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Abstract

In this work, we extend platform-aware adaptive
training to the weighted average of multiple tar-
get platforms, where the weighting is determined
e.g. by the market share of the target platform.
To simulate different market regimes, we gener-
ate different weight settings by a Chinese restau-
rant process to benchmark optimization strate-
gies. We use a neural architecture search frame-
work [2] based on Markov Random Fields to ef-
ficiently find the optimal channel configurations
for each platform, and investigate different sam-
pling strategies to train a single slimmable network
[15, 17] that can be deployed to multiple platforms
at the same time. Empirical results on CIFAR-100
demonstrate improved performance over the origi-
nal slimmable network across different weight set-
tings, while maintaining efficient training.

1 Introduction

In many realistic applications where resources (en-
ergy, latency) are limited, such as autonomous
driving, mobile phones and Internet of Things
(IoT) devices, neural networks must be adapted
to platform-dependent requirements. This leads
to recent interests in designing efficient architec-
tures while still maintaining a comparable accuracy
[4, 5, 6, 8, 12, 13]. However, various platforms of-
ten have a diverse range of computational budgets
and they are able to support networks of different
sizes. Even on the same platform, the computa-
tional capacity varies, for instance, background ap-
plications often consume lots of memory, and it may
be desirable to adjust the amount of computation
adaptively. Deploying a single network to differ-
ent platforms can either lead to a waste of unused
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resources of high-capacity platforms or unsatisfac-
tory user experience of low-capacity platforms due
to high latency.

To deal with this, for instance, MobileNets [6, 7,
10] can execute at various widths by shrinking all
layers with the same ratio, but this would require
to train a single network for each target platform.
Subsequent extensions of the slimmable network
framework [15, 17] tackle this issue by training a
single network with shared weights that can exe-
cute at different widths during the inference time
to achieve a accuracy-efficiency trade-off. However,
it still requires to scale all layers uniformly, and it
has been shown that this can be sub-optimal [2, 14].

Moreover, for suppliers, not all platforms are of
the same importance. For example, based on re-
cent statistics in October 2020 [11], the mobile ven-
dor market share in US can be well approximated
by a Chinese restaurant process (Figure 1). This
is a natural model for market share as each addi-
tional customer tends to pick a brand proportional
to the usage of their peers. Developers who have
very limited computational budgets or time con-
straints may want to deploy a single network across
multiple platforms with child-models sharing the
same weights. Moreover, a natural objective is to
give higher weight to the performance of platforms
of greater value, as represented by the number of
end-users or overall purchasing power of a target
platform.

In this paper, we first generate several weight
distributions using a Chinese restaurant process
(CRP). Then we extend AOWS [2] to the multi-
platform setting and model a slimmable network
[15, 17] as a pairwise Markov random field (MRF).
With Viterbi inference, we can efficiently search for
optimal channel configurations that cater to each
platform’s capacity requirement. Subsequently,
we retrain a single slimmable network with the
obtained channel configurations that can be de-
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Figure 1: Mobile vendor market share in the United
States of America in October, 2020 vs. a Chinese
restaurant process with α = 0.3 and θ = 0.15.

ployed across multiple platforms, and investigate
various sampling strategies so as to maximize
the weighted accuracy. Finally, we evaluate our
method on CIFAR-100 with different weight distri-
butions and show improved performance over the
original slimmable network.

2 Slimmable network and
AOWS

2.1 Slimmable Networks

Slimmable networks [15, 17] are a family of neu-
ral networks with shared parameters that can ex-
ecute at various predefined width configurations
at inference time to achieve accuracy-efficiency
trade-offs. For each layer i of a neural network,
the width ci is chosen from a width set Ci ∈
[ci,min , ..., ci,max ]. Then a channel configuration
c = (c1, ..., cn) uniquely defines a single child-
network. Let cmax = (c1,max , ..., cn,max ) be the full
network and cmin = (c1,min , ..., cn,min) the mini-
mum network.

The so-called sandwich rule [15] is based on the
assumption that the performance of all interme-
diate widths is bounded above by the maximum
network cmax and below by the minimum network
cmin . In other words, optimizing the performance
of lower and upper bound can implicitly improve
the performance of all child-networks. This leads
to the following training procedure for slimmable
networks: at each training iteration t, the network
first executes with the maximum network cmax and

back-propagates the loss; then executes with the
minimum network cmin as well as k random con-
figurations ct = (ct1, ..., c

t
n) in turn.

2.2 AOWS

AOWS [2] is a platform-aware NAS method build-
ing on the slimmable network framework [15, 17].
The work is based on the assumption that the
performance of a slimmable network executed at
a given channel configuration c = (c1, ..., cn) is a
good proxy for the performance of a neural net-
work trained from scratch with only that channel
configuration.

