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Abstract 6 

Environmental risk assessment of metal mixtures is challenging due to the large number of 7 

possible mixtures and interactions. Mixture toxicity data cannot realistically be generated for 8 

all relevant scenarios. Therefore, methods for prediction of mixture toxicity from single-metal 9 

toxicity data are needed. 10 

We tested how well toxicity of Cu-Ni-Zn mixtures to Daphnia magna populations can be 11 

predicted with an Individual-based Model based on Dynamic Energy Budget Theory (DEB-12 

IBM), assuming non-interactivity of metals on the physiological level. 13 

We exposed D. magna populations to Cu, Ni, and Zn and their mixture at a fixed concentration 14 

ratio. We calibrated the DEB-IBM with single-metal data and generated blind predictions of 15 

mixture toxicity (population size over time), with account for uncertainty. We compared the 16 

predictive performance of the DEB-IBM with respect to mixture effects on population density 17 

and population growth rates with that of two reference models applied on the population 18 

level, Independent Action (IA) and Concentration Addition (CA). 19 

Our inferred physiological Modes of Action (pMoA) differed from literature-reported pMoAs, 20 

raising the question whether this is a result of different model selection approaches, 21 

intraspecific variability, or whether different pMoAs might actually drive toxicity in a 22 

population context. Observed mixture effects were concentration and endpoint dependent. 23 

IA was overall more accurate than CA, but CA predicted effects on population growth rate 24 
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slightly better. The DEB-IBM most accurately predicted effects on 6-week density, including 25 

antagonistic effects at high concentrations, which emerged from non-interactivity at the 26 

physiological level. 27 

Mixture effects on initial population growth rate appear to be more difficult to predict. To 28 

explain why model accuracy is endpoint-dependent, relationships between individual-level 29 

and population-level endpoints should be illuminated. 30 

Keywords 31 

Aquatic toxicology, metal toxicity, mixture toxicology, predictive toxicology, toxicity 32 

mechanisms, aquatic invertebrates, freshwater toxicology, computational toxicology 33 

Introduction 34 

Ecosystems might be at risk from contamination with mixtures of chemicals. When 35 

Environmental Risk Assessment (ERA) takes possible mixture effects into account at all, it 36 

relies on the application of relatively simple reference models. A major challenge is the sheer 37 

number of mixtures that might be relevant for risk assessment, and the possibility of 38 

synergistic and antagonistic effects. Since it is not feasible to test all mixtures of interest 39 

experimentally, it is necessary to develop models which allow to extrapolate from single-40 

substance toxicity to mixture toxicity under untested conditions. In addition, environmental 41 

protection goals are usually formulated on the level of populations and higher, and therefore 42 

such models should allow to account for ecological processes and their interaction with 43 

mixture toxicity. 44 

From individuals to populations 45 

For various reasons, toxicity to populations can differ from toxicity to individuals. Firstly, 46 

population-level effects include the combined effects on lethal and sublethal individual-level 47 

endpoints. Secondly, in populations, individuals contribute to population-level effects during 48 

their entire lifecycle, and thus individual-level toxicity parameters which are specific for 49 

exposure duration, such as ECx-values, are of limited use to predict population-level 50 

responses. Thirdly, long-term individual-level toxicity tests are typically conducted without 51 

food limitation (OECD, 2012). In contrast, individuals in populations share an environment and 52 

thus food resources are limited. Limited food availability can result in altered toxicity to 53 

individuals (Heugens et al., 2006), but also lead to compensatory dynamics due to toxicant-54 



Interactive metal mixture toxicity as an emergent property 
 

induced release from intraspecific competition, potentially leading to a lower sensitivity of 55 

population-level endpoints (Pereira et al., 2019). In addition to resource competition, 56 

physiological inhibition due to release of semiochemicals, or by physical interaction, can be 57 

relevant mechanisms of intraspecific interaction  (Gergs et al., 2014). 58 

Synergistic and antagonistic effects 59 

When dealing with mixture effects, it is desirable to identify cases of synergistic or antagonistic 60 

effects. Stating that a mixture effect is synergistic or antagonistic is only meaningful if a 61 

reference model is defined (Cedergreen, 2014). Two reference models for mixture toxicity are 62 

widely established, being Independent Action (IA) and Concentration Addition (CA). Under the 63 

IA model, responses 𝑦𝑦𝑖𝑖, relative to a control, when exposed to a single substance 𝑖𝑖  are 64 

combined multiplicatively to generate the predicted response to the mixture 𝑦𝑦𝐼𝐼𝐼𝐼 : 65 

𝑦𝑦𝐼𝐼𝐼𝐼 = � 𝑦𝑦𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 66 

Equation 1 67 

In order for equation 1 to generate meaningful predictions, 𝑦𝑦𝑖𝑖 mu to be positive. For binary 68 

endpoints, this is treating the mixture response as the combined probability of 𝑛𝑛 independent 69 

events. For discrete and continuous endpoints the mathematical application is identical. 70 

CA-predicted responses result from the assumption that toxic units 𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸  add up to one in a 71 

mixture giving x effect (Loewe & Muischnek, 1926): 72 

∑𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸 = �
𝑐𝑐𝑖𝑖

𝐸𝐸𝐶𝐶𝐶𝐶𝑖𝑖
= 1

𝑛𝑛

𝑖𝑖=1

 73 

Equation 2 74 

𝑐𝑐𝑖𝑖 is the exposure concentration of substance 𝑖𝑖 in the mixture and 𝐸𝐸𝐶𝐶𝐶𝐶𝑖𝑖 is the concentration 75 

of 𝑖𝑖 that elicits 𝐶𝐶 percent of the maximum effect when i is tested individually. 76 

Both reference models, by definition, assume non-interactivity of stressors. CA is generally 77 

expected to apply when stressors have similar Modes of Action and IA when stressors have 78 

dissimilar Modes of Action (Faust et al., 2003). 79 
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Deviations from reference models might depend on concentration ratios or levels (Jonker et 80 

al., 2005; Loureiro et al., 2010). For example, Nys et al. (2015) reported concentration-level 81 

dependent synergistic effects of nickel-zinc mixtures on Daphnia magna reproduction. 82 

Interaction with other ions in the test medium, or lack thereof, can also drive interactive 83 

mixture toxicity (Versieren et al., 2014). 84 

Mechanistic effect modelling 85 

With the addition of concentration level- and concentration ratio-dependent deviation factors 86 

(Jonker et al., 2005), static descriptions of mixture toxicity can be highly flexible. However, 87 

given that statistical models generally do not allow for extrapolation to untested conditions 88 

(e.g. different food levels or exposure durations), mechanistic effect modelling (Grimm & 89 

Martin, 2013) might be a more promising tool for predictive modelling of mixture toxicity. 90 

To predict toxic effects under untested conditions mechanistically, Dynamic Energy Budget 91 

(DEB) Theory  (Kooijman, 2010) is a useful framework. The core idea of DEB theory is that, as 92 

organisms take up energy, it is assimilated with a given efficiency and allocated to somatic 93 

growth, maintenance of structure, maturation and reproduction. A fixed fraction 𝜅𝜅 of 94 

assimilated energy is allocated to somatic growth and maintenance of structure, whereas the 95 

remaining fraction 1 − 𝜅𝜅 is allocated to reproduction and maturity maintenance. A widely 96 

used extension of DEB theory is the implementation of sublethal effects of single metals or 97 

mixtures, in terms of effects on a selected physiological Mode of Action (pMoA), which 98 

represent a modification of one or more DEB parameters or energy fluxes (Jager et al., 2006). 99 

This approach has been applied to different taxa (Ashauer & Jager, 2018), but particular 100 

experience in this context has been gained with the standard test species Daphnia magna. 101 

Common applications include modelling of time-varying exposure to chemical stressors  102 

(Pieters et al., 2006) and analysis of toxicity based on multiple endpoints (Billoir et al., 2007; 103 

Jager et al., 2010). Pereira et al. (2019) used an Individual-based model based on DEB theory 104 

(DEB-IBM) to extrapolate nickel toxicity from individuals to populations at different 105 

temperatures, and correctly predicted the absence of effects on the population level when 106 

exposed to the median effective concentration for reproduction on the individual level. 107 

(Vlaeminck et al., 2021) applied the same approach to prediction of Copper-Zinc mixture 108 

toxicity to D. magna populations from individual-level single-metal toxicity. 109 
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Jager et al. (2010) proposed an approach to implement mixture toxicity in a DEB context, and 110 

demonstrated this using the toxicity of two polycyclic aromatic hydrocarbons to D. magna. If 111 

stressors have different pMoAs, implementation of mixture toxicity is relatively 112 

straightforward, since they can be applied independently (assuming that uptake and 113 

elimination processes occur independently). If the stressors have a shared pMoA, mixture 114 

toxicity might be implemented based on the assumption of different or shared molecular 115 

targets (given that a change in a particular physiological process, such as assimilation 116 

efficiency, might occur via different molecular targets (Jager et al., 2006)). We hereafter refer 117 

to the “different target” and “shared target” implementations as IA and CA on the 118 

physiological level, respectively. In the case study provided by Jager et al. (2010), model 119 

selection was done by fitting both models to mixture toxicity data and selecting the model 120 

that described the data best. This approach is suitable to identify mechanisms of mixture 121 

toxicity that are suggested by the model. However, if the aim is to perform blind predictions 122 

of mixture toxicity, one has to make assumptions on how mixture toxicity might be best 123 

represented on the physiological level. In the case of metals, this is further complicated by the 124 

fact that they do not have a single, identifiable molecular target. Therefore, making an a priori 125 

decision on whether metals should be considered as “different target” or “shared target” 126 

substances is not straightforward. While detailed knowledge on physiological mechanisms of 127 

metal toxicity to D. magna is available for some metals  (Brix et al., 2017; De Schamphelaere 128 

& Janssen, 2002, 2004), this information is not easily converted to appropriate assumptions 129 

for mechanistic modelling of mixture effects.  Nys et al. (2017) conducted a meta-analysis on 130 

the accuracy of IA and CA concerning metal mixture toxicity to three species, and concluded 131 

that IA is overall more accurate than CA. However, the involved studies mostly focus on 132 

individual-level toxicity, and it is therefore not clear whether the assumption of IA is also valid 133 

on the physiological level. 134 

Uncertainty in mechanistic models 135 

Individual-based Models (IBM) facilitate the use of mechanistic effect modelling with respect 136 

to ecological interactions (Martin et al., 2012; Pereira et al., 2019; Vlaeminck et al., 2021). 137 

Calibration of IBMs typically relies on numerical optimization algorithms, such as Approximate 138 

Bayesian Computation (ABC) (van der Vaart et al., 2015). When calibrating a model that 139 

includes mixture toxicity, a separate submodel has to be calibrated for each stressor in the 140 
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mixture. Consequently, when combining the results of those calibrations, their uncertainties 141 

are combined in the final model. It is unclear what the consequences of this combined 142 

uncertainty are concerning the accuracy and potential bias of IBM-predicted toxic effects. 143 

However, using the results of Bayesian optimization algorithms, it is possible to generate 144 

model predictions with account for uncertainty. Instead of using a point estimate to generate 145 

predictions, one might repeatedly sample values from the posterior distribution (van der Vaart 146 

et al., 2015), evaluate the IBM for each sample and thus map a distribution of parameter 147 

values to a distribution of predictions. The application of such an approach has been 148 

demonstrated before for toxicokinetic models (Ashauer et al., 2010), but not in combination 149 

with individual-based models or mixture toxicity. 150 

Objective 151 

In this study, we aimed to evaluate whether a DEB-IBM approach can be used to predict 152 

toxicity of Cu-Ni-Zn mixtures based on the assumption of IA on the physiological level, given 153 

constraints in the available data for model calibration, and using only single-metal toxicity data 154 

for calibration. We hypothesized that interactive mixture toxicity on the population-level can 155 

emerge from non-interactivity on the physiological level. More specifically, we assumed IA on 156 

the physiological level because it is the simplest to apply without estimating parameters from 157 

mixture data, and based on the existing evidence on individual-level mixture toxicity 158 

(Cedergreen, 2014; Nys, Versieren, et al., 2017). We conducted a microcosm population 159 

experiment with D. magna, exposing populations in a single-ray-design (Cedergreen et al., 160 

2007) to Cu, Ni and Zn at environmentally realistic concentration ratios. We used data from 161 

the control and single-metal treatments to estimate DEB and toxicokinetic/toxicodynamic 162 

(TKTD) parameters and generated predicted mixture responses based on the assumption of 163 

non-interactivity on the physiological level and with account for uncertainty in parameter 164 

estimation. We first analyzed observed mixture responses statistically, to establish whether 165 

the data provides evidence for interactive mixture effects. 166 

We then compared DEB-IBM-predicted with observed responses in the mixture treatments, 167 

to evaluate the accuracy of blind predictions relative to the accuracy of reference mixture 168 

models.  169 
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Materials and Methods 170 

Population Experiment 171 

We obtained a clone of D. magna from the Laboratory of Aquatic Ecology, Evolution and 172 

Conservation, KU Leuven. The clone was originally sampled from Langerodevijver, Belgium 173 

