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Position and Orientation Tunnel-Following NMPC
of Robot Manipulators Based on Symbolic

Linearization in Sequential Convex Quadratic
Programming
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Abstract—The tunnel-following nonlinear model predictive
control (NMPC) scheme allows to exploit acceptable deviations
around a path reference. This is done by using convex-over-
nonlinear functions as objective and constraints in the underly-
ing optimal control problem (OCP). The convex-over-nonlinear
structure is exploited by algorithms such as the generalized
Gauss-Newton (GGN) method or the sequential convex quadratic
programming (SCQP) method to reduce the computational
complexity of the OCP solution. However, the modeling effort
and engineering time required to implement these methods is
high. We address the problem of reducing the modeling effort in
the implementation of SCQP, focusing on a standard sequential
quadratic programming (SQP) implementation where symbolic
linearization is applied to the nonlinear part of the convex-over-
nonlinear functions in the objective and constraints. The novelty
of this paper is twofold. It introduces a novel operator that
applies symbolic linearization in a transparent and easy way to
solve nonconvex OCPs with the SCQP method, and introduces a
meaningful representation of an orientation-tunnel for robotic
applications by means of a convex-over-nonlinear constraint,
which preserves the convexity exploitation by the SCQP method.
The proposed technique is demonstrated in a tunnel-following
task for a 7-degrees-of-freedom manipulator.

Index Terms—Optimization and optimal control, motion con-
trol, tunnel-following, sequential convex quadratic programming,
symbolic linearization.

I. INTRODUCTION

PATH-FOLLOWING nonlinear model predictive control
(NMPC) [1] is of significant importance in the execution

of robotics applications defined by a path reference and subject
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to constraints that must be satisfied during such task execution.
Certain applications, such as collaborative robots [2], welding
[3], gluing [4] and bin-picking [5], allow deviations from
a desired path within a defined neighborhood of the path,
with applications like gluing or bin-picking with suction or
magnetic grippers allowing for larger deviations than applica-
tions like spot welding, for instance. Such deviations introduce
additional freedom to the optimization problem, which can be
exploited, e.g., to improve the time-optimality of a task, to
reduce the energy consumed by a machine while performing
a task, or to reduce the likelihood of damage to a robot while
working near its joint or actuation limits.

The tunnel-following NMPC scheme, introduced by van
Duijkeren [6], allows us to include such deviations in non-
convex optimal control problems (OCP) in the form of an
upper-bounded squared ℓ-2 norm of a nonlinear measure of
deviation, e.g., a Euclidean distance from the path. This
special convex-over-nonlinear structure can be exploited to
solve such OCPs with variations of the Sequential Quadratic
Programming (SQP) method such as the Generalized Gauss-
Newton (GGN) method [7], [8] and the Sequential Convex
Quadratic Programming (SCQP) method [9].

The GGN method replaces the exact Hessian (EH) of the
Quadratic Programming (QP) subproblems in the SQP method
with an approximation based on first-order derivatives of
the objective function and second-order derivatives of some
convex functions present also in the objective. Conversely, the
SCQP method exploits the convexity in both the objective and
the constraints to create a particular Hessian approximation
that leads to better convergence properties when compared to
the GGN method [9], [10]. The implementation of either the
GGN or the SCQP method involves an additional modeling
and implementation effort with respect to the SQP method.
Such implementation requires the modeler, who translates
the OCP into a nonlinear program (NLP), to identify and
select the convex-over-nonlinear functions in the objective and
constraints of the OCP, besides their corresponding Lagrangian
multipliers, to build the Hessian approximation. This leaves
opportunities for improvement in terms of (i) reducing the
effort needed to implement the GGN and SCQP methods,
and (ii) defining measures of deviation for additional variables
describing robot motions, such as orientations.

The contribution of this paper is twofold. First, it extends the
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tunnel-following scheme presented by van Duijkeren [6] to in-
clude freedom in the orientation of the end-effector of a robot
manipulator, not only penalizing the orientation error in the
objective but also adding a convex-over-nonlinear constraint
to define a feasible region of the orientation error, while giving
a meaningful representation to the concept of an orientation
tunnel. Second, it explores an efficient implementation of the
SCQP method, and consequently of the GGN method, by
exploiting the idea of symbolic linearization of the nonlinear
part of the convex-over-nonlinear functions in the objective
and constraints of OCPs, so that the modeling effort required
to implement the SCQP or GGN method is reduced. The
exploitation of the convexity in the tunnel-following scheme
by the SCQP method is preserved with the addition of the
orientation tunnel.

Note that, even though the tunnel-following scheme is
applied to robot manipulators in this paper, it can also be
applied to other types of systems such as mobile robots and
autonomous vehicles, for example to exploit the entire width
of a lane to generate optimal motions.

