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Abstract 

Pear fruit are prone to developing internal disorders that leave 
consumers dissatisfied and unwilling to repeat their purchase. It 
must thus be prevented that defect fruit reach the consumer. 
Internal disorders, however, are invisible from the surface of the 
fruit. In practice, batches of fruit are, therefore, often discarded 
based on the result of a manual destructive inspection of a small 
number of randomly sampled fruit. This leads to unacceptable 
financial losses and waste due to the disposal of the healthy fruit still 
present in the batch. Moreover, the sampled fruit may not be 
representative of the whole batch. Prior research has shown that X-
ray imaging is a promising instrumental technique for detecting 
internal disorders. The aim of this PhD was, therefore, to provide 
novel, performant, and nondestructive methods to analyze X-ray 
images automatically in an objective way. This was done by 
implementing deep learning, which is a new paradigm in machine 
learning, that allows algorithms to learn directly from data. 

First, a method was developed to detect pears with internal 
disorders with X-ray Computed Tomography (X-ray CT) data using 
a conventional machine learning strategy. Herein, an image 
processing algorithm was developed to extract features from the 3D 
data. Thereafter, a classifier was trained to distinguish healthy and 
defect pears based on the extracted features. The classifier achieved 
classification accuracies ranging between 90.2 and 95.1 % 
depending on the cultivar and number of features that were used. 
However, the proposed method had several disadvantages. It 
required a handcrafted feature extraction algorithm. Potentially 
better features, which were not thought of during development, 
remained unexplored. In addition, the feature extraction algorithm 
is possibly application specific. Furthermore, while the method 
allowed for classifying defect and sound fruit, it could not quantify 
the severity of the disorders which may be of high importance for 
consumers and thus for making decisions on discarding fruit or not.  

To circumvent these disadvantages, a deep neural network was used 
to segment different internal structures in CT images, including 
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healthy tissue, the core, cavities and tissue affected by internal 
browning. The model was trained on manually annotated CT scans 
of healthy and defect fruit. On an independent test set, a very good 
agreement was found between the predicted and ground truth 
“healthy tissue”, “core” and “cavity” labels (average intersection 
over union (IoU)  0.95). Interestingly, low IoU scores were found 
for the “internal browning” label, even though visually most 
predictions seemed sufficiently accurate. It turned out this was 
mainly caused by negligible errors on small volumes and volume 
edges. From the predicted labels of the model, the severity of the 
internal disorders could be quantified by calculating the affected 
volumes. The resulting quantitative data was used to classify 
“consumable” vs “non-consumable” fruit at high accuracy (99.4 %) 
on the one hand and “healthy” vs “defect but consumable” vs “non-
consumable” classification on the other hand (92.2 %). Herein, the 
identification of “defect but consumable” fruit showed to be the most 
difficult. 

A concern with X-ray CT, however, is that it is currently not 
applicable inline at the speed of commercial sorting lines (10 
fruit/s). X-ray radiography, on the other hand, can easily be 
implemented inline using an X-ray source and detector on either 
side of a conveyor belt. A downside of X-ray radiography, however, 
is that it only produces a 2D projection of the absorption by a 3D 
object. Compared to X-ray CT, it is thus more challenging to 
distinguish contrast in the image caused by internal disorders and 
contrast caused by the shape and internal structure of the fruit. An 
anomaly detection approach using deep learning was proposed to 
detect internal disorders in X-ray radiographs of pears, recognizing 
recent advantages in deep learning, while overcoming the need for 
annotated data normally required for supervising the model during 
training.  

The anomaly detection model was trained exclusively on X-ray 
radiographs of healthy pears, after which they were evaluated on a 
test set with images of healthy and defect pears.  Defect pears could 
be identified based on the anomaly score produced by the model. It 
was shown that performance could be significantly improved by 
using synthetic anomalies. Herein fake defects were added to X-ray 
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images of healthy pears. ROC analysis showed that the proposed 
method was on par (mean area under the curve (AUC) up to 0.962) 
with a state-of-the-art benchmark method which was given several 
advantages (mean AUC = 0.963). The best anomaly detection model 
achieved an overall accuracy of 95 %, with true positive and false 
positive rates equal to 91.8 and 0.8 %, respectively. By investigating 
the performance as a function of internal disorder severity, it was 
shown that using the proposed method, defect fruit with a cavity 
percentage > 1.0 % could be detected 100 % accurate, while for 
lower cavity percentages the accuracy depended on the internal 
browning severity. The black-box nature of neural networks was 
addressed by producing heatmaps of the anomalous regions found 
by the models. 

In this research, a large step forward was made towards internal 
disorder detection in pears using X-ray imaging. It is expected that 
deep learning and X-ray imaging will increasingly be adopted by 
various industries for quality inspection. Hereto, the presented 
methods might be used for the inspection of other fruits or 
vegetables, or be implemented in other applications, such as foreign 
object detection in foods. Future work should focus on further 
investigating deep learning-based approaches, such as 
unsupervised learning, and to further discover the possibilities, but 
also limitations, of X-ray based inspection of foods. To bring quality 
inspection to an even higher level, further research is required in 
fast inline X-ray CT systems, and other X-ray based methods, such as 
X-ray phase contrast imaging.  