(50.828581N, 4.639960E), and was cultured for 3 months in our laboratory before onset of 174 

the experiments.  175 

Organisms were cultured in a COMBO (Kilham et al., 1998) medium, modified to represent 176 

more environmentally relevant conditions (55 mg CaCl2•2H2O L-1, 55 mg MgSO4•7H2O L-1, 1 177 

mg H3BO3 L-1) and without the addition of N or P. The cultures were kept in a climate controlled 178 

room at 20°C and a 16:8 Light-Dark cycle. pH of the medium was adjusted to 7.5 (±0.2)  by 179 

adding HCl to a final concentration of 0.5 mM. No further pH buffers were used. Culture media 180 

were aerated and allowed to equilibrate for at least 24h before use. 181 

Test media and conditions were identical to the cultures except for the addition of natural 182 

DOC (4 mg L-1) to test media instead of EDTA. Natural DOC had been sampled by reverse 183 

osmosis in November 2018 from the Schwarzbach stream (East-Belgium, 50.5210522N, 184 

6.205860E), fractionated by acidification, de-ionized via H+-cation exchange and freeze-dried 185 

(De Schamphelaere et al., 2003). The freeze-dried material was dissolved in 15 mM NaOH and 186 

added to the test medium as combined Fe+DOC stock. 10 mL Fe+DOC L-1 were added to reach 187 

a FeCl3•6H20 concentration of 0.77 mg L-1 in the medium. Reverse osmosis had previously 188 

been shown to not affect protectiveness of DOC with respect to Cu and Zn toxicity (De 189 

Schamphelaere et al., 2005) . Metal-spiked test media were allowed to equilibrate for at least 190 

48h before use. 191 

We initiated populations with 2 egg-carrying females (age 7 to 21 days) and 8 neonates 192 

(<=24h) in 500 mL medium contained in a 1000 mL polypropylene jar (Avamoplast, Lokeren, 193 

Belgium). Populations were daily fed a diluted mixture of Raphidocelis subcapitata (also 194 

known as Pseudokirchneriella subcapitata) and Chlamydomonas reinhardtii in a 3:1 cell-based 195 

ratio, totaling 8×107 cells L-1, corresponding to approximately 2.5 mgC L-1.  196 

Twice per week, we percolated test media over a 200 µm sieve, retaining all D. magna 197 

individuals. We transferred populations from the sieve to a petri dish with fresh test medium, 198 

where we determined population sizes by taking a series of images with a digital camera 199 
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(EOS200D, Canon, Tokyo, Japan), connected to a laptop computer and controlled by an xml 200 

script, and counting animals from the images using the Cell Counter plugin in ImageJ 1.52j. 201 

Because we took a series of images from identical positions at identical time-intervals, we 202 

could identify immobilized individuals, which were not counted. We then re-combined 203 

populations and fresh medium with old medium to reach 25% renewal. 204 

Once per week, we took two integrated 10 mL samples of new and old media per treatment. 205 

Both were passed through a 0.45 µm filter (Acrodisc, Pall Life Sciences). One was acidified with 206 

HNO3 to a final concentration of 0.14 M and used for analysis of metal concentrations and 207 

major cations (ICP-OES). Details on ICP-OES measurements are given in Supporting 208 

Information (SI Table 1-3). The other sample was used for analysis of DOC concentrations 209 

(TOC-L, Shimadzu, Kyōto, Japan). At the same occasions, pH was measured using a pH 210 

electrode (p407, Consort, Belgium) in old and new media.  211 

We exposed populations to a control, Cu, Ni and Zn and their tertiary mixture with five 212 

concentrations per exposure type and four replicates per treatment combination. Nominal 213 

metal concentrations were arranged in a geometric series with a fixed, environmentally 214 

relevant mass ratio of 1:1:3 Cu:Ni:Zn (Van Regenmortel et al., 2017), ranging from 5 to 250 µg 215 

Cu and Ni L-1 and 15 to 750 µg Zn L-1. 216 

Speciation and exposure modelling 217 

We converted measured metal concentrations to free ion activities with WHAM VII (Tipping 218 

et al., 2011), based on measured pH, DOC, dissolved Na, Mg, K, Ca, Ni, Cu, and Zn and nominal 219 

total Cl, SO4 and CO3. For specific assumptions, see (Nys, Janssen, et al., 2017). As solute 220 

database, we used the updated National Institute of Standard and Technology (NIST) database 221 

(Smith et al., 2004). All constants reported in the NIST database were included. As input for 222 

model simulations, we used a continuous time-series derived from the WHAM VII-predicted 223 

free ion activities. Measured concentrations, however were only available on a weekly basis. 224 

To deal with this, we performed a step-interpolation between measurements. The details of 225 

these calculations are described in Supporting Information. 226 

The time-series of free-ion activities predicted by WHAM for each treatment are shown in SI 227 

Figure 3 and SI Figure 4. 228 
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Individual-based Model 229 

All data treatment and modelling except for speciation modelling was done in Julia 1.3.0. A 230 

schematic overview of the modelling scheme is given in SI Figure 1. 231 

Our DEB-IBM implementation was derived from Pereira et al. (2019), which had in turn been 232 

derived from the generic DEB-IBM implementation by Martin et al. (2012). The toxicity 233 

submodel was a combination of the reduced General Unified Threshold Model of Survival 234 

(GUTS-RED, Jager et al., 2011) and the DEBtox approach (Jager et al., 2006). A major difference 235 

between our DEB-IBM implementation and previous implementations was that, a priori, we 236 

allowed for stressors to act via arbitrary combinations of pMoAs. We decided to do so in order 237 

to be able to explain some of the more complex single-metal responses, and because different 238 

combinations of pMoAs might have different implications for mixture toxicity on the 239 

population-level. In addition to the assumptions that are inherent to DEB, DEBtox and GUTS, 240 

we made three additional major assumptions: 241 

Firstly, the model included a single food source. In the population experiment, populations 242 

were fed a mixture of two algal species. We did not model those explicitly, but modelled food 243 

dynamics as if there was only one type of resource, using total food density (# cells L-1 ) as 244 

input variable. We think this simplification is justified because the composition of the added 245 

food mixture was constant throughout the experiment, and because daphnids are, under most 246 

circumstances, unselective filter feeders (Lampert, 1974), so it is to be expected that the 247 

estimated parameters represent the modelled system equally well across treatments and 248 

time-points. Secondly, we assumed non-interactivity of metals at the physiological level: In 249 

reality, metals might mutually affect their uptake and elimination or binding to target sites, 250 

and thus interact on a molecular or cellular level. In the model, we assumed metal 251 

toxicokinetics and toxicodynamics to be independent. Combined effects on shared pMoAs 252 

were applied by assuming IA on the physiological level. Thirdly, we assumed one damage pool 253 

per metal: We modelled toxicity with one damage pool per metal, rather than a separate 254 

damage pool for every pMoA, thereby avoiding the estimation of a separate 𝑘𝑘𝑑𝑑 value for every 255 

pMoA.  This means that each metal can have multiple toxicodynamic components, but only 256 

one toxicokinetic component. 257 
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Following GUTS-RED, external concentrations 𝐶𝐶𝑊𝑊,𝑖𝑖 (nM Me2+) of metal 𝑖𝑖 were directly 258 

translated to scaled damage 𝐷𝐷𝑊𝑊,𝑖𝑖 , (nM Me2+) controlled by a single parameter, the dominant 259 

rate constant 𝑘𝑘𝑑𝑑 (day-1): 260 

𝑑𝑑𝐷𝐷𝑊𝑊,𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑑𝑑,𝑖𝑖 × (𝐶𝐶𝑊𝑊,𝑖𝑖 − 𝐷𝐷𝑊𝑊,𝑖𝑖) 261 

Equation 3 262 

Sublethal and lethal effects were modelled as a function of a common damage pool 𝐷𝐷𝑊𝑊,𝑖𝑖 for 263 

each metal. 264 

In the case of lethal effects, we related 𝐷𝐷𝑊𝑊,𝑖𝑖 to a hazard rate ℎ𝑧𝑧,𝑖𝑖 (𝑑𝑑𝑑𝑑𝑦𝑦−1) using a log-logistic 265 

equation, and converted ℎ𝑧𝑧,𝑖𝑖 to a stochastic mortality probability 𝑝𝑝𝑧𝑧,𝑖𝑖. 266 

ℎ𝑧𝑧,𝑖𝑖 =
ℎ𝑚𝑚𝑚𝑚𝐸𝐸,𝑖𝑖

1 + �
𝐷𝐷𝑊𝑊,𝑖𝑖

𝐸𝐸𝐷𝐷50ℎ,𝑖𝑖
�
−𝛽𝛽ℎ,𝑖𝑖

 267 

Equation 4.1 268 

𝑝𝑝𝑧𝑧,𝑖𝑖 = e−hz,i 269 

Equation 4.2 270 

We thus assumed a stochastic death mechanism. In Equation 4.1, we deviate from the original 271 

GUTS formulation, where a hockey-stick equation with a threshold concentration and a slope 272 

is used to relate damage to hazard rate. The mortality probability 𝑝𝑝𝑧𝑧,𝑖𝑖 was evaluated 273 

independently for each metal. 𝐸𝐸𝐷𝐷50ℎ,𝑖𝑖 (𝑛𝑛𝑛𝑛) is the scaled internal damage that leads to 50% 274 

of the maximum hazard rate caused by stressor 𝑖𝑖, ℎ𝑚𝑚𝑚𝑚𝐸𝐸,𝑖𝑖; 𝛽𝛽ℎ,𝑖𝑖is the corresponding Hill’s slope. 275 

For implementation of sublethal effects, we related 𝐷𝐷𝑊𝑊,𝑖𝑖 to physiological stress 𝑆𝑆𝑖𝑖 specific for 276 

pMoA 𝑗𝑗: 277 

𝑆𝑆𝑖𝑖,𝑗𝑗 =
𝑆𝑆𝑚𝑚𝑚𝑚𝐸𝐸,𝑖𝑖,𝑗𝑗

1 + �
𝐷𝐷𝑊𝑊,𝑖𝑖

𝐸𝐸𝐷𝐷50𝑆𝑆,𝑖𝑖,𝑗𝑗
�
−𝛽𝛽𝑆𝑆,𝑖𝑖,𝑗𝑗

 278 

Equation 5 279 
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𝐸𝐸𝐷𝐷50𝑆𝑆,𝑖𝑖,𝑗𝑗 is the 50% effective damage of metal 𝑖𝑖 with respect to pMoA 𝑗𝑗. 𝑆𝑆𝑚𝑚𝑚𝑚𝐸𝐸,𝑖𝑖,𝑗𝑗 (−) is the 280 

corresponding maximum stress level. The state variable 𝑆𝑆𝑖𝑖,𝑗𝑗 modifies physiological processes 281 

based on the physiological Mode of Action (pMoA). We considered the four most commonly 282 

considered pMoAs  (Jager et al. , 2010), being 1), increase in growth costs, 2) increase in 283 

somatic and maturity maintenance costs, 3) decrease in assimilation flux, 4) decrease in 284 

reproduction efficiency (SI Table 4). 285 

In addition, we fitted a mortality constant 𝑚𝑚𝑒𝑒 which results in increased mortality at reduced 286 

scaled reserve density (Martin et al., 2013) and generally dampens oscillatory fluctuations of 287 

population density over time. In DEB, the scaled reserve density 𝑒𝑒 (-) is the amount of reserve 288 

relative to the maximum amount of reserve, or reserve capacity. It can take values between 0 289 

and 1 and converges to one if an individual’s assimilation rate is at its maximum. Based on 𝑚𝑚𝑒𝑒 290 

and 𝑒𝑒, a mortality probability 𝑝𝑝𝑒𝑒 is calculated at every time-step of the model. 291 

𝑝𝑝𝑒𝑒 = (1 − 𝑒𝑒)(𝑚𝑚𝑒𝑒)
1
𝑇𝑇𝑇𝑇 292 

Equation 6 293 

𝑇𝑇𝑇𝑇 (# time-steps day-1) is the temporal resolution at which the IBM is executed. 294 

For further model analysis, we investigated predicted population-averages of some DEB-IBM 295 

state variables, namely the scaled ingestion rate  𝐽𝐽�̇�𝑋 (# cells day-1), functional response 𝑓𝑓 (-296 

),and assimilation rate  �̇�𝑝 (𝐽𝐽 𝑑𝑑𝑑𝑑𝑦𝑦−1) (see Supporting Information for more details).  297 

A model description according to the Overview, Design Concepts and Details (ODD) protocol 298 

(Grimm et al., 2010) is given in Supporting Information. 299 

Calibration  300 

For parameter inference, we used a Sequential Monte Carlo Approximate Bayesian 301 

Computation (SMC-ABC) scheme, adapted from previously described algorithms (Sisson et al., 302 

2007; Toni et al., 2009). Details about SMC-ABC are given in supporting information. Prior 303 

distributions were initially defined as Log-Normal distributions to conservatively cover the 304 

range of biologically plausible values, with standard deviations covering at least one order of 305 

magnitude. In some cases, Log-Normal distributions were replaced by narrower Uniform 306 

distributions to improve convergence behavior. 307 
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DEB parameters were fitted to population density in the control, using values from the Add-308 

my-pet database (Kooijman & Gergs, 2019) as default. TKTD parameters were fitted to ln(𝑦𝑦 +309 