A. Notation

Let us denote 0 as a zero matrix, ⟨z1, · · · , zn⟩ :=[
z⊤1 · · · z⊤n

]⊤
as the vertical concatenation of two or more

column vectors zi, i ⊂ {1, ..., n}, and ||z||W :=
√
z⊤Wz

as the weighted ℓ-2 norm of vector z. Throughout this pa-
per we also denote ∂f

∂w (w) ∈ Rm×n as the Jacobian of a
continuously differentiable function f(w) : Rn → Rm, and
∇f(w) := ∂f

∂w (w)⊤ ∈ Rn×m as its gradient. If f(w) is a
scalar function, i.e., m = 1, the Hessian of f(w) is defined as
∇2f(w) := ∂2f

∂w2 (w) ∈ Rn×n. A subscript in the gradient or
Hessian operator indicates that the differentiation is performed
with respect to such subscript, e.g., ∇wi

f(w) := ∂f
∂wi

(w).

B. Outline

This paper is organized as follows. The tunnel-following
scheme and its extension are presented in Section II. Section
III discusses the SCQP method. Next, symbolic linearization
and its application in the GGN and SCQP methods are
presented in Section IV. Experiments and results are discussed
in Section V. We close the paper with concluding remarks.

II. TUNNEL-FOLLOWING NMPC SCHEME

The path-following scheme aims to make the output of
a system follow a path reference, penalizing any deviation
from this reference, i.e., penalizing tracking-errors. A natural
extension of this scheme arising in applications with robot
manipulators is the position tunnel-following NMPC scheme,
presented in [6]. Here, the end-effector of a manipulator is al-
lowed to deviate from a position reference up to a user-defined
tolerance ρ• ∈ R>0, see Fig. 1, while any excursion beyond
ρ• is heavily penalized in the objective of an optimal control
problem (OCP). This section introduces an extended tunnel-
following scheme with orientation constraints and presents the
OCP associated to it.

Fig. 1. Illustration of the ρ•-neighborhood around a reference path pref(s)
that defines a position-tunnel when evaluated along the path-progress variable
s (left) and the error angles {Θ,Φ,Ψ} that define the magnitude of the error
between an orientation reference Rref(s) = [ηref(s) ςref(s) αref(s)] and
the orientation of the end-effector Ree(q) = [ηee(q) ςee(q) αee(q)] (right).

A. System dynamics

For a robot manipulator with ndof degrees-of-freedom (dof),
let us define the state vector x := ⟨q, q̇⟩ ∈ R2ndof , and the
input vector u := τ ∈ Rndof , where q ∈ Rndof , q̇ ∈ Rndof

and τ ∈ Rndof are the generalized joint position, velocity and
torque, respectively. The robot dynamics can be defined by the
ordinary differential equation ẋ = ξ(x, u) = ⟨q̇, FD(q, q̇, τ)⟩,
where FD is the forward dynamics function of the robot
manipulator.

Following the approach presented in [6], we introduce the
path-progress variable s ∈ T := [0, 1] subject to double
integrator dynamics ξs(χ, ν) := ⟨ṡ, s̈⟩ with state vector χ :=
⟨s, ṡ⟩ ∈ R2 and input ν := s̈ ∈ R.

The path dynamics ξs are used to augment the system dy-
namics as ξ̂(x̂, û) := ⟨ξ(x, u), ξs(χ, ν)⟩, where x̂ := ⟨x, χ⟩ ∈
Rnx̂ , û := ⟨u, ν⟩ ∈ Rnû , nx̂ = 2ndof + 2 and nû = ndof + 1.
Such augmented dynamics ξ̂ are discretized by means of a
Runge-Kutta integrator with sample time δt to obtain the
discrete representation

x̂k+1 = fd(x̂k, ûk). (1)

B. Tracking Errors

Tracking errors are agnostic to the scheme used (path-
following or tunnel-following). These errors may include time-
tracking error, position-tracking error, and orientation-tracking
error, among others, and depend on the definition of a path
reference according to the following two assumptions.

Assumption 1 (Path reference). A path reference is given
as input to the path- or tunnel-following scheme. This ref-
erence is composed by a path-progress-dependent reference
ṡref(s) : T → R, a position reference pref(s) : T → R3

and an orientation reference Rref(s) : T → SO(3). The path
reference is assumed to be computed by an optimal motion
planner, such as [11] or [12].

Assumption 2 (Small orientation error). The reference
{ṡref , pref , Rref} is computed by an optimal motion planner, as
in Assumption 1, so that |Θ| ≪ π/2, |Φ| ≪ π/2, |Ψ| ≪ π/2
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∀s ∈ T , i.e., the end-effector is able to follow Rref with small
orientation errors, which are represented by the error angles
{Θ,Φ,Ψ} (see Fig. 1).

Furthermore, the definition of the tracking errors requires
functions that describe the position pee(q) : Rndof → R3 and
the orientation Ree(q) : Rndof → SO(3) of the end-effector.
Such functions are retrieved from the forward kinematics
function of the robot.

1) Time-tracking error: Based on Assumption 1, let us
define the time-tracking error as

eṡ(x̂) = ṡ− ṡref(s) ∈ R. (2)

The norm of eṡ is heavily penalized in the objective function
of the OCP with a penalty wṡ to make it converge to zero
with high priority.

