance. A heating rate of 10 °C/min was used from 30 to 900 °C.

43 2.2.3.3 Differential Scanning Calorimetry (DSC)

- 44 DSC analyses were carried out on a DSCQ2000 (TA instruments) using aluminum Tzero pans. The
- 45 analysis consisted in heating the polymer from room temperature to 280 °C, keeping the sample

- 1 isothermal for 5 min followed by rapid quenching to -60 °C, aiming to amplify the signal for the
- 2 amorphous region and to promote cold crystallization. After stabilization at -60 °C, the sample was
- 3 heated at 5 °C/min to 280 °C to determine the glass transition temperature (Tg), cold crystallization
- 4 temperature (Tcc), melting temperature (Tm) and enthalpies of cold crystallization and melting
- 5 (Δ Hcc and Δ Hm). For the analysis of the depolymerization product, a single heating cycle from
- 6 room temperature to 280 °C at 5 °C/min was applied.
- 7 2.2.3.4 Nuclear magnetic resonance (NMR) spectroscopy
- 8 The ¹H-NMR spectroscopy analyses were carried on a Spinsolve 60 Ultra (Magritek). The analyses
- 9 were carried out on products at a concentration of 20 mg/ml in deuterated DMSO as the solvent.
- 10 **3** Results and discussion

3.1 Depolymerization using Conventional heating 11

- Following the work by other authors in previous studies of adding alcohol in basic hydrolysis 12 media,^{11,19,20} we performed a comparison of the depolymerization of PET by basic solutions of 13
- potassium hydroxide in methanol, ethanol, iso-propanol, and tert-butanol in the absence of water. 14
- 15 The present method differs greatly from the approach of pre-soaking PET in organic solvents,²¹
- making the process more sustainable and straightforward as only alcohol and alkali are used. The 16
- product for all the reactions is TPA as demonstrated by FTIR spectroscopy shown in the inset image 17 in Figure 2 (the details of the absorption band attribution can be found in Table S.1). No differences
- 18
- 19 were found neither among the depolymerization products, nor the PET conversion or TPA yield for
- 20 the alcohols studied. This indicates that the alcohol itself is not the reactive species but rather acts as a medium for the alkaline catalyst, which is reinforced by the fact that the amount of acid needed 21
- 22 for neutralization of the reaction medium does not depend on the PET conversion. The efficiency of
- 23 the alcoholic medium for the hydrolysis of PET under basic conditions would be a function of its
- 24 capacity to dissolve the highest amount of base, since it is a known fact exposed in multiple studies
- that the reaction speed increased and highest conversions are reached when the base concentration 25
- 26 increases.^{10–12,14} Taking this into considering, further reactions were carried out in methanol, since it
- 27 could dissolve the highest amount of base.

28 29 Figure 2 a. PET conversion and TPA yield as a function of the alcohol for a series of analogous reactions where the 30 KOH solution was prepared in t-butanol, isopropanol, ethanol, and methanol. The reactions were performed under air 31 atmosphere using a 0.25 M concentration of base (The experiment marked with * refers to a reaction under argon 32 atmosphere). b. FITR spectra of the depolymerization products compared to commercial TPA and DMT.

33

34 The effect of the base cation was studied by comparing the performance of KOH and NaOH in 35 methanol. Figure 3a shows the PET conversion as a function of reaction time for analogous reactions 36 using NaOH and KOH keeping all the other variables constant. The reaction was significantly faster

when KOH was employed, which could be attributed to the stability of the KMH solution compared
to the low stability of NaOH in solution, a fact that is evidenced by the precipitation of NaOH at
high concentrations in methanol, which is not observed in methanolic solutions of KOH.

4 We can compare the efficiency of the KMH solution process used here with the aqueous hydrolysis

- 5 processes in published work:^{10,11} The traditional aqueous hydrolysis method took 50 h at 110 °C to
- 6 be completed without the incorporation of a phase transfer catalyst, while with use of 2 wt% of a
- phase transfer catalyst 100 % conversion of PET was achieved in 5 h. This comparison demonstrates
 the efficiency of the KMH system, which is faster and requires less energy than the aqueous
- 9 approaches. The efficiency of the KMH system was also proven in a room temperature reaction
- 10 (Figure 3c), as PET was fully depolymerized under stirring in 3 days. This performance of the KMH
- 11 system performs beyond that of other depolymerization studies at room temperature irrespective of
- 12 the solvent and catalyst system used.²²
- 13

Figure 3 **a.** PET conversion as a function of reaction time in a 1.25 M solutions of KOH and NaOH in methanol (PET:Solution 1:20 g:ml) at 80 °C. **b.** PET conversion as a function of temperature for a 1.25 M KOH/MeOH solution (PET:Solution 1:20 g:ml). **c.** PET conversion (%) as a function of reaction time at room temperature (PET:Solution 1:20 g:ml). Representative NMR spectrum of obtained TPA solid.