1)-transformed control-normalized densities  over time. Because SMC-ABC is particle-based, 310 

covariance between parameters was accounted for. 311 

Our model implementation allowed for simultaneous effects via five toxicity components 312 

(four pMoAs and direct lethal effects). This means that the SMC-ABC algorithm could converge 313 

towards a model where a single pMoA, or any combination of pMoAs drives metal toxicity. 314 

After parameter inference, we conducted additional Monte Carlo simulations to evaluate to 315 

which extent each component drives toxic effects in the calibrated models. This was done by 316 

simulating the single-metal treatments with each component acting separately (detailed 317 

scheme given in Supporting Information). 318 

Mixture analysis 319 

We analyzed deviations of observed responses from IA and CA predictions based on two 320 

endpoints, initial growth rate 𝑟𝑟 (day-1) and 6-week density (# Daphnids L-1). Because observed 321 

population trajectories did not always fit a logistic growth curve, we calculated 𝑟𝑟 based on the 322 

peak density 𝑁𝑁𝑝𝑝𝑒𝑒𝑚𝑚𝑝𝑝, the initial density 𝑁𝑁0 and the time to reach 𝑁𝑁𝑝𝑝𝑒𝑒𝑚𝑚𝑝𝑝, 𝑑𝑑𝑝𝑝𝑒𝑒𝑚𝑚𝑝𝑝 (days).  323 

𝑟𝑟 =
ln�𝑁𝑁𝑝𝑝𝑒𝑒𝑚𝑚𝑝𝑝� − ln (𝑁𝑁0)

𝑑𝑑𝑝𝑝𝑒𝑒𝑚𝑚𝑝𝑝 − 𝑑𝑑0
 324 

Equation 7 325 

If population density declines monotonically throughout the experiment, the denominator of 326 

this equation is 0 and 𝑟𝑟 is not defined. We set 𝑟𝑟 to 0 in these cases, despite the fact that a 327 

monotonically decreasing population has in fact a negative growth rate. The reasons for this 328 

decision were that firstly, any extinctions that occurred in the population experiment occurred 329 

within the first 7 days of exposure, and therefore differentiating between extinctions 330 

occurring at different paces (i.e., different negative values of r), was not of particular interest 331 

for our analysis. Secondly, negative responses would complicate the generation of IA-332 

predicted responses, since multiplication with negative values is likely to lead to erroneous 333 

predictions, while at the same time not providing any additional insight in this particular case.    334 

The IBM-predicted population growth rates were derived from the predicted time-series data 335 

the same way that population growth rates were derived from observed time-series data. 336 
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For 6-week density, we used the average population density in the last week of the 337 

experiment, to make this endpoint less prone to stochastic fluctuations in population density. 338 

IA- and CA-predictions were generated based on relative responses, i.e. population density in 339 

a given treatment and at a given time-point divided by the control average at the same time-340 

point. To generate IA-predicted responses 𝑦𝑦𝐼𝐼𝐼𝐼, we multiplied observed relative responses of 341 

the corresponding endpoint to single metals. To generate CA-predicted responses over time, 342 

we treated subsets of the data as independent datasets, each subset consisting of the control-343 

normalized population densities in all single-metal treatments at a given time-point. For each 344 

metal 𝑖𝑖 at every time-point 𝑑𝑑 in the single-metal tests, we performed nonlinear least squares 345 

regression (function curve_fit from the LsqFit package in Julia) on the observed relative 346 

responses versus WHAM-predicted free-ion activities in the  single-metal treatments, to 347 

estimate a median effective concentration 𝐸𝐸𝐶𝐶50𝑡𝑡,𝑖𝑖 (nM) and Hill’s slope 𝛽𝛽𝑡𝑡,𝑖𝑖 (-) according to 348 

the following equation:  349 

𝑦𝑦𝑡𝑡,𝑖𝑖 =
1

1 + �
𝐶𝐶𝑡𝑡,𝑖𝑖

𝐸𝐸𝐶𝐶50𝑡𝑡,𝑖𝑖
�
𝛽𝛽𝑡𝑡,𝑖𝑖

 350 

Equation 8 351 

𝐶𝐶𝑡𝑡,𝑖𝑖 is the WHAM-predicted free ion activity of metal 𝑖𝑖 at time-point 𝑑𝑑. Since the effective 352 

concentration 𝐸𝐸𝐶𝐶𝐶𝐶 is inversely related to  the concentration-response function at response 𝐶𝐶, 353 

the CA-predicted response 𝑦𝑦𝐸𝐸𝐼𝐼 at time-point t was then determined by solving 354 

�
𝐶𝐶𝑡𝑡,𝑖𝑖

𝐸𝐸𝐶𝐶50𝑡𝑡,𝑖𝑖 × �
𝑦𝑦𝐸𝐸𝐼𝐼,𝑡𝑡𝑡𝑡

1 − 𝑦𝑦𝐸𝐸𝐼𝐼,𝑡𝑡
�
1
𝛽𝛽𝑖𝑖,𝑡𝑡

𝑛𝑛

𝑖𝑖=1
= 1 355 

Equation 9 356 

numerically (Nys et al., 2017), using SMC-ABC. 𝑛𝑛 is the number of metals in the mixture. 357 

To generate CA-predicted responses of growth rate and 6-week density, we fitted log-logistic 358 

curves to the single-metal responses and solved Equation 9 correspondingly. 359 
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To quantify deviations from reference models, we estimated the deviation parameter 𝑑𝑑 for IA 360 

and CA (Jonker et al., 2005) with SMC-ABC, by solving equations 9.1 and 9.2 for CA and IA, 361 

respectively. 362 

�
𝑐𝑐𝑡𝑡,𝑖𝑖

𝐸𝐸𝐶𝐶𝐶𝐶𝑡𝑡,𝑖𝑖
= exp (𝐺𝐺)

𝑛𝑛

𝑖𝑖=1

 363 

Equation 10.1 364 

𝑦𝑦𝐼𝐼𝐼𝐼 = 𝜙𝜙 �𝜙𝜙−1 �� 𝑦𝑦𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
� + 𝐺𝐺� 365 

Equation 10.2 366 

𝜙𝜙 is the cumulative distribution function of the standard normal distribution and 𝐺𝐺 is the 367 

deviation function, which depends on the relative contributions to toxicity 𝑧𝑧𝑖𝑖 = 𝑇𝑇𝑈𝑈𝑖𝑖
∑𝑇𝑇𝑈𝑈

 and the 368 

deviation parameter 𝑑𝑑: 369 

𝐺𝐺 = 𝑑𝑑 × �𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 370 

Equation 11 371 

We tested for significant interactions using a nested F-test (Hochmuth et al., 2014). To account 372 

for multiple testing, we applied a Bonferroni correction. Given an initial significance level of 373 

0.05 and 20 signficance tests conducted, this resulted in a significance level of 𝛼𝛼 = 0.05
20

=374 

0.0025. 375 

Validation 376 

Since there was only one measured variable available, but a total of 16 parameters to estimate 377 

for each metal, we expected our estimation of TKTD parameters to be associated with large 378 

epistemic uncertainty. To account for this, we refrained from deriving point estimates of 379 

parameters from posterior distributions. Instead, we generated predictions by running Monte 380 

Carlo simulations and sampling a particle from the posterior distribution in each step. This 381 

results in a distribution of predictions for each predicted data point, which maps the 382 

uncertainty in parameter estimation to the uncertainty in model output. 383 
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To generate predictions from the DEB-IBM, we sampled 100 independent particles from each 384 

of the four joint posterior distributions (one for DEB parameters and one for each metal) and 385 

simulated the experiment for each sample. The predicted growth rates and 6-week density 386 

were calculated for each sample separately. 387 

Results 388 

Physicochemistry 389 

Mean measured physicochemical test media characteristics in the population experiment are 390 

reported in Table 1. In the first week of the experiment pH increased up to 9.9, likely due to 391 

photosynthetic activity of the added algae, but fell back down when D. magna population sizes 392 

increased (SI Figure 2). 393 

Across all treatments (single-metals and mixture), mean measured dissolved metal 394 

concentrations deviated at most by a factor of 1.8 from nominal concentrations. The average 395 

ratio between mean measured and nominal concentrations across all treatments was 0.99 396 

(SD=0.3, N=20). Mean measured metal concentrations in the mixture treatments deviated at 397 

most by a factor of 1.9 from measured concentrations in the corresponding single-metal 398 

treatments. Metal concentrations in the mixture treatments deviated from the corresponding 399 

single-metal treatments by an average factor of 1.08 (SD=0.28, N=15) (see SI Table 5 for all 400 

metal concentrations per treatment).  401 

Average Cu concentration in the controls was 5.8 µg L-1, which could potentially have 402 

contributed somewhat to background toxicity in D. magna. However, we have not observed 403 

adverse effects of Cu on initial growth rate or 6-week density at measured concentrations up 404 

to 13.4 Cu µg L-1 , suggesting that background toxicity of Cu was not an issue for the endpoints 405 

of interest. Without individual-level data, it cannot be ruled out entirely that some individual-406 

level background toxicity occurred, which might have been compensated for on the 407 

population level. However, given the mean measured media physicochemistry (Table 1), the 408 

average bioavailable Cu concentration in the control was only 0.14 µg L-1, and the 409 

bioavailability-corrected HC5 equal to 38 µg L-1 (both calculated in BIO-MET bioavailability tool 410 

Version 5-June 2019), which is 7 times above the average Cu concentration in the control. 411 
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Calibration 412 

Population dynamics in the control followed a delayed logistic growth pattern, with a peak 413 

density of 877 (SD=55, N=4) daphnids L-1 at day 18, corresponding to an initial population 414 

growth rate of 0.21 day-1. The mean final population density was 447 (SD=15.1, N=4) daphnids 415 

L-1. We could approximate this pattern with the DEB-IBM by correcting food-dependent 416 

parameters (Table 2, Figure 1). Estimated values for parameters which are also reported in 417 

the add-my-pet database were within the range of values reported for different species of the 418 

genus Daphnia. 419 

The DEB-IBM could be fitted well to single-metal control-normalized population densities. 420 

Only at the highest Ni concentration, the relative responses were continuously under-421 

estimated (Figure 2). At intermediate concentration levels, we often observed effects on the 422 

initial exponential growth phase of the population, followed by partial or full recovery. A 423 

notably complex response pattern was observed at the second-highest Zn treatment (717 424 

nM), where an effect on the exponential growth phase was followed by recovery of the 425 

population, which was in turn followed by collapse of the population. This was qualitatively 426 

and quantitatively reproduced by the DEB-IBM. Predicted responses were also adequate for 427 

initial growth rate and 6-week density (Figure 3). Notably, Ni did not affect population growth 428 

rates.  429 

Posterior distributions of the estimated TKTD parameters were relatively broad (SI Figure 5-7, 430 

SI Table 6-8), but the variability in corresponding predicted responses was acceptable (the 431 

normalized root mean square error between fitted and observed values was below 0.1 in all 432 

cases), indicating that different parameter combinations predicted similar patterns.  433 

Analysis of pMoAs suggested effects on reproduction efficiency as the main driver of toxicity 434 

for all three metals. For Zn, effects on assimilation flux contributed to toxicity at higher 435 

concentrations. Direct lethal effects played a subordinate role expect at the highest tested 436 

concentrations, where they contributed clearly to population extinction due to  Cu and Zn 437 

(Figure 4).  At the highest Zn concentrations, the observed population extinction was predicted 438 

to be caused by a combination of all pMoAs. However, since all populations went extinct 439 

within less than a week in these treatments, these subsets of the data do not provide much 440 

information on mechanisms of toxicity, and therefore we do not consider the combined 441 
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effects of pMoAs at high concentrations to be biologically relevant, since direct lethal effects 442 

alone might explain this pattern equally well. 443 

Statistical analysis of mixture effects 444 

Significance testing indicated statistically significant (p<0.0025) mixture interactions in all but 445 

the highest mixture treatments (Table 3). However, the high statistical significance was in 446 

many cases attributable to either a relatively low variability of observed responses, or to the 447 

fact that mixture models were fitted to every mixture treatment individually, due to the 448 

apparently high concentration-level dependency of deviations. Since the nested F-test is 449 

based on the Sum of Squared Errors of the fitted model and the null model, there is a high 450 

chance that even a small improvement of model fit compared to the null model leads to high 451 

statistical significance with this approach. Therefore, high statistical significance does not 452 

necessarily indicate toxicological concern.  453 

The clearest interaction was found in the third-highest mixture treatment (Mix3, 29.7 µg Cu L-454 
1, 34.2 µg Ni L-1, 90.1 µg Zn L-1, ∑𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸50,𝑟𝑟 = 0.56,∑𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸50,𝐾𝐾 = 1.21), where effects on 455 

growth rate as well as 6-week density were antagonistic. At the second-highest test 456 

concentration Mix4 (54.3 µg Cu L-1, 68.9 µg Ni L-1, 202 µg Zn L-1, ∑𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸50,𝑟𝑟 = 1.7), effects on 457 

growth rate were on average synergistic relative to IA and antagonistic relative to CA (Figure 458 