2) Position-tracking error: Similarly, we can define the
position-tracking error as

eP(x̂) = pee(q)− pref(s) ∈ R3, (3)

whose ℓ-2 norm represents the Euclidean distance between pee
and pref . In the tunnel-following scheme, the squared ℓ-2 norm
of eP is included with a small penalty wP as a regularization
term in the objective function and is added within a soft-
constraint to the OCP. Such constraint allows the squared ℓ-2
norm1 of eP to be greater than zero but lower than certain
user-defined position tolerance ρP ∈ R≥0 squared. By setting
such upper-bound to ||eP(x̂)||2, the end-effector is allowed to
stay within a sphere of radius ρP and centered at pref(s). The
tunnel around pref(s) is formed from the union of all such
spheres along s, as shown in Fig. 1.

Definition 1 (Position-tunnel constraints). Consider a slack
variable lP ∈ R≥0 that is heavily penalized in the objective
function as a linear cost with weight wl. The position-tunnel
is defined by the following constraint

||eP(x̂)||2 ≤ ρ2P + lP . (4)

This slack variable is introduced to guarantee feasibility of
the solution of the OCP, even when it is not feasible to remain
inside the tunnel, and its penalization enforces convergence of
pee(q) to the tunnel of radius ρP .

Even though the presence of nonconvex functions in the
objective or constraints of an OCP is usually undesirable,
the position-tunnel constraint (4) has a special convex-over-
nonlinear structure that allows to exploit convexity of its
outermost part by using the SCQP method, as detailed in
Section III.

Definition 2 (Convex-over-nonlinear function). The composi-
tion of a convex function ϕ(w) and a nonlinear function c(w),
so that ψ(w) := (ϕ ◦ c)(w) = ϕ(c(w)) is known as a convex-
over-nonlinear function.

Based on this definition, the left-hand side of the position-
tunnel constraint (4) is a convex-over-nonlinear function where
ϕ(c) = c2 and c(x̂) = eP(x̂).

1The squared ℓ-2 norm is used instead of the ℓ-2 norm to avoid the
computation of square roots and to add curvature to the structure of the
functions in the objective and constraints, which is exploited by the solution
method presented in Section III.

3) Orientation-tracking error: The computation of the
orientation-tracking error is not as straightforward as the
position-tracking error, since it depends on the way orien-
tations are being represented, e.g., axis-angle representation,
rotation matrices, unit quaternions, or Euler angles. Although
a rotation matrix is not a minimal representation of orientation,
in this paper we use rotation matrices as they have no
singularities and are bijective.

The orientation reference is described by the rotation matrix
Rref(s) = [ηref(s) ςref(s) αref(s)], where ηref , ςref , and αref

are the first, second and third column of Rref , respectively.
Similarly, the orientation of the end-effector is given by
Ree(q) = [ηee(q) ςee(q) αee(q)]. Let us now define the ro-
tation needed to align Rref(s) and Ree(q) as

RO(q, s) = Rref(s)R
⊤
ee(q). (5)

Following the approach shown in [13, Section 3.7], and
based on Assumption 2, RO(q, s) can be transformed into
an axis-angle representation, with vector r representing the
direction of the axis of rotation and angle ϑ representing the
magnitude of the rotation around r, without losing bijection
since |ϑ| < π/2 (Assumption 2). Based on such representation,
the orientation error can be defined as

eO = r sin(ϑ) ∈ R3. (6)

The axis of rotation r is defined by means of the off-diagonal
elements of RO as

r =
1

2 sin(ϑ)
⟨rO32 − rO23 , rO13 − rO31 , rO21 − rO12⟩,

(7)
where rOij

corresponds to the element of the i-th row and
j-th column of RO. Replacing (7) in (6), we get an expression
for eO that depends on the columns of the rotation matrices
Rref and Ree as follows

eO(x̂) =
1

2
⟨rO32

− rO23
, rO13

− rO31
, rO21

− rO12
⟩ (8)

=
1

2
(ηee × ηref + ςee × ςref + αee × αref) . (9)

where the dependencies on q and s have been dropped to
increase readability. Note that the restriction of |ϑ| < π/2 can
be defined by means of the columns of the rotation matrices as
η⊤eeηref > 0, ς⊤eeςref > 0, α⊤

eeαref > 0 [13], or by means of the
error angles {Θ,Φ,Ψ} between the pairs (ηee, ηref), (ςee, ςref),
and (αee, αref), respectively, as |Θ| < π/2, |Φ| < π/2 and
|Ψ| < π/2 (see Fig. 1).

Remark 1. The representation of the orientation error (9)
is not unique, and can depend on other representations of
orientation, e.g., angle-axis or unit quaternions.

