
The vessel swap-body routing problem

Vinícius S. M. Gandraa,b, Hatice Çalıka, Túlio A. M. Toffolob, Marco Antonio M. Carvalhob, Greet
Vanden Berghea

aKU Leuven, Dept. of Computer Science; Leuven.AI, B-3000 Leuven, Belgium
bDepartment of Computing, Federal University of Ouro Preto, Brazil

Abstract

This paper introduces the Vessel Swap-Body Routing problem (VSBR), a generalization of the pickup and
delivery problem with time windows, which considers freight distribution between ports located throughout
an inland waterway network. Subject to time windows and precedence constraints, each customer request
is associated with a number of containers and must be served via a single body. Bodies are capacitated
components that cannot move independently and must therefore be towed by a vessel. Bodies can be
transferred between vessels at customer locations or transfer points in order to reduce overall costs. Vessels
and bodies can end their routes at any location, meaning they do not need to return to a depot. Moreover,
every vessel-body combination is permitted, which greatly expands the size of the solution search space.
Although body transfers constitute a fundamental component of this real-world problem, the flexibility such
transfers engender poses a huge logistical challenge to the human planners tasked with efficiently scheduling
vessel routes. In this paper we model the VSBR as an optimization problem and introduce complementary
approaches for solving it. We propose a mixed integer programming formulation and a heuristic approach
with tailored neighborhoods for body transfers. To help stimulate further research, a set of instances is
introduced based on real-world data and benchmarks are made publicly available.

Keywords: Transportation, heuristics, swap-body, transfers, mixed integer programming.

1. Introduction

This paper investigates a routing problem introduced to us by a shipping company operating in an
inland waterway network. Given a scheduling horizon, the company must complete hundreds of requests.
Each of these requests is associated with a number of containers which must be picked up from one customer
location and delivered to another while respecting time windows. Customer locations correspond to container
terminals where they retrieve the goods being shipped, thus different customers may be associated with the
same location. Containers associated with requests are loaded into bodies: capacitated transports which
can only move when towed by a vessel. Vessels themselves are incapable of holding containers, but instead
have a capacity limit concerning the number of bodies they can tow. All containers associated with a single
request must be loaded into the same body and once loaded they cannot be transferred into another. Figure
1 illustrates a vessel-body configuration where two bodies are attached to a vessel.

Bodies are not fixed to vessels and the transportation network contains locations where these bodies
can be parked. This enables the possibility of conducting body transfers, where a body is detached from
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Figure 1: Example of a vessel towing two bodies.

one vessel at a special transfer point or customer location and then later attached to either the same vessel
or a different one. Transfer points typically correspond to central locations of the network. Bodies can be
detached at transfer points without any restrictions and may be picked up at any time. Body transfers
significantly increase the solution space. They introduce a new decision level to the problem (where and
when to perform these transfers) and require route synchronization: a vessel must first detach a body before
another can visit the transfer point or customer location to attach it.

Human operators are unable to exploit the full potential of body transfers given the added logistical
challenges they bring to the problem. Thus they are often ignored in practice or used in a very limited
way. We believe that despite the extra computational effort needed, employing transfers has the potential to
significantly reduce overall costs. Therefore, in this paper we introduce a formulation for this transportation
problem and propose a solution approach which enables us to study the impact of body transfers on solution
quality. We refer to this new transportation problem as the Vessel Swap-Body Routing problem (VSBR).

The VSBR is a generalization of the Pickup and Delivery Problem (PDP) with time windows. Important
insights concerning how to model and solve the VSBR can therefore be drawn from other PDP generaliza-
tions. One such generalization is the Pickup and Delivery Problem with Transshipment (PDPT), which
also involves the transfer of goods between routes and complex route synchronization. However, unlike how
it is possible to transfer individual requests from one vehicle to another in the PDPT, the entire set of
requests held by a body must be transferred from one vessel to another in the VSBR. Another important
generalization worth considering is the Truck-and-Trailer Routing Problem (TTRP) where detachable trail-
ers are towed by trucks and each trailer is assigned to a specific truck. By contrast, bodies in the VSBR
are treated independently from vessels and therefore a given body can be towed by any vessel. Thus, all
vessel-body combinations are permitted as long as vessel capacities (which often exceed two bodies) are
respected. Moreover, it is also worth noting that in the VSBR all customers can be visited by all possible
vessel-body combinations. Body transfers are optional and only employed in an attempt to reduce overall
costs. Conversely, detaching trailers in the TTRP is performed to ensure feasibility: certain customers can
only be reached by trucks without any trailer attached. Although related to the VSBR and worth reviewing,
these other PDP generalizations are unable to address the important characteristics of the inland waterway
distribution scenario we investigate in this paper.

In order to clarify the remaining details of the VSBR, Figure 2 illustrates a solution with body transfers in
a toy network of 12 customer locations (the triangles) and one transfer point (the blue diamond). Customers
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with pickup services (pi) are depicted as upward triangles, while downward triangles correspond to delivery
services (di). The route of each body is illustrated by means of colored directed edges, while nodes serviced
by a given body have the same color. The three vessels responsible for towing bodies have their routes
illustrated with distinct dashed edges and their initial positions are depicted by way of gray squares. The
VSBR considers open routes, where vessels and bodies depart from a given location and may end at any
location without having to return to a central depot. When en route, vessels are assumed to travel at the same
constant speed, regardless of the number of bodies connected and containers loaded. Loading/unloading
containers into/from bodies takes a certain length of time which is assumed to be the same for each container.
Similarly, detaching/attaching a body also takes a fixed length of time independent of the configuration of
attached bodies. For simplicity, time windows as well as travel times are omitted from Figure 2 and each
customer location corresponds to a single service.
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Figure 2: VSBR solution with body transfers.

Bodies b1 and b4 begin their routes attached to vessel v1. Meanwhile, bodies b2 and b3 begin attached
to vessels v2 and v3, respectively. Note that body b4 serves the pickup and delivery services of requests 2,
3 and 5. To serve all of these requests, body b4 is transferred between all three vessels. Towed by vessel
v1, b4 serves p2 and p3 before being detached at the transfer point and attached to v2. After serving d2,
body b4 is detached for the second time at customer p5 and serves the request while detached. Note that
bodies detached at a customer’s location must have a service to perform at that location (either pickup or
delivery of containers). When such a transfer occurs, the vessel to which the body is attached arrives at the
customer’s location either before or during its time window. The vessel then detaches the necessary body
and is free to continue on with its route without having to wait for the customer’s time window to open
or the service to complete. The detached body serves the customer as soon as the service time window is
open. After the customer is served, the same or a different vessel may visit the customer to pick up the
body. Finally, b4 is attached one final time and towed by v3 in order to deliver its final two requests. Note
that if body transfers were not allowed, the vessel that picks up service p3 would need to traverse almost
the entire network to serve its paired service d3.
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Despite the fact that all requests were served in this small example, this might not always be the case.
The homogeneous fleet of vessels and bodies available to serve requests is considered fixed and given a priori.
Therefore given the capacity constraints of the available fleet it may prove impossible to serve every request
within its time window, in which case some requests must be outsourced and served by trucks. Outsourcing
requests in this manner incurs high costs and should thus be avoided whenever possible. The objective
function of the VSBR is therefore designed to minimize the sum of (i) vessel travel costs and (ii) outsourcing
costs.

Figure 2 not only makes it clear why human operators currently avoid dealing with the complexity
of body transfers, but also highlights the potential for those transfers to improve solutions. Transferring
requests in batches is not necessarily an exclusive feature of the VSBR and could occur in the context of
waterway, rail or road transportation. The challenging new decision level the VSBR involves, in addition
to the range of transportation systems within which it may occur, makes us confident that it is worthwhile
introducing this new problem to the academic community. The following section presents an overview
of related research, comparing and contrasting them with the VSBR. Section 3 introduces the necessary
notation and presents a mixed integer programming formulation for the problem. To tackle instances of
realistic size, a solution approach is introduced and described in Section 4. In order to assess the impact of
body transfers on solution quality, we report the results of computational experiments in Section 5. Given
the lack of benchmark instances for the VSBR, instance sets are generated based on real-world data. Finally,
Section 6 concludes the paper and outlines some directions for future research.

2. Related work

The combination of multiple starting locations, open routes, numerous vessel-body assignments and body
transfers makes the VSBR a unique vehicle routing problem. Nevertheless, other routing problems can be
identified in which specific requests must be served considering transfers and different vehicle combinations.
The most similar problems are the pickup and delivery problem with transshipment (PDPT) and the VRP
with trailers and transshipment. Distinctions can be made regarding various characteristics such as what is
being transferred, transport combinations and accessibility constraints. This section presents an overview of
these related problems in order to identify some similarities and key differences with respect to the VSBR.

2.1. Pickup and delivery problems with transshipment

Several variants of pickup-and-delivery problems (PDPs) exist and have been studied extensively. Im-
portant surveys of these variants have been conducted by Cordeau et al. (2008), Parragh et al. (2008) and
Battarra et al. (2014). A generalization of the PDP arises when requests are permitted to be transferred at
so-called transfer points in order to minimize vehicle routing costs. Shiri et al. (2020) studied the impact
of allowing transfers in pickup-and-delivery systems with different modeling (objective functions), system
design (number of locations and transfer points) and operational parameters (capacity, cost and number
of vehicles). This study revealed the gains that are possible in many different scenarios when permitting
transfers to take place.

