
Supporting Data-Aware Processes with MERODE

Monique Snoeck1[0000-0002-3824-3214],Johannes De Smedt1[0000-0003-0389-0275], and Jochen De
Weerdt1[0000-0001-6151-0504]

1 KU Leuven, Belgium
{monique.snoeck, johannes.desmedt, jochen.deweerdt}@kuleuven.be

Abstract. Most data-aware process modelling approaches have been developed
from a process perspective and lack a full-fledged data modelling approach. In
addition, the evaluation of data-centric process approaches reveals that, even
though their value is acknowledged, their usability is a point of concern. This
paper presents a data-aware process modelling approach combining full-fledged
domain modelling based on UML class diagrams and state charts with BPMN.
The proof-of-concept has been implemented using the MERODE code generator,
linking the resulting prototype application to a Camunda BPM engine, making
use of RESTful web-services. The proof of concept is evaluated against 20 re-
quirements for data-aware processes and demonstrates that the majority of these
are already satisfied by this out-of-the-box prototyping approach.

Keywords: Conceptual Modelling, Process modelling, Data-Aware Processes,
Model-Driven Engineering.

1 Introduction & motivation

For many years, data modelling, process modelling, and decision modelling have
evolved as largely separate worlds, focusing on the respective modelling languages and
methods, having different communities, conferences, and publication outlets [1]. While
this "separation of concerns" allows focusing on the particularities of each domain, such
silo-based approach comes with drawbacks as well. Data and processes are two con-
cerns that underly different architectural viewpoints of a same system and integration
is thus required to ensure consistency and correctness [2]. Architectural descriptions
should come with defined correspondences and ensuing correspondence rules to ex-
press, record, enforce and analyse consistency between models and views. From an
enterprise engineering perspective, defining the essential business concepts and their
relationships through domain modelling and defining how the business operates
through process modelling, should go hand in hand. Both perspectives should be aware
of and integrated with the other perspective.

In recent years the importance of data aspects has been acknowledged by the process
modelling community, and several approaches have been proposed, see [3]–[5] for
overviews. Most of this research was initiated by experts from the process modelling
domain, focusing on how to make processes data-aware, e.g. through case-based ap-
proaches [6], artefact-centric approaches [7], [8], object-centric approaches [9],

2

developing connections to a database [10], or focusing on developing support for veri-
fying process properties such as safety, liveness, etc., see for example [11], [12].

While research on data-ware processes provides progress towards an integrated ap-
proach, how data is addressed largely varies between approaches [3]. A full-fledged
domain modelling approach focuses on defining business objects and their associations
so as to provide an enterprise-wide definition of business concepts, as a common lan-
guage shared by all business domains, and hence all business processes. A global per-
spective on the relationship between process modelling and domain modelling is still
missing (e.g. in terms of an integrated meta-model), as well as a practical approach for
modelers on how to tackle the balance between process modelling and domain model-
ling: what should come first, how are the models related to each other, and how do
modelling decisions in one of the views affect the other view.

The goal of this paper is to investigate a data-aware process modelling approach that
assumes the existence or joint development of a full-fledged domain model. In partic-
ular, the MERODE modelling method provides an approach to domain modelling [13]
based on the Unified Modelling Language (UML), and formally grounded in process
algebra [14]. While the MERODE-approach captures behavioural aspects through ob-
ject lifecycle modelling and object interactions, it nevertheless also suggests the use of
a business process layer to handle user and work-related aspects. Combining MERODE
with process modelling results in data-aware process modelling, but -as opposed to
most current approaches- the domain modelling is considered in its own right, rather
than in function of process modelling. This paper contributes to the current state of the
art by 1) providing a data-ware process modelling approach that relies on full-fledged
domain modelling, 2) providing a concrete proof of concept for this suggested combi-
nation and 3) evaluating the resulting approach against the criteria presented in [4].

The remainder of this paper is structured as follows. Section 2 presents the state of
the art on research that combines the process and data perspective. Section 3 describes
the proposed approach based on the running example of [4]. Section 4 presents a de-
tailed evaluation of the approach along the criteria defined in [4]. Section 5 presents a
discussion and Section 6 concludes the paper.

2 Related work

In 2019, a systematic literature review on data-aware process modelling covering the
period up till 2016 was published [3]. This review identified 17 different approaches to
data-centric process modelling, described in 38 primary studies. While 13 papers relate
to the Artefact-Centric approach proposed in [7], many other approaches have been
developed as well. The results of this literature review also show that nearly each of the
identified approaches have defined their own particular data representation construct.
While some could be unified under the denominator of "Object" or "Entity", there still
remains quite a large variation, and chosen constructs may not map to standard concep-
tual data modelling practices such as entity-relationship modelling or conceptual UML
class diagrams. For example, certain approaches work on unstructured data like docu-
ments [15], others use Petri Nets to represent data [16]. As the authors state "a general

3

understanding of the inherent relationships that exist between processes and data is
still missing" [3].