Let us now address the existence of an orientation tunnel
of radius ρO and the definition of the orientation-tunnel con-
straint. Given the orthonormality property of rotation matrices
and the definition of the cross product, the squared ℓ-2 norm
of eO can be computed as

||eO(x̂)||2 =
1

4

(
sin2(Θ) + sin2(Φ) + sin2(Ψ)

)
. (10)
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Based on Assumption 2 and the small angle approximation
sin(w) ≈ w, ||eO(x̂)||2 can be approximated as

||eO(x̂)||2 ≈
1

4

(
Θ2 +Φ2 +Ψ2

)
=

∥∥∥∥12 [Θ Φ Ψ]⊤
∥∥∥∥2 (11)

which resembles the computation of a Euclidean distance
in the three-dimensional space defined by Θ, Φ and Ψ. By
imposing an upper bound ρ2O to ||eO(x̂)||2, a feasible sphere
of radius ρO is defined in such three-dimensional space. This
creates a tunnel when considering the progress of s.

Definition 3 (Orientation-tunnel constraints). Analogous to
constraint (4), consider a user-defined orientation tolerance
ρO ∈ R≥0 and a slack variable lO ∈ R≥0 that is heavily
penalized as a linear cost with weight wl. The constraint that
defines the orientation-tunnel is

||eO(x̂)||2 ≤ ρ2O + lO. (12)

Similar to the position-tracking error, the squared ℓ-2 norm
of eO is included as a regularization term in the objective
function of the OCP with a small penalty wO. Please note
that the orientation-tunnel constraint (12) has the same convex-
over-nonlinear structure as the position-tunnel constraint (4),
with ϕ(c) = c2 and c(x̂) = eO(x̂).

C. Optimal Control Problem

Having discussed the system dynamics and tracking errors,
it is now necessary to discuss the underlying OCP that is
solved within the tunnel-following NMPC scheme. Such OCP
has the following structure

min
w

V̂(w) (13a)

s.t. x̂0 − x0 = 0, (13b)
x̂k+1 − fd(x̂k, ûk) = 0 k = 0, ..., N − 1, (13c)
gk(x̂k, ûk) ≤ 0 k = 0, ..., N − 1, (13d)

∥ζ•(x̂k)∥2 ≤ ρ2• + l̂•,k k = 0, ..., N, (13e)
gN (x̂N ) ≤ 0 (13f)

where w =
〈
x̂0, û0, l̂0, . . . , ûN−1, l̂N−1, x̂N

〉
is the vector of

decision variables, N ∈ Z>0 is the prediction horizon, l̂k =
⟨lP,k, lO,k⟩ ∈ R2 is the vector of slack variables, x0 ∈ Rnx̂ is
the estimate of the current state of the system,

V̂(w) = ∥VN (x̂N )∥2P +

N−1∑
k=0

[
∥V(x̂k, ûk)∥2Q +wl l̂k

]
(14)

is the objective function, while P ⪰ 0 and Q ⪰ 0 are
weighting matrices of appropriate dimensions. General in-
equality constraints are defined in gk and gN . We are specially
interested in the structure of the objective function (14) and
the constraints (13e). The nonlinear functions VN and V in
the objective define least-squares costs and are subjected to
a squared, weighted ℓ-2 norm. Furthermore, constraint (13e)
sets an upper-bound to the squared ℓ-2 norm of the nonlinear
function ζ•, which defines a tracking error.

Remark 2. The OCP (13) could contain multiple constraints
of the type (13e).

The specific functions used within the OCP (13) are de-
scribed below. Functions V(x̂k, ûk) and VN (x̂N ) in the ob-
jective function (14) are defined as follows

V(x̂k, ûk) = ⟨eṡ(x̂k), eP(x̂k), eO(x̂k), x̂k, ûk⟩ , (15)
VN (x̂N ) = ⟨eP(x̂N ), eO(x̂N ), sN − 1, x̂N ⟩ , (16)

where ⟨x̂k, ûk⟩ and x̂N are included in V and VN , respectively,
as regularization terms with small penalties. The term sN − 1
is included in VN to attract the state s towards smax = 1.
Equality constraints (13c) correspond to the evaluation of the
dynamics (1) along the horizon according to the multiple-
shooting approach [14]. Inequality constraints, such as bound-
aries of states, inputs and slack variables, are shown below.

qmin ≤ qk ≤ qmax

0 ≤ sk ≤ 1

τmin ≤ τk ≤ τmax

− ṡk ≤ 0

− l̂k ≤ 0︸ ︷︷ ︸
gk(x̂k,ûk)≤0

qmin ≤ qN ≤ qmax

0 ≤ q̇N ≤ 0

0 ≤ eP(x̂N ) ≤ 0

0 ≤ eO(x̂N ) ≤ 0︸ ︷︷ ︸
gN (x̂N )≤0

(17)

These inequality constraints are included in (13d) and
(13f). Please note that terminal equality constraints on
⟨q̇N , eP(x̂N ), eO(x̂N )⟩ can be set as terminal inequality con-
straints with 0 as both lower and upper bound. Finally,
the position-tunnel constraint (4) and the orientation-tunnel
constraint (12) are added as two instances of constraint (13e).

