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ABSTRACT
Acoustic feedback and noise are common problems that corrupt
microphone signals and affect the performance of speech and audio
signal processing applications and devices. In this paper, a cascade
noise reduction (NR) and acoustic feedback cancellation (AFC) al-
gorithm is presented for speech applications where a multi-channel
Wiener filter (MWF) based NR is applied first followed by a single-
channel prediction-error method (PEM) based adaptive feedback
cancellation stage. It is shown that by using a rank-2 estimate of
the speech correlation matrix in the NR stage it is possible to obtain
a good feedback path estimate for the reference microphone in the
AFC stage. Closed-loop simulations with M microphones and 1
loudspeaker are presented using both an M -channel rank-1 and an
(M + 1)-channel rank-2 MWF and it is shown that for the consid-
ered input signal-to-noise ratios the proposed algorithm increases
the added stable gain (ASG) of the system.

Index Terms— combined acoustic feedback cancellation and
noise reduction, multichannel Wiener filter, prediction-error method
based adaptive filtering with row operations.

1. INTRODUCTION

Acoustic feedback and noise are common problems that corrupt mi-
crophone signals and affect the performance of speech and audio sig-
nal processing applications and devices, such as hearing aids, pub-
lic address (PA) systems, in-car communication and teleconferenc-
ing systems. Acoustic feedback occurs whenever a signal is cap-
tured by a microphone, amplified and played back by a loudspeaker
within the same acoustic environment. This coupling between the
microphone and loudspeaker may give rise to instabilities in the sys-
tem, which translates into signal degradation and, in the worst case,
acoustic howling. Four different approaches can be found to tackle
this problem, with the two most popular being howling suppression
and acoustic feedback cancellation (AFC) [1].

AFC solutions rely on decorrelation of the microphone and loud-
speaker signals to obtain an unbiased feedback path estimate [1, 2].
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Different approaches for decorrelation have been proposed such as
probe-noise injection [3], time-varying or nonlinear processes in the
forward path [4], and prewhitening [5]. The latter approach has been
shown to provide limited perceptual distortion [6, 7]. In the litera-
ture, many different solutions for AFC can be found using different
decorrelation procedures [1, 3, 4, 8, 9, 10]. Similarly for noise reduc-
tion (NR), a wide range of solutions can be found in the literature,
where state-of-the-art algorithms such as the multi-channel Wiener
filter (MWF) are often used [11, 12, 13], as well as more recently
deep learning-based methods [14]. However, only few solutions to
combined AFC and NR have been reported [15].

In this paper, a cascade NR and AFC algorithm is presented for
speech applications, where a NR stage is applied first followed by
a single-channel AFC stage. The novelty of the paper is to con-
sider an (M + 1)-channel data model (with M being the number of
microphones) in the MWF formulation with two different signals,
i.e., the speech component in the reference microphone and in the
loudspeaker signals, both defined by the desired speech signal but
not equal to each other. This allows to estimate a rank-2 (M + 1)-
MWF in the NR stage [13] which is then used to obtain estimates of
the speech component in the reference microphone and in the loud-
speaker signal. These estimates are later used in a single-channel
prediction-error method (PEM) based AFC [5, 16].

The paper is organized as follows: Section 2 describes the sig-
nal model, where the underlying assumptions for the rank-2 estimate
of the speech correlation matrix are detailed. Sections 3 and 4 de-
scribe the NR and AFC stages of the baseline and proposed algo-
rithms, respectively. Sections 5 and 6 present the simulation results
and conclusions of the paper, respectively.

2. SIGNAL MODEL

Consider a room withM microphones andL loudspeakers where the
aim is to record a desired speech signal s(t) , amplify it and play it
back in the loudspeakers. The case when L = 1 will be considered,
without loss of generalising, with the loudspeaker signal denoted by
u(t) and the mth microphone signal, with m = 1, . . . ,M , modeled
as

xm(t) = Hm(q, t)s(t) + Fm(q, t)u(t) + nx,m(t) (1)

where Hm(q, t) and Fm(q, t) are the transfer functions from the
desired speech source and from the loudspeaker to the mth micro-
phone, respectively. The latter is also known as the feedback path.
The noise signal in themth microphone is denoted by nx,m(t) . The
discrete time index is represented by t and q−1 is the delay operator,
i.e., q−ku(t) = u(t − k). The loudspeaker signal can be expressed
as

u(t) =

M∑
m=1

Gm(q, t)xm(t) (2)



where Gm(q, t) is the forward path transfer function for the mth

microphone. The presence of the forward path creates a closed-loop
system which introduces signal correlation between the loudspeaker
and microphone signals. It is assumed that the desired speech signal
can be modeled as

s(t) = Hs(q, t)e(t) (3)

where Hs(q, t) is defined by an autoregressive (AR) process excited
by the white noise signal e(t). A combined NR and AFC algorithm
aims to estimate the desired speech signal without the feedback and
noise components, as observed at a chosen reference microphone,
i.e.,

d(t) = Hr(q, t)s(t) (4)

where Hr(q, t) is the transfer function from the desired speech
source to the reference microphone.

