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Large-Eddy Simulations have been used extensively to develop and test wake steering wind
farm control strategies through yaw control, however the high computational cost associated
with these simulations makes studying wind farms operating under a large number of varying
inflow conditions expensive. To this end, a fast Gaussian wake merging model has been
developed at KU Leuven, which accounts for wake overlap between different turbines of a farm
and enables rapid computations for performance analysis. In this work, we extend the wake
model to include wake steering, and develop an optimization framework to determine yaw set-
points across large wind farms for power maximization. The framework is tested on two wind
farms for which normal operation data was already available to evaluate performance gains.
The resulting set-points are then tested in an aeroelastic high-fidelity Large-Eddy Simulation
solver, to verify the power gains and also analyze the structural impact of wake steering on
turbine components. Results show that significant power gains up to 25% can be obtained
through optimal wake steering, however at the cost of increase in fatigue damage on turbine
components, thus decreasing the operational life of the turbines.

I. Introduction

Modern day wind farms suffer from energy extraction losses due to detrimental effects of wakes originating from
upstream turbines rows on downstream rows. To overcome this, previous research has developed control strategies

which either redirect turbine wakes through yaw misalignment or reduce wake strength by deviating from the optimal
turbine axial induction set-points [1, 2]. Large Eddy Simulations have proven to be a valuable tool for developing
and testing wake steering wind farm control strategies. However, the high computational cost associated with these
simulations makes studying a large number of wake misalignment combinations expensive [3]. To this end, analytical
wind farm simulation tools have gained popularity, as they enable rapid computations for a variety of inflow conditions
[4]. In this work, we further extend an analytical wake steering model by incorporating it on a wind farm level, and
combining with a recently developed recursive wake merging methodology [5]. The new model is then used to develop
an optimization framework, which enables us to determine optimal yawing set-points for all the turbines in a farm for
power maximization.

The present article is organized as follows : Section 2 details the model description, which includes the wind turbine
wake model, the wake merging model and the developed optimization methodology for power optimization. In Section
3, the reference wind farm cases which are used for power optimization are detailed. Section 4 provides an overview of
the LES framework utilized for validating the results from the analytical model, and the results are presented in section
5. Finally, the research findings and conclusions are given in section 6.

II. Model description
According to the Lanzilao wake merging model [5], if the wakes in the wind farm are assumed to be carried by the

background flow[1 (x), the flow field in the farm can be evaluated using the recursive formula

[: (x) = ([:−1 (x) · e⊥,8) (1 −,: (x))e⊥,: + ([:−1 (x) · e ‖,: )e ‖,: , for : = 1, ...., #C (1)

The starting term of the recursion is given by [> (x) = [1 (x), which is an input to the model. The final term in the
recursion [#C

is then the desired velocity profile throughout the wind farm. Unit vectors e⊥,: = (2>B\: , B8=\: ) and
e ‖,: = (−B8=\: , 2>B\: ) account for the incoming wind direction and yaw angle at turbine : . The wake deficit,: is
evaluated using the Bastankhah model [4], according to which the wake deficit behind a yawed turbine is given by,
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Where, W is the turbines yaw angle, �) is the wind turbine thrust set-point coefficient and D is the turbine diameter.
fH and fI are wake widths of the turbine at the downstream location which depend upon the incoming turbulence
intensity TI, the wake deflection X , and the downstream positions G, H and I. Further details of the model and its
parameters can be found in the reference [4]. The total inflow velocity of the turbine : for the computation of its power
is computed by averaging the velocity across the disc. To this end, we use the quadrature rule with #@ = 16 points,
spread over the rotor disk. The quadrature-point coordinates are denoted by G:,@ and are chosen following the rule
proposed by Holoborodko with uniform weighting factor of F@ = 1/#@ [6]. Hence, the disk average turbine inflow
velocity can be determined by

*: =

#@∑
@=1
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Where, S(x) = | |* (G) | |2. Having computed the inflow velocities at each turbine, an optimization problem can be defined
to maximize the total wind farm power prediction as follows
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In the above equation, �% is the coefficient of power of each turbine, evaluated for a yaw angle W: according to the cosine
power law [7]. $ is a vector containing the yaw set points for all the turbines across the farm, $ = [W1, W2, ..., W#C

]. The
optimization problem is then solved to obtain optimal yaw angles for all the turbines within the wind farm using the
SLSQP solver from the SciPy Python package, while utilizing the multi-start approach of basin-hopping to avoid local
minima [8].