14

1 **3.2 Depolymerization using microwave reactor**

2 PET conversion as a function of the base concentration was monitored in order to verify the optimal 3 concentration at which microwave depolymerization could be performed with a maximum energy 4 efficiency. Figure 4 shows the PET conversion as a function of molarity of the depolymerization 5 solution for a reaction period of 3 min at 80 °C. The PET conversion increased with increasing KOH in MeOH concentration up to 1.25 mol/L, where it reached a plateau. Increasing the KOH 6 7 concentration further did not lead to a further increase in PET conversion; PET conversion even 8 showed a tendency to decrease. This behavior suggests an active participation of KOH in the reaction 9 mechanism, yet, it was verified that KOH is not consumed during the reaction, as the amount of acid 10 required for neutralizing the reaction mixture remains unaltered regardless the PET conversion. The 11 behavior of PET conversion as a function of molarity of KOH in the depolymerization solution can be explained by the saturation of the solution with the formed potassium terephthalate. The produced 12 salt requires more methanol molecules to be solvated, as a result, the remaining methanol is unable 13 to solvate all the solute, which causes the base to salt out of the solution along with terephthalate. 14 15 leading to an actual decrease of base concentration in the liquid phase with PET conversion, decelerating the reaction and thus, causing the plateau observed in Figure 4. We confirmed this by 16 17 modifying the procedure described in 2.2.1, adding a filtration step of the reaction mixture after the reaction period, which permitted to verify that the basicity of filtered solution diminished along with 18 19 PET conversion. This finding does not mean that KOH is actually consumed, it means that it leaves 20 the liquid phase, causing the observed deceleration of the reaction. Given the apparent maximum 21 for PET conversion around 1.25 mol/L KOH in MeOH, further experiments were carried out with

22 this concentration.

Figure 4 PET conversion as a function of molarity of KMH solution. Experiments were carried out at 80°C for 3 min and PET:solution ratio of 0.5 g:10 ml.

5 Optimization of the reaction time for different temperatures is presented in Figure 5, where it is 6 observed that PET conversion increased with reaction time for all investigated temperatures. Under 7 microwave reactor conditions, all temperatures studied corresponded to an exponential increase of 8 pressure, which is likely one of the factors responsible for the significant reduction in the required 9 reaction time to attain 100 % PET conversion with increasing temperature. When the reaction 10 temperature was set to 120 °C, only 1 min was required for complete PET conversion into soluble potassium terephthalate. Upon addition of water after one minute reaction time, a clear homogeneous 11 12 solution was observed as precipitated base was dissolved. On the other hand, Error! Reference 13 source not found. depicts the evolution of PET conversion as a function of temperature for different 14 reaction times under the same reaction conditions as before. It was observed that the minimum 15 temperature and time necessary for 100 % conversion of PET flakes are 4 min at 100 °C. 16

- 17
- 18
- 19

Figure 5 PET conversion as a function of reaction time for microwaves reactor with PET:Solution ratio of 0.5 g:10 ml and 1.25 M KOH in Methanol at different temperatures. Inset image shows the reaction progress for 1 min at 120 C: before reaction, showing the PET flakes; after 1 min reaction showing the "salted out" potassium methoxide and after water addition, where a transparent homogeneous mixture is observed.

