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SUMMARY

Survival analysis relies on the hypothesis that, if the follow-up will be long enough, the event
of interest will eventually be observed for all observations. This assumption, however, is often
not realistic. In fact, when interest lies in the time until a relapse from a cancer or the time until 10

the occurrence of a certain disease, for example, a fraction of the patients may never experi-
ence the event of interest. The survival data then contain a cure fraction or long-term survivors
usually associated with infinite survival times. A common approach to model and analyze this
type of data consists in using cure models. Two types of information can therefore be obtained:
the survival at a given time and the cure status, both possibly modelled as a function of the 15

covariates. The cure status is often of interest for medical practitioners and one is usually inter-
ested in predicting it based on markers. The receiver operating characteristic, ROC, curves are
one way to evaluate these predicting performances. However, the classical ROC curve method
is not appropriate since the cure status is partially unobserved due to the presence of censor-
ing in survival data. In this research, we propose a ROC curve estimator aiming to evaluate 20

the cured/non-cured status classification performance from cure survival data. This estimator,
which handles the presence of censoring, decomposes sensitivity and specificity by means of the
definition of conditional probability, and estimates these two quantities by means of weighted
empirical distribution functions. The mixture cure model is used to calculate the weights. Based
on simulations, we demonstrate the good performance of the proposed method and compare it 25

with the classical ROC curve nonparametric estimator that would be obtained if the cure status
was fully observed. We also compare our proposed method with the ROC curves of Heagerty
et al. (2000) for classical survival analysis. Finally, we illustrate the methodology on a breast
cancer data set.

Some key words: Area under the curve; Cure model; ROC curve; Sensitivity; Specificity; Survival analysis. 30

1. INTRODUCTION

A fundamental assumption of survival analysis is that all subjects under study will eventually
experience the event of interest. In some contexts, however, it may happen that a fraction of
the subjects never experience this particular event. Indeed, when interest lies in the time until a
woman gets pregnant, for example, some women will never have a child. Likewise, when one is 35

interested in the time until a patient relapses from a cancer, some of them may never experience
a relapse. In both of these examples, the assumption stated above does not hold and it seems
reasonable to consider that the survival data do not only contain susceptible observations, but
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that they rather are a combination of two types of subjects: those who experience the event
and those who do not, these latter subjects being considered as long-term survivors or as cured40

subjects.
A common difficulty when working with survival data is the presence of right censoring,

meaning that only a lower bound of the survival time is observed. As a consequence, the exact
event time is only observed for some observations and the remaining individuals are censored. In
the presence of a cure fraction, cured subjects are always censored since they never experience45

the event of interest. As a result, the censored fraction contains both cured and uncured observa-
tions and the cure status is then unobserved. In order to take such feature into account, classical
survival analysis has been extended to cure models. Initially introduced by the works of Boag
(1949) and Berkson & Gager (1952), the literature on cure models is mainly composed of two
classes of models, namely, the mixture cure model, introduced by Farewell (1977) and Farewell50

(1982), and the promotion time cure model proposed by Yakovlev et al. (1996).
Cure models consider two quantities: the survival and the cure status and the literature on

cure models mainly focused on modelling the effect of covariates on these two quantities (see
Amico & Van Keilegom (2018) for a detailed literature review on that topic). However, very
little has been done on evaluating the performance of predicting these two outcomes based on55

cure survival data, even though good predictions are essential for practitioners. Indeed, when
there exists a possible cure fraction, we can think of situations where one would be interested in
predicting who is cured and who is not based on marker(s) in order to determine if a treatment
is necessary to prevent a cancer relapse. Likewise, being able to correctly predict the survival
probability of an uncured patient after a certain time by taking into account the presence of60

cured subjects in the data is also important. A first contribution to that topic is due to Yu et al.
(2008) who propose to validate individual prediction for patients with prostate cancer performed
based on a joint longitudinal survival-cure model. Recently, Beyene et al. (2019) investigate the
accuracy of time-dependent event prediction, extending to cure survival data the results that have
been previously obtained for classical survival analysis by Heagerty et al. (2000), Heagerty &65

Zheng (2005), Chambless & Diao (2006), Blanche et al. (2013), Li et al. (2018) among others.
Zhang & Shao (2018) propose a concordance measure, in the spirit of the c-index proposed by
Harrell et al. (1982) and Harrell et al. (1984), to assess the prediction accuracy of the overall
survival for uncured patients by taking into account the presence of a cure fraction. They extend
the work of Göner & Heller (2005) for the Cox (1972) proportional hazards model. For the70

cure status, on the contrary, nothing has been done to the best of our knowledge, while it is an
important issue.