Running the same query again in Web of Science and Scopus for the period 2017-
2020 yielded 9 unique papers, 5 of them addressing an aspect of the artefact-centric
approach (e.g. [17], [18]) or a specific subtopic of data and process integration like
consistency, instance migration, the use of ontologies or process adaptation (e.g. [19]).
No fundamentally new approach has been proposed.

A major drawback of some data-aware process modelling approaches is that data is
often considered on a per-process basis (e.g. by only modelling the data relevant for the
process at hand, see language requirement 3 in [20], or [19]). In some approaches a
global domain model is considered as a given, and data-awareness mainly resides in
bridging the process model to an existing data model, e.g. by developing a data query-
ing and manipulation language to allow for data-aware process execution such as
DAPHNE [10]. In [21] the notion of Artefact acts as a collection of process variables
to be associated to a process instance, and serves as interface between the process model
and the classes in a pre-defined data model. While providing a practical solution to
process execution, this does not constitute a fully data-aware process modelling ap-
proach, where process models are inherently aware of the enterprise-wide conceptual
data model of the domain in which they operate [22].

Process-aware domain modelling on the other hand, seems a largely unexplored
topic. In object-oriented (OO) conceptual modelling (as e.g. in OO-Method [23] and
MERODE [13]) business objects can have a state chart imposing sequences on the in-
vocation of an object's low-level methods that manipulate its data. Business process
modelling is absent or not fully elaborated. Artefact-centric modelling (e.g. [7], [24])
equips business artefacts with a lifecycle, and considers that the business processes re-
sult from the composition of services, which are associated to the business artefacts and
their lifecycles through associations. Both in the OO approach and in artefact-centric
approaches, object lifecycles capture behavioural aspects on a per-object/artefact basis,
but are not meant to address the user perspective and defining work organisation as
business processes, which was one of the motivations behind the PHILharmonicFlows
approach [9].

In terms of integrating the process and data perspective, a significant amount of re-
search has been performed in consistency verification, e.g. [25], [26], [12]. While for-
mal verification may provide useful support for modellers to verify their work, most of
the approaches are formal, not intuitive nor practical from a business point of view [12].
Even the most practical approach does not come with a priori guidelines providing
modellers intuitive insights in the relationship between constraints embodied by the
conceptual data model and those included in the process model. The survey published
in [5] reveals that even though the value of data-centric approaches is acknowledged,
their usability remains a point of concern. Moreover, as previous research has demon-
strated UML class diagrams and BPMN to be practitioners' favourite languages [27], it
makes sense to look for a solution based on UML and BPMN.

4

3 Integrating Process and Domain modelling

3.1 Architectural Layers

Combining data and process modelling boils down to a multi-modelling approach,
where each model captures a specific viewpoint of the architecture [2]. Typical view-
points are:

• VP1 - the data or business objects viewpoint, addressing the information that a busi-
ness creates and maintains;

• VP2 - the business object behaviour viewpoint, addressing the relevant states in the
life of a business object, from its creation to its final disposition and archiving;

• VP3 - the shared services viewpoint, describing how a service may provide access
to information or perform changes to one or more business objects;

• VP4 - business process behaviour viewpoint addressing units of work and how these
are combined to coarser-grained processes and governed by constraints such as task
precedence;

• VP5 - business actor viewpoint, addressing the distribution of work across actors;

A good practice from a software architecture perspective, is to organize software
into layers. Typically, layers address specific viewpoints, and layers implementing sta-
ble aspects of a system are positioned in the kernel of the software architecture, whereas
elements with higher needs for flexible adaptation should be implemented in outer lay-
ers [28]. Business processes are typical examples of elements with a higher need for
flexible adaptability, whereas the data layer tends to be more stable. Above-mentioned
viewpoints would typically be arranged as shown in Fig. 1. Current data-aware process
approaches do not address all these viewpoints explicitly. And while it may be useful
to allow bypassing layers (e.g. for performance), it is a
good practice to avoid direct access to a database and
instead install intermediate services layers (VP3) to
isolate the business process layer from the persistence
layer [28]. Many current data-aware process ap-
proaches however, let business process activities di-
rectly access the data layer, thus skipping the shared
service layer (VP3). Artefact-centric approaches do not
have a separate process layer. In BALSA [7], the Busi-
ness Artefacts and the Lifecycles address VP1 and VP2. VP4 is addressed by the Ser-
vices that define units of work, and the Associations that may define constraints gov-
erning the services' access to artefacts thus defining (among others) precedence rela-
tionships between services. VP3 and VP5 are not addressed. In BAUML [21], the class
diagram and state charts address VP1 and VP2. Activity Diagrams address the associ-
ations and OCL is used to define contracts for services. This allows addressing aspects
of VP4. VP3 and VP5 are not addressed. In approaches that combine process modelling
with access to data (e.g. [10]), the process model addresses VP4 and VP5 and the data
model captures the data viewpoint (VP1). Artefact behaviour (VP2) is not captured.