By modeling a slimmable network as a pair-
wise Markov random field (MRF), AOWS can ef-
ficiently search for optimal channel configurations
with Viterbi inference. Moreover, a smoothed
Viterbi inference [9] is used during training to de-
fine a channel configuration sampling scheme, lead-
ing to an improved accuracy-efficiency trade-off in
their experiments.

In this work, we call the model that uses
smoothed Viterbi as AOWS, and OWS for the
model that simply performs Viterbi inference. Our
work is closely related to AOWS and in the next
section, we will show more details of their approach
and extend it to the multi-platform setting.

3 Multiple platform extension

For m platforms each with a different resource
constraint (FLOPS, latency, memory) Rk and an
economic importance µk, we consider the follow-
ing multi-objective optimization problem where the
loss weighted by the economic importance µk is
minimized:

min
w

min
c1,...,cm

L(c1, ..., cm,w)

= min
w

m∑
k=1

µk min
ck

L(ck,w)

s.t. R(c1) ≤ R1

...

R(cm) ≤ Rm,

(1)

where R(ck) representing resource measurement of
platform k with channel configuration ck. Note
that m platforms use a single network with shared
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parameters w, and we want to optimize for ck and
w at the same time.

The optimization of this objective is dependent
on a priori defined weights µk specifying the rel-
ative importance of a given weight. In order to
explore the impact of these weights under different
regimes, we vary these parameters in our experi-
ments. Motivated by the empirical good fit of mo-
bile phone markets with a Chinese restaurant pro-
cess, we have selected a range of settings computed
from such a distribution.

3.1 Chinese restaurant process

A Chinese restaurant process [1] is a discrete-time
stochastic process, modelling people’s behavior in
a Chinese restaurant where customers do not know
each other but share a table. Specifically, in a Chi-
nese restaurant with an infinite number of tables
and each with infinite capacity, the first customer
sits at the first table, and the next customer either
sits at the first table or picks a vacant table. At
time t+1, the t+1th customer arrives and there are
|B| occupied tables, then he would find a new ta-

ble with probability θ+α|B|
t+θ or at an occupied table

b of size |b| with probability |b|−α
t+θ where strength

parameter α and discount parameter θ should be
either α < 0 and θ = −Lα for L ∈ N∗ or 0 ≤ α < 1
and θ > −α.

As Figure 1 shows, the mobile vendor market
share in USA in October 2020 is very similar to a
realization of a Chinese restaurant process with α =
0.3 and θ = 0.15. We use the Chinese restaurant
process as a model for economic importance µk.

3.2 Stochastic gradient descent
strategies

We follow the assumption in [2] that the loss can
be decomposed over individual channel choices and
the resource measurement can be written as pairs
of successive terms. That is

L(c,w) =

n−1∑
i=1

Li(ci,w) (2)

R(c) =

n−1∑
i=0

Ri(ci, ci+1). (3)

The intuition for (2) is to use a sliding window to
average per-channel errors when a specific chan-
nel number ci is chosen during slimmable network
training; for (3), they develop a black-box latency
model and here we use FLOPs which can be ex-
pressed in closed form as a special case of their
latency model.

From Equations (2) and (3), and considering the
Lagrangian of (1), we have

min
w

m∑
k=1

min
ck

(
µk

n−1∑
i=1

Li(ck,i,w)+

γk

( n∑
i=1

Ri(ck,i−1, ck,i)−Rk

))

= min
w

m∑
k=1

νk min
ck

(
µk

νk

n−1∑
i=1

Li(ck,i,w)+

γk
νk

( n∑
i=1

Ri(ck,i−1, ck,i)−Rk

))
(4)

where νk is a predefined scale factor for platform k
and

∑m
k=1 νk = 1. Note that since the inner mini-

mization problem boils down to single-platform and
is already decomposed as layer-wise terms, we can
follow the approach in [2] and model it as pairwise
Markov random filed (MRF) which can be solved
efficiently with Viterbi inference.

Then we use the approach in [2] by smoothing
the min operation by a log-sum-exp operation in
the Viterbi forward pass. The messages sent from
variable ci to ci+1 then becomes

m(ci+1) = log
∑
ci

exp− 1

T

(
m(ci)+

µk

νk
Li(ci+1) +

γ

νk
Ri(ci, ci+1)

) (5)

where T is a temperature parameter that affects
the smoothness of the relaxation. In particular,
the outputs of the smoothed Viterbi inference are
probabilities pi for each layer.