To evaluate if a classifier M , corresponding to a single variable or a combination of vari-
ables, classifies correctly a set of subjects into two classes, called cases and controls, one usually
considers jointly two quantities: the sensitivity which corresponds to the proportion of subjects75

classified as cases when they are effectively a case, and the specificity, that is, the proportion
of subjects classified as a control when they effectively belong to the control class. When the
classifier M is measured on a continuous scale, it has to be dichotomized in order to perform a
binary classification. Let us suppose that the classes are represented by the binary variable D,
such that D = 1 for a case, and D = 0 for a control and let us consider that a subject i is clas-80

sified as a case when its classifier Mi is such that Mi > k, for some threshold k. As k can take
on several values, there exist several possible sensitivities and specificities. To summarize all the
information, one usually considers a receiver operating characteristic, ROC, curve, described,
for example, in Pepe (2003) and Krzanowski & Hand (2009), which represents graphically all



Assessing cure status prediction from survival data using ROC curves 3

possible combinations of the sensitivity, and one minus the specificity: 85

Se(k) = pr(M > k | D = 1), (1)
1− Sp(k) = pr(M > k | D = 0), (2)

that can be obtained from all possible dichotomized versions of M , based on the value of the
threshold k. It plots the sensitivity against one minus the specificity for all possible values of
k ∈ R and its equation is ROC(u) = Se

{
(1− Sp)−1(u)

}
, 0 < u < 1, where u is an index.

The ROC curve is a monotone increasing function in the quadrant (0, 1)× (0, 1) and its po-
sition in the quadrant indicates the ability of the classifier M to discriminate between the two 90

classes. A perfect classifier is such that pr(M > k | D = 1) = 1 and pr(M > k | D = 0) = 0
for some k. In that case all observations are perfectly classified. Graphically, it corresponds to a
point of coordinate (0, 1). Conversely, an uninformative classifier is such that pr(M > k | D =
1) = pr(M > k | D = 0), for all k. In this situation, the distribution of M is the same in the two
classes and the ROC curve is equal to the bisector. Alongside the ROC curve, one usually com- 95

putes the area under the curveAUC =
∫ 1
0 ROC(u) du, which summarizes into one single value

the performance of M . An area under the curve equal to 1 corresponds to a perfect classifier,
while an area under the curve equal to 0.5 is obtained for an uninformative classifier.

In this paper, we propose to develop a ROC curve approach in order to evaluate the accuracy of
a single covariate or a combination of covariates to predict the cure status based on cure survival 100

data. Since the cure status is missing for censored observations, classical ROC curve approaches,
which rely on the knowledge of the classes of the observations, can not be directly implemented
in this context. An important issue to address is then how to handle the latency of the cure status.
Our proposal is presented in §2 alongside some important points related to the estimation of the
sensitivity and the specificity. In §3, some asymptotic properties are presented, followed in §4 by 105

the investigation of the finite sample performance of the proposed method in the case of a known
classifier through an extensive simulation study. §5 illustrates the practical use of our proposal
on a breast cancer dataset, while §6 concludes with some final remarks and discussion. Finally,
the Supplementary Material contains the theoretical development of our estimators, the proofs
of the asymptotic properties derived in §3, the simulations for the case of an unknown classifier, 110

as well as further finite sample results.

2. METHODOLOGY

2.1. Infeasible estimators
Let us consider a non-negative random variable denoted by T , which represents the survival

time, with survival function S(t) = pr(T > t), and let us assume that there exists a cure fraction. 115

To further define this situation, let us consider that a cured subject is such that T =∞, in order
to represent the fact that the event never happens. A popular model for cure survival data is the
mixture cure model (Farewell, 1982), which assumes that the population of interest is a mixture
of a cured and an uncured sub-population, and which models the survival function for the entire
population as a mixture model: 120

Spop(t | x, z) = 1− p(x) + p(x)Su(t | z), t ≥ 0, (3)

where p(x) = pr(T <∞ | X = x) is the probability of being uncured, referred to as the inci-
dence, with X a vector of covariates, and Su(t | z) = pr(T > t | T <∞, Z = z) is the con-
ditional survival function for uncured observations, referred to as the latency, with Z another
vector of covariates that may share some or all components or be completely different from
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X . In what follows, we assume that T is subject to random right censoring and that in-125

stead of observing T , we rather observe the follow-up time Y = min(T,C) and the censor-
ing indicator ∆ = I(T ≤ C), where C denotes the censoring time that is supposed to be in-
dependent of T given X and Z, and where I(·) is the indicator function. We further con-
sider that we have a random sample of n independent and identically distributed observations
(Yi,∆i, Xi, Zi), i = 1, . . . , n, having the same distribution as (Y,∆, X, Z).130

To evaluate the predictive accuracy of M for the cure status D = I(T =∞), we assume that
M = γ0 + γTX , where γ is a vector of parameters associated with X and γ0 is an intercept
term. We further allow X to be unidimensional or multidimensional. In the latter case, the vector
of parameters (γ0, γ)T can be known (in which case M is a known score such as a genetic score,
for example), or it can be unknown and needs to be estimated.135

A simple and common nonparametric method to estimate a ROC curve consists in estimating
the sensitivity and the specificity by their empirical distribution functions:

Še(k) = 1− 1

Ň1

n∑
i=1

W̌i1I(Mi ≤ k), (4)

Šp(k) =
1

Ň0

n∑
i=1

W̌i0I(Mi ≤ k), (5)

where W̌i1 = I(Di = 1), W̌i0 = I(Di = 0), Ň1 =
∑n

i=1 W̌i1 and Ň0 = n− Ň1. The ROC
curve estimator takes therefore the form of a step function with jumps at eachMi. When working
with cure survival data, however, these estimators cannot be used as the cure status is unobserved.140