Fig. 1. Software Layers

Business Processes: VP4 + VP5

Shared Services: VP3

Data (Persistence): VP1

Business Logic: VP2

5

PHILharmonicFlows [9] combines a data model (VP1) with Object Life Cycles (VP2)
that define micro-processes, and defines macro processes too (VP4). Authorisations
address VP5. VP3 is not addressed.

3.2 Layers in the MERODE approach

The MERODE method follows the
principles of layers and identifies three
major layers: the Enterprise layer (EL) is
the bottom layer, the Business Process
layer (BPL) is the top layer and in be-
tween sits an Information System Ser-
vices layer (ISL). The Enterprise layer
(EL) itself contains two sublayers. Busi-
ness Objects are stored in the domain
layer (DL). Additional logic is defined in
the Object Life Cycles (OLCs). Transi-
tions in OLCs are triggered by events, in
MERODE called "Business Events". An
Event-Handling Layer (EHL) offers an interface to invoke events and routes these to
the relevant Business Objects that will handle the event by means of a corresponding
operation effecting the required state changes. In between the EL and BPL sits the In-
formation System Services layer (ISL) offering shared input and output services to ac-
cess the EL. Output services allow querying the attributes and states of business objects.
Input services capture input data but do not directly invoke operations on business ob-
jects. Rather, they achieve the requested operations by triggering one or several busi-
ness events via the EHL. The business events and their handling through an EHL allows
combining the advantages of an event-driven architecture with the advantages of the
layered architecture, while also managing the transitioning to consistent states [29].

The use of Business Events and an intermediate Event Handling layer is an important
distinctive characteristic of the MERODE approach. Whereas usually a business pro-
cess task's operational logic is defined in terms of SQL operations [10] or micro-pro-
cesses defining read and write accesses to objects' attributes [9] (Fig. 3 left), in
MERODE, the connection between the business process layer and the domain layer (or
database layer) happens through the intermediary of input and out services and business
events (Fig. 3, right). Input services can be kept simple or can incorporate logic that is
reusable across different variants of similar tasks. Where to put what logic in view of
balancing flexibility against business logic enforcement is discussed in [13], chapter 10

Fig. 3. Connecting the BPL to Data Objects: current approaches (left) vs. MERODE (right)

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

TASK2

Input
Service

Output
Services

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

CLASS
Operation 1
Operation 2

EventTASK1

SQL
(Read)

SQL
(Read)

TASK1

Fig. 2. MERODE layers: BPL (green), ISL

(yellow), EL (blue) with two sublayers:
EHL and DL.

EL

EHL: Business Event
Handling (VP3)

ISL: Input Services (VP3)

BPL: Business Processes (VP4 + VP5)

DL: Business Objects
Data (VP1) + Lifecycles (VP2)

ISL:
Output
Services

(VP3)

6

3.3 Example

We illustrate the proposed approach by means of the recruitment process from [4]. The
example describes a process of people applying for a job, requiring reviews of their
application forms before deciding to hire the candidate or not1. The following para-
graphs describe the MERODE domain model used to generate the EL and ISL and how
it can be connected to a BPL.

The MERODE Domain Model (EDG, OET and FSMs).
In the EL, the domain model defines the business objects and their associations by

means of a UML class diagram in which all associations express existence dependency,
therefore also called "Existence Dependency Graph" (EDG). It is obtained by means of
systematic association reification for all associations that do not express existence de-
pendency, thus identifying important "relators"[30] as explicit business concepts. For
the given case, the class diagram
is shown in Fig. 1. Each class in
the class diagram is also equipped
with a State Chart (Finite State
Machine, FSM).

MERODE defines business
events as phenomena shared be-
tween the real-world and the in-
formation system, and operationalises these as call
events (a subcategory of message events) that may
trigger state changes in several business objects. The
mapping of Business Events to Business Object
types is captured through the Object-Event table
(OET), where each cell indicates the type of state
change that may be caused by the business event: C
(creation), M (modification), or E(Ending). A
marked cell thus means that the class of the corre-
sponding column needs an operation to handle the
event of the corresponding row.

The propagation rule defines a correspondence
between the EDG and the OET: a master object will
always be affected (at least indirectly) by the events
affecting its dependents. This indirect participation
is labelled 'A' (from Acquired), whereas the most
dependent object affected by a business event is la-
belled as 'Owner' (O) of a business event. For exam-
ple, 'decideToHire' is owned by Application, but
will indirectly also affect the related Job as indicated
in Fig. 5.