Transfers significantly increase the difficulty of these problems as they introduce precedence and syn-
chronization constraints between multiple routes. If a request is transferred at a transfer point, the vehicle
which picks up this request must visit the transfer point after the vehicle which dropped it off. Noting the
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interdependence of routes in the PDPT and the difficulty of efficiently checking the feasibility of candidate
transfers, Masson et al. (2013b) proposed a method which checks the feasibility of solutions in constant time.
This method can be used in the VSBR to efficiently avoid cross synchronization between body transfers.
For a more thorough review of multiple synchronization constraints in VRPs and their applications we refer
interested readers to the survey by Drexl (2012).

Table 1 provides an overview of recent research concerning PDPT variants which focuses on their transfer
characteristics. In the PDPT, a request i given by the pair (rPi , rDi ) and served by a single vehicle may be
divided into two requests served by two vehicles given by pairs (rPi , t) and (t, rDi ), where t is a transfer point.
Most of the papers listed in Table 1 transfer requests (goods or passengers) at most once at pre-determined
transfer points, while routes have fixed start and end points. Variants differ with respect to time windows
(PDPTWT), split delivery, maximum route duration and hard time windows at transfer points.

Table 1: Overview of PDPT methods and transfer details.

Problem Method
What is

transferred?
#Transfers Transfer locations

Start and end
locations

Extra constraints

Mitrović-Minić and Laporte (2006) PDPTWT H Request 1/r TP F

Cortés et al. (2010) PDPTWT E Request 1/r TP F
Time window at
transfer points

Takoudjou et al. (2012) PDPTWT E Request 1/r TP F
Qu and Bard (2012) PDPTWT H Request 1/r TP F
Masson et al. (2013a) PDPTWT H Request 1/r TP F

Masson et al. (2014) PDPTWT H Request 1/r TP F
Max route duration
and travel time

Rais et al. (2014) PDPT + PDPTWT E Request 1/r TP F and NF Split delivery
Danloup et al. (2018) PDPTWT H Request 1/r TP F
Zhang et al. (2020) PDPTWT E and H Request 1/r TP F
Wolfinger (2021) PDPTWSLT E and H Request 1+/r TP F Split delivery

This paper VSBR E and H
Body containing
multiple requests

one or more
per body

TP and
customer locations

NF

PDPTWSLT: PDPT with time windows and split deliveries. (N)F: (Not)Fixed locations to start and end routes.
1(+)/r: one (or more) transfer per request. TP: transfer points. E/H: Exact/Heuristic approach.

In contrast to the PDPT, transfers in the VSBR are not conducted at an individual request level. Instead
only entire bodies, which contain multiple requests, may be transferred. The VSBR also allows bodies to
be transferred multiple times, either at transfer points or customer locations, and their routes do not need
to end at a fixed location. For example, in Figure 2, body b4 is transferred twice. The transfer takes place
when b4 is detached after picking up two requests, which leads to multiple changes in the route of the vessel
to which it is subsequently attached. These differences concerning what is being transferred and how many
requests are involved in each transfer makes it challenging to incorporate efficient transfer insertion methods
proposed for PDPTs into the VSBR.

2.2. Vehicle routing problems with trailers and transshipment

The VSBR exhibits some characteristics of truck-and-trailer routing problems (TTRPs). These represent
a generalization of the VRP where lorries may extend their capacity by towing at most one trailer: a
capacitated component that depends on lorries to move. Customers may be visited by either a lorry or
a lorry-trailer combination (LTC). Due to accessibility constraints, some customers can only be visited by
lorries and are referred to as lorry customers (LCs), while others can be visited by lorries with or without a
trailer and are referred to as trailer customers (TCs). In order to visit LCs, an LTC may detach its trailer
at a transfer point and serve LCs with a sub-tour that starts and ends at this transfer point. Loads may
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be transferred between the lorry and its respective trailer at a transfer point. At the end of the sub-tour,
the lorry then picks up the trailer and continues on with its route which must end at a depot. The goal of
the TTRP is to determine routes for lorries and LTCs so that every customer is served and routing costs
are minimized while respecting loading capacities, accessibility constraints and time windows (if any). The
surveys conducted by Prodhon and Prins (2014) and Cuda et al. (2015) contain sections on TTRPs, while
Drexl (2013) has shown how several VRPs with different synchronization constraints may be modeled as
variants of the TTRP.

A variant of the TTRP is the Swap-Body Vehicle Routing Problem (SB-VRP), which was introduced in
the first Vehicle Routing and Logistics Optimization (VeRoLog1) solver challenge in 2014. Similar to the
TTRP, the SB-VRP also considers vehicles with either one or two swap-bodies in addition to customers with
accessibility constraints. A truck towing two swap-bodies is called a train in the SB-VRP. Besides parking
and picking up the swap-body at a transfer point, a train may detach the front swap-body instead of the
one at the back. A third class of customers is also considered which has a higher demand than the capacity
of a single swap-body and must therefore be visited by a train. The objective function of the SB-VRP
also incorporates more terms such as fixed usage cost for trucks and trailers as well as additional costs for
conducting operations at transfer points. However, the SB-VRP permits neither swap operations at TCs nor
transferring loads between swap-bodies. Given the similarities between the TTRP and SB-VRP, we believe
the swap-body terminology was coined given its vehicle-independent phrasing which may denote trailers,
railroad cars or barges.

Table 2: TTRP methods and transfer details.

Reference Problem Method Transfer location Edge cost Fleet size
Fixed vehicle-body

combination
Chao (2002) TTRP E and H D and TC Same L X

Scheuerer (2006) TTRP H D and TC Same L X

Lin et al. (2009) TTRP H D and TC Same L X

Caramia and Guerriero (2010) TTRP E and H D and TC Same L X

Lin et al. (2011) TTRPTW H D and TC Same U X

Derigs et al. (2013) TTRP + TTRPTW H D and TC Same L X

Villegas et al. (2013) TTRP E and H D and TC Same L X

Parragh and Cordeau (2017) TTRPTW E and H D and TC Same L X

Rothenbächer et al. (2018) TTRP + TTRPTW E TC and TP VD L X

Toffolo et al. (2018) SB-VRP H TP VD U X

Drexl (2021) PD-TTRPTW H TP VD U X

This paper VSBR E and H
TP and any

customer location
Same L –

D: depot. TC: trailer customer. VD: vehicle-dependent. TP: transfer points.
U/L: Unlimited/Limited fleet of vehicles. E/H: Exact/Heuristic approach.

Recent research regarding the TTRP is documented in Table 2, focusing on transshipment characteristics.
A few authors considered the TTRP with time windows (TTRPTW), while Drexl (2021) is the only one to
consider the TTRPTW with pickup and delivery. In addition to the constraints already introduced, routes
may be subject to maximum duration, lorries may have fixed trailer assignments (meaning trailer transfers
between lorries are not allowed), or it may be possible for a trailer to be detached multiple times during an

1EURO Working Group on Vehicle Routing and Logistics Optimization (http://www.verolog.eu/)
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LTC route. The papers documented in Table 2 typically consider transfers only at depots and TC locations,
while the routing cost does not depend on the vehicle used. However, some papers include dedicated transfer
points and edge costs depending on the vehicle used (only lorry or LTC). Considering the TTRP proposed
by Chao (2002) as the baseline, variants may consider an unlimited and/or heterogeneous fleet of vehicles
and forbid load transfer between lorries and their corresponding trailers. Given that Toffolo et al. (2018)’s
algorithm won first place in the VeRoLog competition, their paper is included in Table 2 as representative
of the SB-VRP.

The VSBR also considers a vehicle which moves independently while towing a capacitated component
that can be detached at special locations. However, unlike TTRPs, the VSBR considers neither customer
accessibility constraints nor fixed assignments concerning vessels and bodies. Therefore, any vessel-body
combination is valid and may visit any customer location. Consider a hypothetical generalized problem
HYP where V is the set of all vehicles (vessels or trucks), B is the set of bodies/trailers, N is the set of
nodes, Vb ⊂ V is the subset of vehicles that can tow a body/trailer b, and Nb ⊂ N is the subset of nodes that
b can access. The TTRP is then a special case of HYP where an arbitrary trailer b can only be towed by
a specific vehicle vb and therefore Vb = {vb}. By contrast, the VSBR would correspond to a second special
case where Vb = V and Nb = N . One can further conclude that neither of these two special cases can be
reduced to the other.

Another crucial difference between the two problems concerns how vessels in the VSBR may tow multiple
bodies at the same time. Moreover, (un)loading operations can be performed without the presence of the
vessel when a body is detached at a customer location. For TTRPs, trailers are used to increase overall
capacity, minimize total routing costs, and reduce the number of necessary vehicles. Transfers are thus
employed as a mechanism to temporarily reduce vehicle size and access customers at restricted locations.
In the VSBR by contrast, bodies are the only capacitated vehicles capable of transporting containers and
transfers are used to minimize travel and outsourcing costs. When one takes into account these key differences
between TTRPs and the VSBR, the development of a dedicated approach for the VSBR is clearly required.

3. Notation and problem formulation

The VSBR considers a set of customer locations, a set V of vessels, a set B of bodies and a set R of
requests. Each request r ∈ R is associated with a number of containers ρr that must be picked up from one
customer and delivered to another by a single body in a single trip. The pickup should be conducted within
time window [tP−r , tP+

r ] and the delivery should be conducted within time window [tD−r , tD+
r ]. The VSBR

considers serving these requests within a predetermined time horizon. Depending on the start and end of
this horizon and the time windows of individual requests, three types of request are possible:

R1 is the set of requests with both pickup and delivery services,

R2 is the set of requests with only a delivery service,

R3 is the set of requests with only a pickup service, where R = R1 ∪R2 ∪R3.