3.4.3 Reaction kinetics

The activation energy for the depolymerization reaction of PET flakes was calculated by plotting the inverse of the concentration of poly(ethylene terephthalate) in the reaction system in (mol/L) as a function of reaction time. Working at four different temperatures (65, 80, 90 and 100 °C), four different slopes were obtained, which correspond to the reaction rates. Applying the Arrhenius equation (6), the activation energy for the depolymerization reaction of polyethylene terephthalate pellets using the developed KMH system was estimated to be 120.7 kJ/mol (Error! Reference source not found.B). This activation energy is in agreement with values reported for conventional hydrolysis systems, which indicates that the combination of microwaves and the developed of high pressure inside closed reaction vessels can be the cause of the outstanding performance of the proposed system.²³

$$k = Ae^{-Ea/_{RT}} \tag{6}$$

$$\ln(\ln(k)) = -\frac{Ea}{R}(\frac{1}{T})$$
(7)

1 2 3 4 Figure 6. A. Reciprocal of concentration of polyethylene terephthalate as a function of reaction time at 65, 80, 90, and 100 °C. B. Arrhenius plot for the four temperatures studied in the depolymerization reaction of polyethylene terephthalate pellets using the KMH system.

5 3.4.4 Reaction mechanism

6 The outstanding results reported in this work require a deeper explanation of the chemistry involved 7 in the reaction. Since the KOH-in-methanol solution produces potassium methoxide in an 8 equilibrium reaction, it would be expected that dimethyl terephthalate would have been produced 9 along with the terephthalic acid. However, the evidence showed that for all the temperatures studied, the depolymerization using KMH solution, produced exclusively TPA as the depolymerization 10 11 product, which is a hydrolysis product, instead of DMT, which is the methanolysis product. DSC, FTIR and NMR, demonstrated that TPA is indeed the sole product of this depolymerization process 12 without any DMT being formed. Figure 7 shows a comparison between the proposed mechanism for 13 14 the depolymerization of PET by the KMH solution and the model study in which metallic sodium is 15 dissolved in methanol, generating anhydrous sodium methoxide in situ. The depolymerization by 16 Na⁰/MeOH should lead exclusively to the methanolysis product: dimethyl terephthalate. We propose 17 that the difference in reactivity for methanolysis and hydrolysis, is explained by the higher mobility of KOH compared to potassium methoxide, which makes this reaction temperature-driven (while 18 19 methanolysis would be diffusion-driven). In order to prove this hypothesis, reactions of the Na⁰/MeOH system were performed on PET pellets using 99.9% pure methanol for 5 min, keeping 20 concentration and PET:solution proportion approximately constant (Figure 8). The experiments 21 showed a clear competition between methanolysis and hydrolysis, where high temperatures clearly 22 23 favor the hydrolysis over methanolysis, while there is a tendency for methanolysis prevalence at lower temperatures. This trend corroborates that the free OH, coming from the interaction of water 24 traces in methanol and the atmosphere, has a high mobility and reacts preferentially at higher 25 temperatures than the methoxide. Thus, the nucleophilic attack of the methoxide appears to be 26 27 diffusion driven, while the hydroxide attack is temperature driven. In order to support this further, a 28 reaction was carried out overnight at room temperature and it produced nearly 100 % DMT. The same system was tested at 80 °C using methanol pre-treated with molecular sieves, which produced 29 30 DMT in more than 80 % yield. We believe that further control over the reaction conditions can lead to a near 100 % DMT yield. 31

Figure 7. Proposed chemical reaction mechanism for the depolymerization of PET using the KMH solution and an analogous system using metallic sodium in methanol. The inset scheme shows the reaction of water traces present in the solvent and the in-situ formed

5 6 7

Figure 8. Proportion of produced TPA and DMT as a function of temperature for a competitive reaction of methanolysis-hydrolysis using the sodium/methanol system.

9 3.5 Interaction of phases and reaction velocity

10 The PET conversion and acid value of the obtained product as a function of the reaction time for the

chosen KMH system (80 °C, 1.25 M, 0.5g:10 ml) is shown in Figure 9. The virtually constant acid 11

1 value of the TPA produced throughout the length of the reaction, combined with the FTIR spectra 2 (see Supporting Information), showed that the only soluble product derived from the process is the 3 TPAK₂ salt. After the chain scission in the solid matrix, the shortened chains seem to remain in the 4 solid state so that no other insoluble product is observed. This implies that there is a chain shortening 5 and oligomers can be found at some point during the depolymerization process, however, the speed 6 of the depolymerization is such, that the reactions proceeds almost instantaneously to the TPAK₂ 7 salt. Consequently, what limits the reaction speed is the size and shape of the polymer fed to the 8 reactor (additional experiments showed that big PET pellets take a longer time to fully 9 depolymerize). The unreacted polymer, by the end of the reaction period, is affected only to a limited 10 extent (vide infra), which results in a slight molar mass loss and increase in crystallinity, a 11 consequence of the preferential attack of the depolymerization reaction in the amorphous regions. The only products are TPAK₂ (soluble) and unreacted PET (insoluble). 12