5). 459 

Validation 460 

Overall, the predictive performance of IA, CA and the DEB-IBM was comparable, though 461 

relative performance of the three models was highly endpoint- and concentration level-462 

dependent, both in terms of responses of initial growth rate and 6-week density (Figure 5) as 463 

well as in terms of responses of population density over time (Figure 6). In the lowest mixture 464 

treatment (∑𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸50,𝑡𝑡 = 0.2), observed responses over time matched IA- and DEB-IBM-465 

predicted responses. In two mixture treatments (∑𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸50,𝑡𝑡 = 0.4, ∑𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸50,𝑡𝑡 = 2.8,), 466 

observed responses were lower than IA predictions. This interactive effect was only predicted 467 

by the DEB-IBM for the higher treatment. At ∑𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸50,𝑡𝑡=1.1, recovery of the population was 468 

observed, which was qualitatively predicted by the DEB-IBM, but delayed in time. Overall, the 469 

response over time showed concentration-level dependent deviations from reference models. 470 

In the highest mixture treatment (∑𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸50,𝑡𝑡=12.5), predicting extinction was trivial, since this 471 

was already fully explained by single-metal responses to Cu and Zn. 472 
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Expressed in responses of growth rate and 6-week density, the predictions of mixture effects 473 

to 6-week density were substantially more accurate than predictions of effects on growth rate 474 

(Table 4). The mixture dose-response of growth rate was not well predicted by any of the 475 

models, but slightly better by CA than IA and the DEB-IBM. Notably, the DEB-IBM over-476 

estimated effects on growth rate at low concentrations, where mixture exposure was even 477 

observed to be associated with a slight stimulation of growth rates. The synergistic effect on 478 

growth rate in the second-highest mixture treatment was only partially predicted. Effects on 479 

6-week density were best predicted by the DEB-IBM, including antagonistic effects at high 480 

concentrations (Figure 5). 481 

According to the DEB-IBM predictions, exposure to single metals and mixtures was associated 482 

with stimulation of average ingestion rates (SI Figure 8-9), with similar effects on assimilation 483 

rates under Cu and Ni exposure (SI Figure 10). Under Zn exposure, average assimilation rates 484 

were also increased, but to a lesser extent than ingestion rates, due to the direct effect of Zinc 485 

on assimilation flux.  In the mixture treatments, parts of the stimulating effect on average 486 

assimilation rates caused by Cu and Ni appeared to be mitigated by the effect of Zn, suggesting 487 

that interactions between pMoAs induce interactive mixture toxicity. More detailed 488 

information on predicted individual-level state variables is given in Supporting Information. 489 

Discussion 490 

Calibration 491 

Calibration of a DEB-IBM with population-level data is possible, even if only population 492 

densities over time are available, which is traditionally not considered to be ideal to estimate 493 

DEB and TKTD parameters (Kooijman et al., 2008; Kooijman & Bedaux, 1996). We acknowledge 494 

that population density alone is insufficient to derive parameters that define uptake of food, 495 

assimilation and allocation of energy within organisms without uncertainty. To a lesser degree, 496 

this is also the case when parameters are estimated from life-table data, as typically generated 497 

in the course of ecotoxicological experiments with Daphnia (Kooijman et al., 2008). 498 

Uncertainty in parameter estimates is to some extent inherent to DEB-based models, since 499 

some of the parameters are unmeasurable or only measurable with immense experimental 500 

expenditure, and thus can only be estimated with uncertainty. We thus advocate the use of 501 

methods that propagate uncertainty when applying DEB-IBMs and similarly abstract models, 502 
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for example by running Monte Carlo simulations rather than using point estimates of 503 

parameters. 504 

Adding to the advantage of the DEB-IBM approach, TKTD parameters are independent of 505 

exposure duration. Applying empirical mixture models requires ECx values which do depend 506 

on exposure duration (Jager, 2011), so concentration-response curves have to be fitted to 507 

every time-point of interest, which is not always a simple task, for example if concentration-508 

response curves are not well described by a simple log-logistic function.  509 

Physiological Modes of Action 510 

Analysis of pMoAs indicated that effects on reproduction efficiency at individual level were a 511 

main driver of effects at population level for all three metals. This might be a consequence of 512 

the fact that the only available measurement was population density (# daphnids L-1). In the 513 

given units, this is most directly reflected by varying reproductive output, rather than growth 514 

or maintenance rates. In other words, an effect on reproduction efficiency directly affects the 515 

number of individuals in the population, whereas an effect via other pMoAs first affects energy 516 

fluxes in other parts of the model, and only indirectly affects the number of individuals in the 517 

population, and therefore, the kind of measurement that is available might affect which 518 

conclusions about pMoAs are drawn. Therefore, the generalizability of the predicted pMoAs 519 

can be questioned. However, in the case of Zn, effects on assimilation rate were also essential 520 

for predicting the single-metal effects in addition to effects on reproduction efficiency, 521 

indicating that physiological processes other than reproduction were also accounted for. Our 522 

identified pMoAs were not in agreement with those reported in previous studies on D. magna.  523 

However, those amount to a relatively small number of studies (Cu and Zn: cf. (Ashauer & 524 

Jager, 2018; Vlaeminck et al., 2021), Ni: (Pereira et al., 2019)), and also used different 525 

approaches for parameter estimation. A hypothesis that might explain this deviation, and 526 

which has not been considered so far, is that pMoAs might be different in a population context 527 

than in an individual context, for example due to physiological adaptation of animals under 528 

long-term exposure, or mediated by crowding. If this is the case, extrapolation of toxicity 529 

across levels of biological organization might be limited with currently advocated approaches, 530 

and therefore this hypothesis deserves further investigation.  531 

The approach we used for selection of pMoAs, i.e. to allow for arbitrary combinations of 532 

pMoAs, is not common in DEB-based modelling. A disadvantage of this approach is that a 533 
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larger number of parameters has to be estimated simultaneously. We think that the approach 534 

is nevertheless justified from different perspectives: from a practical point of view, an 535 

advantage of this approach is that only a single calibration per metal has to be run, and the 536 

final posterior distribution encompasses all models that describe the data to some degree. 537 

The influence and probability of different pMoAs can be analyzed a posteriori, but there is no 538 

need to decide for a single pMoA and exclude all other possibilities a priori. Furthermore, 539 

effects of Zn were in our case clearly best described by a combination of two pMoAs. At the 540 

same time, we have seen that if a single pMoA sufficiently explains the data, the SMC-ABC 541 

algorithm will converge toward that model, as was the case for Cu and Ni. I.e., the model will 542 

not necessarily be over-fitted, as one might expect if the potential model complexity is high. 543 

In addition, a more detailed model analysis (SI Figure 8, SI Figure 9) suggested that the 544 

interplay between simultaneously acting pMoAs was important for the prediction of 545 

interactive mixture effects. 546 

It has to be noted that, given the ratio between estimated parameters and data-points in this 547 

calibration exercise, there is considerable uncertainty around the TKTD parameter estimates, 548 

as well as around the identification of pMoAs, and therefore the application of such a model 549 

should go hand-in-hand with uncertainty propagation techniques. As stated before, this 550 

uncertainty should caution against generalization of the pMoAs identified in this study to 551 

other model applications. We therefore present this modelling approach as proof of principle, 552 

showing the capacity of the DEB-IBM approach to predict mixture effects under limited data 553 

availability when combined with uncertainty propagation. 554 

Predicting mixture effects to population-level endpoints 555 

Based on the assumption of non-interactivity of metals on the physiological level, we could 556 

successfully apply the DEB-IBM approach to perform blind predictions of metal mixture 557 

toxicity to population-level endpoints, including correct predictions of antagonistic effects 558 

that resulted from the assumption of non-interactivity on the physiological level. 559 

Predictions of mixture effects on 6-week density were substantially more accurate and more 560 

precise than those of effects on population growth rate. This discrepancy might be attributed 561 

to two inherent differences between these endpoints: 562 
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Firstly, 6-week density is an ergodic property of the system, i.e. does not change as a function 563 

of initial conditions when food and toxicant levels are kept constant. Rate of increase, on the 564 

other hand, is sensitive to initial conditions. Consequently, predictions of the rate of increase 565 

can more easily suffer from inaccuracies in the definition of initial conditions in the DEB-IBM. 566 

More precisely, our initial populations contained adult females, and thus the life-history of 567 

those individuals, prior to the onset of the experiment, has to be taken into account in the 568 

simulations. While we attempted to do so by predicting individual state variables of adult 569 

females under culture conditions, we did not have information on some crucial aspects such 570 

as the average number of eggs in the brood pouch at day zero. If growth rates are of interest, 571 

we therefore suggest to initiate populations with juveniles only, possibly of varying age to 572 

minimize fluctuations in population density due to synchronized reproduction. Alternatively, 573 

additional data about the life-history of initial adults may be recorded, in order to ensure that 574 

those are translated to the corresponding state variables of initial adults in the simulation.  575 

Secondly, the calculation of rate of increase is always influenced by data-points with low 576 

population densities. These are subject to higher stochasticity and therefore, growth rates can 577 

be expected to be associated with higher variability than 6-week density and thus be harder 578 

to predict. 579 

Taking these factors into account, however, it is still unclear why the DEB-IBM over-estimated 580 

effects on growth rate at low concentrations, and was unable to predict synergistic effects at 581 

high concentrations.  We think that relationships between individual-level parameters and 582 

(mixture) effects on growth rate first have to be further clarified to explain this trend. 583 

Analysis of predicted ingestion rates, assimilation rates and fecundity indicated that overall, 584 

compensation effects due to mitigation of food competition played an important role for 585 

(mixture) toxicity on the population-level. This also explains why for growth rate and 6-week 586 

density, different patterns of mixture toxicity can emerge: By the time that the population 587 

reaches steady state, food is always limiting, and therefore food limitation has a large 588 

influence on effects on 6-week density. In contrast, the initial growth rate encapsulates the 589 

time-window of the experiment where food is not limiting, or only starts to become limiting. 590 

Consequently, interactions between food competition and effects on growth rate vs effects 591 

on 6-week density should also be expected to be different. 592 
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 593 

Assuming non-interactivity of metals 594 

The DEB-IBM predicted antagonistic effects on 6-week density relative to IA, despite IA being 595 

assumed on the physiological level. This predicted antagonism was in line with observed 596 

effects, which shows that interactive effects do not have to be implemented on the 597 

physiological level in order to explain interactive mixture effects on higher levels of 598 

organization. Analysis of individual-level state variables suggested that the predicted 599 

antagonistic effect was a result of the combined effects of metals via different pMoAs, namely 600 

reproduction efficiency and assimilation rate. 601 

Our results indicate that the assumption of non-interactivity on the physiological level can be 602 

used in order to predict population-level metal mixture effects. However, a synergistic effect 603 

on growth rate was only partially predicted. Failure of the DEB-IBM to predict synergistic 604 

effects could point at interactive mixture toxicity on the individual level, which might be more 605 

important with respect to effects to population growth rate, compared to 6-week population 606 

density, given that population growth rate is in general less strongly influenced by density 607 

dependent processes, and therefore it is less likely that an interactive effect will emerge from 608 

non-interactivity on the individual level. 609 

Conclusions 610 

We showed that metal mixture toxicity to D. magna populations is in large part predictable 611 

based on the assumption of non-interactivity on the physiological level. While further 612 

validation is needed before generalizing this conclusion, our findings are in agreement with 613 

previous analyses of metal mixture toxicity, showing that strong interactive effects between 614 

metals are rare (Cedergreen, 2014) and that IA is, on average, the more adequate reference 615 

model than CA at the individual level (Nys, Versieren, et al., 2017). If confirmed by further 616 

validation, the use of DEB-IBM in mixture ecotoxicology opens up the opportunity for 617 

extrapolations that are not possible with statistical reference models, such as prediction of 618 

mixture toxicity at different food levels or exposure durations. Therefore, mechanistic effect 619 

modelling can provide considerable advantages over purely empirical models even if the 620 

predictive performance of the mechanistic model does not exceed that of empirical models. 621 

Furthermore, mechanistic models can serve as a tool for the formulation of clear and well-622 
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founded hypotheses, since they point at specific processes being responsible for observed 623 

phenomena. 624 

Accurate predictions can be provided without using point estimates of TKTD parameters. 625 

Instead, by sampling parameter values from joint posterior distributions, the uncertainty 626 

associated with each estimation can be propagated. Also in terms of pMoAs, similarly 627 

probable alternative models can be taken into account when generating predictions. This 628 

facilitates the use of mechanistic effect modelling under uncertainty, e.g. when not all of the 629 

desired data for calibration are available. However, it should raise caution when trying to 630 

make generalized statements about pMoAs. 631 

To explain why DEB-IBM predictions are much more accurate for 6-week density than for 632 

growth rate, we suggest that relationships between individual-level processes and population-633 

level endpoints should be further illuminated. Specifically, our results suggest that 634 

implementation of interactive mixture toxicity on the individual-level might be more 635 

important when the goal is to predict mixture effects on population growth rates. 636 

Our identified pMoAs were not in agreement with those reported in previous studies. For the 637 

advancement of mechanistic effect modelling approaches, it will be important to understand 638 

whether this is the result of intraspecific variability, an artifact of different model selection 639 

approaches, or whether pMoAs might actually shift under toxicant exposure in a population 640 

context. 641 
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Tables 783 

Table 1 Mean and standard deviation with sample sizes of measured test media 784 
physicochemistry 785 

T (°C) pH Naa  Mga Ka Caa DOCa 

19.4  

(0.9, 

N=12) 