Requests are expected to be served by vessels using the bodies attached to them. However, when a
request cannot be served by any vessel within its time window, it is outsourced and assumed to be served
by trucks at a high cost π. Outsourced requests are therefore not routed in this problem formulation. The
service time of each request r is proportional to ρr and is denoted by sr.
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Each vessel v ∈ V can travel with at most QV bodies, each having capacity QB . These bodies can be
attached to or detached from vessels at any transfer point or a service location to be served by these bodies.
The time needed for attaching or detaching a body is TC . When transferring bodies at a service location,
the detaching/attaching of such bodies may occur before/after the start/end of the service’s time window.
Therefore, at the end of a scheduling horizon bodies may be left unattached to a vessel. As a result, bodies
may also start a scheduling horizon unattached.

3.1. A modified network construction

In order to formulate the VSBR we introduce a network G = (N,A), as depicted in Figure 3. The
network comprises of node set N = I ∪ S ∪ J0 ∪ {∗} and arc set A. We associate each transfer, pickup
and delivery service with two nodes due to the possibility of detaching a body at the corresponding service
location and reattaching it later to the same or another vessel. During the timespan between detaching and
reattaching a body to the same vessel, this vessel may conduct services associated with other requests.

Let us define I = P ∪P ′ ∪D∪D′, depicted as circles in the network, such that P and P ′ denote the sets
of nodes associated with pickup services, while D and D′ denote the sets of nodes associated with delivery
services. Note that if the containers associated with a request are already in a body, then we only need the
delivery nodes for this request (see request 2 in Figure 3). Similarly, if a request only has a pickup service,
then we only need to create pickup nodes for this request (see request n in Figure 3).

Set S, illustrated by diamonds, contains the transfer nodes which are not customer nodes. Let us assume
that each body b can be detached at a transfer node s at most m times. For each visit of b to s, we create
two transfer nodes, say s1 and s2, whose physical locations are identical to those of s. Only body b can be
detached at s1, while b then moves from s1 to s2 detached from any vessel before it can be picked up again
from s2. Let Sb = S1

b ∪ S2
b be the set of such transfer nodes created for body b and let s2k ∈ S2

b denote the
second copy of node s1k ∈ S1

b . Then S =
⋃

b∈B Sb.
Set J0 contains a node ov (ob) associated with the initial location of each vessel v (body b). Vessels do

not need to return to their initial location. In order to simplify the modeling, we introduce a dummy node
“∗” to the network and ensure that every vessel and body ends their route at this dummy node. Initial and
final location nodes are represented by squares in Figure 3.

Let ri ∈ R denote the request associated with i ∈ I. We then construct arc set A = A1 ∪A2 ∪A3 ∪A4 ∪
A5 ∪A∗ as follows:

A1 = {(i, j) : i ∈ J0 ∪ S, j ∈ N, i 6= j} is the set of arcs from vessel/body starting nodes and swap
nodes to any other node,

A2 = {(i, i + n) : i ∈ P} ∪ {(i, j) : i ∈ P, j ∈ N \ {u ∈ I : ru = ri}} is the set of arcs from each node
i ∈ P to every other node except the delivery nodes associated with ri,

A3 = {(i, i+ n) : i ∈ P ′} ∪ {(i, j) : i ∈ P ′, j ∈ N \ {u ∈ I : ru = ri}} is the set of arcs from each node
i ∈ P ′ to its corresponding delivery node in D and to every other node except those associated with
ri,

A4 = {(i, i+ n) : i ∈ D} ∪ {(i, j) : i ∈ D, j ∈ N \ {u ∈ I : ru = ri}} is the set of arcs from each node
i ∈ D to its copy in D′ and to every other node except the pickup nodes associated with ri,

A5 = {(i, j) : i ∈ D′, j ∈ N \ {u ∈ I : ru = ri}} is the set of arcs from each node i ∈ D′ to every other
node except those associated with ri,
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Figure 3: A modified network representation for the model

A∗ = {(i, ∗), i ∈ N \ {∗}} is the set of arcs from every node to the sink node.

The travel time and the travel cost for each arc (i, j) ∈ A is denoted by eij and cij , respectively. The
travel cost is calculated as cij = eij ∗ ε, where ε is a coefficient which expresses cost per time unit and is
used to convert time into cost. For each dummy arc (i, j) ∈ A∗, we set eij = cij = 0. Let L denote the set
of physical locations and li ∈ L denote the location associated with node i ∈ N . Then eij = cij = 0 and
∀(i, j) ∈ A : li = lj , whereas ei(i+n) = sri for i ∈ P ∪D. We further define AD = A∗ ∪ {(i, j) ∈ A : li = lj}
as the set of arcs bodies can traverse without being attached to any vessel. If node i ∈ D ∪D′ is associated
with a request whose pickup service is already completed (meaning ri ∈ R2), then bi = bri ∈ B denotes the
body that holds the containers of this request.

3.2. Decision variables

For the introduced model we define the following sets of decision variables:

zvij = 1 if vessel v ∈ V traverses arc (i, j) ∈ A, 0 otherwise.

βb
ij = 1 if body b ∈ B traverses arc (i, j) ∈ A, 0 otherwise.

ωbv
ij = 1 if body b ∈ B is attached to vessel v ∈ V and traverses arc (i, j) ∈ A, 0 otherwise.

xbrij = 1 if the containers of request r ∈ R traverse arc (i, j) ∈ A inside body b ∈ B, 0 otherwise.

δbij = 1 if body b ∈ B traverses arc (i, j) ∈ AD without being attached to any vessel, 0 otherwise.

γr = 1 if request r ∈ R is served by a vessel-body combination, 0 otherwise.

τAv
i ≥ 0 is the arrival time of vessel v ∈ V at node i ∈ N .

τDv
i ≥ 0 is the departure time of vessel v ∈ V from node i ∈ N .

τBAb
i ≥ 0 is the arrival time of body b ∈ B at node i ∈ N .

τBDb
i ≥ 0 is the departure time of body b ∈ B from node i ∈ N .

yvij = 1 if i ∈ N precedes j ∈ N (not necessarily immediately) during the trip of vessel v, 0 otherwise.

ϕb
ij = 1 if i ∈ N precedes j ∈ N (not necessarily immediately) during the trip of body b, 0 otherwise.

9



3.3. A mixed integer programming formulation for the VSBR

The objective function: Equation (1) minimizes the total cost of vessel routes plus the outsourcing cost
for requests served by trucks.

min
∑
v∈V

∑
(i,j)∈A

cijz
v
ij +

∑
r∈R

π(1− γr) (1)

Routing of vessels and bodies: By Constraints (2)-(4) and (10)-(13), each vessel starts its journey from the
node associated with its initial location and ends it at the dummy node without any sub-tours. Constraints
(5)-(7) and (14)-(17) function analogously for bodies. Constraints (8) and (9) ensure a body either traverses
an arc while attached to a single vessel or not attached to any vessel (if possible), thereby disabling the
possibility that a body is simultaneously attached to two or more vessels.

∑
j:(ov,j)∈A

zvovj = 1, ∀v ∈ V (2)

∑
j:(j,∗)∈A

zvj∗ = 1, ∀v ∈ V (3)

∑
j:(j,i)∈A

zvji =
∑

j:(i,j)∈A

zvij , ∀v ∈ V, i ∈ I ∪ S (4)

∑
j:(ob,j)∈A

βb
obj

= 1, ∀b ∈ B (5)

∑
j:(j,∗)∈A

βb
j∗ = 1, ∀b ∈ B (6)

∑
j:(j,i)∈A

βb
ji =

∑
j:(i,j)∈A

βb
ij , ∀b ∈ B, i ∈ I ∪ S (7)

βb
ij = δbij +

∑
v∈V

ωvb
ij , ∀b ∈ B, (i, j) ∈ AD (8)

βb
ij =

∑
v∈V

ωvb
ij , ∀b ∈ B, (i, j) ∈ A \AD (9)

Sub-tour elimination for vessel routes: For elimination of sub-tours, we utilize Constraints (10) - (13),
which are shown to provide tight bounds in a comparative study by (Öncan et al., 2009). This group of
sub-tour elimination constraints have also been adopted in recent and relevant PDPT and PDPTW studies
(Rais et al., 2014; Zhang et al., 2020; Christiaens et al., 2020).

zvij ≤ yvij , ∀(i, j) ∈ A, v ∈ V (10)

yvij + yvji = 1, ∀(i, j) ∈ A : (j, i) ∈ A, v ∈ V (11)

yvij = 1, ∀(i, j) ∈ A : (j, i) /∈ A, v ∈ V (12)

yvij + yvjl + yvli ≤ 2, ∀(i, j), (j, l), (l, i) ∈ A, v ∈ V (13)
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Sub-tour elimination for body routes: Constraints (14) - (17) are analogous to Constraints (10) - (13).