III. Optimization cases
Reference wind farm cases operating under normal operation are required to demonstrate the benefits of wake

steering control. To this end, we make use of two different wind farm setups. For the first, we utilize the publicly
available TotalControl reference wind farm database which comprises of numerical measurements obtained from LES
spanning different atmospheric conditions and wind directions for the TotalContol Reference Wind Power Plant (TC
RWP), which is a virtual wind farm comprising of 32 DTU 10 MW turbines, separated by 5D spacing in the vertical and
horizontal directions [9]. Only the cases from the reference database with wind directions resulting in significant wake
overlap between upstream and downstream turbines are considered for yaw optimization. The layout of the TC RWP is
presented in Figure 1 (a).

The second wind farm under consideration for performance optimization through wake steering is the Lillgrund
wind farm situated off the cost of Sweden. The wind farm comprises of 48 Siemens 2.3 MW turbines which are known
to suffer from significant efficiency losses due to wake effects [10]. A comparison of the layout of the TC RWP and the
Lillgrund wind farm is shown in Figure 1 (b). The reference cases used for the Lillgrund wind farm to determine the
effect of wake steering are chosen from another TotalControl deliverable, D 1.2.1, in which data from a measurement
campaign conducted at Lillgrund was used for validating an in-house LES code, SP-Wind. All the selected cases for
optimization have been summarized in Table 1. PDk refers the Pressure Driven Boundary Layer (PDBL) simulations
and CNk2 and CNk4 refer to Conventionally Neutral Boundary Layer (CNBL) simulations, with the suffix 2 and 4
denoting the strength of the capping inversion. Further details regarding the inflow database is available at the publicly
available TotalControl inflow database [11–14]. The inflows %�:1, %�:2 and , %�:3 are flow-fields obtained by
scaling and shifting the PDk inflow, achieved by changing the surface roughness and friction velocity to match the inflow
conditions at the Lillgrund wind farm during the measurement campaign. Therefore, 8 references cases spanning the
two wind farms and different inflow conditions are available for wind farm power optimization, for which the optimal
yaw set-points are determined through the framework described in the previous section. Free stream wind velocity and
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Fig. 1 (a) Layout of the TC RWP with a rotor diameter D = 178.3 m. (b) Scale comparison of the TC RWP
(gray) and the Lillgrund wind farm (black). Lillgrund turbines have a rotor diameter of D = 93 m

turbulence intensity at turbine hub height, which are input parameters required for the wake model, are obtained from
the respective flow profile from the reference LES database. The resulting yaw set-points for all the cases are presented
in Figure 2. From results of the optimizations, it can be observed that cases which had fully aligned turbines, such as
cases 1,5 and 6, tend to have the largest yaw set-points to steer the wake away from the fully waked downstream turbines.
Cases with staggered turbines, such as cases 3 and 7, have lower optimal yaw set-points due to the limited available
space for wake steering without causing further wake overlaps, hence reduction in farm power output.

IV. LES validation framework
To validate the performance gains through optimal wake steering, the yaw set-points obtained from the optimizations

are used as inputs for simulations in a LES environment using the SP-Wind framework, which has extensively been used
in the past years for wind farm simulations [15–17]. Using SP-Wind, the three-dimensional, unsteady, and spatially
filtered Navier-Stokes momentum and temperature equations

mũ
mC
+ (ũ · ∇)ũ = −∇( ?̃ + ?∞)

d
− ∇ · 3s + 28 × ũ + 6 (\̃ − \0)