In the short-time Fourier transform (STFT) domain, an N × 1
multi-channel signal vector (N = M+1), consisting of microphone
and loudspeaker signals, can be expressed as

y(κ, l) =

[
0

hs(κ, l)

]
s(κ, l) +

[
1

hf (κ, l)

]
us(κ, l) + n(κ, l) (5)

=

[
u(κ, l)
x(κ, l)

]
(6)

where s(κ, l), us(κ, l), u(κ, l) and n(κ, l) are the STFT repre-
sentations of the speech signal, the desired speech component in
the loudspeaker signal, the loudspeaker signal and the noise in the
microphone and loudspeaker signals, respectively. It is noted that
n(κ, l) includes the noise component in the loudspeaker signal, as
well as, its coupling into the microphones, which is added to the
direct noise components in the microphones. The steering vectors
from the desired speech source and loudspeaker to the microphones
are respectively denoted by hs(κ, l) and hf (κ, l). The time-frame
and frequency-bin indices are l and κ, respectively (for brevity l and
κ will be mostly omitted in the following). The speech correlation
matrix is defined as follows

R̄SS =

[
1 0

hf hs

] [
Φuu Φus
Φsu Φss

] [
1 hHf
0 hHs

]
. (7)

where Φss = E{s∗s},Φsu = E{s∗us}, Φus = E{u∗ss}, Φuu =
E{u∗sus}, E{·} denotes statistical expectation, and (·)∗ and (·)H
are the conjugate and conjugate transpose operators, respectively.
Performing an LDL factorisation on the matrix with the Φ’s in (7),
R̄SS can alternatively be expressed as

R̄SS =

[
1 0

hf + εhs hs

] [
Φuu 0

0 Γ

] [
1 hHf + ε∗hHs
0 hHs

]
(8)

where ε =
Φsu
Φuu

and Γ = Φss −
ΦsuΦus

Φuu
. It is clear that from

the knowledge of R̄SS in (8) alone, hf and hs cannot be uniquely
defined whenever there is a non-zero correlation between s and us.

A cascade NR and AFC is presented here by performing a
multi-channel NR stage first followed by a single-channel AFC
stage. MWF-based NR is used to estimate the contribution of s(κ, l)
and us(κ, l) in a reference microphone as well as in the loudspeaker,
and then a single-channel AFC is performed on the resulting sig-
nals. Although in this type of cascade usually the estimation of the
feedback path is affected by the NR stage, it is shown here that by
performing a rank-2 approximation of the speech correlation ma-
trix this issue can be avoided and the feedback path can indeed be
correctly estimated.

3. CASCADE M-CHANNEL RANK-1 MWF AND PEM-AFC

This sections describes the baseline cascade algorithm. Here, an M-
channel rank-1 MWF (i.e. using microphone signals only) is applied
first, followed by a single-channel AFC stage.
3.1. NR stage

The objective of the NR stage is to provide an estimate of the speech
component in the reference microphone signal. The feedback com-
ponent will still be present, hence a single-channel AFC stage is re-
quired to remove it.
In the STFT domain, the correlation matrix of the microphone signal
vector x can be expressed as

R̄xx = E{xxH} = R̄SS + R̄nxnx (9)

with R̄nxnx = E{nxnx
H} theM×M microphone-only noise cor-

relation matrix. The minimization of the mean squared error (MSE)
between the desired signal and the filtered microphone signals de-
fines an optimal filter

w̄ = arg min
w

E

{∣∣∣d−wHy
∣∣∣2} . (10)

with d = xrs representing the total contribution of s together with
us in the reference microphone signal. The estimate x̂rs is obtained
as

x̂rs = w̄Hx. (11)