7.6  

(0.6, 

N=268) 

27.1  

(2.5,  

N=404) 

5.01  

(0.24, 

N=404) 

4.26 

(1.70, 

N=404) 

13.8 

 (0.8, 

N=404) 

7.32 

(0.84, 

N=404) 

a mg L-1 786 

Table 2 Estimated DEB parameters for D. magna. Point estimates are the particle with the 787 
best fit. Credible Limits (CL) indicate the corresponding percentile of the marginal posterior 788 
distribution 789 
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PARAMETER UNIT DESCRIPTION Add-my-pet 

reported value 

(Kooijman & 

Gergs, 2019) 

ESTIMATE CL5 CL95 

𝑝𝑝𝐼𝐼𝑚𝑚 𝐽𝐽
𝑐𝑐𝑚𝑚2 × 𝑑𝑑𝑑𝑑𝑦𝑦

 maximum specific 

assimilation rate 

313.2 260.4 264.0 308.1 

𝐹𝐹𝑚𝑚 𝐿𝐿
𝑐𝑐𝑚𝑚2 × 𝑑𝑑𝑑𝑑𝑦𝑦

 filtration rate 30.17 10.0 8.6 11.8 

𝜅𝜅𝐸𝐸,𝑋𝑋 𝐽𝐽
𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎 𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎

 assimilation efficiency not reported 3.7×10-6 3.1×10-6 4.1×10-6 

𝑚𝑚𝑒𝑒 - reserve density-related 

mortality 

not reported 0.41 0.32 0.62 

 790 

Table 3 Deviation parameter a (Equation 11) per treatment, endpoint and reference model.  791 

treatment endpoint 

∑𝑇𝑇𝑈𝑈𝐸𝐸𝐸𝐸50a 

model 𝑑𝑑 CL5 b CL95 b observedc 

predicted by 

null model 

p-

valued S/Ae 

Mix1 r 0.08 IA 6.69 6.63 6.77 0.98 (0.03) 0.75 <0.0025 A 

K 0.21 31.6 31.3 31.9 0.89 (0.03) 0.8 <0.0025 A 

r 0.08 CA -5.3 -5.36 -5.24 0.98 (0.03) 1.0 <0.0025 S 

K 0.21 -65.9 -66.6 -65 0.89 (0.03) 0.99 <0.0025 S 

Mix2 r 0.19 IA -1.35 -1.36 -1.33 0.9 (0.12) 0.95 <0.0025 S 

K 0.42 -108 -110 -107 0.81 (0.08) 1 <0.0025 S 

r 0.19 CA -3.81 -3.85 -3.77 0.9 (0.12) 0.99 <0.0025 S 

K 0.42 -19.6 -19.8 -19.3 0.81 (0.08) 0.94 <0.0025 S 

Mix3 r 0.56 IA 40.3 34.5 118 1.01 (0.11) 0.78 <0.0025 A 

K 1.21 25.2 24.9 25.5 0.71 (0.05) 0.51 <0.0025 A 

r 0.56 CA 17 11.5 17.7 1.01 (0.11) 0.86 <0.0025 A 

K 1.21 22.9 22.7 23.2 0.71 (0.05) 0.35 <0.0025 A 

Mix4 r 1.70 IA -1.77 -1.79 -1.75 0.31 (0.62) 0.48 <0.0025 S 

K 3.21 -154.51 -154.51 -154.51 0.0 (0.0) 0.04 <0.0025 S 

r 1.70 CA 1.34 1.32 1.36 0.31 (0.62) 0.08 <0.0025 A 

K 3.21 -81.2 -87.7 -74.39 0.0 (0.0) 0.02 <0.0025 S 
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Mix5 r 8.6 IA NaNf NaNf NaNf 0.0 (0.0) 0 - - 

K 13.3 NaNf NaNf NaNf 0.0 (0.0) 0 - - 

r 8.6 CA NaNf NaNf NaNf 0.0 (0.0) 0 - - 

K 13.3 NaNf NaNf NaNf 0.0 (0.0) 0 - - 

a Sum of toxic units based on median effect concentration with respect to the corresponding 792 

endpoint. 793 

b Percentile of marginal posterior distribution of 𝑑𝑑. 794 

c Mean and standard deviation of control-normalized responses; N=4 for each entry 795 

d Derived by nested F-test. 796 

e S=Synergism, A=Antagonism 797 

f NaN = “Not a Number”. Deviation parameter could not be determined if all observed and  798 

predicted responses are equal to 0. 799 

 800 

Table 4 Model performance per endpoint. SSE is the sum of squared errors between 801 

predicted and observed control-normalized values. 802 

endpoint model R2a SSEb 

r IAc 0.70 1.79 

CAc 0.75 1.58 

IBM 0.73 1.64 

K IAc 0.92 0.44 

CAc 0.90 0.65 

IBM 0.97 0.17 

 803 

a Linear regression between predicted and observed control-normalized responses in the 804 
mixture treatments. 805 

b Sum of Squared Errors between predicted and observed control-normalized responses. 806 
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c Null model (no deviation parameter) 807 

 808 

 809 

Figures 810 

 811 

 812 

Figure 1 Fitted and observed population dynamics in the control. Lines and ribbons show 813 
mean and standard deviation of predictions generated from 100 posterior samples. 814 
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 815 

Figure 2 Fitted and observed control-normalized responses of population density in single-816 
metal treatments. Responses above one (dashed gray line) are shown on a logarithmic scale.  817 
Fitted values are the result of evaluating the DEB-IBM for 100 samples from the corresponding 818 
posterior distribution of TKTD parameters, as well as the posterior distribution of DEB 819 
parameters. Lines and shaded areas indicate the mean and standard deviation of predicted 820 
responses. 821 
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 822 

Figure 3 Observed and IBM-predicted control-normalized responses of initial growth rate 823 
and 6-week density in the single-metal treatments, after fitting the DEB-IBM to time series of 824 
control-normalized population densities in the single-metal treatments. Lines and shaded 825 
areas indicate mean and standard deviation of predicted responses based on 100 posterior 826 
samples. 827 
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 828 

Figure 4 Predicted control-normalized response of population density over time, if all or only 829 
one toxicity component are simulated. In the model, effects on reproduction efficiency caused 830 
most of the effect across metals at low and intermediate effect concentrations. Responses 831 
above one (dashed line) are shown on a log-scale. Dotted lines indicate the 10% and 50% effect 832 
levels, respectively. 833 

834 
Figure 5 Observed and model-predicted control-normalized responses of initial growth rate 835 
and 6-week density in the mixture treatments. Toxic units are calculated based on the 836 
corresponding EC50s of individual metals, which were obtained by fitting log-logistic curves. 837 
“IA” and “CA” are empirical models applied on the population-level. “IBM-predicted” are DEB-838 
IBM predicted values based on calibration with single-metal toxicity data and IA on the 839 
physiological level. 840 
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Figure 6 Observed and model-predicted control-normalized responses of initial growth rate 841 

and 6-week density in the mixture treatments. Responses above one (dashed gray line) are 842 

shown on a logarithmic scale. Toxic units are calculated based on the corresponding EC50s of 843 

individual metals, which were obtained by fitting log-logistic curves. “IA” and “CA” are 844 

empirical models applied on the population-level. “IBM-predicted” are DEB-IBM predicted 845 

values based on calibration with single-metal toxicity data and IA on the physiological level. 846 

Dotted gray lines indicate the 10% and 50% effect levels, respectively. 847 
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ICP‐OES detection limits and quality control 2 

 3 

SI Table 1 ICP‐OES Method Detection Limits (MDL) and Limits of Quantification (LOQ) of measured cations.  4 

 
Cu  Ni  Zn  Ca  Mg  Na  K 

Position Torch  Axial  Axial  Axial  Radial  Radial  Radial  Radial 

MDL (𝝁𝒈 𝑳 𝟏   2.0  1.2  0.5  15  15  30  30 

LOQ (𝝁𝒈 𝑳 𝟏   5.0  4.0  2.0  50  50  100  100 

               

SI Table 2 Recovery percentages for major cations, based on the reference material Cranberry‐05 (Environment Canada). 5 
Shown are ranges of determined recovery percentages based on a total of 7 measurements. 6 

Element  Recovery percentage 

Na  102‐108% 

Mg  92‐103% 

K  96‐106% 

Ca  92‐95% 

 7 

SI Table 3 Recovery percentages for minor cations, based on two different reference materials (Environment Canada). Shown 8 
are ranges of determined recovery percentages based on a total of 4 measurements for each reference material. 9 

Reference material  Element  Recovery percentage 

TM‐25.5  Cu  97‐101% 

Ni  91‐102% 

Zn  105‐107% 

TMDA‐70.2  Cu  95‐98% 

Ni  95‐107% 

Zn  101‐102% 

 10 

 11 

 12 
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 20 

 21 
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Overview of the modelling scheme 36 

 37 

 38 

SI Figure 1 Schematic representation of modelling and statistical analysis. 39 

 40 

 41 



Sequential Monte Carlo Approximate Bayesian Computation (SMC‐ABC) scheme 42 

For estimation of DEB parameters, we used the function SMCABC (gpABC package in Julia) 43 

with Euclidean distance as loss function. gpABC implements the algorithm by Toni et al. 44 

(2009). 45 

Estimation of TKTD parameters proved more intricate. For sake of transparency, we 46 

implemented a custom Sequential Monte Carlo Approximate Bayesian Computation (SMC‐47 

ABC) scheme for TKTD parameter estimation, loosely based on the algorithms provided by 48 

Toni et al. (2009) and Sisson et al. (2007). As all ABC‐based approaches, it does not involve 49 

explicit calculation of likelihood. Instead, the loss function is used as a proxy for the 50 

likelihood and Bayes’ rule is applied implicitly. The scheme proceeds as follows: 51 

1. Sample a particle 𝜃 (i.e. combination of parameter values) from prior distributions. 52 

2. Simulate the model with 𝜃 as input variable and evaluate the loss function 53 

𝜌 𝑀 𝜃 ,𝐷  for model 𝑀 θ  and data 𝐷.  54 

3. Repeat steps 1‐2 𝑛 times. 55 

4. Steps 1‐3 result in a population of particles 𝜃  and corresponding losses 𝜌 . Compute 56 

the 20th percentile of the distribution of 𝜌 , and select particles 𝜃∗ whose distance 57 

falls below that percentile. 58 

5. Repeat steps 1‐4 𝑘 times, sampling from the previous population 𝜃∗ of particles 59 

instead of the initial prior, with sampling weights equal to 𝜌 . In addition, multiply 60 

each sampled value by a random perturbation factor 𝑒 , . . 61 

For estimating TKTD parameters, we set n to 250 and k to 20. These settings are a 62 

compromise between keeping computation times within acceptable ranges and exploring 63 

the possible parameter space. 64 

Note that in contrast to classic rejection ABC, this scheme can result in the parameter 65 

estimates drifting outside the boundaries of the initial prior distributions. 66 

As distance function we used a symmetric bounded function (Marques et al., 2019). By using 67 

a percentile of 𝜌  as criterion to accept particles, we omitted the step of defining a distance 68 

schedule (i.e. a vector of absolute values of the loss function as successive criterion for 69 

particle acceptance). Application of a perturbation factor avoids the exact parameter values 70 

to be constrained by the first set of samples. 71 
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Implementation of physiological Modes of Action 84 

Stress functions were applied to DEB parameters and state variables according to the 85 

corresponding physiological Mode of Action (pMoA). For combined effects of metals via the 86 

same pMoA, the stress functions were calculated individually, then combined 87 

multiplicatively. 88 

SI Table 4 pMoAs and their corresponding effect on DEB parameters and state variables. Mentioned parameters are energy 89 
investment ratio 𝑔 , somatic maintenance rate constant  𝑘  𝑑𝑎𝑦 , maturity maintenance rate constant 𝑘  𝑑𝑎𝑦  90 
and reproduction efficiency 𝜅  . 𝑆  is the scaled assimilation flux  𝑐𝑚 . 𝑆 ,  is stress caused by stressor 𝑖 with resepect 91 
to pMoA 𝑗. For detailed explanations of parameters, see Kooijman (2010). “→ " denotes assignment. 92 

pMoA  stressed value 

Increase in growth costs (G)  𝑔 → 𝑔 1 𝑆 ,  

𝑘 →  𝑘
1

1 𝑆 ,
 

Increase in maintenance costs (M)  𝑘 →  𝑘 1 𝑆 ,   

𝑘 →  𝑘 1 𝑆 ,  

Decrease in assimilation flux (A)  𝑆 → 𝑆 1 𝑆 ,  

Decrease in reproduction efficiency (R)  𝜅 → 𝜅 1 𝑆 ,  

 93 



 94 

Physicochemistry 95 

pH 96 

 97 

SI Figure 2 Measured pH over time. pH increased in the first week, likely due to photosynthetic activity of added algae, but 98 
fell back when exponential growth of Daphnia populations started. 99 

Derivation of exposure concentration time‐series 100 

Because exposure concentrations varied over time, we used the WHAM VII‐predicted free 101 

ion activities (based on measured concentrations) to derive time‐series of free ion activities, 102 

which were in turn used as input for the DEB‐IBM simulations. In each week, samples of new 103 

and old media were taken. Free ion activities systematically differed between new (=directly 104 

after 25% renewal) and old (=right before 25% renewal) media, and tended to overall 105 

increase during the experiment. We therefore implemented a procedure to derive the time 106 

series from pairs of measurements. 107 

For illustration purposes, consider the following random example: 108 

time (days)  medium type  [Cu2+] 

7  new  1.7 

old  0.2 



14  new  2.2 

old  1.5 

Shown are free ion activities of Copper in a given treatment, at two successive time‐points of 109 

measurement in the experiment. Assume we want to derive the concentration which will be 110 

used as input for the DEB‐IBM simulation from day 7 to day 14. The concentration in the old 111 

medium at day 7 should be irrelevant for this, since the populations will be exposed to the 112 

concentration in the new medium from day 7 on. The same applies to the concentration in 113 

the new medium at day 14. The concentration to which the populations are in fact exposed 114 

to between day 7 and day 14 should be best described by the concentration in the new 115 

medium at day 7 and the old medium at day 14. To not complicate the computation any 116 

further, we used the average between these two values to obtain the DEB‐IBM input 117 

between day 7 and day 14 for the given treatment, i.e. (1.7 nM+1.5 nM)/2 = 1.6nM. Or in 118 

general terms: The concentration used between two time‐points of measurement, t1 and t2, 119 

was the average between the new concentration at t1 and the old concentration at t2. 120 

Special cases were given by the first time‐point (day 0) and last time‐point (day 42 or day of 121 

extinction of the last population surviving in the given treatment), where only the 122 

concentration in the new medium and in the old medium were taken into account, 123 

respectively. 124 

 125 



 126 

 127 

 128 

 129 

SI Figure 3 Time‐series of free ion activities used for simulation of single‐metal exposures. 