βb
ij ≤ ϕb

ij , ∀(i, j) ∈ A, b ∈ B (14)

ϕb
ij + ϕb

ji = 1, ∀(i, j) ∈ A : (j, i) ∈ A, b ∈ B (15)

ϕb
ij = 1, ∀(i, j) ∈ A : (j, i) /∈ A, b ∈ B (16)

ϕb
ij + ϕb

jl + ϕb
li ≤ 2, ∀(i, j), (j, l), (l, i) ∈ A, b ∈ B (17)

Capacity constraints: Constraints (18) and (19) ensure that capacities are not exceeded for bodies and
vessels, respectively. ∑

r∈R
qrx

br
ij ≤ QBβb

ij , ∀b ∈ B, (i, j) ∈ A (18)∑
b∈B

ωbv
ij ≤ QV zvij , ∀v ∈ V, (i, j) ∈ A (19)

Serving requests: If a request is served, Constraints (20) ensure that all service arcs associated with that
request are traversed by a body holding the containers of the request. Constraints (21) and (23) ensure that
the delivery service is conducted by the same body as the pickup service for each request. Constraints (22)
ensure that the flow between the first and the last service node associated with each request is preserved
for each body. Constraints (24) prevent the containers associated with a request from being split across
multiple bodies.∑

b∈B

xbrii(i+n) = γri , ∀i ∈ P ∪D (20)

xbrii(i+n) = xbri(i+2n)(i+3n), ∀i ∈ P : ri ∈ R1, b ∈ B (21)∑
k∈N :k 6=i,(j,k)∈A

xbrijk =
∑

k∈N :k 6=i+3n,(k,j)∈A

xbrikj , ∀i ∈ P : ri ∈ R1, b ∈ B, j ∈ N \ {∗, i, i+ 3n} (22)

x
briri
i(i+n) = γri , ∀i ∈ D : ri ∈ R2 (23)∑

j:(j,i)∈A

xb1rji +
∑

j:(i,j)∈A

xb2rij ≤ 1, ∀i ∈ N, r ∈ R, b1, b2 ∈ B : b1 6= b2 (24)

Updating arrival/departure times: Let Tmax = max
r∈R

tD+
r . Constraints (25) update the arrival and depar-

ture times of a vessel at the end nodes of an arc visited by that vessel. Constraints (26) function similarly
for bodies.

τAv
j ≥ τDv

i + eijz
v
ij − Tmax(1− zvij), ∀(i, j) ∈ A, v ∈ V (25)

τBAb
j ≥ τBDb

i + eijβ
b
ij − Tmax(1− βb

ij), ∀(i, j) ∈ A, b ∈ B (26)

Departures after arrivals: Constraints (27) and (28) ensure that the departure time from a node is not
earlier than the arrival time at that node for vessels and bodies, respectively.

τDv
i ≥ τAv

i , ∀i ∈ N, v ∈ V (27)
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τBDb
i ≥ τBAb

i , ∀i ∈ N, b ∈ B (28)

Attaching and detaching times: If a body enters node i attached to a vessel but leaves the node detached
from that vessel, Constraints (29) add the detaching time to the vessel’s departure time label from node i.
Similarly, if a body enters the node detached from any vessel but leaves attached to a vessel, Constraints
(30) add the attaching time to the vessel’s departure time label from that node.

τDv
i ≥ τAv

i + TC + Tmax
∑

j:(j,i)∈A

wvb
ji − Tmax

∑
j:(i,j)∈A

wvb
ij − Tmax, ∀b ∈ B, v ∈ V, i ∈ N : i 6= ob, ∗ (29)

τDv
i ≥ τAv

i + TC − Tmax
∑

j:(j,i)∈A

wvb
ji + Tmax

∑
j:(i,j)∈A

wvb
ij − Tmax, ∀b ∈ B, v ∈ V, i ∈ N : i 6= ob, ∗ (30)

Vessel arrives before body: Constraints (31)-(34) establish the relation between the arrival and departure
times of attached vessel-body pairs entering or leaving a node.

τBAb
i ≥ τAv

i + Tmax
∑

j:(j,i)∈A

wvb
ji − Tmax, ∀i ∈ N, v ∈ V, b ∈ B (31)

τBDb
i ≥ τDv

i + Tmax
∑

j:(j,i)∈A

wvb
ji − Tmax, ∀i ∈ N, v ∈ V, b ∈ B (32)

τAv
i ≥ τBAb

i + Tmax
∑

j:(i,j)∈A

wvb
ij − Tmax, ∀i ∈ N, v ∈ V, b ∈ B (33)

τDv
i ≥ τBDb

i + Tmax
∑

j:(i,j)∈A

wvb
ij − Tmax, ∀i ∈ N, v ∈ V, b ∈ B (34)

Time windows: The time windows at service nodes are respected via Constraints (35)-(38).

τBDb
i ≥ tP−ri γri , ∀i ∈ P, b ∈ B (35)

τBDb
i ≥ tD−ri γri , ∀i ∈ D, b ∈ B (36)

τBAb
i ≤ tP+

ri γri , ∀i ∈ P ′, b ∈ B (37)

τBAb
i ≤ tD+

ri γri , ∀i ∈ D′, b ∈ B (38)

Transfers at non-client nodes: Constraints (39) ensure that a body is only detached at one of its own
transfer nodes. Constraints (40) and (41) require body b to be detached if one of its transfer nodes is visited.

∑
j:(j,s)∈A

wvb
js =

∑
j:(s,j)∈A

wvb
sj , ∀b ∈ B, v ∈ V, s /∈ Sb (39)

∑
j:(j,s1k)∈A

βb
js1k

= δbs1ks2k
, ∀b ∈ B, s1k ∈ S1

b (40)

∑
j:(s2k,j)∈A

βb
s2kj

= δbs1ks2k
, ∀b ∈ B, s2k ∈ S2

b (41)
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The binary and non-negativity restrictions on the decision variables are expressed via Constraints (42)
and (43).

zvij , y
v
ij , β

b
ij , ω

bv
ij , x

br
ij , δ

b
ij , γ

r, ϕb
ij ∈ {0, 1}, ∀v ∈ V, b ∈ B, r ∈ R, (i, j) ∈ A (42)

τAv
i , τDv

i , τBAb
i , τBDb

i ≥ 0, ∀v ∈ V, b ∈ B, i ∈ N (43)

Assumption: In order to keep the model straightforward to follow, we make the following practical
assumption. At the beginning of the scheduling horizon, we assume that the attaching or detaching of bodies
to/from vessels at their starting point is performed a priori and thus the routing can begin immediately at
time zero. This assumption has the following impact: if body b is attached to vessel v1 but will be taken
by vessel v2 from its start location then the model will not count the time to detach b from v1, but it will
count the time to attach b to v2.

Valid inequalities: Constraints (44) and (45) ensure that the containers associated with a request are
not inside a body when arriving at the pickup service node or leaving the delivery service, respectively.∑

b∈B

∑
j:(j,i)∈A

xbriji = 0, ∀i ∈ P (44)

∑
b∈B

∑
j:(i,j)∈A

xbriij = 0, ∀i ∈ D′ (45)

During preliminary experiments using an off-the-shelf solver, Constraints (44) and (45) were helpful
in decreasing the solving time of the MIP model. Moreover in these experiments, we observed that the
problem very quickly becomes intractable for the solver even for some small instances. In order to handle
larger instances in a reasonable amount of time, we introduce a heuristic algorithm in the following section.

4. A heuristic for the VSBR

Preliminary experiments revealed that the proposed integer programming formulation was unable to
generate high-quality solutions within reasonable runtimes. Therefore, in order to provide time-constrained
industry with a decision support tool they can use in practice, this chapter will introduce a tailored heuristic
for the VSBR. Given the many problem components involved and the necessity of efficiently exploring the
solution space, we will focus on the following two decision levels: (i) deciding when and at which locations
to transfer bodies and (ii) PDPTW optimization.

The first decision level requires one to efficiently explore the vast number of possible body transfers given
that each body can be transferred multiple times in many different places throughout the scheduling horizon.
This decision level can be very disruptive since removing or inserting body transfers may impact multiple
vessels’ routes as well as the assignment of containers to bodies. However, once decided, body transfers can
be fixed. What this means is that vessels have mandatory stops in their routes. The next decision level can
then improve these routes by employing an efficient PDPTW algorithm which takes into account these fixed
transfers.

Given the need to search with respect to two decision levels, the Iterated Local Search (ILS) method
(Lourenço et al., 2003) seems an intuitive approach. Given an initial solution, ILS generates neighboring
solutions by applying a perturbation method followed by a local search. Besides featuring an iterative
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search which is subdivided into levels, ILS has also demonstrated good results when applied to routing
and scheduling problems (Lourenço et al., 2019). For instance, the SB-VRP was successfully addressed
by Toffolo et al. (2018), who developed a hybrid algorithm combining ILS and the Late Acceptance Hill-
Climbing (LAHC) metaheuristic (Burke and Bykov, 2017).

We therefore decided to adapt ILS in order to address the VSBR, henceforth referred to as ILS-SB, in
which the perturbation method consists of a transfer phase where body transfers are inserted or removed.
The local search phase of ILS-SB then fixes these transfers in the vessels’ routes before solving a PDPTW
where vessels with fixed bodies must be routed to serve requests. Each newly generated solution is potentially
accepted based on a list inspired by LAHC. This acceptance criterion benefits from the fact that there is
only one parameter which requires calibration: the length of the list. Although the high-level framework
of our heuristic shares some similarities with Toffolo et al. (2018), we only employ the late acceptance list
embedded into ILS and not the entire LAHC metaheuristic framework. All of the other components of our
algorithm, which will be described in the following sections, are completely different and tailored to the
VSBR.