1 For the ease of reading, the description can also be downloaded here.

Fig. 4. UML class diagram (EDG)

Fig. 5. OET

http://merode.econ.kuleuven.ac.be/cases/RecruitmentProcess.pdf

7

Object behaviour is defined by means of FSMs showing how the events will cause
state transitions. Each object type has a default lifecycle consisting of creating an object
(triggered by any of the */C business events), having an arbitrary number of modifica-
tions in a random order (triggered by its */M events). Transitions triggered by a */E
business event bring the object to the final state. A more specific FSM can be defined
when needed. Fig. 6 show the FSMs for Review, Applications and Job. Interview has a
default lifecycle. Because of the fact that a same business event may be reacted upon
by several business objects, objects will synchronise and interact by means of joint
participation to business events. The propagation rule allows a master to adjust its state
upon activities and/or to restrict activities of its dependent object types. For example,
the lifecycle of Application shows how events relating to reviews can only happen after
an application has been considered eligible, and new reviews cannot be initiated once
a final decision to hire or not to hire has been taken. In the lifecycle of Job, the decision
to hire a candidate will cause a state change for the job ensuring that other candidates
can no longer be hired.

Fig. 6. Lifecycles of Application, Job and Review

The business process layer: Business process models
Activities in the business processes may invoke the output and input services to ob-

tain information from the data layer and update information. While the EL captures
behaviour on a per business object type basis, the BPL will capture other aspects of
behaviour relating to users, task attribution and permissions. Assume the process for
collecting reviews for a PhD candidate depicted in Fig. 7. The Faculty's HR consultant
will start the process when an application arrives. The task "Check Eligibility" will use
an output service to inspect the application file and then use an input service to trigger
either the EVsetEligible or the EVsetIneligible business event for this application (see
explanations in section 3.4). A review by the International Office is only needed in case
of international candidates. This aspect relates to work organisation, and the criteria to
request a review by International Office may change over time. By managing these
criteria in the BPL, maximal flexibility for adjusting the criteria for performing this task

8

is ensured. The next task of the HR Consultant is to ask for reviews from three profes-
sors, to be looped until three professors have accepted. Each professor may accept or
refuse the request. As opposed to the solution proposed in [4], we choose not to model
acceptance and refusal of the tasks as part of the lifecycle of the review object type. A
Review object will only be created when the Reviewer actually writes a review. The
reviews requests are thus distinguished from the actual reviews, the former being man-
aged in the BPL and the latter being persisted and managed in the EL. The "Write Re-
view" task may include updates if a professor decides to take time to think it over, and
will be concluded by submitting the review. Thus, the task "Write Review", be it exe-
cuted by International Office or by a professor, will trigger the business event "create
review" when started, possibly trigger a number of "update motivation" events during
its execution, and finally end by triggering a "submit" business event. The invocation
of these events through the event-handling layer will trigger the necessary changes in
the data layer while being subject to the constraints defined by the associations, multi-
plicities and FSMs in the EL. Connecting the BPL to the EL happens by means of a
table mapping tasks to input and output services, as explained in [13], chapter 10. This
technique suffices for simple one-to-one mappings. A more complex mapping would
require integration with MERODE's extension for UI Design [31].

Fig. 7. Business Process for collecting reviews

3.4 Proof of Concept of Model integration

MERODE allows generating Java applications as prototypes of the EL with default IS
services in an ISL. Assume the steps of reviewing an application and taking a decistion.
Fig. 8 on the left shows the layered structure of such application. The generated Java
Swing interface allows to "View" the details of an Application () and from there to
navigate to the details of its Reviews (). The User Interface (UI) accesses the objects
making use of SQL. When a decision is taken to hire a candidate, a corresponding but-
ton will trigger the "EVDecideToHire" event (). The event-handler will check the
permissibility of hiring the candidate against the status of that application (). If al-
lowed, the state changes are performed by invoking the corresponding class's operation
(). The result (error or success) is notified to the UI ().

9

To add a BPL layer, we used the Camunda BPM platform and the Camunda Mod-
eler. Camunda2 was chosen for being open source Java-based and providing a free
demo account. In the Camunda BPM platform, Tasklists manage users' interactions
with their tasks; The Camunda Cockpit web application presents the users facilities to
monitor the implemented process and its operations; Camunda Admin is used to man-
age the users and their access to the system. For example, groups can be created and
different authorizations can be managed for distinct participants.

To connect the MERODE application to the Camunda BPM platform, the EL and
the EHL are wrapped and exposed as REST web-services by using the corresponding
code-generator's option [32]. The Java user interface is then replaced by Camunda Task
Forms and Service Tasks. The forms take the structure of an HTML document and
manipulate business objects through the RESTful web services [33]. For now, these
are created manually, but they could be generated from UI models [31]. Fig. 8, right
shows the corresponding layered structure. The EHL ensures that sequences constraints
as specified in the lifecycles are respected. The MERODE checking algorithms ensure
that these lifecycles together define deadlock-free system behaviour [14].