A way around this difficulty is not to consider two but three types of subjects following the cure
threshold proposed by Taylor (1995). This proposal consists in considering as cured an obser-
vation with a censored follow-up time greater than the last uncensored follow-up time, denoted
by τ . This rule makes reasonably sense when there is a clear evidence for the presence of a cure
fraction. In such a context, we consider the existence of two sub-populations, and it is reason-145

able to consider that, when the follow-up period is sufficiently long and when it goes well after
the last uncensored event time τ , observations with a censored follow-up time greater than most
event times can be categorized as cured. Based on this rule, it is therefore possible to distin-
guish three types of observations. In fact, an uncensored subject experiences the event. It then
belongs to the non-cured population with certainty, that is, D = 0. Based on the cure threshold,150

censored observations can be separated into two groups, those with a follow-up time Y > τ ,
for whom D = 1, and those with a follow-up time Y ≤ τ . For this latter case, a probability,
pr(D = 1 | X,Z,C, T > C), replaces the unobserved cure status. It follows that estimators for
the sensitivity and the specificity are the weighted empirical distribution functions:

S̃e(k) = 1− 1

Ñ1

n∑
i=1

W̃i1 I(Mi ≤ k), (6)

S̃p(k) =
1

Ñ0

n∑
i=1

W̃i0 I(Mi ≤ k), (7)

where W̃i1 = (1−∆i) pr(D = 1 | X = Xi, Z = Zi, C = Ci, T > Ci), W̃i0 = 1− W̃i1, Ñ1 =155 ∑n
i=1 W̃i1, and Ñ0 = n− Ñ1. Furthermore, when the cure threshold is assumed, W̃i1 can fur-

ther be written as W̃i1 = (1−∆i){I(Yi > τ) + I(Yi ≤ τ) pr(D = 1 | X = Xi, Z = Zi, C =
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Ci, T > Ci)}. An infeasible estimator for the ROC curve is then

˜ROC(u) = S̃e{(1− S̃p)−1(u)}, 0 < u < 1. (8)

This estimator is a monotone increasing function of u and is invariant to strictly increasing trans-
formations ofM , which are both required properties of ROC curves as described by Pepe (2003). 160

The corresponding estimator for the area under the curve is

˜AUC =
1

Ñ0Ñ1

n∑
i=1

n∑
j=1

I(Mj > Mi)W̃j1W̃i0. (9)

The development of these estimators relies on the decomposition of the sensitivity, the specificity
and the area under the curve based on the definition of conditional probability. The theoretical
elements can be found in Section 1 of the Supplementary Material.

These estimators consider a random design. However, they can also be applied when the design 165

is fixed, with obvious adaptations in the notations.

2.2. Feasible estimators
The probability pr(D = 1 | X,Z,C, T > C) is involved in the infeasible estimators (6) and

(7) of the sensitivity and the specificity, as well as in the infeasible estimator (9) of the area under
the curve. It is therefore necessary to estimate this quantity in order to obtain estimators that can
be used in practice. Based on the definition of conditional probability, this probability can be
written as

pr(D = 1 | X,Z,C, T > C) =
pr(T =∞ | X,Z,C)

pr(T > C | X,Z,C)
=

pr(T =∞ | X,Z)

pr(T > C | X,Z,C)
,

since T and C are independent given X and Z. Since we suppose that the data come from the
mixture cure model (3), it can be further written as

pr(T =∞ | X,Z)

pr(T > C | X,Z,C)
=

1− p(X)

1− p(X) + p(X)Su(C | Z)
. (10)

The literature on cure models offers various modelling approaches for the mixture cure model 170

(3). The most common one is the logistic/Cox mixture cure model proposed by Kuk & Chen
(1992), and further studied by Sy & Taylor (2000) and Peng & Dear (2000). This proposal as-
sumes a logistic model for p, that is p(x) = exp(γ0 + γTx)/{1 + exp(γ0 + γTx)} and consid-
ers a Cox model for Su, where Su(t | z) = S0(t)

exp(βT z), with S0(t) = pr(T > t | T <∞, Z =
0), a baseline conditional survival function which remains totally unspecified, and β a vector of 175

parameters associated with Z. A drawback of this model, however, is that the estimator for
pr(D = 1 | X,Z,C, T > C) relies on a parametric assumption for p which may not be fulfilled
by the data. An alternative model is the single-index/Cox mixture cure model proposed by Amico
et al. (2019), which assumes a single-index structure for p, that is p(x) = g(γTx), where g is a
smooth unknown function, with a Cox model for Su. This single-index/Cox cure model assumes 180

a less restrictive model for p and it may therefore be more appropriate. Both approaches are con-
sidered and their respective finite sample performances are compared in §4. The estimators for
W̃i0 and W̃i1 are

Ŵi1 = I(Yi > τ) + (1−∆i) I(Yi ≤ τ)
1− p̂(Xi)

{1− p̂(Xi)}+ p̂(Xi)Ŝu(Yi | Zi)
Ŵi0 = 1− Ŵi1, 185
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and are obtained by either a logistic/Cox cure model or a single-index/Cox cure model. The
feasible estimators of Se, Sp, ROC and AUC are now

Ŝe(k) = 1− 1

N̂1

n∑
i=1

Ŵi1 I(Mi ≤ k), (11)

Ŝp(k) =
1

N̂0

n∑
i=1

Ŵi0 I(Mi ≤ k), (12)