 130 

 131 

 132 

 133 

SI Figure 4 Time‐series of free ion activities used for simulation of  mixture exposure. 



SI Table 5 Mean measured dissolved metal concentrations per treatment, expressed in µg L‐1 and nM. Standard deviations 134 
and sample sizes are given in brackets. Limits of quantification (LOQ) for Cu, Ni and Zn were 5, 4 and 2 µg L‐1 respectively.  135 

treatment 
Cu (µg L-1) Cu (nM) Ni (µg L-1) Ni (nM) Zn (µg L-1) Zn (nM) 
nom. mes. nom. mes. nom. mes. nom. mes. nom. mes. nom. mes. 

Co 0.254 
5.82 
(2.94, 
N=33) 

4 91.7 (46.2, 
N=33) 0 <LOQ 

(N=33) 0 <LOQ 
(N=33) 5.23 

9.82 
(3.01, 
N=33) 

80 
150.0 
(46.0, 
N=33) 

Cu1 5 
8.08 
(2.49, 
N=33) 

78.7 
127.0 
(39.1, 
N=33) 

0 <LOQ  
(N=33) 0 <LOQ  

(N=33) 5.23 
8.3 
(2.08, 
N=33) 

80 
127.0 
(31.9, 
N=33) 

Cu2 13 
14.0 
(2.97, 
N=33) 

205 
220.0 
(46.7, 
N=33) 

0 <LOQ 
(N=33) 0 <LOQ 

(N=33) 5.23 
7.65 
(2.45, 
N=33) 

80 
117.0 
(37.5, 
N=33) 

Cu3 35 
28.6 
(5.29, 
N=33) 

551 
450.0 
(83.3, 
N=33) 

0 <LOQ  
(N=33) 0 <LOQ  

(N=33) 5.23 
7.59 
(2.6, 
N=33) 

80 
116.0 
(39.7, 
N=33) 

Cu4 94 
65.8 
(12.0, 
N=33) 

1480 
1040.0 
(188.0, 
N=33) 

0 <LOQ  
(N=33) 0 <LOQ  

(N=33) 5.23 
8.04 
(1.94, 
N=33) 

80 
123.0 
(29.7, 
N=33) 

Cu5 250 
178.0 
(58.8, 
N=20) 

3930 
2800.0 
(926.0, 
N=20) 

0 <LOQ  
(N=20) 0 <LOQ  

(N=20) 5.23 
6.58 
(1.74, 
N=20) 

80 
101.0 
(26.6, 
N=20) 

Ni1 0.254 <LOQ 
(N=33) 4 <LOQ 

(N=33) 5 
4.78 
(1.95, 
N=33) 

85.2 
81.4 
(33.1, 
N=33) 

5.23 
10.2 
(2.04, 
N=33) 

80 
156.0 
(31.3, 
N=33) 

Ni2 0.254 <LOQ  
(N=33) 4 <LOQ  

(N=33) 13 
12.1 
(4.39, 
N=33) 

221 
207.0 
(74.8, 
N=33) 

5.23 
8.78 
(1.82, 
N=33) 

80 
134.0 
(27.8, 
N=33) 

Ni3 0.254 <LOQ  
(N=33) 4 <LOQ  

(N=33) 35 
32.6 
(9.98, 
N=33) 

596 
555.0 
(170.0, 
N=33) 

5.23 
9.02 
(1.68, 
N=33) 

80 
138.0 
(25.6, 
N=33) 

Ni4 0.254 <LOQ  
(N=33) 4 <LOQ  

(N=33) 94 
88.5 
(29.8, 
N=33) 

1600 
1510.0 
(507.0, 
N=33) 

5.23 
9.12 
(2.37, 
N=33) 

80 
139.0 
(36.3, 
N=33) 

Ni5 0.254 <LOQ  
(N=33) 4 <LOQ  

(N=33) 250 
221.0 
(65.8, 
N=33) 

4260 
3760.0 
(1120.0, 
N=33) 

5.23 
8.33 
(2.77, 
N=33) 

80 
127.0 
(42.4, 
N=33) 

Zn1 0.254 <LOQ  
(N=33) 4 <LOQ  

(N=33) 0 <LOQ  
(N=33) 0 <LOQ  

(N=33) 15 
19.2 
(4.39, 
N=33) 

229 
293.0 
(67.2, 
N=33) 

Zn2 0.254 <LOQ  
(N=33) 4 <LOQ  

(N=33) 0 <LOQ  
(N=33) 0 <LOQ  

(N=33) 40 
38.8 
(15.7, 
N=33) 

612 
593.0 
(240.0, 
N=33) 

Zn3 0.254 <LOQ  
(N=33) 4 <LOQ  

(N=33) 0 <LOQ  
(N=33) 0 <LOQ  

(N=33) 106 
90.3 
(29.3, 
N=33) 

1620 
1380.0 
(448.0, 
N=33) 

Zn4 0.254 
5.51 
(7.18, 
N=33) 

4 
86.7 
(113.0, 
N=33) 

0 <LOQ  
(N=33) 0 <LOQ  

(N=33) 282 
246.0 
(89.1, 
N=33) 

4310 
3760.0 
(1360.0, 
N=33) 

Zn5 0.254 <LOQ  
(N=21) 4 <LOQ  

(N=21) 0 <LOQ  
(N=21) 0 <LOQ  

(N=21) 750 
573.0 
(49.7, 
N=21) 

11500 
8760.0 
(760.0, 
N=21) 



             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
 136 

 137 

 138 

 139 

 140 

 141 

Mix1 5 
8.44 
(1.17, 
N=33) 

78.7 
133.0 
(18.4, 
N=33) 

5 
9.04 
(1.63, 
N=33) 

85.2 
154.0 
(27.8, 
N=33) 

15 
22.7 
(7.46, 
N=33) 

229 
348.0 
(114.0, 
N=33) 

Mix2 13 
17.8 
(2.59, 
N=33) 

205 
280.0 
(40.7, 
N=33) 

13 
14.9 
(4.43, 
N=33) 

221 
253.0 
(75.5, 
N=33) 

40 
37.2 
(13.4, 
N=33) 

612 
569.0 
(204.0, 
N=33) 

Mix3 35 29.7 (5.6, 
N=33) 551 

467.0 
(88.1, 
N=33) 

35 
34.2 
(9.2, 
N=33) 

596 
583.0 
(157.0, 
N=33) 

106 
90.1 
(20.6, 
N=33) 

1620 
1380.0 
(316.0, 
N=33) 

Mix4 94 
54.3 
(23.3, 
N=18) 

1480 
854.0 
(367.0, 
N=18) 

94 
68.9 
(23.4, 
N=18) 

1600 
1170.0 
(398.0, 
N=18) 

282 
202.0 
(70.7, 
N=18) 

4310 
3090.0 
(1080.0, 
N=18) 

Mix5 250 
174.0 
(34.4, 
N=18) 

3930 
2740.0 
(542.0, 
N=18) 

250 
225.0 
(3.56, 
N=18) 

4260 
3840.0 
(60.7, 
N=18) 

750 
651.0 
(14.6, 
N=18) 

11500 
9950.0 
(224.0, 
N=18) 



Results of TKTD parameter estimation 142 

 143 

 144 

SI Figure 5 Prior (blue) and posterior (orange) probability density of TKTD parameters for Copper. Vertical bars indicate 145 
marginal 90% credible intervals. Point estimates can differ from the value associated with the highest probability density 146 
due to covariance. 147 



 148 

SI Figure 6 Prior (blue) and posterior (orange) probability density of TKTD parameters for Nickel. Vertical bars indicate 149 
marginal 90% credible intervals. Point estimates can differ from the value associated with the highest probability density 150 
due to covariance. 151 

 152 

SI Figure 7 Prior (blue) and posterior (orange) probability density of TKTD parameters for Zinc. Vertical bars indicate 153 
marginal 90% credible intervals. Point estimates can differ from the value associated with the highest probability density 154 
due to covariance. 155 



SI Table 6 Point estimates and marginal credible intervals of TKTD parameters for Copper. PMoAs are indicated by 156 
subscripts; G=increase in growth costs, M=increase in somatic and maturity maintenance costs, A=decrease in assimilation 157 
flux, R=decrease in reproduction efficiency. Subscript h denotes that a parameter is linked to hazard rate (direct lethal 158 
effects); subscript S denotes that a parameter is linked to stress (sublethal effects via PMoA).  159 

parameter (unit)  estimate  CL5  CL95 

𝑘 ,  (day‐1)  0.63  0.61  1.7 

ℎ ,  (day‐1)  0.56  0.52  2.6 

𝐸𝐷50 ,  (nM)  8.6  5.5  12 

𝛽 ,  (‐)  18  8.3  28 

𝑆 , ,  (‐)  3.1  1.2  4.5 

𝑆 , ,  (‐)  0.52  0.4  1.4 

𝑆 , ,  (‐)  0.043  0.057  0.16 

𝑆 , ,  (‐)  1.7  0.95  2.3 

𝐸𝐷50 , ,  (nM)  4.1  4.4  28 

𝐸𝐷50 , , (nM)  37  9.7  41 

𝐸𝐷50 , ,  (nM)  18  6.3  39 

𝐸𝐷50 , ,  (nM)  0.73  0.75  3 

𝛽 , ,  (‐)  6.3  2.1  9 

𝛽 , ,  (‐)  1.5  1  6.2 

𝛽 , ,  (‐)  10  3.2  10 

𝛽 , ,  (‐)  1.9  0.78  2.6 

 160 

SI Table 7 Point estimates and marginal credible intervals of TKTD parameters for Nickel. PMoAs are indicated by subscripts; 161 
G=increase in growth costs, M=increase in somatic and maturity maintenance costs, A=decrease in assimilation flux, 162 
R=decrease in reproduction efficiency. Subscript h denotes that a parameter is linked to hazard rate (direct lethal effects); 163 
subscript S denotes that a parameter is linked to stress (sublethal effects via PMoA). 164 

parameter (unit)  estimate  CL5  CL95 

𝑘 ,  (day‐1)  1.2  0.31  1.2 

ℎ ,  (day‐1)  0.27  0.15  0.48 

𝐸𝐷50 ,  (nM)  3300  780  3200 

𝛽 ,  (‐)  19  15  29 

𝑆 , ,  (‐)  0.1  0.026  0.12 



 165 

 166 

SI Table 8 Point estimates and marginal credible intervals of TKTD parameters for Zinc. PMoAs are indicated by subscripts; 167 
G=increase in growth costs, M=increase in somatic and maturity maintenance costs, A=decrease in assimilation flux, 168 
R=decrease in reproduction efficiency. Subscript h denotes that a parameter is linked to hazard rate (direct lethal effects); 169 
subscript S denotes that a parameter is linked to stress (sublethal effects via PMoA). 170 

parameter (unit)  estimate  CL5  CL95 

𝑘 ,  (day‐1)  0.46  0.41  1.7 

ℎ ,  (day‐1)  0.23  0.13  0.57 

𝐸𝐷50 ,  (nM)  3800  970  3100 

𝛽 ,  (‐)  39  21  53 

𝑆 , ,  (‐)  3.7  1.8  7.2 

𝑆 , ,  (‐)  2  0.95  24 

𝑆 , ,  (‐)  1.5  0.13  1.1 

𝑆 , ,  (‐)  3.6  1.8  6.9 

𝐸𝐷50 , ,  (nM)  2100  1600  6000 

𝐸𝐷50 , , (nM)  3200  1900  5900 

𝐸𝐷50 , ,  (nM)  1000  660  4100 

𝐸𝐷50 , ,  (nM)  510  350  970 

𝛽 , ,  (‐)  5.8  3  10 

𝛽 , ,  (‐)  3  1.5  9.7 

𝑆 , ,  (‐)  0.19  0.1  0.27 

𝑆 , ,  (‐)  0.054  0.035  0.14 

𝑆 , ,  (‐)  3.1  3  8.2 

𝐸𝐷50 , ,  (nM)  2900  1400  7300 

𝐸𝐷50 , , (nM)  440  230  630 

𝐸𝐷50 , ,  (nM)  1200  870  5600 

𝐸𝐷50 , ,  (nM)  760  680  1300 

𝛽 , ,  (‐)  1.4  0.71  1.6 

𝛽 , ,  (‐)  1.3  0.82  5.6 

𝛽 , ,  (‐)  2.6  1.7  5.4 

𝛽 , ,  (‐)  8.3  5.3  10 



𝛽 , ,  (‐)  6.1  1.3  9 

𝛽 , ,  (‐)  1.4  0.87  4.8 

 171 

Monte‐Carlo simulations for identification of dominant pMoAs 172 

Metals were allowed to act via multiple pMoAs simultaneously. Solely by inspecting TKTD 173 

parameters, it is difficult to make a reliable statement about which pMoAs were driving 174 

toxicity in the DEB‐IBM simulations, because their relative importance is steered by multiple 175 

parameters simultaneously. We therefore conducted additional Monte‐Carlo (MC) 176 

simulations, allowing to evaluate visually which pMoAs explained most of the effects 177 

predicted by the full model. The MC simulation scheme proceeded as follows: 178 

1. Sample a particle 𝜃  from the joint posterior distribution of DEB parameters, and a 179 

particle 𝜃 ,  from the joint posterior distribution of TKTD parameters of metal i. 180 