Fig. 8. Layered architecture of a generated Java prototype (left) and after integration with a BP

Engine (Right).

4 Evaluation

To evaluate to what extent the combination of MERODE and BPMN may support data-
aware process modelling, we evaluate the prototype resulting from combining a gener-
ated MERODE-application interacting with a Camunda BPM engine through REST
interfaces against the 20 requirements formulated by Künzle et al. [4]. These require-
ments are developed around four sets of important properties for object-aware pro-
cesses. First, we elaborate on these four properties. Then, the different requirements are
evaluated one by one.

2 https://camunda.com/

10

4.1 General properties

Properties relating to data. Data should be managed based on object types (includ-
ing attributes) which are related to each other. The EDG-part of the MERODE model
addresses these requirements. Furthermore, [4] identifies a hierarchy between objects,
whereby an object that references another object is considered a "lower level" object
and the referred to object the "higher-level" object, e.g. a job application being the
higher-level object instance of a set of associated reviews. This corresponds exactly
with the notions of master and dependent as specified in the MERODE method, where
the Job object type would be the master of the Application object type, which in turn is
the master of Review and Interview object types.

Properties relating to activities. The different types of activities that are identified
in [4] can be addressed. Per default the triggering of a single business event, and there-
fore input tasks relating to a single instance, are supported, as well as viewing the details
of individual objects or lists of objects and navigating to related objects. While not
provided per default in the prototype, more complex queries and transactions triggering
multiple events can be programmed (cfr. chapter 9, [13]).

Properties relating to processes. The modelling and execution of processes is
based on two levels of granularity: object behaviour and object interactions, a require-
ment that is satisfied by the MERODE method. In addition, the ISL and BPL allow for
defining coarser-grained levels of behaviour (complex transactions and processes).

Properties relating to users. The notion of a user is not part of a default prototype
MERODE-application: per default any user has access to any operation. But the Ca-
munda Admin can be used to manage the users and their access to the system.

Monitoring. The overall state of the process is made transparent by means of default
output services allowing to view the state of individual objects. If needed, specific que-
ries can be run on the database to provide for more specific reports. The Camunda
Cockpit provides additional information.

4.2 Individual Requirements

In what follows, we go over the different categories in more depth and clarify the
twenty different requirements for the evaluation of the prototype. A requirement is la-
belled  when already fully satisfied by the proposed approach;  when minor ex-
tensions or adjustments would be needed,  when complex adjustments or extensions
would be required the basic ideas of which have already been described, and with a ''
if not supported.

Data.
R1 (data integration, ) describes the need for data objects that should comprise

attributes and have connections to other objects [4]. This requirement is met by the
MERODE EDG which presents the connected structure of the business object types.

R2 (Access to data, ) pertains to authorisations. While the Camunda Admin allows
managing this partly, data-based authorisation management would require setting an
authorisation system in place. Full satisfaction of this requirement is possible, but it is

11

not yet satisfied by the out-of-the-box approach.
R3 (cardinalities, ) requires the possibility to set cardinalities on relationships. The

MERODE-approach allows setting a minimum constraint of 1, but for maximal con-
straints higher than 1, it uses the UML default of many (denoted as "*"). Setting a spe-
cific maximum number larger than one is possible but would require (straightforward)
application specific coding. This requirement is thus largely satisfied.

R4 (mandatory information, ) requires the ability to distinguish between optional
and mandatory attributes and to forbid proceeding further when mandatory attributes
are missing. Per default, the generated code considers all attributes mandatory and will
refuse the entering of incomplete data. Allowing for optional attributes is straightfor-
ward when hand coding or with minor adaptations of the code generator.

Activities.
R5 (Form-based activities, ) defines form-based activities as “comprising a set

of atomic actions. Each of them corresponds to either an input field for writing or a data
field for reading the value of an object attribute”. Making use of the REST interfaces
and custom UIs, any type of form can be developed, or even generated automatically
at runtime. Thus, R5 is satisfied through custom development.

R6 (black-box activities, ) activities enable complex computations or integration
of advanced functionalities (e.g., sending e-mails or invoking web services). This re-
quirement can be satisfied through custom coding and using the REST interfaces.

R7 (Variable granularity, ) requires the ability to distinguish between instance-
specific, context-sensitive and batch activities so that users can to choose the most suit-
able action. The EL and ISL layers allow for providing these services, but to allow users
choosing at run-time, CMMN should be used for the BPL rather than BPMN.

R8 (Mandatory and optional activities, ). Both at the level of FSMs, and at the
level of the Business Processes, mandatory and optional events/activities can be de-
fined. E.g. asking a review by International Office, may or may not be requested.