Then we can iteratively solve (4) by first choos-
ing a platform k with probability νk, and then per-
form stochastic gradient descent with sandwich rule
while using smoothed Viterbi to decide the sam-
pling probabilities of the random configuration.
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4 Experiments

4.1 Setups

We perform our experiments on CIFAR-100 with
MobileNetV1 [7]. In the search phase, we set
the width range to [0.2, 1.5] and consider up
to 14 channel choices per layer. We consider 7
platforms each with a target FLOPs equivalent to
0.25×, 0.375×, 0.50×, 0.625×, 0.75×, 0.875×, 1.0×
of the original MobileNetV1. Then we use a
Chinese restaurant process (CRP) with varying
parameters to determine the weights of the re-
maining 5 platforms. Additionally, we add two
additional sets of weights that are less skewed than
those generated by CRP to make the distributions
more diverse (Table 1), and we have 6 different
weight distributions in total.

Platform #1 #2 #3 #4 #5 #6 #7

Width 0.25× 0.375× 0.50× 0.625× 0.75× 0.875× 1.0×
S 0.25 0.005 0.010 0.045 0.130 0.310 0.25
RS 0.25 0.310 0.130 0.045 0.010 0.005 0.25
U 0.25 0.100 0.100 0.100 0.100 0.100 0.25
M 0.25 0.025 0.0625 0.325 0.0625 0.025 0.25
L 0.25 0.005 0.010 0.020 0.040 0.425 0.25
RL 0.25 0.425 0.040 0.020 0.010 0.005 0.25

FLOPs (M) 3.35 7.34 12.21 19.02 26.58 36.20 46.45

Table 1: Weights and targets of 7 platforms.
Weights of #1 and #7 are all 0.25. S: weights of #2
– #6 are generated by a CRP (α = 0.3, θ = 0.15)
and the peak is at #6; RS: weights of #2 – #6 are
reversed and the peak is at #2; U: weights of #2
– #6 are the same (uniform distribution); M: the
peak is at #4 and does not correspond to a CRP;
L: weights of #2 – #6 are generated by a CRP
(α = 0.15, θ = 0.15) and the peak is at #6; RL:
weights of #2 – #6 are reversed and the peak is at
#2.

In the search phase, we first train a slimmable
network (with non-uniform scaling) using a con-
stant learning rate of 0.1 for 50 epochs and we
choose k = 1 to reduce the computational cost.
We call the model trained with uniform sampling
as OWS and with sampling probabilities decided by
smoothed Viterbi as AOWS. For AOWS, we use a
warm-up epoch of 10, uniform sampling, and an-
neal the temperature with a piece-wise linear func-
tion. After that, we use Viterbi inference to find
the optimal channel numbers for each platform.
In the final re-train phase, we train a

slimmable network with widths found during
the search phase, as well as a slimmable net-
work with the original configurations, at widths of
[0.25×, 0.375×, 0.50×, 0.625×, 0.75×, 0.875×, 1.0×].
Note that all of them have 7 different widths in
total and each counterpart has the same number
of FLOPs. Inspired by biased training of AOWS,
we also experiment with both uniform sampling
and sampling platform #2 - #5 according to their
weights. We train the model for 300 epochs with
a batch size of 128, and use SGD with an initial
learning rate of 0.1 which is decayed by 0.985 at
each epoch. Nesterov momentum is set to 0.9 and
weight decay is 0.0005. A dropout rate of 0.6 is
applied only to the maximum configuration [16].

In the sequel we use Slim-U to represent a
slimmable network with original configurations and
trained with uniform sampling, and Slim-W for
some weight distribution, where the random con-
figurations are sampled according to W. The nam-
ing convention for OWS and AOWS methods are
similar, except that we sometimes add a prefix for
AOWS such as RS-AOWS-U, meaning that in the
search phase we sample different platforms accord-
ing to RS to perform smoothed Viterbi, and in the
retrain phase, we sample random configurations ac-
cording to U.

4.2 Main results

The average accuracy weighted by different weight
distribution is shown in Table 2. Generally, train-
ing a slimmable network with channel numbers
found by OWS and AOWS achieves a better result
than that with the original channel configurations.
For some distributions such as S, RS and L, AOWS
beats OWS, but for the others OWS is better.

Interestingly, the original slimmable network, as
well as that whose channels are found by AOWS
generally benefits from sampling random configura-
tions according to platform weights instead of sim-
ple uniform sampling. By contrast, the slimmable
network with channel numbers found by OWS have
worse results with non-uniform sampling.

4.3 Comparison with the original
channel configurations

We first compare channel numbers of platform #7
found by OWS with the original MobileNet-v1
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Weight distribution Slim-U Slim-W OWS-U OWS-W AOWS-U AOWS-W

S 65.03 66.14 66.50 66.48 66.30 66.62
RS 63.70 63.48 65.22 64.52 65.16 65.31
U 64.44 64.44 65.96 65.96 65.94 65.94
M 64.57 65.24 66.14 65.55 65.48 65.85
L 65.10 65.72 66.55 66.25 66.28 66.56
RL 63.48 64.10 65.03 64.83 64.39 64.53

Table 2: The average top-1 validation accuracy (%) on CIFAR-100 with different weight distributions.
Slim-U: a slimmable network with original channel configurations and trained with uniform sampling;
Slim-W: sampling according to platform weights; OWS-U: a slimmable network with channels found
by Viterbi inference and samples according to uniform distribution; OWS-W: sampling according to
platform weights; AOWS-U: a slimmable network with channels found by smoothed Viterbi and samples
according to uniform distribution; AOWS-W: sampling according to platform weights.