ˆROC(u) = Ŝe{(1− Ŝp)−1(u)}, 0 < u < 1, (13)190

ˆAUC =
1

N̂0N̂1

n∑
i=1

n∑
j=1

I(Mj > Mi)Ŵj1Ŵi0, (14)

where N̂1 =
∑n

i=1 Ŵi1 and N̂0 = n− N̂1.
Both X and Z enter in the computation of Ŵ0 and Ŵ1, while M only relies on X . For the

choice of the covariates to include in X , we consider those included in M . A more delicate
question concerns the choice of the covariates to consider for Z. When M only contains one195

covariate, and when there is only one covariate available in the data, it is easy to assume that
X = Z. If there are several covariates in the data, or when M is a combination of covariates,
on the contrary, the choice of Z will depend on the knowledge of the topic of the analysis, and
on which covariates are thought to influence the survival of uncured subjects. In such contexts,
Z can be partially or fully identical to X , or completely different from X . However, we are not200

free of misspecification. The influence of a misspecification of this vector on the estimation of
the ROC curve is therefore investigated through simulations in §4.

3. ASYMPTOTIC THEORY

In this section we will develop the limiting distribution of the proposed estimators of the sen-
sitivity, the specificity, the ROC curve and the area under the curve given in equations (11), (12),205

(13) and (14). In the previous section these estimators were constructed either based on a logis-
tic/Cox mixture cure model or on a single-index/Cox mixture cure model. However, asymptotic
theory for the estimation of these models has only been developed so far under the logistic/Cox
model (Lu, 2008), and so we restrict attention in this section to the latter model. The proofs of
the results of this section can be found in Section 2 of the Supplementary Material.210

THEOREM 1. Assume that conditions 1–4 in Lu (2008) are satisfied and that the logistic/Cox
mixture cure model is valid. Then,

Ŝe(k)− Se(k) = n−1
n∑
i=1

ηSe(Xi, Zi, Yi,∆i, k) +Rn,Se(k)

Ŝp(k)− Sp(k) = n−1
n∑
i=1

ηSp(Xi, Zi, Yi,∆i, k) +Rn,Sp(k),

where supk |Rn,Se(k)| = opr(n
−1/2), supk |Rn,Sp(k)| = opr(n

−1/2), and ηSe(x, z, y, δ, k) and
ηSp(x, z, y, δ, k) are defined in the Supplementary Material.

Moreover, the process n1/2{Ŝe(k)− Se(k)}, k ∈ R, converges weakly to a Gaussian process
ZSe(k) with zero mean and covariance function given by

cov{ZSe(k1), ZSe(k2)} = E
{
ηSe(X,Z, Y,∆, k1) ηSe(X,Z, Y,∆, k2)

}
,
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and the process n1/2{Ŝp(k)− Sp(k)}, k ∈ R, converges weakly to a Gaussian process ZSp(k)
with zero mean and covariance function given by

cov{ZSp(k1), ZSp(k2)} = E
{
ηSp(X,Z, Y,∆, k1) ηSp(X,Z, Y,∆, k2)

}
.

As a corollary to the above result we now state the limiting distribution of the estimator
ˆROC(u) defined in (13) and of the estimator ˆAUCδ, given by

ˆAUCδ =

∫ 1−δ

δ

ˆROC(u) du.

For technical reasons we need to restrict the integration to the internal [δ, 1− δ], for some small 215

δ > 0, which can however be made arbitrarily close to the interval [0, 1]. The corresponding
theoretical area under the curve is denoted by AUCδ =

∫ 1−δ
δ ROC(u) du.

COROLLARY 1. Assume that conditions 1–4 in Lu (2008) are satisfied and that the logis-
tic/Cox mixture cure model is valid. Assume in addition that infk1≤k≤k2 Sp

′(k) > 0, where
k1 = (1− Sp)−1(δ) and k2 = (1− Sp)−1(1− δ) for some δ > 0, and that the functions Se
and Sp are twice continuously differentiable on [k1, k2]. Then,

ˆROC(u)−ROC(u) = n−1
n∑
i=1

ηROC(Xi, Zi, Yi,∆i, u) +Rn,ROC(u),

where supδ≤u≤1−δ |Rn,ROC(u)| = opr(n
−1/2), and

ηROC(x, z, y, δ, u) = ηSe
{
x, z, y, δ, (1− Sp)−1(u)

}
+

Se′{(1− Sp)−1(u)}
(1− Sp)′{(1− Sp)−1(u)}

ηSp
{
x, z, y, δ, (1− Sp)−1(u)

}
.

Moreover, the process n1/2{ ˆROC(u)−ROC(u)}, with u ∈ [δ, 1− δ], converges weakly to a
Gaussian process ZROC(u) with zero mean and covariance function

cov{ZROC(u1), ZROC(u2)} = E
{
ηROC(X,Z, Y,∆, u1) ηROC(X,Z, Y,∆, u2)

}
,

and

n1/2( ˆAUCδ −AUCδ)
d→ N(0, σ2AUC),

where

σ2AUC =

∫ 1−δ

δ

∫ 1−δ

δ
E{ZROC(u1)ZROC(u2)} du1 du2.