R9 (Control-flow within user forms, ) refers to adjusting the mandatory or op-
tional character of an attribute on-the-fly while a user fills a form. Task Forms in Ca-
munda allow for making certain attributes mandatory for the execution of an activity.
The on-the-fly aspect of the requirement requires some custom-made logic.

Processes
R10 (Object behaviour, ) requires object type behaviour to be defined in terms

of states and transitions. This requirement is obviously satisfied. Driving process exe-
cution based on states needs to be implemented at the business process layer, e.g. by
means of rule-based events that react to conditions becoming true.

R11 (Object interactions, ) requires the possibility to process object instances
concurrently while synchronising them when needed. In MERODE, creation depend-
encies are naturally enforced through the rules on existence dependency. A master ob-
ject also has access to all information of its (direct and indirect) dependents, thus satis-
fying the need for aggregative information. Execution dependencies, e.g. when switch-
ing an object instance to a certain state depends on the state of another object instance,
can be enforced by a master object managing execution sequences across all its

12

dependents. Some execution dependencies may need to be managed by defining trans-
actions that group events, or by defining a process that implements the required logic.
For example, initiating a re-order when a product is out of stock would be implemented
in the BPL, while the hiring of a candidate resulting in the automatic rejection of other
candidates can be implemented as a transaction in the ISL.

R13 (Flexible process execution, ). When using BPMN to define the processes,
flexibility of processes as described by Künzle et al. will not be possible. A possible
solution could be using a case-based approach instead of BPMN.

R14 (Re-execution of activities, ) states that the re-execution of activities should
be allowed, even if mandatory attributes are already set. The example that a person may
change his/her application arbitrarily often until s/he explicitly agrees to submit it, is
modelled by the self-loop 'EVmodApplication' in the Application FSM.

R15 (Explicit user decisions, ) requires allowing users to choose between execu-
tion paths. In the proposed approach, this would boil down to having gateways relying
on user decisions rather than data to choose the next activity. Such user-based decisions
could be captured by combining BPMN with DMN [34]. This is thus only partly satis-
fied by the proposed approach, unless DMN-support would be added.

User Integration
R16-R19 () deal with different forms of authorisations. Camunda offers a number

of functionalities relating to the authorisations. A full-fledged authorisation system,
combining the notions of user roles, their tasks and access to the required data is beyond
the scope of the current proof-of-concept. The general design of such authorisation sys-
tem has been described in [13], yet a practical implementation has not been made yet.
These requirements are therefore considered as not yet satisfied.

Monitoring
R20 (Aggregated view, ) states that process monitoring should provide an ag-

gregated view of all object instances involved in a process as well as their interdepend-
encies. The database in the MERODE-application provides information about the ob-
jects, their dependencies and their states. The Camunda Cockpit provides information
on tasks and users. Event logging is another source of information that may provide
useful insights.

In summary, most requirements are at satisfied immediately or easily by the out-of-
the box approach, though custom coding may be needed in addition to the default code
generation. The addition of an authorisation layer (R2, R16-19) and support for differ-
ent forms of flexibility (R7, R13, R15) need elaborating the approach further.

5 Discussion

Ideally, process modelling should be "data-aware" in the sense that an existing domain
model is presumed to exist or to be developed jointly. Possibly process modelling may
require revisiting the domain model. Similarly, domain modelling should be conscious

13

of the business processes that need to be supported. As constraints set by a domain
model will impact processes, the conceptual domain modeller should be aware of which
processes are hindered or made possible in order to make the right decisions during
his/her data modelling.

The main limitation of this research is that it limited itself to an out-of-the-box im-
plementation using the default application generated by the MERODE-code generator
and linking it to simple Camunda service and form tasks by means of the default REST
web-services generated by the code generator. Nevertheless, this basic proof-of-con-
cept combining MERODE with BPMN is able to satisfy a majority of the 20 require-
ments defined in [4]. This comes as no surprise given that the MERODE approach con-
tains the main ingredients defined in the BALSA framework [7]. Augmenting the pro-
posed architecture with DMN, and providing integration of MERODE with a case-
based approach next to BPMN, could help to achieve the for now unsatisfied require-
ments on process flexibility. Investigating Camunda Admin's possibilities more deeply
and implementing a data-based authorisation system requires further investigation and
would be key to satisfy the authorisation-related requirements.

The review of data-centric approaches in [5] reveals that their usability is a source
of concern. On the other hand, research also shows that UML-class diagrams and UML
state charts are amongst the most-used modelling languages [27]. Combining these
"modelling favourites" with BPMN could meet the usability concerns and stimulate the
uptake of data-centric process management. Teaching of the MERODE + BPMN ap-
proach to students and to Enterprise Architects has already proven its ease of use. En-
terprise Architects in particular value the innate data-centric process aspects embedded
in the MERODE approach.