2. For a given 𝜃 /𝜃 ‐combination, iterate over toxicity components (lethal effects 181 

or one of the four pMoAs) : 182 

1. Within 𝜃 , set all 𝑆 , ,  values and ℎ ,  to 0, expect for the parameter 183 

linked to the current toxicity component (ℎ ,  for lethal effects or 𝑆 , ,  184 

for pMoA 𝑗). This yields a model where only one toxicity component is active. 185 

2. Simulate the single‐metal toxicity test with 𝜃  and the modified 𝜃  as 186 

input. 187 

3. Simulate the single‐metal toxicity test with the originally samples 𝜃 /𝜃 ‐188 

combination. 189 

4. Repeat steps 1‐3 100 times. 190 

The result of this scheme is a time‐series of relative responses of population density over 191 

time, split up by toxicity component and with an associated uncertainty. The MC scheme 192 

was conducted separately for each metal. 193 



Predicted individual‐level state variables 194 

In the following, we provide some more detailed information on individual‐level state 195 

variables that were predicted by the DEB‐IBM.  196 

Predicted patterns of feeding and assimilation in the DEB‐IBM 197 

Average food ingestion rates followed a distinct pattern, where after some time during the 198 

simulation (typically coinciding with peak densities), ingestion rates strongly oscillated on a 199 

daily basis. Quickly oscillating ingestion rates emerged as a result of daily addition of food, 200 

which is entirely consumed at high population densities. The onset of this oscillating pattern 201 

therefore also indicates the onset of (strong) food competition. In each case, the onset of 202 

food competition was delayed in time as a function of increasing metal exposure, and 203 

average ingestion rates are increased during the phase of competition (more so for Ni and 204 

Zn than for Cu). In the mixture, this effect was larger than in the single‐metal treatments (SI 205 

Figure 8). Since ingestion rates are size‐specific, one might argue that this is simply a result 206 

of changes in population structure. We can state that this is not the case, because the same 207 

pattern is found for the scaled functional response (i.e., ingestion rate relative to the 208 

maximum surface area‐specific ingestion rate), which only depends on the half‐saturation 209 

constant for food uptake and the current food density, and not on size. 210 

SI Figure 8 Average  food  ingestion  rates over  time per metal  treatment  in  the  simulations. Shaded areas  show 90%  confidence 
intervals of average ingestion rates (result of simulating 100 posterior samples).  



 211 

SI Figure 9 Average scaled functional responses over time per metal treatment in the simulations. Shaded areas show 90% 212 
confidence intervals of average ingestion rates (result of simulating 100 posterior samples). 213 

 214 

SI Figure 10 Average assimilation rates over time per metal treatment in the simulations. Shaded areas show 90% 215 
confidence intervals of average ingestion rates (result of simulating 100 posterior samples). 216 

For Cu and Ni, trends in assimilation rates were qualitatively identical with trends in 217 

ingestion rates. In the case of Zn, direct effects on assimilation rate via the corresponding 218 

pMoA mitigated the stimulation of assimilation rate at higher Zn concentrations (towards 219 

equilibrium, ingestion rates in treatment Zn3 were lower than in Zn4. For assimilation rates, 220 

the trend was reversed, SI Figure 10).  Importantly, the stimulation of assimilation rates in 221 

the mixtures was again comparable to the stimulation of ingestion rates in the mixtures. This 222 

suggests a mechanism that explains antagonistic effects of the mixture: Part of the effects of 223 

Zn on assimilation rate were ameliorated by population‐level processes (release from 224 

competition, increased average energy assimilation), which were induced by exposure to Cu 225 



and Ni. The antagonistic effects on growth rate and 6‐week density can thus be seen as a 226 

result of the interplay between pMoAs reproduction efficiency and assimilation rate. 227 



 

Metal Mixture Toxicity To Daphnia Magna Populations: ODD Model Description1 

1The model description follows the ODD (Overview, Design concepts, Details) protocol for de-

scribing individual- and agent-based models (Grimm et al. 2006, 20102).  

1. Purpose 

The purpose of the model is to predict mixture toxicity of ionic Copper (Cu), Nickel (Ni) and 

Zinc (Zn) to Daphnia magna populations in semi-static 42-day microcosm tests. 

2. Entities, state variables, and scales  

Fleas 

The central entity of the IBM implementation are D. magna individuals. In the Julia code, they 

are implemented as a composite type called Flea. Each Flea has the following primary attrib-

utes (parameters). 

 

 

 

 

 

 

 

 

 

 

1 References are given in the manuscript. 

 



 

Symbol Julia identifier Julia data type unit description 

- unique_id Int64 - Identifying num-

ber 

𝐾𝐾 K Float64 (# cells L-1) Half-saturation 

for food uptake 

{𝐽𝐽𝑋𝑋,𝑚𝑚}̇  J_X_Am_rate Float64 (# cells cm-

2 day-1) 

Maximum sur-

face area-spe-

cific ingestion 

rate 

𝑈𝑈𝐻𝐻,𝑏𝑏 U_Hb Float64 cm2 Scaled maturity 

at birth 

𝑈𝑈𝐻𝐻,𝑝𝑝 U_Hp Float64 cm2 Scaled maturity 

at puberty 

𝑘𝑘�̇�𝑀 k_M_rate Float64 day-1 Somatic mainte-

nance rate con-

stant 

𝑘𝑘�̇�𝐽 k_J_rate Float64 day-1 Maturity 

maintenance 

rate constant 

𝑔𝑔 g Float64 - Energy invest-

ment ratio 

�̇�𝑣 v_rate Float64 cm day-1 Conductance 

rate 

𝜅𝜅 kap Float64 - Somatic invest-

ment ratio 



 

𝜅𝜅𝑅𝑅 kap_R Float64 - Reproduction 

efficiency 

𝑑𝑑𝑀𝑀 shape_factor Float64 - Conversion from 

structural length 

to carapace 

length 

𝑚𝑚𝑒𝑒 mortality_constant Float64 - starvation mor-

tality 

𝑠𝑠𝐺𝐺  sG Float64 - Gompertz stress 

coefficient 

ℎ𝐴𝐴 h_a Float64 day-2 Weibull ageing 

acceleration 

τ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 time_between_molts Float64 days molting intervals 

𝑘𝑘𝑑𝑑,𝑖𝑖 k_d Array{Float64,1} day-1 dominant rate 

constant (1d Ar-

ray, one value 

per metal) 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖,𝑗𝑗 S_max Array{Float64,2} - Maximum physi-

ological stress  

𝐸𝐸𝐸𝐸50𝑖𝑖,𝑗𝑗  S_ED50 Array{Float64,2} nM Me2+ Median effec-

tive damage  

𝛽𝛽𝑖𝑖,𝑗𝑗 S_beta Array{Float64,2} - Hill’s slope for 

sublethal effects 

ℎ𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 h_max Array{Float64,1} day-1 Maximum haz-

ard rate  



 

𝐸𝐸𝐸𝐸50ℎ,𝑖𝑖 h_ED50 Array{Float64,1} nM Me2+ Median effec-

tive damage for 

lethal effects 

𝛽𝛽ℎ,𝑖𝑖 h_beta Array{Float64,1} - Hill’s slope for 

lethal effects  

− scatter_multiplier Float64 -  Random factor 

for individual 

variability 

Subscript 𝑖𝑖 refers to metal 𝑖𝑖 and subscripts 𝑗𝑗 refers to metal 𝑗𝑗. One-dimensional arrays contain 

one value for every metal, two-dimensional arrays contain one value for every metal and phys-

iological Mode of Action (pMoA). 

The state variables that fully describe a Flea’s state are as follows: 

 

Symbol Julia identifier Julia data type unit description 

𝑈𝑈𝐸𝐸 U_E Float64 cm2 scaled reserves 

𝑈𝑈𝐻𝐻 U_H Float64 cm2 scaled maturity 

𝑈𝑈𝑅𝑅 U_R Float64 cm2 scaled repro-

duction buffer 

ℎ�̇�𝑚 h_rate Float64 day-1 ageing hazard 

rate 

�̈�𝑞 q_acceleration Float64 day-2 ageing accelera-

tion 

𝐿𝐿 L Float64 cm structural 

length 

𝑓𝑓 f Float64 - scaled func-

tional response 



 

𝑆𝑆𝐴𝐴 S_A Float64 cm2 scaled assimila-

tion flux 

𝑆𝑆𝐶𝐶  S_C Float64 cm2 scaled mobiliza-

tion flux 

𝑒𝑒 e_scaled Float64 - scaled reserve 

density 

 

The DEB-IBM implementation is based on the scaled DEB model, where assimilation rate is 

scaled out of the model. Not the primary parameters are used directly in the model, but the 

compound parameters which depend on primary parameters. 

The maximum surface-area specific ingestion rate 𝐽𝐽𝑋𝑋,𝐴𝐴,𝑚𝑚 depends on maximum assimilation 

rate and assimilation efficiency, following from the basic principle that assimilation rate is the 

product of ingestion rate and assimilation efficiency. 

𝐽𝐽𝑋𝑋,𝐴𝐴,𝑚𝑚 =
𝑝𝑝𝐴𝐴,𝑚𝑚

𝜅𝜅𝐸𝐸,𝑋𝑋
 

Because food density is expressed in algal cell density, not energy, a conversion from algal 

cells to energy is implied in the assimilation efficiency 𝜅𝜅𝐸𝐸,𝑋𝑋. 

The parameter K (algal cells L-1) is the half-saturation constant for food uptake. In the context 

of DEB theory, it is a compound parameter and therefore calculated from primary parameters: 

𝐾𝐾 =
𝐽𝐽𝑋𝑋,𝐴𝐴,𝑚𝑚

𝐹𝐹𝑚𝑚
 

Environment 

The simulated environment is fully described by the current food density 𝑋𝑋𝑚𝑚 (cells L-1) and the 

vector of current metal free ion activities 𝐶𝐶𝑚𝑚 (nM). The temporal resolution TR is set to 24 time-

steps per day, so that one model time-step corresponds to one hour. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

3. Process overview and scheduling 

A single model step proceeds as follows: 

1. Randomize order of individuals 

2. For every individual 

a. Toxicity submodel 

i. Determine death due to direct lethal effects 

ii. Calculate and apply sublethal metal stress 

b. Feeding submodel 

i. Calculate ingestion rates 



 

ii. Update environmental food density 

c. Calculate change in scaled DEB state variables 𝑑𝑑𝑈𝑈𝐸𝐸
𝑑𝑑𝑚𝑚

, 𝑑𝑑𝑈𝑈𝐻𝐻
𝑑𝑑𝑚𝑚

, 𝑑𝑑𝑈𝑈𝑅𝑅
𝑑𝑑𝑚𝑚

 , 𝑑𝑑𝑑𝑑
𝑑𝑑𝑚𝑚

 

d. Ageing submodel (𝑑𝑑�̈�𝑞
𝑑𝑑𝑚𝑚

, 𝑑𝑑ℎ𝑎𝑎
𝑑𝑑𝑚𝑚

) 

e. Update state variables 

f. Reproduction submodel 

i. Determine number of offspring released 

ii. Initialize embryos as new Fleas 

g. Starvation submodel 

h. Mortality submodel 

3. Update environment 

i. Add food once per day 

ii. Remove a fraction of food equal to the fraction of medium renewed. 

4. Remove individuals which have been determined to die 

  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

4. Design concepts 

Emergence. Effects of metal mixtures on individual life-history and population dynamics 

emerge from interactions via metabolic pathways. Population density emerges from individ-

ual state-variables and resource limitation 

Stochasticity. The following processes are stochastic: 

• Individual variability introduced via scatter multiplier applied to 𝑝𝑝𝐴𝐴,𝑚𝑚. 