4. FINITE SAMPLE PERFORMANCE

4.1. Some preliminaries 220

In this section, an extensive simulation study is performed in order to evaluate the finite sam-
ple performance of the estimator (13) of the ROC curve. Two versions of this estimator are
considered: when a logistic/Cox mixture cure model is assumed for W0 and W1, and when a
single-index/Cox mixture cure model is assumed for W0 and W1. These models are estimated
assuming the method proposed by Sy & Taylor (2000) based on the expectation-maximization 225

algorithm and according to the maximum likelihood approach described in Amico et al. (2019),
respectively. Both the case of known and unknown M are investigated, and for both of them, the
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following points are analyzed. First, we are interested in the general performance of the proposed
estimators of the sensitivity and the specificity. Particular interest lies in the effect of censoring
and of an incorrect specification of the vector Z. Then, other points include a misspecification of230

the model for Su and a non-logistic model for the cure proportion p.
To assess the performance of our proposed method, we consider two infeasible competing es-

timators of the ROC curve: the first one assumes that the cure status is known and is obtained
from the estimators (4) and (5) for the sensitivity and the specificity, and the second one uses the
true weights and corresponds to the estimator (8) combined with (10), based on the true values235

of p and Su. Furthermore, as suggested by a referee, in the case of a known classifier we also
compare our proposal with the method proposed by Heagerty et al. (2000), which was developed
for ‘classical’ survival data without taking a possible cure fraction into account. Instead of hav-
ing a single binary outcome, the survival time is considered as a time-varying binary outcome
and ROC curves can be computed at each time point. In our context, we are interested in the240

predicting performance of markers on the probability of being cured, so we can think of using
this approach by computing a ROC curve at the cure threshold.

Note that several methods have been proposed in the literature for survival data, these methods
standing out by the definition of sensitivity and specificity they assumed: incident or cumulative
sensitivity and static or dynamic specificity (see Heagerty & Zheng (2005) for a detailed def-245

inition of these different types of sensitivity and specificity). We have chosen Heagerty et al.
(2000)’s method because the definition of sensitivity and specificity was the same as the one we
assume (cumulative sensitivity and dynamic specificity). The method is based on the following
idea: first they rewrite the sensitivity and specificity based on Bayes theorem. Then, they estimate
the unknown quantities using nonparametric estimators (namely a Kaplan-Meier estimator or an250

estimator coming from nearest neighbor estimation of the bivariate distribution). So contrary to
our method the latter method does not make any model assumption. It does not only differ in
the assumptions on the underlying model, but also in the way the estimators are constructed.
We refer to Heagerty et al. (2000) for more details. Since survival models without cure fraction
depend on covariates only through the survival function itself, only the vector X has been used255

for the computation of the ROC curve based on this method.
In conclusion, five estimators are compared in this simulation study: the proposed estimators

based on either the logistic/Cox model or the single-index/Cox model, the infeasible estimators
based on the true cure status or on the true weights, and the estimator of Heagerty et al. (2000).

4.2. Data generating process260

Within this section, we assume that the data are generated from the mixture cure model
(3). The data generating process is as follows. First, the incidence is considered. The first
step consists in generating the uncure probability p according to the model p(x) = g(γTx),
where g(·) is a link function. Primary interest lies in the logistic link function, that is, g(a) =
exp(γ0 + a)/{1 + exp(γ0 + a)}, which gives the logistic regression model. However, other link265

functions can also be assumed. The second step consists in generating, for given x, the un-
cure status 1−D from a Bernoulli distribution with parameter equal to p(x). Next, the la-
tency is generated. We consider two models for the survival function of the uncured obser-
vations. The first model is a Gompertz model with survival function S(t | z) = S0(t)

exp(βT z),
S0(t) = exp[−θα−1{exp(αt)− 1}], θ = 0.5 and α = 0.03. The second model is an acceler-270

ated failure time model assuming a log-logistic distribution for T and with survival function
Su(t | z) =

[
1 + λ

{
t/ exp(βT z)

}κ]−1 where λ = 0.05 and κ = 2.5. Contrarily to the Gom-
pertz model, the accelerated failure time model does not respect the proportional hazards prop-
erty. Since Ŵ0 and Ŵ1 are obtained from a mixture cure model assuming a Cox model for the
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latency, this allows us to verify whether a model misspecification of Su affects the ROC curve es- 275

timate. Next, we generate the censoring time from an uniform distribution on [Umin, Umax] that
is independent of T , X and Z. We further truncate the survival times of the susceptible observa-
tions at Umax − 1 so that the support of C is larger than the support of the susceptible T ’s. We
finally generate the follow-up time Y = min(T,C) and the censoring indicator ∆ = I(T ≤ C).