The whole process of generating and starting the web services, setting up the con-
nection with Camunda, etc. requires several steps [33], but could ideally be done with
less hazzle. The utopian goal would be to achieve this through code generation as well,
to allow for process validation through the integrated prototyping of a collection of
processes and the supporting information system with just a few clicks.

Finally, process verification has not been addressed in this paper. The process alge-
bra formalisation of MERODE provides extensive consistency checking [35], but
checking the consistency of the combined state charts against a business process model
needs further investigation. An initial study has been published in [36], but requires
further extension to achieve support for process verification as a complement to the
above-mentioned validation through integrated prototyping.

6 Conclusion

While being preliminary, the proof-of-concept of MERODE and Camunda presented
in this paper provides interesting opportunities to elaborate its functionalities. Consid-
ering other process implementation platforms and augmenting the proposed approach
with DMN can provide additional pathways for future research. On the other hand,
addressing the authorisation issues could prove a challenge. Besides addressing the un-
fulfilled requirements, development of a proof of concept with more complex models

14

including completing the generated code by hand and using more elaborate BPMN
models would allow to gain deeper insights into the merits of this combination. A for-
mal evaluation of the approach could shed light on remaining issues, and how to make
data-centric process management easier to use.

References

[1] F. Hasić, J. De Smedt, and J. Vanthienen, “Augmenting processes with decision intelligence:
Principles for integrated modelling,” Decis. Support Syst., vol. 107, pp. 1–12, 2018.

[2] “ISO/IEC/IEEE 42010:2011 Systems and software engineering — Architecture description.”
[Online]. Available: https://www.iso.org/standard/50508.html. [Accessed: 11-Jan-2021].

[3] S. Steinau, A. Marrella, K. Andrews, F. Leotta, M. Mecella, and M. Reichert, “DALEC: a
framework for the systematic evaluation of data-centric approaches to process management
software,” Softw. Syst. Model., vol. 18, no. 4, pp. 2679–2716, 2019.

[4] V. Künzle, B. Weber, and M. Reichert, “Object-aware business processes: Fundamental
requirements and their support in existing approaches,” in Frameworks for Developing
Efficient Information Systems: Models, Theory, and Practice, J. Krogstie, Ed. Hershey, PA:
IGI Global, 2013, pp. 1–29.

[5] H. A. Reijers et al., “Evaluating data-centric process approaches: Does the human factor
factor in?,” Softw. Syst. Model., vol. 16, no. 3, pp. 649–662, 2017.

[6] S. Haarmann, A. Holfter, L. Pufahl, and M. Weske, “Formal Framework for Checking
Compliance of Data-Driven Case Management,” J. Data Semant., 2021.

[7] R. Hull, “Artifact-Centric Business Process Models: Brief Survey of Research Results and
Challenges,” in On the Move to Meaningful Internet Systems: OTM 2008, 2008, pp. 1152–
1163.

[8] D. Calvanese, M. Montali, M. Estañol, and E. Teniente, “Verifiable UML Artifact-Centric
Business Process Models,” in Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management, 2014, pp. 1289–1298.

[9] V. Künzle and M. Reichert, “PHILharmonicFlows: Towards a Framework for Objectaware
Process Management,” J. Softw. Maint. Evol. Res. Pract., vol. 23, no. 4, pp. 205–244, 2011.

[10] D. Calvanese, M. Montali, F. Patrizi, and A. Rivkin, “Modeling and In-Database
Management of Relational, Data-Aware Processes,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11483 LNCS, pp. 328–345,
2019.

[11] A. Artale, D. Calvanese, M. Montali, and W. M. P. van der Aalst, “Enriching Data Models
with Behavioral Constraints,” Ontol. Makes Sense, vol. 316, no. Dynamics 365, pp. 257–277,
2019.

[12] M. Estañol, M. R. Sancho, and E. Teniente, “Ensuring the semantic correctness of a BAUML
artifact-centric BPM,” Inf. Softw. Technol., vol. 93, pp. 147–162, 2018.

[13] M. Snoeck, Enterprise Information Systems Engineering, vol. 141. 2014.
[14] M. Snoeck and G. Dedene, “Existence dependency: The key to semantic integrity between

structural and behavioral aspects of object types,” IEEE Trans. Softw. Eng., vol. 24, no. 4,
pp. 233–251, 1998.

[15] C. P. Neumann and R. Lenz, “α− Flow: A Document-Based Approach to Inter-institutional
Process Support in Healthcare BT - Business Process Management Workshops,” 2010, pp.
569–580.

[16] W. M. P. van der Aalst, C. Stahl, and M. Westergaard, “Strategies for Modeling Complex
Processes Using Colored Petri Nets BT - Transactions on Petri Nets and Other Models of
Concurrency VII,” 2013, pp. 6–55.