III. SEQUENTIAL CONVEX QUADRATIC
PROGRAMMING (SCQP)

So far this paper has focused on extending the tunnel-
following NMPC scheme by adding orientation-tunnel
constraints. We now move on to discuss the sequential convex
quadratic programming (SCQP) method [9], an algorithm that
exploits convexity in the objective and constraints of an OCP
to improve the optimality of the solution, compared to the
generalized Gauss-Newton (GGN) method, while reducing the
computational complexity of the solution process, compared
to the sequential quadratic programming (SQP) method.

The definition of convex-over-nonlinear functions, i.e.,
Definition 2, allows us to introduce a general version of the
OCP (13), including convex-over-nonlinear functions in its
objective and constraints, as the following NLP

min
w

ψ0(w) (18a)

s.t. hi(w) = 0, i = 1, ..., nh, (18b)
ψi(w) ≤ 0, i = 1, ..., ng. (18c)

where (18b) includes the equality constraints (13b–13c), while
(18c) includes the inequality constraints (13d–13f).

Remark 3. The outer convex function in a convex-over-
nonlinear function can be an identity or linear mapping.
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A. Hessian approximations

The NLP (18) can be solved by means of the SQP method,
where the QP subproblem

min
dk

1

2
d⊤k B

SQP
k dk +∇ψ0(wk)

⊤dk (19a)

s.t. ∇hi(wk)
⊤dk + hi(wk) = 0, i = 1, ..., nh, (19b)

∇ψi(wk)
⊤dk + ψi(wk) ≤ 0, i = 1, ..., ng, (19c)

is solved to obtain a step dk so that wk is iterated as wk+1 =
wk + dk towards the local minimizer w∗. In the SQP method,
the Hessian matrix BSQP

k in (19) is defined as

BSQP
k = BEH

k := ∇2L(wk, λk, µk). (20)

which is the EH of the Lagrangian of (18) L(w, λ, µ) :=
ψ0(w)+λ

⊤h(w)+µ⊤ψ(w), where λ and µ are the Lagrange
multipliers of the equality constraints hi and the inequality
constraints ψi, respectively. The EH is not guaranteed to be
positive semidefinite and convergence of the SQP method
cannot be guaranteed without BSQP

k being positive semidef-
inite. Moreover, the evaluation of BEH

k is computationally
expensive, as it considers the information of all (non)linear
functions in the NLP.

To overcome these drawbacks, the structure of ψ0(w) =
ϕ0(c0(w)) can be exploited to approximate BEH

k using the
GGN method [8]. This approximation ignores all contributions
of the constraints and the second-order derivatives of c0(w),
and is defined as

BGGN
k (w) :=

∂c0(w)

∂w

⊤
∇2

c0ϕ0(c0(w))
∂c0(w)

∂w
, (21)

which is positive semidefinite (BGGN
k (w) ⪰ 0). This leads

to convex QP subproblems but neglects curvature information
from the constraints, which may cause instability in the SQP
iterations due to large steps dk.

Let us now turn to the SCQP method [9]. This method
is a generalization of the GGN method where the second-
order derivatives of the convex outer part ϕi in ψi (18c) are
considered within the Hessian approximation, so that there
is no neglection of the curvature information provided by
such functions to the Hessian BSQP

k . Thus, the SCQP Hessian
approximation is defined as

BSCQP
k (w, µ) :=

∂c0
∂w

(w)⊤∇2
c0ϕ0(c0(w))

∂c0
∂w

(w)

+

ng∑
i=1

µi
∂ci
∂w

(w)⊤∇2
ciϕi(ci(w))

∂ci
∂w

(w). (22)

Comparing (22) with (21), and since the outer functions ϕi
are convex and the optimality condition of dual feasibility is
satisfied (µi ≥ 0), it holds that BSCQP

k (w, µ) ⪰ BGGN
k (w) ⪰

0, which leads to the fact that BSCQP
k (w, µ) has a smaller

approximation error than BGGN
k (w) as proven in [9].

Even though BSCQP
k is more expensive to compute than

BGGN
k , the additional complexity is almost negligible when

SCQP is applied in the context of NMPC of highly nonlinear
systems such as robot manipulators, as shown in Section V.

IV. SYMBOLIC LINEARIZATION
Some numerical optimization frameworks, such as CasADi

[15], solve optimization problems in three steps: (i) construct a
symbolic representation of the problem, (ii) instantiate a solver
object, and (iii) evaluate such solver object. During the first
step, functions in the objective and constraints are defined by
means of symbolic expressions which depend on symbolic
primitives. Such expressions are automatically differentiated
by the framework, where needed, by using algorithmic differ-
entiation (AD).

To solve (18) using the SCQP method with a numerical
optimization framework, the modeler must explicitly define
BSQP

k in (19) to be equal to the symbolic expression (22)
during the first step. This means that the modeler must (i)
find the index i of the Lagrange multiplier µi of the cor-
responding convex-over-nonlinear constraint ψi, (ii) compute
the Jacobians of ci and the Hessians of ϕi, possibly with AD,
(iii) build the symbolic expression of BSCQP

k as in (22), and
(iv) replace the EH of the SQP method with BSCQP

k . These
are exactly the kind of steps that a robotics engineer would
hope to find abstracted away in a modeling framework, since
such modeling effort increases the engineering time needed
to prepare and solve an OCP. Changes to such a framework
or cluttering of application code with hacks appear inevitable.
They are not.