The core-shrinking model²⁴ was used as a basis to explain the high velocity observed in the 13 depolymerization reactions studied here (Figure 10). The comparative description of the aqueous and 14 15 non-aqueous media points to the possible effect of the compatibility between the reactants and the reaction medium on the velocity of reaction. In the case of the non-aqueous system, the higher 16 compatibility (translated in the higher solubility parameters encountered for PET/MeOH than for 17 PET/water) promotes the formation of a wider shrinking layer which, as a result, enables a higher 18 19 reaction rate in the reaction system, responsible for the outstanding results observed for the KMH under its ideal conditions. The conversion of PET into TPAK₂ salt is an irreversible process since 20 the dipotassium salt cannot undergo an esterification reaction with EG, methanol or even the 21 22 potassium methoxide as the carbonyl carbon is insufficiently electrophilic.²⁵ It is important to highlight that differences in solubility parameter are not the only factor that explain the outstanding 23 results, but a combination of the compatibility (augmented by the presence of a base, which can 24 interact with the carbonyls along polymer chain) and the basicity. 25

26 27

Figure 9 PET conversion and acid value of obtained TPA as a function of the reaction time for KMH depolymerization 28 at 120 C, 1.25 M and 0.5g:10 ml PET:KMH ratio. The exponential equation that fits the experimental points of the curve

²⁹ is shown (R²=0.998).

1 As observed by multiple researchers in previous work on the solvolytic depolymerization of PET,^{26–} 2 ²⁹ the chain scission occurs preferentially in the amorphous regions of PET, as confirmed by the 3 increase in melting enthalpies of unreacted PET with increasing reaction time (Figure 11A). This 4 indicates that the crystalline regions are retained longer than the amorphous ones, as the amorphous 5 regions are more rapidly attacked and converted into soluble products. The DSC plots also show 6 another particular fact: the marked inhibition of cold crystallization at around 30 s reaction time, 7 attributed to chain shortening that occurs at low reaction times. This is corroborated by differential 8 thermogravimetric analysis (Figure 11B) showing a constant shift of the T_{max} of the main degradation step to higher temperatures. Hence, the more crystalline regions (with higher degradation 9 10 temperature) become more prevalent inside the matrix as the reaction time increases.

11

12 13 14

Figure 10. Interpretation of the differences observed between reaction in aqueous and methanolic media, based on the core-shrinking model of the MKH depolymerization system over PET flakes

15

Figure 11. A. DSC plots of unreacted PET submitted to MKH depolymerization at 80 °C for different reaction times ranging from 0 to 4 min in the microwave reactor, keeping the PET:KMH solution ratio at 0.5 g:10 ml, 1.25 M. DSC analysis was performed at a heating rate of 5 °C/min. Only the second heating cycle after quenching at -80 °C is

19 shown. **B**. Differential thermogravimetric analysis for unreacted PET submitted to MKH depolymerization at 80 °C for

- different reaction times ranging from 0 to 4 min in the microwave reactor, keeping the PET:KMH solution ratio at 0.5
 - 21 g:10 ml, 1.25 M.

1 **3.4.6 Effect of water on reaction efficiency**

2 The presence of additional water in the reaction system has a negative impact on the performance of

- 3 the KMH solution. When increasing the water content up to 2.5% in the KMH solution under ideal
- 4 conditions to achieve 100 % PET conversion (1 min, 120°C), it was seen that PET conversion
- 5 decreased when the water content surpassed 1% (Figure 12). Therefore, it is important to use pure
- 6 methanol and limit the water content to below 1% in the KMH solution. Similar results were found 7 by Pham and Cho (2021),³⁰ investigating methanolysis of PET catalyzed by potassium carbonate.
- 8 They determined that excessive water (molar ratio H_2O :PET around 0.8) was able to noticeably
- 9 decrease PET conversion and even promote the competition between methanolysis and hydrolysis.
- 10 In the present work, as previously explained, the competition is favorable to the hydrolysis product,
- 11 obtaining exclusively TPA after work up.
- 12 The effect of water can be thus be explained using the aforementioned core shrinking model;
- 13 increasing water content affects the solubilization of the outer layers and causes a reduction of the
- 14 reactive shell volume thereby diminishing the reaction velocity and thus the PET conversion for
- 15 water concentrations above 1%.