The basic framework of ILS-SB is provided by way of Algorithm 1. First, the algorithm receives as input
an initial solution s and the maximum length for the late acceptance list, denoted by l (line 1). The late
acceptance list (AcceptL) is then initialized with the initial solution value (line 3), meaning that solutions
generated during the first l − 1 iterations will be accepted. At each iteration, ILS-SB generates a neighbor
solution s′ by performing a transfer and routing phase (lines 6-7). Solution s′ replaces the current best
solution if it improves upon s∗ (lines 8-9). Similarly, solution s′ replaces incumbent solution s if AcceptL
is not full or if f(s′) improves upon the considered entry in the late acceptance list (lines 10-11). Next,
AcceptL is updated with the cost of the incumbent solution (line 13). The best solution is returned (line 14)
when the algorithm reaches either of its two stopping criteria: the maximum number of iterations without
improvement (#maxIt) or the time limit.

Algorithm 1: ILS-SB framework.
1 Input: initial solution s, list size l
2 s∗ ← s
3 AcceptL[0]← f(s)
4 i← 0
5 while #maxIt or time limit is not reached do
6 st ← Transfer phase(s) // Section 4.4
7 s′ ← Routing phase(st) // Section 4.5
8 if f(s′) < f(s∗) then
9 s∗ ← s′;

10 if length(AcceptL) < l or f(s′) < AcceptL[i mod l] then
11 s← s′

12 i++
13 AcceptL[i mod l]← f(s)

14 return s∗
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4.1. Acceptance criterion

The VSBR’s objective function aims to fulfill as many requests as possible with vessels while minimizing
fuel consumption. Thus, the VSBR minimizes the travel cost plus the outsourcing costs incurred when
requests are served by trucks. When using the objective function in Equation (1), referred to as OF 1, it
is common to find different solutions with equal objective values. To distinguish between two solutions
when this situation occurs, a secondary objective function, referred to as OF 2 and calculated by Equation
(46), is used every time the first objective results in a tie. This secondary objective function minimizes
the total operational cost plus outsourcing costs. The operational cost of a vessel is given by the time the
last request was served minus the starting time of the vessel multiplied by the cost coefficient per unit
time. Therefore, OF 2 takes into account everything already present in OF 1 in addition to request servicing,
detaching/attaching and waiting times. As a result, a solution with identical travel cost but lower operational
cost is preferable.

min
∑
v∈V

(τAv
∗ − τAv

ov )ε+
∑
r∈R

π(1− γr) (46)

4.2. Initial solution

At the start of the scheduling horizon, all vessels are located at a container terminal and have either zero
or more bodies attached. Similarly, bodies have an initial location, may be initially connected to a vessel and
may have zero or more containers already loaded. Since ILS-SB has methods dedicated to handling body
transfers, we opt to quickly generate an initial solution which does not include such transfers. Thus, we
propose an constructive method that generates a solution in which bodies remain attached to their initially
assigned vessel and no transfers take place. This means that bodies which began detached will not be used,
while a given vessel which serves a pickup service will also perform the corresponding delivery.

For a feasible solution, all capacity and temporal constraints must be satisfied and transportation requests
which cannot be served by vessels are placed into the set of unserved requests U . A solution for the VSBR
is represented by a set of routes for all vessels v ∈ V , where each route is defined by a sequence of services,
the location of each of those, the body used to fulfill the service and any other attached bodies.

An initial solution is generated by inserting requests one by one into body routes. Requests are iterated
over in a random order and inserted into the best position considering all body routes. The request insertion
method designed to construct the initial solution is detailed in Section 4.3. To avoid poor quality initial
solutions, ι candidates are produced from which the best is selected for ILS-SB.

4.3. Best insertion method for requests

The best insertion method attempts to insert every unserved request at the best position of a given
solution. Given the sequence of visited nodes in a body/vessel route, an insertion position is given by a
node n where the request is inserted into the route immediately after n. The list of unserved requests U is
iterated over in one of the following three ways, which are selected with equal probability: (i) random order,
(ii) request r with the earliest tP−r first or (iii) request r with the earliest tD−r first.

For each request ri (i ∈ R1∪R3), the pickup service rpi is first inserted into the best position considering
every position in the routes of all available bodies. Once inserted, the corresponding delivery service rdi is

15



inserted into the best position of body route brpi . If i ∈ R2, meaning that the pickup service was already
loaded into a specific body bj , only the positions in bj will be considered for the insertion of rdi . When no
feasible insertion position can be found for a pickup or delivery service, the complete request ri is added to
the set of unserved requests U .

Best insertion methods for PDPTWs are often costly in terms of processing time given the need to
evaluate the solution after the insertion of a request into each position. To accelerate the method, we follow
the efficient feasibility testing method for request insertion proposed by Savelsbergh (1992). Before the
insertion of a request, both forward time slack and forward load slack are calculated in linear time. Forward
time slack consists of the maximum amount of time a service in the route can be postponed by without
violating any time windows constraints associated with succeeding services. Similarly, forward load slack
corresponds to the maximum number of containers a body can load at a certain stop without violating the
capacity constraints associated with any of its succeeding nodes. By maintaining these two forms of slack, it
is possible to check in constant time whether or not a given insertion is feasible. When feasible positions for
both the pickup and delivery service are obtained, the new solution value considering the request insertion
is calculated in constant time with a delta evaluation which updates the travel cost based on the removed
and added edges. The complete solution is therefore only evaluated once, after the insertion of the request
into its best feasible position.

4.4. Transfer phase

The transfer phase inserts attaching and detaching operations into the solution. This phase introduces
diversity with respect to the vessels’ attached bodies and enables different vessel-body combinations to be
explored. The rationale behind attaching/detaching a body is that a single vessel is neither obligated to
visit both the pickup and delivery location of requests, nor does it need to wait for the entire container
service time to elapse before departing. Therefore, by using the vessel time more efficiently, one may reduce
travel cost and/or outsourcing costs.

We designed four transfer insertion and two transfer removal neighborhoods for the transfer phase. Each
time the transfer phase is called, one of the six neighborhoods is uniformly selected. Transfer insertion
neighborhoods are selected with ν% probability, while transfer removal neighborhoods are selected with the
remaining 100−ν% probability. Transfers are performed either at a customer’s location, where the detached
body has one or more services to attend to, or at transfer points where the body is simply detached before
later being reattached to either the same or a different vessel.

4.4.1. Body-transfer insertion

The four different transfer insertion neighborhoods follow the same basic steps outlined in Algorithm 2.
Each neighborhood receives as input a solution, a body to be transferred, a node to perform the transfer
and a position in the body’s route to insert the transfer (lines 1-2). First, since locations after prevt will
no longer be visited by b, the requests associated with those locations are removed from the body’s route
and inserted into the unserved request set U (line 3). If b was transferred after prevt, the body transfer is
also removed. When removing requests and/or transfers from the body’s route, they are also removed from
the route of the vessel towing body b. Next, the detaching operation is inserted at nodet after prevt in the
body’s route (line 4).
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Algorithm 2: Body-transfer insertion.
1 Input: solution s, body b to be transferred
2 Input: transfer node nodet, last node prevt into b’s route before transfer
3 U ← Remove from b’s route every served request after prevt (s)
4 Detachment of b at nodet after prevt (s)
5 if Detached body is empty then
6 Best insertion of all requests in U (s)
7 else
8 foreach vessel route vr ∈ V do
9 foreach vessel stop vstop ∈ vr do

10 s′ ← Attaching of body b after vessel stop vstop (s)
11 Best insertion of all requests in U (s’)
12 if f(s′) < f(s) then
13 s← s′

14 return s

If the detached body is empty, meaning there is no container loaded in the body, the unserved requests
are inserted into the solution using the best insertion method and the body is left unattached (lines 5-6).
Otherwise, the body must be attached to a vessel in order to be able to continue on its route and deliver
the containers that have already been loaded. Note that if a pickup service was served by b before nodet,
the corresponding delivery service must also be served by b after the transfer. The attaching of a body
is conducted in a “best insertion” manner. In other words, every position in each vessel route is checked
before selecting the best insertion position. The vessel which will visit nodet to attach body b must respect
feasibility constraints such as vessel capacity, the time windows of customers visited after nodet and cross
synchronization which avoids cycle dependencies between transfers (Masson et al., 2013b). As with the best
insertion of requests into body routes, the best insertion of body transfers into vessel routes calculates the
forward time slack and forward load slack to accelerate the feasibility check of each insertion. After each
feasible attachment, the unserved requests are inserted into the solution (lines 8-13). Finally, the solution
yielding the lowest cost is saved and returned (line 14).

Figure 4 details the steps to insert a body transfer. The network representation follows the same format
as that used in Figure 2, where the routes of bodies and vessels are depicted by colored and dashed edges,
respectively. Figure 4(a) shows a solution for the VSBR where bodies b1 and b3 start attached to vessel v1
and body b2 starts attached to vessel v2. A transfer occurs at node d3, where body b3 is detached by vessel
v1 and attached to vessel v2.

Consider a body-transfer insertion of body b3 at the transfer point (prevt is p3). Figure 4(b) shows a
destroyed solution after detaching b3 at the transfer point. Services p4, d3, d2 and d4 are all successors of
p3 in the route of body b3 and are therefore removed from the solution and included in the set of unserved
requests U . Customers removed from a body’s route are also removed from the route of the vessel which
tows this body. Note that these removed services alter the route of both vessels, with b2 left at the transfer
point with two services already loaded (p2 and p3). Figure 4(c) shows one possible way of repairing the
solution, whereby body b3 is picked up by vessel v2. Services d2 and d3 must be served by body b3 since
their respective pickup services were previously loaded into this body. By contrast, both the pickup and
delivery services of request 4 are unserved and can be served by any other body. In Figure 4(c), b3 is picked

17



v1

v2

b1

b2

b3 p1 p2 p3

p4

p5

p6

d1

d3
d5d6

d2
d4

(a)

v1

v2

b1

b2

b3 p1 p2 p3

p4

p5

p6

d1

d3
d5d6

d2
d4

(b)

v1

v2

b1

b2

b3 p1 p2 p3

p4

p5

p6

d1

d3
d5d6

d2
d4

(c)

Figure 4: Body transfer insertion.
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up by vessel v2 and is able to serve requests d2 and d3. Finally, vessel v2 serves request 4 by loading it into
body b2.