To reduce the modeling effort, we propose the use of sym-
bolic linearization, i.e., linearization of symbolic expressions
around a symbolic equilibrium point, by means of a novel
operator to automatically generate the SCQP or GGN Hessian
approximations within the SQP method.

Let us define the lin operator, which applies symbolic lin-
earization to a symbolic expression f(w1, · · · , wnp

) : Rnp →
Rnf with symbolic primitives w =

(
w1, · · · , wnp

)
. We begin

with the definition of a first-order Taylor expansion of a
expression f(ŵ) around an equilibrium point w

flin(ŵ, w) := f(w) +
∂f

∂ŵ
(w)(ŵ − w). (23)

Definition 4 (lin operator). Given a symbolic expression
f(w1, · · · , wnp

), the lin operator returns the expression
f̃(w) : Rnp → Rnf , whose first- and second-order derivatives
correspond to the Jacobian of f(w) and a zero matrix,
respectively, as described below.

lin(f(w)) :=


f̃(w) := flin(w,w) = f(w)
∂f̃
∂w (w) = ∂flin

∂ŵ (w,w) = ∂f
∂w (w)

∂2f̃
∂w2 (w) =

∂2flin
∂ŵ2 (w,w) = 0

(24)

Algorithm 1 describes a software implementation of the
lin operator using existing CasADi constructs2. Here, (23)
is applied using forward mode AD to compute the forward
sensitivities of f(w) as a Jacobian-times-vector product. The
crucial programming trick in the lin operator is that the
internal variable w is treated as a constant parameter when the
expression f̃(w) is called in CasADi. Thus, the differentiation
of flin with respect to w is prohibited, allowing a correct
computation of ∂f̃/∂w and ∂2f̃/∂w2.

2The source code of the lin operator is available at https://git.io/Ju0T9

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2022.3142396

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

Algorithm 1 - Software implementation of lin operator
Input: Symbolic expression f(w1, · · · , wnp)

Output: Symbolic expression f̃(w1, · · · , wnp) with first and
second-order derivatives as in (24)

1: w ← Retrieve and concatenate all symbolic primitives.
2: w ← Instantiate new symbolic primitive with the same

shape as w.
3: Df(w, ŵ) ← Apply one sweep of forward mode AD to

compute the forward sensitivities of f(w) with seed ŵ.
4: flin(w,w)← f(w) +Df(w,w − w) as in (23).
5: f̃(w1, · · · , wnp

) ← Define function f̃(w) := flin(w,w)
prohibiting the differentiation of flin with respect to the
symbolic equilibrium point w.

Having discussed symbolic linearization and the lin opera-
tor, we now show an alternative view of both the SCQP and the
GGN method based on the symbolic linearization of elements
in the objective and constraints of an NLP.

Definition 5 (Alternative NLP for SCQP). Applying the lin
operator to (i) the nonlinear part of convex-over-nonlinear
functions ψ0(w) = ϕ0(c0(w)) and ψi(w) = ϕi(ci(w)) in the
objective and the inequality constraints and (ii) the equality
constraints hi(w) in (18), we define the following NLP

min
w

ϕ0(lin(c0(w))) (25a)

s.t. lin(hi(w)) = 0, i = 1, ..., nh, (25b)
ϕi(lin(ci(w))) ≤ 0, i = 1, ..., ng. (25c)

This definition presents an alternative NLP whose exact
Hessian of the Lagrangian is equal to BSCQP

k . This can be
proven relying on the definition of the lin operator. Such
proof is straightforward and therefore omitted for the sake
of simplicity.

Based on the structure of the QP (19) and its dependency
on up to first-order derivatives, except for BSQP

k , the equality
between the Hessian of the Lagrangian of (25) and the SCQP
Hessian approximation BSCQP

k (22) proves the following
proposition.

Proposition 1. The application of the SQP method to NLP
(25) is equivalent to the application of the SQP method to NLP
(18) using the SCQP Hessian approximation BSCQP

k (22), i.e.,
the SCQP method.

The proposition 1 implies that the use of the lin operator as
in NLP (25) allows an implementation of the SCQP method
where the modeling effort is reduced due to the abstraction
of the complex steps in the construction of a symbolic
representation of the problem.

Similarly, the GGN method can be used to solve NLP
(18) by applying the SQP method to the following NLP.

Definition 6 (Alternative NLP for GGN). Unlike (25), the
implementation of the GGN method applies the lin operator
to all the components of the constraints, including the convex

part ϕi in (26c), leading to the alternative NLP

min
w

ϕ0(lin(c0(w))) (26a)

s.t. lin(gi(w)) = 0, i = 1, ..., nh, (26b)
lin(ϕi(ci(w))) ≤ 0, i = 1, ..., ng. (26c)

It is straightforward to prove that applying the SQP method
to (26) is equivalent to applying the SQP method to (18) using
the GGN Hessian approximation BGGN

k (21), i.e., the GGN
method.