Figure 12 PET conversion as a function of the water content of the KMH solution in a reaction mixture containing 0.5
g:10 ml PET:KMH (molarity of KMH solution: 1.25 mol/L at 120oC for 2 min).

19 **3.5 Industrial feasibility and green chemistry metrics**

20 Five g of PET flakes were then reacted to verify the inputs and outputs for a hypothetical industrial

21 process of PET depolymerization with the KMH system as illustrated in Figure 13, where all the in-

and outputs are displayed as a projection based on the results obtained in this work (the yields are expected to be significantly higher on an industrial scale due to reduced losses during purification).

Potassium sulfate is a commonly used salt in fertilizers, providing sulfur and potassium to the soil.

Therefore, the present process is able to produce two useful products out of PET waste. The yield of

terephthalic acid was 93.8 % and its purity was confirmed by DSC, FTIR, TGA, and NMR

27 spectroscopy (see Supporting Information). The TPA yield obtained in this work was used for the

28 calculation of the green chemistry metrics as defined in section 2.2.2. Figure 14 presents a comparison

- among the three green chemistry parameters, namely E, ε and ξ for different literature reports dealing
- 30 with PET depolymerization using microwaves. A great difference in ε factor is observed for the
- 31 present work, which exceeds by at least 6 times the best work found in literature. Paliwal and

Mugray¹⁰ used significantly higher temperatures and employed a phase transfer catalyst, a drawback in terms of green chemistry metrics. On the other hand, Căta and co-workers¹² employed significantly higher temperatures than the ones employed in the present study, which is also reflected in the green chemistry metrics. The positive chemistry metrics for the KMH systems is a decisive step forward towards the application of a feasible industrial process for chemical recycling of PET,

6 since it is fast, straightforward and energetically favorable.

8
 9 Figure 13 Upscaling of PET depolymerization by KMH system and the inputs of a hypothetical industrial process

10 Other work in the literature claims that the use of heterogeneous catalysts is a decisive factor for the implementation of chemical recycling, given the possibility of easy catalyst recovery.^{31,32}. However, 11 in our work, the catalyst is converted into potassium sulfate, a valuable byproduct in its own right 12 that could cover the lack of catalysts recovery. The ease of the current process is such that it has the 13 14 potential to be applied directly in small factories close to waste generating communities. One evident 15 environmental advantage that should make a decisive change in current chemical recycling processes is the avoidance of organic solvents such as chloroform, dichloromethane or tetrahydrofuran, making 16 the KMH solution not only less energetically demanding, but also less harmful to the environment. 17 18 This could be especially beneficial in places with environmental plastic waste problems, such as Karachi, Pakistan, a city with a serious environmental issue related to the high amount of plastics in 19 rivers and beaches, directly affecting the quality of the drinking water and the soil.^{33,34} The 20 21 development of recycling opportunities that can be implemented within local communities and use 22 local plastic waste as the resource could lead to successful management of the local environmental 23 issue while also providing economic benefits. Since plastic waste is normally heterogeneous, the present process presents important advantages 24

with respect to mechanical recycling, since the solubility of most plasticizers will permit a straightforward separation of contaminants from the desired monomers, while in a mechanical recycling process, the issue of molar mass loss will be accompanied by the presence of residual contaminants. Currently, our group works in a straightforward process that uses the KMH for mixed

29 streams of polycondensation plastics.

Figure 14. Green chemistry metrics for PET depolymerization processes found in literature using microwaves. In black, the environmental factor, in green the energy economy factor, in orange the environmental energy impact