4.3. Known classifier 280

First, we consider the case where the classifier takes the form of a single variable or of a known
one-dimensional score denoted by X . Note that when dim(X) = 1, the single-index model re-
duces to a non-parametric model. We assume three different scenarios for the incidence. The
first two scenarios assume a logistic regression model for p(x) corresponding to different dis-
criminations between the cured and the uncured sub-populations as shown in Figure 1 (a) and (b). 285

Scenario 1 is such thatX ∼ N(2, 2.5), γ0 = 0, γ1 = 1 andAUC = 0.9016. This scenario corre-
sponds to a a good discrimination with a cure proportion equal to 25.6%. Scenario 2 assumes that
X ∼ N(1.2, 1), γ0 = 0, γ1 = 1 and AUC = 0.7374. This scenario is associated with a moder-
ate separation between the two sub-populations, and the proportion of cured subjects is equal to
26.9%. The third scenario assumes a non-logistic model for p(x) with a non-monotone shape 290

in order to evaluate the performance of the two estimators in such a case. The link function
is given by g(a) = [sin{(3/2) π a}+ 1]/2. Its characteristics are as follows: X ∼ Unif(0, 1),
γ1 = 1, and AUC = 0.8124, corresponding to a good separation between cured and uncured
sub-populations as shown in Figure 1 (c). The cure proportion equals 39.4%.
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Fig. 1: True ROC curves when the classifier is known for (a) scenario 1, (b) scenario 2 and (c) scenario 3.

For the survival times, we consider for the Gompertz model two covariates, Z1 and Z2, that are 295

independent, following a Bernoulli distribution with parameter equal to 0.6 and 0.2, respectively.
The associated vector of parameters is β = (1.5,−0.5)T . For the uniform distribution considered
for the censoring time C, we assume that Umin = 0 and three different values are considered for
Umax : 65, 25 and 10, corresponding to three different levels of censoring denoted by level 1,
level 2 and level 3. For the accelerated failure time model, two independent covariates, Z1 and 300

Z2, are considered, following a Bernoulli distribution with parameter equal to 0.6 and 0.3, re-
spectively. The associated vector of parameters is β = (0.7,−0.3)T . As for the Gompertz model,
the censoring time is generated from a uniform distribution with Umin = 0 and with three differ-
ent values for Umax. These values are chosen such that the proportion of censored observations
with a follow-up time lower than or equal to τ is the same as for the Gompertz model, in order 305

to allow comparison between the two models.
A total of five settings is considered. They correspond to the combination of scenario 1 and

scenario 2 with the two models for the latency, as well as scenario 3 in combination with the
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Gompertz model only, since this last scenario serves to assess the performance of our estimator
assuming a logistic/Cox model when the logistic model is not satisfied. To assess the effect of310

a misspecification of Z, the estimators are further estimated assuming that Z = X , on scenario
1/Gompertz and scenario 2/Gompertz. Table 1 summarizes the characteristics of these settings.

Table 1: Characteristics when the classifier is known: the cure rate, the upper bound Umax of the
support of the censoring distribution, the probability pU that finite values of T exceed Umax before

truncating T , the censoring rate and the percentage of censored observations for which Y ≤ τ .

Latency type
Gompertz model AFT model

Incidence cure censoring ∆ = 0, censoring ∆ = 0,
type rate Umax pU rate Y ≤ τ Umax pU rate Y ≤ τ

Scenario 1 25.6% 65 0 27.0% 5.3% 345 0 27.0% 5.3%

25.6% 25 0 29.1% 12.6% 121 0.0002 29.5% 12.6%

25.6% 10 0.0027 34.0% 25.4% 44 0.0036 35.9% 25.5%

Scenario 2 26.9% 65 0 28.2% 5.3% 360 0 28.2% 5.3%

26.9% 25 0 30.3% 13.0% 120 0.0003 30.8% 12.9%

26.9% 10 0.0026 35.1% 25.9% 45 0.0034 37.1% 26.1%

Scenario 3 39.4% 65 0 40.5% 6.8%

39.4% 25 0 42.2% 16.2%

39.4% 10 0.0020 46.3% 31.4%

39.4% 5 0.0230 51.8% 43.1%

For each setting we consider 500 datasets, and we carry out simulations for two sample sizes,
namely n = 250 (in the main text) and n = 500 (in the Supplementary Material). Two criteria
are considered to compare the five estimators, namely the L1 distance between the true and the
estimated ROC curves and the area under the curve. The L1 distance is given by

L1 = V −1
V∑
i=1

| ˆROC(ui)−ROC(ui) |,

where ˆROC is one of the ROC curve estimates and ROC is the true ROC curve. It is com-
puted over a grid of points ui = i/100 for i = 1, . . . , V = 99. For our estimators, both when a
logistic/Cox and a single-index/Cox model are assumed, the area under the curve is given by

ˆAUC =
1

N̂0N̂1

n∑
i=1

n∑
j=1

[{
I(Mj > Mi) + 0.5× I(Mj = Mi)

}
Ŵj1Ŵi0

]
.

For the estimators based on the known cure status and the true weights, the formula is almost
the same, but with different Wi0, Wi1, N0 and N1. For the estimator that is based on the known
cure status, they are replaced by W̌i0, W̌i1, Ň0 and Ň1, while for the estimator based on the315

true weights, they are given by W̃i0, W̃i1, Ñ0 and Ñ1. Note that these formulas take into account
possible ties inM with the added term 0.5× I(Mj = Mi). Finally, for the estimator of Heagerty
et al. (2000) we restrict attention to the AUC, since the L1 distance is harder to compute for the
latter method.