Each transfer insertion neighborhood may vary in terms of how it selects the node to perform the transfer
and the body to be transferred. Neighborhoods and their particularities are outlined in what follows.

Score-based transfer insertion at a customer location (TI1). Given the large number of possibil-
ities, performing transfers at randomly selected customers may lead to many poor-quality solutions. This
first neighborhood attempts to minimize the chance of this occurring and identify promising customers to
perform transfers. The neighborhood begins by selecting a customer cr which is associated with either a
pickup or delivery service of a request r not in U , in other words, a served customer. It is assumed that
beneficial selections for customers are those with the following characteristics:

1. Low travel cost: customers which are located close to another vessel’s route. Small detours for vessels
which attach a body should not significantly affect the objective value.

2. Large number of containers: customers where a significant number of containers ρr are being served.
The total service time of a customer is proportional to the number of containers to be (un)loaded. By
detaching a body at such a customer, vessels will no longer need to wait for the full service time. For
example, instead of waiting at a customer location a vessel may use this time to serve other requests,
which can potentially reduce the travel cost of other vessels or reduce outsourcing costs.

Taking into account these two desirable characteristics, we introduce a function which assigns a score to
each served customer cr:

scorecr = α ∗ 1

travelcr
+ (1− α) ∗ ρr (47)

In Equation (47), parameter α controls the extent to which travel cost and number of requested con-
tainers contribute to the selection criterion. Parameter travelcr corresponds to the total travel cost between
customer cr and all the other customers which are visited by other bodies. A low travelcr reflects a customer
which is close to many others, while a high value implies that the customer in question is far away from
others. The total number of containers (un)loaded at a customer by a body is defined by ρr, which is directly
proportional to the total service time.

A probabilistic selection is employed in the present study to diversify the solution and avoid an overly
greedy convergence of the method. Scores are sorted in descending order and a rank γ is assigned to each,
which corresponds to their position in the array (γ = 1 for the first element). A rank-based bias(γ) is
then assigned to each option, which is calculated by an exponential bias function. The probability p(γ) of
selecting an option is given by Equation (48):

p(γ) = (

R∑
k=1

bias(k))−1 ∗ bias(γ) (48)

The node where the selected customer is located becomes nodet: the node to perform the detachment.
Body br is the body to be detached and prevt is the last node visited by br before serving customer cr. Note
that cr will still be served by br, but only after it is detached. After determining the value of these three
variables, the transfer insertion method follows the steps outlined in Algorithm 2.
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Transfer insertion at transfer points (TI2). Bodies may also be detached/attached at special transfer
points where no additional services are performed. Transfer points are usually located in central positions
and intersections which connect different clusters of customers. This neighborhood randomly selects a
transfer point, which corresponds to nodet. Each body is then a candidate to be detached at nodet. A score
is calculated for each body bi and corresponds to the average distance between nodet and every customer
served by bi. The exponential bias function used in neighborhood TI1 is also used here to select body b.
The final decision to make is where in the body’s route to insert the transfer point. The closest customer
to nodet visited by b is selected as prevt.

Transfer at first node (TI3). Transferring at the first node enables a vessel to detach a body as its
first action within the scheduling horizon, even if the body has no service to perform at this node. This
assumes a service was conducted during the preceding scheduling horizon. Thus, this move serves as an
opportunity for vessels to detach undesired bodies and free capacity to attach other bodies.

This neighborhood starts by selecting a vessel, with priority given to vessels with many bodies attached.
A body b is then selected, with priority given to empty bodies. Note that detaching an empty body does
not lead to immediate reattachment. The remaining variables, nodet and prevt, are given by the location
where the vessel started and the dummy node at the beginning of the vessel’s route, respectively.

Pick up originally detached body (TI4). The scheduling horizon may begin with detached bodies
which may or may not be empty. It is advantageous for a vessel to attach an empty body when it needs
more capacity, whereas attaching a body which started loaded with customer containers is required to fulfill
all requests. First a detached body is selected. For this, the bias function gives priority to selecting bodies
with loaded containers. The attachment location (nodet) is given by the node where the body is located at
the start of the scheduling horizon. Since detaching is not required, prevt is null and lines 3-6 in Algorithm
2 are ignored.

4.4.2. Body-transfer removal

Algorithm 3 provides an overview of how to remove body transfers. A body transfer comprises of the
delivery td and pickup tp of a body b. Given a solution and a body transfer as input, each customer served
by body b after pickup node tp is removed from b’s route and inserted into the unserved set (line 2). These
nodes are also removed from the route of the vessel attached to body b. After removing all customers and
transfers after tp, the pickup node is safely removed (line 3).

Delivery node td is the last node to be removed, leaving the body attached to the vessel that begun
the transfer (line 4). Finally, the removed requests are reinserted using the best insertion method and the
solution is returned (lines 5-6). Transfers may comprise of only a delivery or only a pickup node. For the
first scenario, the delivery node is removed and the body continues on its route attached to the vessel. In this
case, lines 2, 3 and 5 are not executed. When only removing a pickup, line 4 is skipped and the remainder
of the algorithm functions as normal.

Removing a transfer may lead to infeasible solutions which violate vessel capacities. For instance, a
vessel towing the maximum number of bodies may detach a body b1 as its first action, leaving a capacity
slack of one body. Later in the route, this same vessel may attach to a body b2, again reaching its capacity
limit. In case b1’s detachment would not be conducted, the previously feasible attachment of b2 becomes
infeasible as the vessel’s capacity is violated. To remedy this, a removal in cascade is employed whereby
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Algorithm 3: Body-transfer removal.
1 Input: solution s, body transfer to remove (tp and td), transferred body b
2 U ← Remove every served request after node tp from b’s route (s)
3 Remove transfer pickup node tp (s)
4 Remove transfer delivery node td (s)
5 Best insertion of all requests in U (s)
6 return s

transfers which cause infeasibility are also removed. The two removal neighborhoods differ in terms of how
exactly they select the body transfer to remove.

Random transfer removal (TR1). This neighborhood selects, with equal probability, a single body
transfer to be removed from the solution. If after the removal the solution is infeasible due to vessel capacity,
additional transfers are removed until a feasible solution is obtained.

Worst transfer removal (TR2). This neighborhood considers one body transfer at a time. The removal
which yields the best solution value is maintained and the solution is returned with at least one fewer body
transfer.

4.5. Routing phase

Once body transfers are fixed, vessel-body combinations may be considered as a single vehicle which
have fixed visits scheduled in their routes. Note that the capacity of a vessel-body combination may change
during the execution of a route given that body transfers may take place. The VSBR with fixed body
transfers is therefore reduced to a PDPTW which must be addressed by the routing phase. This method
optimizes vessel routes by rescheduling requests while respecting predefined body transfers. From the many
existing routing algorithms, we selected one which is fast and simple to implement with proven performance
on PDPTWs. SISRs (Christiaens and Vanden Berghe, 2020) was developed to be a general method for VRPs
and experiments have shown that it generates competitive solutions for a wide range of variants, including
the PDPTW.

SISRs comprises of a single ruin operator which removes customers based on a novel property called
spatial slack. SISRs removes a sufficient number of customers in different yet geographically proximate
routes, creating spatial and capacity slack. When reinserting customers back into the solution, multiple
routes close to those customers offer a range of efficient options. The recreate operator comprises of a best
insertion method (described in Section 4.3) which uses rank-based probabilities to avoid always inserting
customers into the best position, thereby avoiding premature convergence. Each time the routing phase
is invoked, SISRs is executed for a fixed number of iterations and returns an equal quality or improved
solution.

5. Computational experiments

This section will investigate whether body transfers have a positive impact on solution quality despite
the increase it brings to the problem’s complexity and search space. Computational experiments using newly
generated instances are performed with ILS-SB to study if it can efficiently employ body transfers and obtain
high-quality solutions in reasonable runtimes. Additionally, an evaluation on how each proposed transfer
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neighborhood impacts solution quality will be performed. All experiments were conducted on a computer
with an IntelXeon E5-2660 processor at 2.6 GHz and 164 GB of RAM running Ubuntu 18.04 LTS. ILS-SB
was implemented in C++ and compiled using gcc 7.4.0 and options -O3.

All parameters required by ILS-SB are detailed in Table 3 and were calibrated using irace (López-
Ibáñez et al., 2016) with the range of values provided in column Range. SISRs was implemented with the
original parameters calibrated by Christiaens and Vanden Berghe (2020) for its best behavior across a range
of instance sizes. The maximum number of iterations and time limit were set manually considering the
trade-off between solution quality and processing time.

Table 3: ILS-SB parameters and values.

Parameter Value Range Parameter Value
ι 10 {5, 10,...,45, 50} Time limit(s) 600
l 75 {10, 25, 50,..., 175, 200} SISRs iterations 1000
ν 70 {10, 20, ..., 80, 90}
α 0.70 {0.0,...,1.0}
#maxIt 80 {10, 20,...,140, 150}

5.1. Instance sets

Given that the VSBR is a new problem there are no academic instances available and so, in order to
perform experiments and encourage future research, instances are generated based on historical data from
a shipping company. The data provided contains information concerning vessels and bodies, such as their
speed, capacity, detaching/attaching time and container service time. Furthermore, a set of requests was
provided along with the corresponding customer locations on a waterway network. The data provided to
us is limited given the confidentiality terms agreed upon. For example, the company’s executed schedules
and routes were not disclosed. Thus a direct comparison with their results is unfortunately not possible.
However, the instances we generated employ as much of the real data provided to us as possible in order
to approximate the real scenario and provide valuable insights concerning the problem’s characteristics. All
benchmark instances are anonymized and have been made publicly available in the supplementary material
of this paper.