The solution to (10) is the MWF [13, 11], given by

w̄ = R̄−1
xxR̄SSe1 (12)

where e1 selects the first column of R̄−1
xxR̄SS . The final expression

in (12) is obtained based on the assumption that s and nx are uncor-
related.
In practice, by using a voice activity detector (VAD), R̄xx and
R̄nxnx are first estimated during speech-plus-noise periods where
the desired speech signal and noise are active, and noise-only periods
where only the noise is active, i.e.,

if VAD(l) = 1 :R̂xx(l) = βR̂xx(l − 1) + (1− β)x(l)xH(l)

if VAD(l) = 0 :R̂nxnx(l) = βR̂nxnx(l − 1) + (1− β)x(l)xH(l)
(13)

where R̂xx(l), R̂nxnx(l), x(l) represent estimates of R̄xx and
R̄nxnx , and x at frame l, respectively. The forgetting factor
0 < β < 1 can be chosen depending on the variation of the
statistics of the signals, i.e., if the statistics change slowly then β
should be chosen close to 1 to obtain long-term estimates that mainly
capture the spatial coherence between the microphone signals. The
following criterion will then be used to estimate R̄SS [13],

R̂SS = arg min
rank(R̄SS)=1

R̄SS�0

∣∣∣∣∣∣R̂−1/2
nxnx

(
R̂xx − R̂nxnx −RSS

)
R̂−H/2nxnx

∣∣∣∣∣∣2
F

(14)
where || · ||F denotes the Frobenius norm. Spatial pre-whitening is
applied by pre- and post-multiplying by R̂

−1/2
nxnx and R̂

−H/2
nxnx , respec-

tively. The solution to (29) is based on a generalized eigenvalue de-
composition (GEVD) of the (M×M ) matrix pencil {R̂xx, R̂nxnx}
[13, 17]

R̂xx = Q̂Σ̂xxQ̂H (15)

R̂nxnx = Q̂Σ̂nxnxQ̂H (16)



where Σ̂xx and Σ̂nxnx are diagonal matrices and Q̂ is an invertible
matrix. The rank-1 speech correlation matrix estimate R̂SS is then
[13]

R̂SS = Q̂diag{σ̂x1 − σ̂nx,1 , 0, . . . , 0}Q̂
H (17)

where σ̂xi and σ̂nx,i are the ith diagonal element of Σ̂xx and
Σ̂nxnx , respectively, corresponding to the ith largest ratio σ̂xi/σ̂nx,i .
Using (17) and R̂xx (cfr. (15)) in (12), the MWF estimate ŵ can be
expressed as

ŵ = Q̂−Hdiag

{
1−

σ̂nx,1

σ̂x1
, 0, . . . , 0

}
Q̂He1. (18)

The estimate of the total contribution of s and us in the reference
microphone signal, x̂rs, is obtained as in (11) with ŵ replacing w̄

x̂rs = ŵHx. (19)

The corresponding time-domain signals are obtained by adding the
Lf overlapping windowed frames as

x̂rs,seg(l) = F−1
R x̂κrs(l) (20)

xrs(t− dNR) =

Lf−1∑
l=0

x̂rs,seg

(
t− lR

2

)
gs

(
t− lR

2

)
(21)

where FR is the discrete Fourier transform (DFT) matrix of size R,
gs is a synthesis window, dNR is the delay from the NR stage and
the superscript (·)κ is used to denote a frequency-domain vector at
time frame l as

xκrs(l) =
[
xrs (0, l) · · · xrs (R, l)

]T
. (22)

3.2. AFC stage

In the AFC stage a single-channel so-called PEM-based adaptive fil-
tering with row operations (PEM-AFROW) algorithm is used. This
algorithm was initially developed in [5] and it provides estimates of
both the feedback path and the desired speech signal model in (1)
and (3), respectively. The implemented algorithm is the frequency-
domain version presented in [16] (the reader is referred to [16] for a
detailed explanation of the AFC algorithm). The input signals of the
AFC algorithm are the noisy loudspeaker signal and the estimate of
the total contribution of s and us in the reference microphone, u and
xrs, respectively.

4. CASCADE (M+1)-CHANNEL RANK-2 MWF AND
PEM-AFC

This section describes the proposed cascade algorithm. Here a
(M+1)-channel rank-2 MWF is applied first, followed by a single-
channel AFC stage.