Figure 2: Left: the number of channels of platform #7 found by OWS vs. the original MobileNet-v1;
right: the number of channels of platforms #6 and #7 found by OWS vs. the original MobileNet-v1.

(AOWS and other platforms show a similar pat-
tern). It can be seen from Figure 2 that OWS put
more channels in shallow layers but it becomes thin-
ner in deep layers. In contrast with [2], their experi-
ments on ImageNet show that OWS and AOWS use
more channels in deep layers. We conjecture that
it is because CIFAR-100 has much smaller resolu-
tion than ImageNet (32 × 32 vs. 224 × 224) and
using more channels in the shallow layers help to
propagate more information to deep ones.

We then investigate the interaction among differ-
ent platforms. In Figure 2 we show channel num-
bers found by OWS for platform #6 and #7 vs. the
original ones, while we observe a similar behavior
for other platforms. Configurations found by OWS
are more correlated than the original ones. Indeed,
8 out of 14 layers use the same channel numbers.
This might explain why a slimmable network per-

forms better when trained with channel numbers
found by OWS - it is not only because the channel
configuration of every single platform is superior to
the original one, but also when training an ensem-
ble of models with shared weights at the same time,
the correlation between child models can help with
optimization.

To verify this, we train MobileNet-v1 separately
with the original configurations as well as those
found by OWS, and then average the performance
of these stand-alone models by U. The result is
shown in Table 3. The average accuracy for OWS
is 0.85% higher than the original configurations,
but according to Table 2, when training a group
of models as a slimmable network, this difference
is 1.52%. This sheds light on neural architecture
search (NAS) methods in general: when searching
for an ensemble of models that are trained at the
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same time, a NAS method should not only consider
models that perform well when trained alone, but
also take the correlation among different models
into account.

Configuration Original OWS

Average accuracy (%) 63.46 64.31 (+0.85)

Table 3: Top-1 validation accuracy (%) weighted
average by U.

4.4 Comparison of OWS with
AOWS

Generally, channel numbers found by OWS and
AOWS are very similar. As a result, although
AOWS beats OWS in some weight distributions
such as S, RS and L, the difference is very small.
However, as opposed to OWS whose channel con-
figurations are independent of the weight distribu-
tion, AOWS finds a set of channel numbers for each
weight distribution. These, as well as its depen-
dence on temperature scheduling, which we have
not tuned extensively, make AOWS less attractive.

On the other hand, in contrast with OWS, bi-
ased sampling improves AOWS’s performance for
all weight distributions. We investigate their differ-
ence in Figure 3 using RS-AOWS as an example.
AOWS sometimes finds more correlated channel
configurations than OWS, and uses more channels
in the last two layers. We believe it is these large
channel numbers that need more time to train, due
to this non-uniformity.

5 Related Work

Platform-aware NAS methods [2, 4, 5, 12, 13, 14]
try to optimize a performance-speed trade-off ei-
ther by enforcing platform-dependent constraint
(FLOPS, latency), or incorporating them into the
objective and jointly optimizing for accuracy and
efficiency. However, for each platform profile, these
methods need to repeat the training process to ob-
tain a new set of weights, and therefore are not
scalable to scenarios where there are a large num-
ber of platforms of different capcities.

Figure 3: The number of channels of platforms #6
and #7 found by OWS (red) vs. RS-AOWS (blue).

To deal with this, Once-for-All (OFA) [3] pro-
poses to train a super-network and then use a so-
called progressive shrinking algorithm that gener-
alize the pruning method to depth, width, kernel
size and resolution, and the pruned child-models
can meet targets of different platforms. BigNAS
[16] extends the slimmable networks [15, 17], along
with other training tricks, so as to train a single
network which is able to operate at different config-
urations (depth, width, kernel size and resolution)
without any extra post-processing.

6 Conclusions

In this paper we focus on optimizing slimmable net-
works with multiple target platforms. We formal-
ize this problem as maximizing a weighted aver-
age accuracy over different platforms and generate
these weights with a Chinese restaurant process us-
ing our insight from a real distribution. Then we
use a pairwise Markov random field framework to
efficiently find the optimal channel configurations
for each platform, and we also extend AOWS [2]
to the multi-platform setting so as to utilize an
adaptive sampling strategy. After that, we train a
slimmable network with the found channel numbers
and evaluate our approach on CIFAR-100 with var-
ious weight distributions and sampling strategies.
The experiments show that our method improve
the average accuracy over different weight distri-
butions.
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