V. RESULTS AND DISCUSSION

To evaluate the extended tunnel-following scheme imple-
mented with the alternative NLP (25) for SCQP, we consider a
7-dof Kinova Gen3 robot following a lemniscate-shaped path,
see Fig. 2. The lin operator is applied to (i) the inner nonlinear
elements in (14), (ii) the equality constraints (13b–13c), (iii)
the inequality constraints (13d) and (13f), and (iv) the inner
nonlinear part of constraints (13e), i.e., eP(x̂k) and eO(x̂k).
The solution of OCP (13) (solved with SCQP, GGN and EH)
employs the real-time iteration (RTI) scheme [16], with one
QP subproblem being solved at every MPC iteration by using
the QP solver QRQP [17], and is evaluated against an interior
point (IP) method implemented in the widely used nonlinear
optimization solver IPOPT [18]. Additionally, the proposed
extended tunnel-following scheme is compared against the
original position tunnel-following scheme presented by van
Duijkeren [6], also solved with SCQP, to verify the implica-
tions of adding the orientation-tunnel constraint (12).

The tests were executed on a laptop with an Intel Core i7-
8850H CPU running Ubuntu 18.04. All functions needed to
solve the OCP (13), including the SQP solver and the Hes-
sian approximations, were defined and code-generated using
CasADi [15], and compiled using GCC 9.1.0 with compilation
flags -O3 and -march=native. The IP solver IPOPT does
not allow code-generation.

The expressions for forward dynamics and kinematics of
the robot, besides the definition of qmin, qmax, τmin, and
τmax, were generated using the rigid-body dynamics library
Pinocchio [19] and the interface presented in [20].

The parameters used to set the OCP (13) are shown in Table
I. All other weights in P and Q are set to 10−3.

TABLE I
PARAMETERS USED IN THE DEFINITION OF OCP (13)

Parameter Value Parameter Value
N 16 wṡ 20 s2

δt 0.005 s wP 0.1 m−2

ρP 0.002 m wO 0.1 sin(rad)−2

ρO 0.02 sin(rad) wl 100 m−1

The low-modeling-effort implementations of SCQP and
GGN, i.e., applying the SQP method to (25) and (26), showed
the same results in terms of tracking-error and optimality as
the original implementation of these methods, i.e., applying
the SCQP and GGN methods to (18).

The lemniscate-shaped path defined in the task specification
is shown in Fig. 2. Here, the position-tunnel is shown in light
yellow for ρP = 0.01 m (for illustration purposes).
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Fig. 2. Representation in simulation of the 7-dof Kinova Gen3 robot
following a lemniscate-shaped path with ρP = 0.01 m.

Fig. 3. Profile of the path velocity reference ṡref(s) specified for the tunnel-
following NMPC scheme and the actual path velocity ṡ achieved during the
task execution with SCQP and IP. The path velocity ṡ achieved with EH,
GGN and the original position-tunnel implementation by van Duijkeren [6]
is not shown for the sake of simplicity since the maximum difference with
respect to SCQP is negligible.

Figure 3 shows the profile of the path velocity reference
ṡref(s) specified for the task. The enlarged area shows that
the trajectory of ṡ deviates from its reference near the end of
the task, since s was near to its final value smax = 1 where the
robot should come to a standstill. The maximum error between
ṡ and ṡref is 1.22× 10−2 s−1 for all methods (SCQP, GNN,
EH, IP, van Duijkeren [6]) and occurs at s = 1.

Fig. 4. Excursion of eP , eO and lP along the execution of the tunnel-
following task. The light-purple areas highlight the time when ||eP ||2 > ρ2P ,
leading to lP > 0 to satisfy the position-tunnel constraint (4), while the light-
yellow areas highlight the excursions of ||eO|| beyond ρO for the position-
only tunnel-following scheme [6]. The excursion of lO is not shown since, for
this task, lO =

{
0
∣∣ ||eO||2 ≤ ρ2O ∀ s ∈ T

}
while the orientation-tunnel is

not considered in [6]. Errors obtained with EH and GGN are not included
in the figure for the sake of simplicity since the maximum difference with
respect to SCQP is negligible.

The excursion of the position and orientation errors along
the execution of the task is shown in Fig. 4. Although ||eP ||2
exceeds the value ρ2P along some parts of the trajectory, the
excursion of the corresponding slack variable lP allows the
satisfaction of constraint (4) to preserve the possibility of
finding a feasible solution. In addition, ||eO|| goes beyond
ρO in the position-only tunnel-following scheme [6] due to
the lack of an orientation constraint, while ||eP || has a similar

excursion than in the extended tunnel-following scheme.
Let us now compare the SCQP and GNN Hessian approx-

imations with the EH of the SQP method for the solution of
the tunnel-following task. A comparison of the Hessians in
terms of number of atomic operations, number of nonzeros
and evaluation time, is detailed in Table II.