4.1. NR stage

The objective of the NR stage is to provide an estimate of the speech
component in the reference microphone signal and in the loud-
speaker signal. The feedback component will still be present in the
former, hence a single-channel AFC stage is required to remove it.
In the STFT domain, the correlation matrix of the signal vector y in
(6) can be expressed as

R̄yy = E{yyH} = R̄SS + R̄nn (23)

with R̄nn = E{nnH} the N × N noise correlation matrix. The
minimization of the mean squared error (MSE) between the desired

signals and the filtered microphone and loudspeaker signals defines
an optimal filter

W̄ = arg min
W

E

{∣∣∣d−WHy
∣∣∣2} . (24)

with d =
[
uHs yHrs

]H , where yrs represents the total contribution
of s together with us in the reference microphone signal. The esti-
mates ûs and ŷrs are obtained as

ûs =
(
W̄e1

)H
y = eH1 W̄Hy (25)

ŷrs =
(
W̄e2

)H
y = eH2 W̄Hy (26)

where e2 selects the second column of a matrix. The solution to (24)
is the MWF [13, 11], given by

W̄ = R̄−1
yyR̄SSE (27)

where E selects the columns of R̄−1
yyR̄SS that correspond to the

loudspeaker and reference microphone signal. The final expression
in (27) is obtained based on the assumption that s and n are uncorre-
lated. In practice, by using a voice activity detector (VAD), R̄yy and
R̄nn are first estimated during speech-plus-noise periods where the
desired speech signal and noise are active, and noise-only periods
where only the noise is active, i.e.,

if VAD(l) = 1 :R̂yy(l) = βR̂yy(l − 1) + (1− β)y(l)yH(l)

if VAD(l) = 0 :R̂nn(l) = βR̂nn(l − 1) + (1− β)y(l)yH(l)
(28)

where R̂yy(l), R̂nn(l), y(l) represent estimates of R̄yy and R̄nn,
and y at frame l, respectively. The following criterion will then be
used to estimate R̄SS [13],

R̂SS = arg min
rank(R̄SS)=2

R̄SS�0

∣∣∣∣∣∣R̂−1/2
nn

(
R̂yy − R̂nn −RSS

)
R̂−H/2nn

∣∣∣∣∣∣2
F

(29)
where || · ||F denotes the Frobenius norm. Spatial pre-whitening is
applied by pre- and post-multiplying by R̂

−1/2
nn and R̂

−H/2
nn , respec-

tively. The solution to (29) is based on a GEVD of the (N × N )
matrix pencil {R̂yy, R̂nn} [13, 17]

R̂yy = Q̂Σ̂yyQ̂H (30)

R̂nn = Q̂Σ̂nnQ̂H (31)

where Σ̂yy and Σ̂nn are diagonal matrices and Q̂ is an invertible
matrix. The rank-2 speech correlation matrix estimate R̂SS is then
[13]

R̂SS = Q̂diag{σ̂y1 − σ̂n1 , σ̂y2 − σ̂n2 , 0, . . . , 0}Q̂
H (32)

where σ̂yi and σ̂ni are the ith diagonal element of Σ̂yy and Σ̂nn, re-
spectively, corresponding to the ith largest ratio σ̂yi/σ̂ni . Using (32)
and R̂yy (cfr. (30)) in (27), the MWF estimate Ŵ can be expressed
as

Ŵ = Q̂−Hdiag

{
1− σ̂n1

σ̂y1
, 1− σ̂n2

σ̂y2
, 0, . . . , 0

}
Q̂HE. (33)

The estimates of the total contribution of s and us in the loudspeaker
and in the reference microphone signals, ûs and ŷrs, respectively,
are now obtained as in (25)-(26) with Ŵ replacing W̄

ûs = eH1 ŴHy (34)

ŷrs = eH2 ŴHy. (35)



The corresponding time-domain signals are obtained by adding the
Lf overlapping windowed frames as

ŷrs,seg(l) = F−1
R ŷκrs(l) (36)

ûs,seg(l) = F−1
R ûκs (l) (37)

yrs(t− dNR) =

Lf−1∑
l=0

ŷrs,seg

(
t− lR

2

)
gs

(
t− lR

2

)
(38)

us(t− dNR) =

Lf−1∑
l=0

ûs,seg

(
t− lR

2

)
gs

(
t− lR

2

)
. (39)

4.2. AFC stage

In the AFC stage a single-channel so-called PEM-AFROW algo-
rithm is used. The implemented algorithm is the frequency-domain
version presented in [16] (the reader is referred to [16] for a detailed
explanation of the AFC algorithm). The input signals of the AFC
algorithm are ûs and ŷrs.