5 **Outlook and conclusions**

6 The present work gives an insight in the properties of the KMH system for almost instantaneous depolymerization of PET. The lowest time required for complete depolymerization was 1 min at 120 7 8 °C, while the minimum temperature at which complete depolymerization was achieved was 100 °C 9 for a 4 min reaction time. Both results are breakthroughs compared to the state of the art and 10 represent a feasible option for implementation in recycling plants around the world, due to the simplicity and energy efficiency of the process, as well as the production of a fertilizer as by-product. 11 12 A swollen shrinking layer in a core shrinking model was proposed to explain the high velocity of 13 the reactions carried out using the KMH system. The higher compatibility between PET matrix and 14 depolymerization solution is believed to create a wider reactive layer, which favors the rapid 15 interaction between the base and the polymer. It was verified that amorphous regions are more 16 susceptible to reaction than the crystalline ones as verified by DSC and DTGA. The activation energy for the depolymerization reaction was estimated in 120,7 kJ/mol. The effect of water on the 17 depolymerization reaction was evaluated and revealed that the system performs well up to 1%, after 18 19 which, PET conversion suffers a significant decrease, believed to be due to a reduced solubilization 20 of the reactive outer layer and consequently the velocity of depolymerization.

21

22 Acknowledgments

The authors acknowledge financial support from Catalisti, the spearhead cluster for the chemical and plastics industry in Flanders, and Flanders Innovation & Entrepreneurship through the CoRe²

25 (Circular Use of Step-Growth End-of-Life Polymers for Monomer/Oligomer Recovery and Re-

- 26 use) project as part of the Flemish Government's Moonshot Initiative.
- 27
- 28
- 29
- 30

1 References

- Kühn, S.; van Franeker, J. A.; O'Donoghue, A. M.; Swiers, A.; Starkenburg, M.; van
 Werven, B.; Foekema, E.; Hermsen, E.; Egelkraut-Holtus, M.; Lindeboom, H. Details of
 Plastic Ingestion and Fibre Contamination in North Sea Fishes. *Environ. Pollut.* 2020, 257,
 113569. https://doi.org/10.1016/j.envpol.2019.113569.
- 113569. https://doi.org/10.1016/j.envpol.2019.113569.
 (2) Kankanige, D.; Babel, S. Smaller-Sized Micro-Plastics (MPs) Contamination in Single-Use
 PET-Bottled Water in Thailand. *Sci. Total Environ.* 2020, 717, 137232.
 https://doi.org/10.1016/j.scitotenv.2020.137232.
- 9 (3) Parashar, N.; Hait, S. Science of the Total Environment Plastics in the Time of COVID-19
 10 Pandemic : Protector or Polluter ? *Sci. Total Environ.* 2021, 759, 144274.
 11 https://doi.org/10.1016/j.scitotenv.2020.144274.
- (4) Shen, M.; Song, B.; Zeng, G.; Zhang, Y.; Huang, W.; Wen, X. Are Biodegradable Plastics a
 Promising Solution to Solve the Global Plastic Pollution ? *. *Environ. Pollut.* 2020, 263,