[17] P. J. Kiss and G. Klimkó, “A Reverse Data-Centric Process Design Methodology for Public

15

Administration Processes,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 11709 LNCS, pp. 85–99, 2019.

[18] N. H. Ouali, M. Tmar, N. Haddar, and M. Tmar, “Models and Run-Time Systems for Data
Intensive Workflow Applications,” in 2017 18th International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT), 2017, vol. 2017-Decem,
pp. 429–436.

[19] E. Rietzke, R. Bergmann, and N. Kuhn, “ODD-BP - an Ontology- and Data-Driven Business
Process Model,” CEUR Workshop Proc., vol. 2454, pp. 409–415, 2019.

[20] S. Mertens, F. Gailly, and G. Poels, “A Generic Framework for Flexible and Data-Aware
Business Process Engines,” in Advanced Information Systems Engineering Workshops, 2019,
pp. 201–213.

[21] G. De Giacomo, X. Oriol, M. Estañol, and E. Teniente, “Linking Data and BPMN Processes
to Achieve Executable Models BT - Advanced Information Systems Engineering,” 2017, pp.
612–628.

[22] F. Hasić, J. De Smedt, S. Vanden Broucke, and E. S. Asensio, “Decision as a Service (DaaS):
A Service-Oriented Architecture Approach for Decisions in Processes,” IEEE Trans. Serv.
Comput., p. 1, 2020.

[23] O. Pastor and J. C. Molina, Model-driven architecture in practice: A software production
environment based on conceptual modeling. Springer Berlin Heidelberg, 2007.

[24] M. Estañol, J. Munoz-Gama, J. Carmona, and E. Teniente, “Conformance checking in UML
artifact-centric business process models,” Softw. Syst. Model., vol. 18, no. 4, pp. 2531–2555,
2019.

[25] A. Deutsch and R. Hull, “Automatic Verification of Database-Centric Systems,” vol. 43, no.
3, pp. 1–13, 2014.

[26] D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin, “SMT-based verification
of data-aware processes: a model-theoretic approach,” Math. Struct. Comput. Sci., vol. 30,
no. 3, pp. 271–313, Mar. 2020.

[27] D. van der Linden, I. Hadar, and A. Zamansky, “What practitioners really want: requirements
for visual notations in conceptual modeling,” Softw. Syst. Model., vol. 18, no. 3, pp. 1813–
1831, 2019.

[28] M. Richards, “Software Architecture Patterns.” [Online]. Available:
https://www.oreilly.com/content/software-architecture-patterns/. [Accessed: 13-Mar-2021].

[29] M. Snoeck, W. Lemahieu, F. Goethals, G. Dedene, and J. Vandenbulcke, “Events as atomic
contracts for component integration,” Data Knowl. Eng., vol. 51, no. 1, pp. 81–107, 2004.

[30] G. Guizzardi, “Ontological Foundations for Structural Conceptual Models,” University of
Twente, 2005.

[31] J. Ruiz, G. Sedrakyan, and M. Snoeck, “Generating User Interface from Conceptual ,
Presentation and User models with JMermaid in a learning approach,” in Proceedings of the
XVI International Conference on Human Computer Interaction, 2015, pp. 25–32.

[32] N. Scheynen, “Construction of web services using the MERODE approach,” Leuven : KU
Leuven. Faculteit Economie en Bedrijfswetenschappen, 2016.

[33] I. Mohout and T. Leyse, “Enriching Business Process Simulation by integration with
MERODE prototype applications,” KU Leuven, 2020.

[34] F. Hasić, E. Serral, and M. Snoeck, “Comparing BPMN to BPMN + DMN for IoT Process
Modelling: A Case-Based Inquiry,” in Proceedings of the 35th Annual ACM Symposium on
Applied Computing, 2020, pp. 53–60.

[35] M. Snoeck, C. Michiels, and G. Dedene, “Consistency by construction: The case of
MERODE,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 2814, pp. 105–117, 2003.

[36] M. De Backer, M. Snoeck, G. Monsieur, W. Lemahieu, and G. Dedene, “A scenario-based
verification technique to assess the compatibility of collaborative business processes,” Data
Knowl. Eng., vol. 68, no. 6, pp. 531–551, 2009.

	1 Introduction & motivation
	2 Related work
	3 Integrating Process and Domain modelling
	3.1 Architectural Layers
	3.2 Layers in the MERODE approach
	3.3 Example
	The business process layer: Business process models

	3.4 Proof of Concept of Model integration

	4 Evaluation
	4.1 General properties
	4.2 Individual Requirements
	Data.
	Activities.
	Processes
	User Integration
	Monitoring

	5 Discussion
	6 Conclusion
	References