As can be seen in Figure 2, when the censoring rate is close to the cure rate and when every-320

thing is specified correctly, our proposals perform almost as well as the two infeasible competi-
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Fig. 2: Boxplots of the L1 distances when the classifier is known and the true link function is logistic for
n = 250 (CSK, cure status known; TW, true weigths; LC, logistic/Cox model; SIC, single-index/Cox

model).

tors in terms of L1 distance, whatever the model assumed for W1. In such a case, very few cen-
sored observations are below τ , which are those with weight equal to pr(D = 1 | X,Z,C, T >
C). A larger censoring rate is associated with a higher L1 distance and a larger variance, particu-
larly for our single-index/Cox approach under the third censoring level. When the censoring rate 325

gets larger, fewer censored observations are located in the plateau, meaning that less censored
observations are considered as cured, that is, with Wi1 = 1. Furthermore, as shown by Amico
et al. (2019), the single-index/Cox mixture cure model performs worse than the logistic/Cox
cure model when the true model for the incidence is a logistic model and when the censoring
rate increases as is the case for the third censoring level. Interestingly, our logistic/Cox model 330

approach is close to the estimator based on the known cure status even for the third censoring
level. Another interesting point is that the L1 distance for the estimator based on the true weights
decreases slightly when the censoring rate increases. It seems that having more censored obser-
vations below τ produces better results when considering the trueW0 andW1. In such a case, the
sizes of the jumps are smaller and it seems that the ROC curve becomes ‘smoother’ and closer to 335

the true curve. Nevertheless, this feature is not observed for our two methods. By comparing sce-
nario 1 and scenario 2, we observe that the L1 distance is larger for scenario 2. Indeed, it is more
difficult to correctly separate cured from uncured sub-populations based on this scenario since
the discrimination is moderate. The discrimination between cured and uncured sub-populations
seems therefore to have an influence on the performance of the estimators of the ROC curve. 340

However, the general conclusions are the same for both scenarios. For the settings where Z is
misspecified, we observe that when few censored observations are below τ , the L1 distance for
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our proposals is only slightly higher in comparison with the two infeasible competitors, while
when the number of censored observations below τ is larger as for the third censoring level, both
our logistic/Cox and single-index/Cox estimators have higher L1 distance than when Z is cor-345

rectly specified. Interestingly, for the second censoring level, the L1 distance for our logistic/Cox
estimator seems to be comparable to the L1 distance of the estimator based on the known cure
status for both scenarios while our single-index/Cox approach seems to already present some dif-
ficulties. However, we consider in these simulations the case whereZ is completely misspecified,
whereas it seems more likely to have only a partial misspecification of this vector of covariates350

in practical applications. We are therefore in an extreme case. When the survival times are gener-
ated according to an accelerated failure time model, our proposals show a higher increase in the
L1 distance in comparison with when there is no misspecification, especially when the censoring
rate increases. Our single-index/Cox estimator is still the least favourable estimator. However, a
misspecification in Z affects the performance of our proposals more than a misspecification in355

the latency.
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Fig. 3: Boxplots of the area under the curve when the classifier is known and the true link function is
logistic for n = 250 (CSK, cure status known; TW, true weigths; LC, logistic/Cox model; SIC,

single-index/Cox model; HGT, Heagerty et al. (2000)).

For the area under the curve, the same conclusions as for the L1 distances can be drawn, as
shown in Figure 3. When the true incidence is logistic, the method based on a single-index/Cox
model performs less good than for the logistic/Cox approach, especially for the third censoring
rate. When a logistic/Cox model is assumed, on the contrary, our estimator is close to the esti-360

mated based on the known cure status for all censoring rates considered, but we observe more
variability. Finally, the method of Heagerty et al. (2000) performs less good than all other es-
timators. This can probably be explained by the fact that this method is based on completely
nonparametric estimators of the sensitivity and specificity. However, surprisingly, even when the
model is misspecified (in the sense that the true model is AFT instead of Cox, or that Z is mis-365
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specified), the method of Heagerty et al. (2000) still behaves worse than its competitors that are
based on wrong model assumptions.
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Fig. 4: Boxplots of the L1 distance and the area under the curve when the classifier is known and the true
link function is not monotone for n = 250 (CSK, cure status known; TW, true weigths; LC, logistic/Cox

model; SIC, single-index/Cox model; HGT, Heagerty et al. (2000)).

When the true incidence is not a logistic regression model, our logistic/Cox estimator has
always higher L1 distances than for the single-index/Cox approach as can be seen in Figure
4. When the censoring rate gets larger, the difference between the logistic/Cox and the single- 370

index/Cox approaches increases, and we observe that the single-index/Cox estimator outper-
forms the logistic/Cox one, especially for the third and the fourth censoring levels. It seems
therefore that, when p̂(x) is inconsistent and when the proportion of censored observations be-
low τ is large, our logistic/Cox estimator performs badly. Moreover, an interesting feature that
was already observed from the previous settings and which is confirmed with the fourth cen- 375

soring level here is that the more the censoring rate increases, the more the L1 distance of our
method, for both the logistic/Cox and the single-index/Cox approach, increases since many more
observations have Ŵ0 and Ŵ1 relying on pr(D = 1 | X,Z,C, T > C) in that case. The censor-
ing level is then crucial in the performance of our proposals. For the AUC, similar conclusions
can be drawn. For the method of Heagerty et al. (2000) we notice again a somewhat less good 380

behavior compared to its competitors that make use of correct model assumptions.
Finally, when n = 500, the same conclusions also apply for both the L1 distance and the area

under the curve. The boxplots are in Section 4 of the Supplementary Material. As expected, the
L1 distances are smaller and less variable than for n = 250. For the area under the curve, the
variability is also lower. 385

4.4. Unknown classifier
As the conclusions for the case of an unknown classifier are very similar to those for the case

of a known classifier, we do not give detailed simulation results here, and refer instead to Section
3 of the Supplementary Material for more details.