 114469. https://doi.org/10.1016/j.envpol.2020.114469.
- Schyns, Z. O. G.; Shaver, M. P. Mechanical Recycling of Packaging Plastics: A Review.
 Macromol. Rapid Commun. 2020, 2000415, 1–27. https://doi.org/10.1002/marc.202000415.
- Perugini, F.; Mastellone, M. L.; Arena, U. A Life Cycle Assessment of Mechanical and
 Feedstock Recycling Options for Management of Plastic Packaging Wastes. *Environ. Prog.* 2005, 24 (2), 137–154. https://doi.org/10.1002/ep.10078.
- 20 (7) Barnard, E.; Rubio Arias, J. J.; Thielemans, W. Chemolytic Depolymerisation of PET: A
 21 Review. *Green Chem.* 2021, 3765–3789. https://doi.org/10.1039/d1gc00887k.
- 22 (8) Mancini, S. D.; Zanin, M. Post Consumer Pet Depolymerization by Acid Hydrolysis. *Polym.* 23 *Plast. Technol. Eng.* 2007, *46* (2), 135–144. https://doi.org/10.1080/03602550601152945.
- Mishra, S.; Goje, A. S.; Zope, V. S. Chemical Recycling, Kinetics, and Thermodynamics of
 Poly (Ethylene Terephthalate) (PET) Waste Powder by Nitric Acid Hydrolysis. *Polym. React. Eng.* 2003, *11* (1), 79–99. https://doi.org/10.1081/PRE-120018586.
- (10) Paliwal, N. R.; Mungray, A. K. Ultrasound Assisted Alkaline Hydrolysis of Poly(Ethylene
 Terephthalate) in Presence of Phase Transfer Catalyst. *Polym. Degrad. Stab.* 2013, *98* (10),
 2094–2101. https://doi.org/10.1016/j.polymdegradstab.2013.06.030.
- 30 (11) Yamashita, M.; Mukai, H. Alkaline Hydrolysis of Polyethylene Terephthalate at Lower
 31 Reaction Temperature. *Sci. Eng. Rev. Doshisha Univ.* 2011, *52* (2), 143–148.
- (12) Căta, A.; Ștefănuț, M. N.; Ienașcu, I. M. C.; Tănasie, C.; Miclău, M. Alkaline Hydrolysis of
 Polyethylene Terephthalate Under Microwave Irradiation. *Rev. Roum. Chim* 2017, 62 (7),
 531–538.
- Mishra, S.; Goje, A. S.; Zope, V. S. Chemical Recycling, Kinetics, and Thermodynamics of
 Hydrolysis of Poly(Ethylene Terephthalate) (PET) Waste in Sulfuric Acid in Presence of
 Phosphoric Acid. *Polym. Plast. Technol. Eng.* 2003, *42* (4), 581–603.
 https://doi.org/10.1081/PPT-120023097.
- 39 (14) Civkaroskao, M.; Spaseska, D. Alkaline Hydrolysis of Poly(Ethylene Terephthalate)
 40 Recycled From the Postconsumer Soft-Drink Bottles. J. Univ. Chem. Technolology Metall.
 41 2010, 45 (4), 379–384.
- 42 (15) Li, S.; Sun, K.; Zhao, Y. Purification and Rapid Dissolution of Potassium Sulfate in
 43 Aqueous Solutions. *RSC Adv.* 2019, *9*, 2156–2161. https://doi.org/10.1039/c8ra08284g.
- (16) Sheldon, R. A. Selective Catalytic Synthesis of Fine Chemicals: Opportunities and Trends. *J. Mol. Catal. A Chem.* 1996, *107* (1–3), 75–83. https://doi.org/10.1016/13811169(95)00229-4.
- 47 (17) Sheldon, R. A. The E Factor 25 Years on: The Rise of Green Chemistry and Sustainability.
 48 *Green Chem.* 2017, 19 (1), 18–43. https://doi.org/10.1039/c6gc02157c.
- 49 (18) Sheldon, R. A. The E Factor: Fifteen Years On. *Green Chem.* 2007, 9 (12), 1273–1283.