\0
+ F̄ (5)

m\̃

mC
+ (ũ · ∇)\̃ = −∇ · qs (6)

are solved. ũ = [D̃1, D̃2, D̃3] is the filtered velocity field, \̃ is the filtered potential temperature field, and \0 is the
background adiabatic base state. The pressure gradient is split into a mean background pressure gradient ∇?∞ driving
the mean flow, and a fluctuating component ∇ ?̃. The very high Reynolds numbers in the atmospheric boundary-layer
flow combined with typical spatial resolutions in LES justify the omission of resolved effects of viscous momentum
transfer and diffusive heat transfer. Instead, these are represented by modeling the subgrid-scale stress tensor 3s and the
subgrid-scale heat flux @B originating from spatially filtering the governing equations [18]. Coriolis effects are included
through the angular velocity vector 8 = ΩB8=q, where Ω is the earth’s rotation and q is the latitude of the wind farm.
6(\̃ − \0)/\0 represents thermal buoyancy, with 6 the gravitational acceleration, \̃ the filtered potential temperature
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Table 1 Specifications of the reference database

Case No. Inflow Wind farm Wind direction Hub height wind speed Hub height TI
1 PDk TC RWP 0° 9.4 m s−1 5.15%
2 CNk2 TC RWP 300° 11.0 m s−1 3.66%
3 CNk2 TC RWP 330° 11.0 m s−1 3.66%
4 CNk4 TC RWP 300° 11.3 m s−1 3.65%
5 CNk4 TC RWP 0° 11.3 m s−1 3.65%
6 %�:1 Lillgrund 119° 8.2 m s−1 6.31%
7 %�:2 Lillgrund 243° 8.5 m s−1 6.27%
8 %�:3 Lillgrund 110° 4.8 m s−1 6.83%

1 2 3 4

5 6 7 8

Fig. 2 Optimal yawing set-points obtained for the 8 reference cases. Cases 1 - 5 are for the TCRWP, cases 6-8
are for the Lillgrund wind farm.
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Fig. 3 PlanviewofLillgrund (black) andTCRWP(white) in simulation domain. The blackdashed line indicates
the extent of the slab from which inflow data is extracted from the precursor domain (without turbines). The
background is coloured with a typical instantaneous stream-wise velocity field at hub-height in a precursor
simulation without turbines

Table 2 Summary of the general domain and time parameters

Domain size !G × !H × !I 16 × 16 × 1.5 km
Grid #G × #H × #I 1200 × 1200 × 225
Resolution ΔG × ΔH × ΔI 13.33 × 13.33 × 6.66 m
wind farm spin-up time )B?8= 15 min
Simulation time ) 60 min
LES time step ΔC!�( 0.5 s
Structural time step ΔC"�( 0.01 s
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Fig. 4 Comparison of total wind farm power gains predicted by the wake model versus power gains obtained
from SP-Wind using optimal yawing set-points.

and \0 a reference temperature. The effect of the sea surface is included using a wall-stress model, corresponding to a
logarithmic velocity profile with a roughness length I0 [19]. Finally, F̄ represents body forces on the flow.
Spatial discretization in SP-Wind is performed by combining pseudo-spectral schemes in the span-wise and stream-wise
directions, with fourth-order energy-conservative finite differences in the vertical direction.The equations are marched
in time using a fully explicit fourth-order Runge–Kutta scheme, and grid parallellization is achieved through a scalable
pencil decomposition approach. Subgrid-scale stresses are modeled with a standard Smagorinsky model with Mason
and Thomson wall damping [18]. Wind turbines are modeled by an actuator sector model, coupled with a nonlinear
flexible multi-body dynamics model [20]. Turbulent inflow conditions for wind farm simulations are generated in a
concurrent precursor simulation, which are then introduced in the wind farm domain by means of body forces in a
fringe region [21]. The simulations are run in 2 steps: First, a spin-up period of 15 min is initiated for the settling of
start-up transients, followed by 60 minutes of data collection. The LES time step is set to 0.5s, while the structural
solver operates at a higher frequency of 100 Hz. The general domain parameters for the LES simulations are outlined in
Table 2, and the simulation domain is shown in Figure 3.