5. RESULTS

Closed-loop simulations were generated to assess the performance
of the proposed algorithm. The investigated scenario had a 4-
microphone array with a loudspeaker in front of it reproducing an
amplified version of the filtered microphone signals. Room impulse
responses of 2048 samples were generated using the randomized
image method in [18] at a sampling frequency of 16 kHz for a room
of size 5 m× 5 m× 3 m. Since we are mostly focusing on the direct
path of component of the feedback path, a T60 = 14 ms was chosen.
A forward path delay and gain of 64 ms and 6.7 dB were used,
respectively. The maximum stable gain (MSG) of the closed-loop
system was 9.7 dB. A speech signal was used as desired source, i.e.
near-end signal, and white noise was added to the microphone sig-
nals using different input signal-to-noise ratio (iSNR). The order of
the AR model in the PEM-AFROW algorithm was 12. Three metrics
are used for the performance evaluation: the misadjustment (Mis),
the ASG and the log-spectral distance (SD). The Mis is defined
as the normalised distance in dB between the true and estimated
feedback path at the reference, fr and f̂r respectively, as [7]

Mis(l) = 20 log10

∣∣∣∣∣ fr(l)− f̂r(l)

fr(l)

∣∣∣∣∣ dB. (40)

The ASG is based on the so-called MSG which is the maximum
gain achievable in the system without it becoming unstable. If the
forward path is spectrally flat, the MSG is given by [1]

MSG(l) = −20 log10

[
max
κ∈P(l)

∣∣∣fr(κ, l)− f̂r(κ, l)∣∣∣] dB (41)

where P(l) is the set of frequencies that satisfy the phase condition
of the Nyquist stability criterion [1]. The ASG is obtained as

AGS(l) = MSG(l)−KMSG(l) dB (42)

where KMSG(l) is the MSG of the system when no feedback can-
celler is included, i.e., f̂m(κ, l) = 0 ∀κ, l, in (41). The SD gives
an indication of the distortion of the processed signal. Unweighted
and weighted SD measures have been used in the literature [6, 19,
7, 20] for different speech enhancement algorithms. The frequency-
weighted SD is defined as in [6]

SD(l) =

(∫ fh

fl

wERB(f)

(
10 log10

Φe(f, l)

Φr(f, l)

)2

df.

)1/2

(43)

Table 1: STOI, SD and PESQ for the Rank-1 and Rank-2 NR-AFC
algorithm using a speech as desired signal in closed-loop processing.

SNR Algorithm STOI mean(SD) max(SD) PESQ MOS

10 dB
Rank-2 NR-AFC 0.77 19.13 35.89 1.54
Rank-1 NR-AFC 0.65 46.00 67.52 1.27

0 dB
Rank-2 NR-AFC 0.60 26.48 44.21 1.19
Rank-1 NR-AFC 0.51 46.74 70.49 1.13

where Φe(f, l) is the PSD of the estimated signal, Φr(f, l) is the
PSD of the reference signal, f is the frequency index in Hz and
wERB(f) is a weighting function which gives equal weight to each
auditory critical band between fl = 300 Hz and fh = 6400 Hz.
The measure was computed only during ”speech-plus-noise” peri-
ods and the average over each frame is presented. Additionally, the
short-time objective intelligibility (STOI) and perceptual evaluation
of speech quality (PESQ) metrics are also used to assess the perfor-
mance of the algorithms [21, 22, 7]. The metrics were chosen based
on the results presented in [7] where objective and subjective metrics
have been assessed for AFC algorithms.

Figure 1 shows the ASG for the proposed algorithm in Section 4
(Rank-2 NR-AFC) and the baseline algorithm in Section 3 (Rank-1
NR-AFC). It is observed that the ASG increases for the proposed
algorithm while it decreases for the baseline algorithm for the con-
sidered iSNRs. Figure 2 shows the Mis for both algorithms. For the
Rank-2 NR-AFC algorithm the Mis slowly decreases whereas for
the Rank-1 NR-AFC algorithm it diverges for the considered iSNRs.
Table 1 shows the STOI, PESQ and SD metrics for the two iSNRs
considered. It is observed that for both iSNRs the Rank-2 NR-AFC
outperforms the Rank-1 NR-AFC in terms of STOI and PESQ and
SD.
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Fig. 1: ASG for the Rank-1 and Rank-2 NR-AFC algorithm using a
speech signal as desired signal in closed-loop processing.
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Fig. 2: Mis for the three cascade algorithms using a speech signal
as desired signal in closed-loop processing.

6. CONCLUSIONS
A cascade multi-channel NR and AFC algorithm has been presented
which uses a rank-2 estimate of the desired speech correlation ma-
trix to compute the MWF in the NR stage. It is shown that for the
considered iSNRs the proposed algorithm increases the ASG whilst
a similar algorithm using a rank-1 estimate (which is the usual as-
sumption [13] when there is one speaker) does not.
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