5. APPLICATION 390

In this section, we examine a data set from a breast cancer study, to illustrate the application
of our methodology. The breast cancer data set is available from the Surveillance Epidemiology
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and End Results (SEER) (www.seer.cancer.gov) database. Specifically, we are using the database
‘Incidence - SEER 18 Regs Research Data’ via SEER Stat. The data set consists of women
diagnosed with breast cancer between 2004 and 2016, whose cancer state is classified as localized395

or regional in five arbitrary counties from the data set, namely those counties whose county code
equals 133 (Georgia Greene County, Kentucky Letcher County and Iowa Monona County) or
whose county code equals 205 (Georgia Mitchell County and Kentucky Rowan County). The
failure time of interest is the time from diagnosis of breast cancer to death from breast cancer.
Baseline covariates include tumor size, ER status (ER+ vs ER−) and PR status (PR+ vs PR−).400

Patients with unknown ER/PR status are excluded from the data set. We also excluded from the
data set patients whose survival time was equal to zero, or for which the tumor size was unknown
or not precisely known. The proposed methodology is capable of evaluating the performance of
diagnostic medical tests on the prediction of the cure status of subjects. This breast cancer study
aims to assess the predictive performances of these biomarkers.405
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Fig. 5: Left panel: Kaplan-Meier survival curve for the breast cancer data set. Right panel: ROC curve
estimates - solid curve: logistic/Cox mixture cure model, dashed curve: single-index/Cox mixture cure

model.

The breast cancer data set consists of 753 patients, with a censoring rate of 89.5%. For this
data set, tumor size ranges from 1 mm to 160 mm, and the proportion of ER+ and PR+ equals
78.5% and 69.1%, respectively. Figure 5 (left panel) shows the Kaplan-Meier survival curve for
the breast cancer data set. The curve levels off at around 0.84 and a plateau is observed. There
are 133 observations in the plateau. These elements are strong indications for the presence of a410

cure fraction in this data set.
First, a logistic/Cox mixture cure model is fitted with the three covariates considered in both

parts of the model. To assess the predictive performance of the incidence modeling, the ROC
curve developed in this paper is considered. The data set is split in a training set containing
502 observations, and in a test set containing 251 subjects. The split is made according to the415

2/3− 1/3 rule described in Section 3 of the Supplementary Material. The logistic/Cox mixture
cure model is estimated on the training set, and the ROC curve is computed on the test set.

Table 2 shows the results of fitting a logistic/Cox mixture cure model, including parameter
estimates, standard errors and p-values for the breast cancer data set. At a 5% level, tumor size
and PR status have significant impacts on incidence. Patients with larger tumor size and PR−420
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Table 2: Parameter estimates, standard errors and p-values of the Wald test for the breast cancer data set
based on a logistic/Cox mixture cure model.

Incidence Latency
Covariates Estimate Std error P-value Estimate Std error P-value
Intercept -1.791 0.345 < 0.001 – – –
Tumor size 0.028 0.007 < 0.001 0.003 0.007 0.663
ER status (ER+ vs ER−) -0.284 0.461 0.538 -0.143 0.483 0.767
PR status (PR+ vs PR−) -1.212 0.468 0.010 -0.490 0.491 0.318

breast cancer have a larger probability of being uncured. The effect of a unit (millimeter) increase
in tumor size is to increase the odds of being uncured multiplicatively by exp(0.028), with other
covariates being fixed. The odds of being uncured for patients with PR+ status is exp(−1.212)
times larger than that for patients classified as PR− status.

To further investigate the predictive performance of these covariates on the cure probability, a 425

ROC curve for the linear combination of these two covariates is computed. Both a logistic/Cox
and a single-index/Cox mixture cure model are considered for W0 and W1. As can be seen in
Figure 5 (right panel), the ROC curves for both approaches are close to each other, and the
areas under the curves are almost equivalent. More specifically, the estimated AUCs are 0.778
for the curve based on a logistic/Cox mixture cure model and 0.755 for the one based on a 430

single-index/Cox mixture cure model, respectively. Adopting the naive non-parametric bootstrap
method, the estimated confidence interval for the AUC based on the 2.5% and 97.5% sample
quantiles of bootstrap estimates is [0.676, 0.867] for the former, and [0.623, 0.848] for the latter.
We can then conclude that tumor size and PR status are valuable predictors of the cure status for
the considered breast cancer data set. 435

6. CONCLUDING REMARKS

Throughout this article, we supposed thatM is a linear combination of variables. However, it is
possible to extend our proposal to the case where the classifier would be obtained from a different
model. Further investigation would be necessary to assess the impact of such a situation on the
computation of the weights, but our proposal is not restricted to the linear case. Furthermore, we 440

have considered mixture cure models to compute Ŵ0 and Ŵ1. However, a promotion time cure
model, such as the model proposed by Tsodikov (1998), could also be considered to estimate a
ROC curve for cure status prediction from survival data.
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