V. Results and discussion
A comparison of the power gains reported by the analytical model and SP-Wind are shown in Figure 4 and a

comparison of the average flow fields between the original reference cases and the optimally yawed cases for the
Lillgrund wind farm and TC RWP are presented in Figures 5 and 6 respectively. As previously discussed, both cases 2
and 7 have fully aligned turbines for the TC RWP and the Lillgrund wind farm respectively, hence have a high capacity
for power gains by steering the upstream turbine wakes away from downstream wakes, which can also be observed from
the time averaged flow field results from SP-Wind. Figure 4 shows a direct consequence of wake steering, exhibiting
power gains up to 25% for both the TC RWP and the Lillgrund wind farm. For six of the eight cases, the power gains
obtained via the high fidelity SP-Wind code are in good agreement with the predictions made by the low fidelity wake
model, with cases 5 and 8 exhibiting larger errors. This can be attributed to two factors. First, the turbulence intensity
model used in the wake model is an empirical expression proposed by Niayifar and Porté-Agel [22], that has been
tuned for the range of 0.065 < )� < 0.15, and fails to accurately capture the power generation of the extreme farm
layout in case 5 with eight aligned turbines and TI of 3.6%. Second, the wake expansion and recovery downstream of
yawed turbines also depends on empirical parameters which need to be tuned for different wind farm layouts and wind
speeds, and currently the model fails to accurately predict the power production at the low wind speed and tight layout

6



6 7 8

Fig. 5 Comparison of average flow fields obtained from SP-Wind for the reference cases (top) and simulations
with optimal yaw set-points (bottom) for the Lillgrund wind farm.

configuration of the Lillgrund wind farm for case 8, in which majority of the wind turbines are operating in partial
waked conditions. Thus, the results provided by the wake model model can further be improved by calibration and
tuning the empirical parameters involved to cover a larger range of turbulence intensities and farm layouts as suggested
in literature [7], however that is beyond the scope of the current work. Nevertheless, the yaw set-points obtained in both
these cases from the optimization still result in significant power gains when tested in the high fidelity environment of
SP-Wind, resulting in power gains of 9% and 2% respectively.

To determine the effect of wake steering on the structure of the turbines, we use Damage Equivalent Loads (DELs)
to evaluate the increase in fatigue in the optimal wake steering cases against normal operation. DEL of each turbine is
computed using the Palmgren–Miner rule and the Wöhler equation to account for accumulating fatigue damage caused
to the wind turbine components by the fluctuating structural loads [23].The loads time series are counted and binned into
individual cycles using the rainflow-counting algorithm [24], and for the wind turbine blades the components follow the
Wöhler’s curve with a slope coefficient equal to 10 . Total increase in cumulative wind farm blade root flap-wise DEL is
shown in Figure 7. It can observed that for all the cases, the wind farm experiences significant increase in damage due
to fatigue. The reason for increase in damage can be explained by two factors. First, individual turbines are subjected to
higher fatigue loads while operating in yawed position than when compared to normal operation [25]. Second, in certain
cases downstream turbines are operating in partially waked conditions leading higher cyclic fluctuations in moments,
thus increasing the fatigue damage. Hence, while wake steering can result in an increase in overall wind farm power
production, it is important to do a cost benefit analysis when using this control strategy due to the large impact on the
structural lifetime of the turbines due to increased fatigue loading.

VI. Conclusions
In this work, a recursive wake merging methodology is utilized to develop an optimization framework for determining

optimal yaw set-points in two wind farms operating under varying atmospheric conditions. The resulting yaw set-points
are then tested in a high fidelity LES environment to validate the power gains predicted by the analytical model. Of
the eight cases simulated, a good comparison between LES and the analytical model is obtained in terms of relative
power gains, however larger errors in certain cases which have deep wind turbine arrays or lower inflow turbulent
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Fig. 6 Comparison of average flow fields obtained from SP-Wind for the reference cases (left) and simulations
with optimal yaw set-points (right) for the TC RWP. 8



Fig. 7 Comparison of total wind farm flap-wise DEL increase due to optimal wake steering for power optimiza-
tion.

intensity is observed. A direct consequence of yawing the turbines to boost power production is also observed through
increased structural fatigue in the wind turbine blades. Therefore, future work could include a cost benefit analysis in
the optimization framework, by penalizing the increase in structural loads through wind farm control. Additionally,
the performance of the analytical model could be improved by model tuning. Nevertheless, the set-points obtained
still result in significant power gains up to 25% when tested in the LES setup, exhibiting the benefits of the developed
optimization framework.
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