We generated a total of 70 instances, divided into two instance sets. In the first set, AttB, each body is
attached to a single vessel and each vessel has at least one body attached to it. In the second instance set,
DetB, bodies may start detached and vessels may start empty (not towing any body). Each instance set
has seven groups of five instances containing 10, 50, 100, 150, 200, 250 and 300 requests. For each instance
we assumed a scheduling horizon of 20 days and ε equals to one while the other attributes were generated
as follows.

Routing network. The employed routing network consists of 14 nodes with each node representing a
container terminal where the pickup and/or delivery service of one or more requests must be served. Each
of the nodes is connected to at least one other node via edges. Distances between nodes are calculated by
employing a routing Application Programming Interface 2 which returns the shortest waterway trajectory

2https://www.routino.org/
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between each pair of terminals. To facilitate the reading of instances, a distance matrix is provided for every
instance, while the real location of nodes have been anonymized.

Vessels and bodies. The total number and capacity of available vessels and bodies corresponds to the
real-world scenario. Since there is no depot or source/sink node, vessels may start at any location. For
each vessel, a location in the network is selected randomly with uniform probability. The scheduling horizon
starts given a “partial snapshot” of a solution, thus vessels may be en route between two nodes. To simulate
this scenario, instances have a start time parameter for each vessel which corresponds to the earliest time
it will be available at the first node of its route. Given two uniformly selected nodes n1 and n2, the start
time of each vessel is generated between 0 and 50% of the travel time from n1 to n2. In the MIP model it is
sufficient to fix τAv

ov to vessel v’s start time to consider this particular information. For the DetB instance
set, bodies have a one-in-three chance to start detached from vessels. Bodies’ start locations are selected
with uniform probability by first considering only locations or vessels that do not have a body present or
attached.

Requests. A single request is identified by a pickup and delivery service — each with their corresponding
customer and time windows — and the number of containers ρ to be transported. Using the historical data
we calculated the average and standard deviation of the number of containers associated with requests, the
length of services time windows and amount of time overlap between pickup and delivery services of the same
request. On average, requests involve seven containers with time windows of 4 and 7 days for pickup and
delivery services, respectively. Pickup and delivery time windows overlap three days on average. All these
attributes were generated based on a normal distribution considering the calculated average and standard
deviation.

When creating an instance, first the number of containers ρ associated with each request is generated.
Then, the locations of pickup and delivery services are generated uniformly, selecting a different location for
each service. Starting with the pickup service, the size of its time window (TWP

size) is generated followed
by the opening day (OpenPday), which is selected with uniform probability between -5 and 20-TWP

size. If
OpenPday < 0, the request belongs to R2 which means no pickup service is needed and the containers are
inserted into a body (uniformly selected) with sufficient capacity.

After generating the pickup, the delivery service is generated starting with the size of its time window
(TWD

size). The opening day for the delivery service (OpenDday) strongly depends on the opening day of the
pickup service. If OpenPday < 0, then OpenDday is selected with uniform probability between 0 and 20-TWD

size.
Otherwise, the considered range for OpenDday is 0-20. If OpenDday > 20− TWD

size, the request belongs to R3.
In this case the delivery service will be left for the next scheduling horizon. For R1 requests, the amount of
time overlap is generated such that the delivery service may start as early as the pickup service or as late
as when the pickup time window ends.

In the considered scenario, requests are associated with multiple containers and vessels can tow bodies
capable of holding hundreds of such containers. Therefore, due to economies of scale, serving requests with
vessels will always be considerably cheaper than serving them with trucks. This is because trucks typically
only carry one or two containers and therefore either multiple trips or multiple trucks would be required
to serve a single request. As a result, an unserved request incurs a significant outsourcing cost π which
ensures that it is extremely unlikely to have an advantageous solution by leaving a request unserved. For
the introduced benchmark, π was artificially set to 10,000 in order to simulate an expensive outsourcing cost.
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Thus, a solution which serves more customers, even if it has a greater travel cost, is almost always going to
be better than a solution which serves fewer customers. Note that the value of π may be adjusted depending
on the problem context. Take, for example, a small-scale problem where bodies have less capacity and
requests are associated with fewer containers. In this case π may require a lower value in order to capture
the fact that outsourcing will make financial sense more frequently.

5.2. Detailed results

We first conduct experiments with the MIP formulation using Java 8 and CPLEX 12.6.3. Given that the
model is unable to solve instances of realistic size within reasonable computational runtimes, the instances
employed in these experiments have reduced size and were generated specifically for the MIP (with fewer
vessels, bodies and requests). For the sake of diversity and to test the different constraints implemented in
the model, we generated instances with R1, R2 and R3 requests and instances where at least one request
must be served by a truck. Table 4 presents the results of the experiments obtained by the MIP formulation
and by ILS-SB. We introduce a time limit of five hours and a memory limit of 100 GB when solving the
instances with the MIP.

The first columns of Table 4 provide details of the instance: the number of requests |R|, vessels |V|
and bodies |B|. Regarding the MIP results, the table provides the number of nodes in the model network
|N|, the upper bound (UB), lower bound (LB), processing time in seconds (T(s)) and number of unserved
requests |U|. Given the non-deterministic nature of ILS-SB, each experiment is performed 10 times with
a computational time limit of 10 minutes per run. The final columns of Table 4 document the results for
ILS-SB and provide the value of the best solution obtained (S∗), the average processing time T(s), number
of transfers (BT) and number of unserved requests |U|.

Table 4: MIP and ILS-SB comparison.

Instance MIP ILS-SB
|R| |V| |B| |N| UB LB T(s) |U| S∗ T(s) BT |U|
3 2 2 14 10460 10460 30.41 1 10460 0.23 1.90 1
3 2 2 11 290 290 1.29 0 290 0.22 0.00 0
4 2 2 15 560 560 8.23 0 560 0.91 3.20 0
4 2 2 15 10460 10460 1625.73 1 10460 0.95 2.50 1
5 2 2 17 10490 10490 288.33 1 10490 3.50 1.40 1
5 2 2 17 10490 10490 557.88 1 10490 1.89 1.50 1
5 3 3 31 10587.99 350.11 18000.00 1 1448 7.74 2.90 0
6 3 3 35 30796.10 318.25 18000.00 3 1782 9.91 1.90 0

ILS-SB results (with exception of S∗) correspond to the average over 10 runs.

Table 4 reveals that although the MIP formulation is able to obtain the optimal solutions rather quickly
for instances with two vessels and two bodies with up to five requests, CPLEX already experiences difficulty
in solving problems with one more vessel and body. If the number of requests increases to 10 then even five
hours of runtime is not enough to find a non-trivial solution (a solution that serves at least one request).
Meanwhile, ILS-SB is able to obtain all proven optimal solutions and much better solutions for the final two
instances in under 10 seconds.

To evaluate the statistical significance of the differences between methods, the Wilcoxon signed-rank
test is performed when comparing results of two methods while the Pairwise T-test is performed in the
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neighborhood analysis, both with a confidence level of 95%. Table 5 details the results of ILS-SB for the
DetB instance set and reports the value of the best solution found (S∗), the average solution values (Savg),
the average solution value considering the additional objective function (OF 2

avg), the average number of
body transfers (BT) and unserved requests |U|, the average processing time in seconds T(s) and the average
standard deviation (SD). In order to facilitate the presentation of results, different instances with the same
number of requests were aggregated. Thus, each row corresponds to the average results across five instances.

Table 5: ILS-SB results for the DetB instance set.

Instance S∗ Savg OF 2
avg BT |U| T(s) SD

I_10 2053.20 2066.20 46057.52 4.60 0.00 64.62 13.10
I_50 4690.80 4843.24 80532.28 9.64 0.00 605.05 112.17
I_100 6677.50 6980.60 84837.40 8.03 0.00 601.57 256.95
I_150 8765.40 9436.12 91706.00 6.36 0.00 603.41 596.51
I_200 12395.20 13325.08 103928.48 6.28 0.00 604.90 816.82
I_250 17455.80 18663.84 102816.80 5.56 0.00 607.19 917.07
I_300 28441.80 46144.16 120687.28 4.84 1.48 608.77 36374.70
Avg. 11497.10 14494.18 90080.82 6.47 0.21 527.69 5583.90

For this instance set, all instances with up to 250 requests had all of their requests served, while three
I_300 instance resulted in a few unserved requests given that it becomes more difficult to serve more
requests within the same length scheduling horizon. The number of unserved requests helps explain the
larger standard deviation, as not serving customers leads to large outsourcing costs in the solution value.
The maximum number of iterations without improvement was triggered only for instances with 10 requests,
while the execution of all others was halted by the time limit. Doubling ILS-SB’s time limit does not lead
to significant difference concerning solution value. In addition, maintaining a short time limit enables the
method to be adapted for a dynamic version of the problem, where, for example, it is uncertain when exactly
requests become available.