TABLE II
COMPARISON OF HESSIAN APPROXIMATIONS WITH RESPECT TO THE

EXACT HESSIAN IN SQP
Hessian

(approximation)
Number of

atomic operations
Number of
nonzeros

Evaluation
time

EH 29513469 7428 3598.710 µs
GGN 342508 1380 37.218 µs
SCQP 635967 1380 77.732 µs

It is shown that, both the GGN and SCQP Hessian ap-
proximations are cheaper to evaluate with at least 46.41 times
lower number of atomic operations, 5.38 times lower number
of nonzeros, and more than 46.29 times lower evaluation
time with respect to EH. Nevertheless, the evaluation time of
the SCQP approximation is 2.09 times larger than the GGN
Hessian as 1.86 times more atomic operations are performed.
This difference, however, does not represent a drawback of the
SCQP method, as shown below.

A measure of how much disturbance can be handled suc-
cessfully in a one-step RTI scheme is the Karush-Kuhn-Tucker
(KKT) residual, which indicates optimality and feasibility vio-
lations. Figure 5 shows a comparison of the methods to solve
the extended tunnel-following scheme in terms of the evolution
of the KKT residual. A comparison with van Duijkeren [6]
is not included since it lacks the orientation-tunnel constraint
(12), and consequently, solves a different OCP. It is shown that
the satisfaction of the KKT conditions is better for the SQP
method with EH and the IP method as expected, while the
SCQP method achieves a better performance than the GGN
method for almost the whole trajectory, only having similar
performances at the beginning and at the end of the trajectory
where the motion was slow.

Fig. 5. Comparison of the performance of the position and orientation tunnel-
following scheme with SCQP, GGN, EH and IP by means of the evolution
of the KKT residuals.

Finally, in Fig. 6 we plot the solution times of the OCP
from the proposed extended tunnel-following scheme along the
evolution of the task with the three Hessian (approximations)
and with IP, and compare them with the solution times of the
original position tunnel-following scheme by [6]. The solution
times include the time needed to evaluate the functions of the
NLP and their derivatives, in addition to the time needed to
solve the NLP with the evaluated methods. While the solution
time with IP takes in average 827.25 ms, the solution time
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Fig. 6. Comparison of the solution time of the underlying OCP in the position
and orientation tunnel-following NMPC scheme using SCQP, GGN, EH or
IP, and the position tunnel-following scheme by van Duijkeren [6].

of the OCP (13) using the SCQP method is (with 3.53 ms)
only 3.82% larger than the solution time with the position-
only tunnel-following scheme by van Duijkeren [6] (3.40 ms),
3.21% larger than the solution time with GGN (3.42 ms), but
82.83% lower than the solution time with EH (20.57 ms).

The task of following a position tunnel with a 7-dof robot
is kinematically redundant. Our orientation error extension
allows to naturally exploit the remaining freedom to obey the
orientation constraints with no adverse effect on position error
and little effect on computation time. These results also imply
that the use of the SCQP method in the (extended) position and
orientation tunnel-following NMPC scheme allows generating
more optimal solutions than GGN, while having negligible
additional complexity and achieving solution times that allow
real-time implementations, despite the fact that the SCQP
Hessian is slower to evaluate and has more atomic operations
than the GGN Hessian approximation.

VI. CONCLUSIONS

We presented a novel operator that allows the automatic
application of symbolic linearization to convex-over-nonlinear
functions to reduce the modeling effort required to imple-
ment the SCQP and GGN methods. We also presented a
direct application of the SCQP method: the tunnel-following
NMPC scheme, originally described in [6]. An extension of
this scheme was proposed, in which an orientation-tunnel
constraint was added to the underlying OCP to allow the
exploitation of user-defined tolerances in the orientation of
the end-effector of a robot manipulator. The proposed method
was demonstrated in simulation on a task defined within the
extended tunnel-following NMPC scheme. Both the SCQP and
GGN methods are shown to be effectively implemented by
using symbolic linearization. However, the SCQP method is
able to better exploit the convexity present in convex-over-
nonlinear functions in the constraints of the OCP in the tunnel-
following NMPC scheme, i.e., the position and orientation
tunnel constraints, achieving better performance with an al-
most negligible increase in the solution time with respect to
the GGN method, but with a considerable decrease in solution
time compared to the SQP and IP methods. With the definition
of the symbolic lin operator, any software stack that relies
on CasADi expressions for modeling (dynamic) optimization
problems can be trivially extended to support GGN and SCQP.
Future work will consider the validation of the proposed
contributions through experiments on an actual robot, the
comparison against other optimization-based controllers, the

use of other types of variables that describe motion of a robot
manipulator and applications where freedom on such variables
can be exploited, in addition to the exploration of a systematic
way to automatically apply the lin operator in an OCP when
convex-over-nonlinear functions are recognized by a solver.
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