• Death due to starvation, lethal metal effects or ageing. 

• Food addition. A random factor is applied to the amount of food added daily, 

to account for slight variations in the exact amount of algal cells that is added 

to the medium. 



 

Observation. The total number of individuals is recorded at the end of every time-step, as well 

as population-averages of selected state variables (ingestion rate, scaled functional response, 

scaled assimilation flux).  

5. Initialization 

At t=0, a fixed number of 2 adult and 10 juvenile Fleas are initialized. For juveniles, a random 

age between 0 and 24 hours is sampled and their life-history up to the random age is simu-

lated. This is done given ad libitum feeding conditions (f=1). The same is done for initial adults, 

which are old enough so that 𝑈𝑈𝐻𝐻 ≥ 𝑈𝑈𝐻𝐻,𝑝𝑝, but not more than 21 days old. 

6. Input data 

To simulate metal toxicity tests, a CSV file containing metal free ion activities for every metal 

at every time-step is needed. 

Remaining global input parameters that have to be given to run a simulation are the maximum 

simulated time 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 (days), the amount of food added daily (# algal cells), the intervals at 

which medium renewals are simulated and the fraction of medium renewed. 

 

 

 

 

7. Submodels 

Toxicity 

Following GUTS-RED, external concentrations 𝐶𝐶𝑊𝑊,𝑖𝑖 (nM Me2+) of metal 𝑖𝑖 were directly trans-

lated to scaled damage 𝐸𝐸𝑊𝑊,𝑖𝑖 , (nM Me2+) controlled by a single parameter, the dominant rate 

constant 𝑘𝑘𝑑𝑑 (day-1): 

𝑑𝑑𝐸𝐸𝑊𝑊,𝑖𝑖

𝑑𝑑𝑡𝑡
= 𝑘𝑘𝑑𝑑,𝑖𝑖 × (𝐶𝐶𝑊𝑊,𝑖𝑖 − 𝐸𝐸𝑊𝑊,𝑖𝑖) 



 

Sublethal and lethal effects were modelled as a function of a common damage pool 𝐸𝐸𝑊𝑊,𝑖𝑖 for 

each metal. 

In the case of lethal effects, we related 𝐸𝐸𝑊𝑊,𝑖𝑖 to a hazard rate ℎ𝑧𝑧,𝑖𝑖 (𝑑𝑑𝑑𝑑𝑦𝑦−1) using a log-logistic 

equation, and converted ℎ𝑧𝑧,𝑖𝑖 to a stochastic mortality probability 𝑝𝑝𝑧𝑧,𝑖𝑖. 

ℎ𝑧𝑧,𝑖𝑖 =
ℎ𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖

1 + �
𝐸𝐸𝑊𝑊,𝑖𝑖

𝐸𝐸𝐸𝐸50ℎ,𝑖𝑖
�
−𝛽𝛽ℎ,𝑖𝑖

 

𝑝𝑝𝑧𝑧,𝑖𝑖 = e−hz,i 

We thus assumed a stochastic death mechanism. 𝑝𝑝𝑧𝑧,𝑖𝑖 was evaluated independently for each 

metal. 𝐸𝐸𝐸𝐸50ℎ,𝑖𝑖 (𝑛𝑛𝑛𝑛) is the scaled internal damage that leads to 50% of the maximum hazard 

rate caused by stressor 𝑖𝑖, ℎ𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖; 𝛽𝛽ℎ,𝑖𝑖is the corresponding Hill’s slope. 

For implementation of sublethal effects, we related 𝐸𝐸𝑊𝑊,𝑖𝑖 to physiological stress 𝑆𝑆𝑖𝑖 specific for 

pMoA 𝑗𝑗: 

𝑆𝑆𝑖𝑖,𝑗𝑗 =
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖,𝑗𝑗

1 + �
𝐸𝐸𝑊𝑊,𝑖𝑖

𝐸𝐸𝐸𝐸50𝑆𝑆,𝑖𝑖,𝑗𝑗
�
−𝛽𝛽𝑆𝑆,𝑖𝑖,𝑗𝑗

 

𝐸𝐸𝐸𝐸50𝑆𝑆,𝑖𝑖,𝑗𝑗 is the 50% effective damage of metal 𝑖𝑖 with respect to pMoA 𝑗𝑗. 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖,𝑗𝑗 (−) is the 

corresponding maximum stress level. The state variable 𝑆𝑆𝑖𝑖,𝑗𝑗 modifies physiological processes 

based on the physiological Mode of Action (pMoA). We considered the four most commonly 

considered pMoAs, being 1), increase in growth costs, 2) increase in somatic and maturity 

maintenance costs, 3) decrease in assimilation flux, 4) decrease in reproduction efficiency. 

pMoA stressed value 

Increase in  

growth costs (G) 

𝑔𝑔 → 𝑔𝑔(1 + 𝑆𝑆𝑖𝑖,𝐺𝐺) 

�̇�𝑘𝑀𝑀 →  �̇�𝑘𝑀𝑀
1

1 + 𝑆𝑆𝑖𝑖,𝐺𝐺
 

Increase in  

maintenance costs (M) 

�̇�𝑘𝑀𝑀 →  �̇�𝑘𝑀𝑀(1 + 𝑆𝑆𝑖𝑖,𝑀𝑀)  

�̇�𝑘𝐽𝐽 →  �̇�𝑘𝐽𝐽(1 + 𝑆𝑆𝑖𝑖,𝑀𝑀) 

Decrease in  

assimilation flux (A) 

𝑆𝑆𝐴𝐴 → 𝑆𝑆𝐴𝐴(1 − 𝑆𝑆𝑖𝑖,𝐴𝐴) 



 

Decrease in  

reproduction efficiency (R) 

𝜅𝜅𝑅𝑅 → 𝜅𝜅𝑅𝑅(
1

1 + 𝑆𝑆𝑖𝑖,𝑅𝑅
) 

 

For mixtures of metals acting via shared pMoAs, effects of multiple metals via the same 

pMoA are combined by multiplying the individual effects, so 𝑔𝑔 → 𝑔𝑔∏ (1 + 𝑆𝑆𝑖𝑖,𝐺𝐺)𝑛𝑛
𝑖𝑖=1 , �̇�𝑘𝑀𝑀 →

 �̇�𝑘𝑀𝑀 ∏ (1 + 𝑆𝑆𝑖𝑖,𝑀𝑀) 𝑛𝑛
𝑖𝑖=1 , etc. 

Feeding And Assimilation 

A Type II functional response was implemented to describe dependency of ingestion and as-

similation rate on environmental food density. The corresponding state variable is the scaled 

functional response 𝑓𝑓, which is calculated from food density 𝑋𝑋 (algal cells L-1). 

𝑓𝑓 =
𝑋𝑋

𝑋𝑋 + 𝐾𝐾
 

The combination of 𝑓𝑓, 𝐽𝐽𝑋𝑋,𝐴𝐴,𝑚𝑚 and an individual’s squared structure length L (cm) gives us its 

ingestion rate: 

𝐽𝐽�̇�𝑋 = 𝑓𝑓𝐽𝐽𝑋𝑋,𝐴𝐴,𝑚𝑚𝐿𝐿2 

The scaled assimilation flux 𝑆𝑆𝐴𝐴 (cm2) depends only on 𝑓𝑓, 𝐿𝐿2 and the combined metal effects, 

because assimilation rate is scaled out of the model. 

𝑆𝑆𝐴𝐴 = 𝑓𝑓𝐿𝐿2�1 − 𝑆𝑆𝑖𝑖,𝐴𝐴

𝑛𝑛

𝑖𝑖=1

 

𝑆𝑆𝐴𝐴 has the perhaps counter-intuitive dimension “area”. If an estimate of 𝑝𝑝𝐴𝐴,𝑚𝑚 is available, 𝑆𝑆𝐴𝐴 

can be converted to actual assimilation rate �̇�𝑝 (J day-1) by multiplying with 𝑝𝑝𝐴𝐴,𝑚𝑚.  This was done 

for visualization purposes. 

 

 

 

 

 

 



 

 

 

 

 

 

 

Change in SCALED DEB parameters 

The change in scaled DEB parameters is calculated as specified in the scaled DEB model. 

Change in scaled reserves 𝑑𝑑𝑈𝑈𝐸𝐸
𝑑𝑑𝑚𝑚

 is the difference between scaled assimilation and mobilization 

fluxes, 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐶𝐶  (see “feeding and assimilation” for definition of 𝑆𝑆𝐴𝐴). 

𝑆𝑆𝐶𝐶 = 𝐿𝐿2 �
𝑔𝑔𝑒𝑒
𝑔𝑔 + 𝑒𝑒�

⎣
⎢
⎢
⎢
⎡
1 +

⎝

⎜
⎛ 𝐿𝐿

𝑔𝑔 � 𝑣𝑣 ̇
𝑔𝑔 �̇�𝑘𝑀𝑀

�
⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤
 

𝑑𝑑𝑈𝑈𝐸𝐸
𝑑𝑑𝑡𝑡

= 𝑆𝑆𝐴𝐴 − 𝑆𝑆𝐶𝐶  

Given below are the difference equations for the remaining scaled DEB state variables. 

𝑑𝑑𝑈𝑈𝐻𝐻
𝑑𝑑𝑡𝑡

= �(1 − 𝜅𝜅)𝑆𝑆𝐶𝐶 − �̇�𝑘𝐽𝐽𝑈𝑈𝐻𝐻 𝑖𝑖𝑓𝑓 𝑈𝑈𝐻𝐻 < 𝑈𝑈𝐻𝐻,𝑝𝑝
0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 

𝑑𝑑𝑈𝑈𝑅𝑅 = �
0 𝑖𝑖𝑓𝑓 𝑈𝑈𝐻𝐻 ≤ 𝑈𝑈𝐻𝐻,𝑝𝑝

(1 − 𝜅𝜅)𝑆𝑆𝐶𝐶 − �̇�𝑘𝐽𝐽𝑈𝑈𝐻𝐻 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
 

𝑑𝑑𝐿𝐿 =
1
3

 �̇�𝑣
𝑔𝑔𝐿𝐿2

𝑆𝑆𝐶𝐶 − �̇�𝑘𝑀𝑀𝐿𝐿   

 

Starvation 

A starvation-induced mortality probability 𝑝𝑝𝑒𝑒 is calculated. It increases linearly with decreas-
ing reserve density. 

𝑝𝑝𝑒𝑒 = (1 − 𝑒𝑒)(𝑚𝑚𝑒𝑒)
1
𝑇𝑇𝑅𝑅 



 

The temporal resolution 𝑇𝑇𝑇𝑇  (timesteps day-1) corrects for the temporal resolution at which 

the IBM is executed (24 timesteps day-1 by default). 

Reproduction 

While the reproduction buffer 𝑈𝑈𝑅𝑅 is updated at every model time-step, reproduction itself is 

implemented as a continuous process. Reproduction occurs during molting, controlled by the 

molting period 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (days), which is constant for an individual, but subject to individual vari-

ability. 

If the time since the last molting event is larger or equal to 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, reproduction is triggered. 

The number of offspring produced 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is 

𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �
𝑈𝑈𝑅𝑅𝜅𝜅𝑅𝑅
𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒

� 

⌊𝑥𝑥⌋ denotes the floor function. The reproduction efficiency 𝜅𝜅𝑅𝑅 controls which fraction of the 

energy allocated to reproduction is effectively converted to embryonal reserve. 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒 (t cm2) 

is the energy investment per egg. It is not an independent parameter, but internally derived 

from primary parameters numerically, using a bisection method. 

The reproduction buffer is immediately updated, implying that 1 − 𝜅𝜅𝑅𝑅 of the invested repro-

duction buffer is lost in the process. 

𝑈𝑈𝑅𝑅 = 𝑈𝑈𝑅𝑅 − �
𝑈𝑈𝑅𝑅
𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒
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The appropriate number of juveniles is initialized. Individual variability is applied to the new 

individuals and they are added to the population. 

Ageing 

The process of ageing is controlled by the ageing acceleration �̈�𝑞. On a conceptual level, this 

represents an accumulation of damage over time, which is self-amplifying. 
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Ageing acceleration is linked to an ageing-related hazard rate ℎ̇𝑚𝑚. 
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Mortality 

Mortality is implemented as a stochastic process. The mortality probabilities resulting from 

each possible cause of death (ageing, starvation, metal toxicity) are applied independently. 

Death occurs if at least one of the following conditions holds true, where 𝑢𝑢𝑖𝑖 is a random num-

ber sampled from the uniform distribution 𝑈𝑈(0,1). 

𝑢𝑢1 < (1 − 𝑒𝑒)(𝑚𝑚𝑒𝑒)
1
𝑇𝑇𝑅𝑅 

𝑢𝑢2 < 1 − �ℎ̇𝑚𝑚�
1
𝑇𝑇𝑅𝑅 

𝑢𝑢3 > exp �−
ℎ𝐶𝐶𝐶𝐶
𝑇𝑇𝑇𝑇�

 

𝑢𝑢4 > exp �−
ℎ𝑁𝑁𝑖𝑖
𝑇𝑇𝑇𝑇�

 

𝑢𝑢5 > exp �−
ℎ𝑍𝑍𝑛𝑛
𝑇𝑇𝑇𝑇�
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