Remaining with the results provided in Table 5, body transfers were inserted into every solution, with the
results showing that a given body is transferred at most three times during the 20 days scheduling horizon.
The average number of transfers in a solution considering all bodies is 6.47, meaning that on average 60% of
the available bodies were transferred at least once. However, when only considering transfers between two
different vessels, the average drops to 3.59, with the most significant differences occurring in the instances
with 50 and 100 requests.

In order to evaluate the impact of body transfers on solution quality, a comparison is performed between
the results of the complete ILS-SB and the corresponding PDPTW where body transfers are not considered.
Thus, for the purposes of this experiment, only the routing phase of Algorithm 1 is used, with the resulting
method referred to as ILS-R. To enable a fair comparison this experiment is conducted on the AttB instance
set, where each body starts attached to a vessel. Since the routing phase will never schedule body transfers,
no instances where bodies start detached are used, given that this would provide an unfair advantage to
ILS-SB which can attach such bodies. Table 6 provides a summary of the results produced by ILS-R and
documents the average solution value (Savg), the average solution value considering the secondary objective
function (OF 2

avg) and the average number of unserved requests |U|. The final row of the table provides the
gap from the best average solution value and the best average solution value with respect to OF 2. These
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gaps are calculated for each instance using the best solution generated from both methods.

Table 6: Body transfers analysis.

ILS-R ILS-SB
Instances Savg OF 2

avg |U| Savg OF 2
avg |U|

I_10 1836.80 73433.40 0.00 1775.92 65345.12 0.00
I_50 4932.32 99826.88 0.00 4741.44 90681.80 0.00
I_100 6838.23 108816.53 0.00 6750.93 92951.73 0.00
I_150 9037.20 122971.80 0.00 8685.12 107205.00 0.00
I_200 12105.76 120886.40 0.00 12088.68 108114.40 0.00
I_250 19361.44 126635.40 0.00 18295.16 115457.60 0.00
I_300 60487.16 158526.60 2.84 54219.80 144411.00 2.36
gap 4.79% 13.47% 0.33% 0.63%

For the considered instance set, average solutions including body transfers are on average 4% better
than those which do not. An even larger improvement is observed when comparing the values of OF 2

(13%), highlighting the even greater impact of body transfers on total operational cost. For best solution
values, ILS-SB obtains solutions which are on average 6.5% better than those obtained by ILS-R. Despite the
moderate average gap, a few outliers are observed which are worth mentioning. ILS-SB obtained solutions
values 14%, 20%, 17% and 27% better than ILS-R for instances I_10_3, I_50_2, I_250_5 and I_300_2,
respectively. ILS-R obtained better solutions for only three instances, resulting in the low positive ILS-
SB gaps. Nevertheless, when comparing the results obtained by ILS-SB and ILS-R, significant statistical
differences are observed regarding best solution, average solution and average OF 2 solution. Together,
these results confirm the positive impact of permitting body transfers. Finally, it is worth noting that both
algorithms were executed with the same time limit. This means that even with a far larger search space
ILS-SB is able, within the same length of time, to significantly improve solution quality.

5.2.1. Additional analysis

ILS-SB comprises of six neighborhoods dedicated to the insertion/removal of body transfers. In order
to identify the contribution of each neighborhood to solution quality, a set of experiments is conducted on
the DetB instance set where a different neighborhood is deactivated in each experiment and the obtained
solutions are compared. Table 7 provides the results for each neighborhood by dividing the objective function
into two parts. Row Travel cost corresponds to the average travel cost of vessel routes, given by the number
of edges used by vessels. Meanwhile, the average number of unserved requests is given by |U|avg. The
last row corresponds to the gap between the average solution value of the given neighborhoods versus the
best average solution value considering all neighborhoods (gap(Savg)). Column ILS-SB corresponds to the
complete method with all neighborhoods, while each remaining column corresponds to the method without
the labeled neighborhood. For instance, column TI1 corresponds to the results when the first insertion
neighborhood is absent.

Although average solution quality always deteriorates when deactivating neighborhoods, significant sta-
tistical differences are present only between each method and TI4. The other neighborhoods did not sig-
nificantly improve the solution, however each one of them is tailored to a unique way of performing body
transfers and can prove valuable in different scenarios. Despite larger travel cost, ILS-SB obtains the smallest
gap considering average solution value (2.93%). This result derives itself from the low number of unserved
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Table 7: Solution values when using different sets of neighborhoods.

ILS-SB TI1 TI2 TI3 TI4 TR1 TR2
Travel cost 12432.33 12438.00 12342.86 12482.09 13706.50 12592.34 12659.30
|U|avg 0.21 0.49 0.35 0.43 10.25 0.81 0.58
gap(Savg) 2.93 4.86 3.26 4.78 73.35 8.67 4.89
TI1: transfer at a customer location. TI2: transfer at transfer points. TI3: transfer at first node.
TI4: pick up originally detached body. TR1: random removal. TR2: worst removal.

requests (0.21 on average). Given the nature of the VSBR and the large outsourcing costs associated with
unserved requests, a solution serving more requests, even if it has longer routes, will often be better than a
solution serving fewer.

The large gaps between solutions with different sets of neighborhoods are concentrated in instances with
more than 250 requests and primarily derive from the number of unserved requests. To demonstrate the
impact of outsourcing costs on solution quality, Figure 5 provides the average solution value associated with
the five instances containing 300 requests. The total value is divided into travel and outsourcing costs.
All methods have similar travel costs, which is approximately 32000, but the total solution value varies
depending on the number of unserved requests. The best solution is obtained by ILS-SB, which on average
has 1.48 unserved requests. On the other hand, TI4 and TR1 have on average 26 and 4 unserved requests
which results in solutions that are 84% and 43% worse, respectively.

ILS-SB TI1 TI2 TI3 TI4 TR1 TR2
0

2

4

6

8

·104

Travel cost
Outsourcing costs

Figure 5: Solution values for the I_300 instances.

Note that despite the large number of unserved requests, TI4 still results in a greater average travel
cost. TI4 is the only neighborhood capable of attaching bodies which began detached. When this particular
neighborhood is deactivated, these bodies can no longer be attached. As a result, not only will requests
which began loaded into these detached bodies remain unserved, but there is also less capacity available to
serve requests since the initially detached bodies will not be used. For instances with up to 200 requests, TI4
obtains solutions with a low travel cost (average gap of 2.26). However, although the number of unserved
requests for larger instances remains high, this does not lead to a decrease in travel cost. Due to the high
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number of requests to serve along with the reduced fleet of bodies (thus less total available capacity), more
trips are necessary to serve requests which in turn leads to travel cost increases.

Figure 6 is a parallel-coordinates plot which illustrates the relationship between travel cost, the percentage
of unserved requests |U|% and the total cost. For this experiment, a large number of solutions were generated
by uniformly selecting the number of requests to remain unserved, while the other requests were randomly
inserted into their first feasible position. Travel costs and total costs were normalized from 1-100 to better
visualize the results. Note that the left-hand side of the figure has crossing edges, while the right-hand side
demonstrates a near one-to-one direct correspondence. These results demonstrate that while a trade-off
between travel cost and the percentage of unserved requests may occur, the proportion of unserved requests
is directly connected to the total cost. This demonstrates the significant impact outsourcing costs have on
the solution value and how more unserved requests will never result in lower total costs given the adopted
value of π in the proposed instance set. Thus, it is always beneficial to serve more requests, despite the
increase in travel cost.
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Figure 6: Relationship between travel cost, percentage of unserved requests and total cost.

Finally, an experiment is performed concerning the impact of employing OF 2. Breaking ties with respect
to travel cost and directing the search towards solutions with less total operational cost improves overall
solution quality by 5.9%. Although better solutions are obtained on average, statistical experiments show
no significant difference between the results with and without the tie break regarding best and average
solutions. However, significant differences are observed with respect to the average OF 2 solution values.

6. Conclusions

This paper introduced the vessel swap-body routing problem (VSBR), a generalization of the pickup
and delivery problem with time windows. The problem is encountered in a shipping company where body
transfers may be employed to reduce overall costs. These transfers significantly increase the solution space
and difficulty of the problem given how they have a large impact on the number of routing and scheduling
possibilities, confronting human operators with a significant challenge. The VSBR therefore represents a
significant academic challenge with practical applications. We proposed a solution method for the problem
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and investigated whether body transfers can bring significant gains to solution quality when runtimes remain
the same.

To facilitate the development of a solution method and to better tackle the multiple levels of decisions,
we decomposed the problem into transfer decisions (when and at which locations to perform body transfers)
and routing decisions. Once decomposed, these different decision levels were addressed using dedicated
methods. We proposed a heuristic which consists of a state-of-the-art algorithm for the PDPTW and
tailored neighborhoods for performing body transfers. Computational experiments on instances derived
from real-world data indicated the positive impact of body transfers on both travel and outsourcing costs.
The inclusion of body transfers lead to solutions with shorter vessel routes and more served customers, which
directly impacted the overall cost of transportation. The significant gains obtained for a scheduling horizon
of 20 days could translate into even larger gains for longer scheduling horizons.

This research indicated the potential benefit of transferring batches of requests between vehicles rather
than handling the entirety of a request (pickup and delivery) with a single vehicle. These transfers give rise
to an additional decision level which can be efficiently managed by decomposing the problem and employing
dedicated methods for each decision level. Techniques to accelerate the solution method and better direct
the search towards high-quality solutions should be incorporated as the search space significantly increases
in size when handling these problems with multiple decisions levels. The foundations laid by this paper aim
to encourage researchers to consider including the transfer of batches of requests in other VRP variants,
as doing so has the potential to significantly improve solution quality in reasonable runtimes, despite the
additional complexity.
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