1 https://doi.org/10.1039/b713736m.

- (19) Padhan, R. K.; Sreeram, A. 7 Chemical Depolymerization of PET Bottles via Combined
 Chemolysis Methods; Elsevier Inc., 2019. https://doi.org/10.1016/B978-0-12-811361 5.00007-9.
- 5 (20) Goje, A. S.; Chauhan, Y. P.; Diware, V. R.; Mishra, S. Microkinetics and Mass Transfer
 6 Study of Treatment of Aqueous and Alcoholic Potassium Hydroxide on Poly(Butylene
 7 Terephthalate) Waste. *Polym. Plast. Technol. Eng.* 2004, 43 (1), 177–198.
 8 https://doi.org/10.1081/PPT-120027470.
- 9 (21) Hu, L. C.; Oku, A.; Yamada, E.; Tomari, K. Alkali-Decomposition of Poly(Ethylene
 10 Terephthalate) in Mixed Media of Nonaqueous Alcohol and Ether. Study on Recycling of
 11 Poly(Ethylene Terephthalate). *Polym. J.* 1997, 29 (9), 708–712.
 12 https://doi.org/10.1295/polymj.29.708.
- 13 (22) Mittal, A.; Soni, R. K.; Dutt, K.; Singh, S. Scanning Electron Microscopic Study of
 14 Hazardous Waste Flakes of Polyethylene Terephthalate (PET) by Aminolysis and
 15 Ammonolysis. J. Hazard. Mater. 2010, 178 (1–3), 390–396.
 16 https://doi.org/10.1016/j.jhazmat.2010.01.092.
- Kao, C. Y.; Cheng, W. H.; Wan, B. Z. Investigation of Alkaline Hydrolysis of Polyethylene
 Terephthalate by Differential Scanning Calorimetry and Thermogravimetric Analysis. J. *Appl. Polym. Sci.* 1998, 70 (10), 1939–1945. https://doi.org/10.1002/(SICI)10974628(19981205)70:10<1939::AID-APP8>3.0.CO;2-G.
- (24) Bhogle, C. S.; Pandit, A. B. Ultrasound-Assisted Alkaline Hydrolysis of Waste
 Poly(Ethylene Terephthalate) in Aqueous and Non-Aqueous Media at Low Temperature.
 Indian Chem. Eng. 2018, 60 (2), 122–140. https://doi.org/10.1080/00194506.2017.1310634.
- (25) Quartinello, F.; Vajnhandl, S.; Volmajer Valh, J.; Farmer, T. J.; Vončina, B.; Lobnik, A.;
 Herrero Acero, E.; Pellis, A.; Guebitz, G. M. Synergistic Chemo-Enzymatic Hydrolysis of
 Poly(Ethylene Terephthalate) from Textile Waste. *Microb. Biotechnol.* 2017, *10* (6), 1376–
 1383. https://doi.org/10.1111/1751-7915.12734.
- (26) Nica, S.; Duldner, M.; Hanganu, A.; Iancu, S.; Cursaru, B.; Sarbu, A.; Filip, P.; Bartha, E.
 Functionalized 1,5,7-Triazabicyclo [4.4.0] Dec-5-Ene (TBD) as Novel Organocatalyst for
 Efficient Depolymerization of Polyethylene Terephthalate (PET) Wastes. *Rev. Chim.* 2018,
 69 (10), 2613–2616. https://doi.org/10.37358/rc.18.10.6591.
- 32 (27) Liu, B.; Fu, W.; Lu, X.; Zhou, Q.; Zhang, S. Lewis Acid-Base Synergistic Catalysis for
 33 Polyethylene Terephthalate Degradation by 1,3-Dimethylurea/Zn(OAc)2 Deep Eutectic
 34 Solvent. ACS Sustain. Chem. Eng. 2019, 7 (3), 3292–3300.
 35 https://doi.org/10.1021/acssuschemeng.8b05324.
- 36 (28) Musale, R. M.; Shukla, S. R. Deep Eutectic Solvent as Effective Catalyst for Aminolysis of
 37 Polyethylene Terephthalate (PET) Waste. *Int. J. Plast. Technol.* 2016, 20 (1), 106–120.
 38 https://doi.org/10.1007/s12588-016-9134-7.
- Jain, A.; Soni, R. K. Spectroscopic Investigation of End Products Obtained by
 Ammonolysis of Poly (Ethylene Terephthalate) Waste in the Presence of Zinc Acetate as a
 Catalyst. J. Polym. Res. 2007, 14 (6), 475–481. https://doi.org/10.1007/s10965-007-9131-9.
- 42 (30) Pham, D. D.; Cho, J. Low-Energy Catalytic Methanolysis of Poly(Ethyleneterephthalate).
 43 *Green Chem.* 2021, 23 (1), 511–525. https://doi.org/10.1039/d0gc03536j.
- Kotecha, M.; Veeman, W.; Rohe, B.; Tausch, M. NMR Investigations of Silane-Coated
 Nano-Sized ZnO Particles. *Microporous Mesoporous Mater.* 2006, 95 (1–3), 66–75.
 https://doi.org/10.1016/j.micromeso.2006.04.017.
- 47 (32) Zhao, Y.; Liu, M.; Zhao, R.; Liu, F.; Ge, X.; Yu, S. Heterogeneous CaO (SrO, BaO)/ MCF
 48 as Highly Active and Recyclable Catalysts for the Glycolysis of Poly(Ethylene
- 49 Terephthalate). *Res. Chem. Intermed.* **2018**, *44* (12), 7711–7729.

- 1 https://doi.org/10.1007/s11164-018-3582-y.
- 2 3 Iqbal, M.; Syed, J. H.; Breivik, K.; Chaudhry, M. J. I.; Li, J.; Zhang, G.; Malik, R. N. E-(33) Waste Driven Pollution in Pakistan: The First Evidence of Environmental and Human 4 Exposure to Flame Retardants (FRs) in Karachi City. Environ. Sci. Technol. 2017, 51 (23), 13895-13905. https://doi.org/10.1021/acs.est.7b03159.
- 5 6 7 8 9 (34) Khan, S.; Alvarez, L. C. M.; Wei, Y. Sustainable Management of Municipal Solid Waste Under Changing Climate : A Case Study of Karachi, Pakistan. Asian J. Environ. Sci. *Technol.* **2018**, *2* (1), 1–9.