  



 vi 

Beknopte samenvatting 

Peren zijn vatbaar voor het ontwikkelen van interne gebreken 
tijdens bewaring. Om ontevreden consumenten, die niet bereid zijn 
om hun aankoop te herhalen, te vermijden, moet ten zeerste worden 
voorkomen dat defecte vruchten de consument bereiken. Interne 
gebreken zijn echter onzichtbaar vanaf het oppervlak van de vrucht. 
In de praktijk worden partijen fruit daarom vaak weggegooid op 
basis van een handmatige destructieve inspectie van een steekproef 
van een klein aantal willekeurige vruchten. Dit leidt echter tot 
onaanvaardbare financiële verliezen en verspilling door het onnodig 
afvoeren van het gezond fruit dat nog wel in de partij aanwezig kan 
zijn. Bovendien kunnen de onderzochte vruchten niet representatief 
zijn voor de hele partij. Voorafgaand onderzoek heeft aangetoond 
dat X-stralenbeeldvorming een veelbelovende instrumentele 
techniek is om interne gebreken op te sporen. Het doel van dit 
doctoraat was daarom om nieuwe, performante en niet-destructieve 
methodes te ontwikkelen om X-stralenbeelden automatisch en 
objectief te analyseren, en interne gebreken te detecteren. Dit werd 
bereikt door het toepassen van deep learning, een nieuw paradigma 
in machine learning, waarbij algoritmen rechtstreeks kunnen leren 
van data. 

Eerst werd een methode ontwikkeld om peren met interne gebreken 
te detecteren met behulp van X-stralen computertomografie (CT) en 
een conventionele machine learning-strategie. Hierbij werd een 
beeldverwerkingsalgoritme ontwikkeld om kenmerken uit de 3D-
data te extraheren. Daarna werd een classificatiealgoritme getraind 
op basis van de geëxtraheerde kenmerken om gezonde en defecte 
peren te onderscheiden. Het classificatiealgoritme bereikte 
nauwkeurigheden tussen 90,2 en 95,1 %, afhankelijk van de cultivar 
en het aantal gebruikte kenmerken. De voorgestelde methode had 
echter enkele nadelen. Het vereiste een handgemaakt algoritme 
voor het extraheren van kenmerken. Mogelijk bleven nuttigere 
kenmerken, waaraan tijdens de ontwikkeling niet werd gedacht, 
onontdekt. Bovendien is het beeldverwerkingsalgoritme algoritme 
mogelijks specifiek voor de toepassing. Hoewel de methode het 
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mogelijk maakte om defect en gezond fruit te classificeren, kon het 
ook de graad van de gebreken niet kwantificeren. Dit is echter van 
groot belang voor consumenten en dus ook voor het nemen van 
beslissingen over het al dan niet verwijderen van fruit. 

Om deze nadelen te omzeilen, werd een diep neuraal netwerk 
gebruikt om verschillende interne structuren in CT-beelden te 
segmenteren, waaronder gezond weefsel, het klokhuis, holtes en 
weefsel dat is aangetast door intern bruin. Het model werd getraind 
op handmatig geannoteerde CT-scans van gezond en defect fruit. Op 
een onafhankelijke test-dataset werd een zeer goede overeenkomst 
gevonden tussen de voorspelde en de manuele annotaties voor de 
labels "gezond weefsel", "klokhuis" en "holtes" (gemiddelde 
intersectie over unie (IoU)  0,95). Het was opvallend dat lage IoU-
scores gevonden werden voor het label "intern bruin", hoewel 
visueel de meeste voorspellingen voldoende nauwkeurig leken. Het 
bleek dat dit voornamelijk werd veroorzaakt door verwaarloosbare 
fouten op kleine volumes en randen. Uit de voorspelde labels van het 
model kon de graad van de interne gebreken worden 
gekwantificeerd door de aangetaste volumes te berekenen. De 
resulterende kwantitatieve gegevens werden gebruikt om enerzijds 
“consumeerbaar” vs. “niet-consumeerbaar” fruit te classificeren met 
een hoge nauwkeurigheid (99,4 %) en anderzijds voor de 
classificatie van “gezond” vs. “defect maar consumeerbaar” vs. “niet-
consumeerbaar” fruit (92,2 %). Hierin bleek de identificatie van 
"defect maar consumeerbaar" fruit het moeilijkst te zijn. 

Een bezorgdheid bij het gebruiken van CT is echter dat het 
momenteel niet aan een hoge snelheid toepasbaar is op commerciële 
sorteerlijnen (10 vruchten/s). X-stralenradiografie kan daarentegen 
eenvoudig op sorteerlijnen worden toegepast met behulp van een X-
stralenbron en -detector aan weerszijden van een transportband. 
Een nadeel van X-stralenradiografie is echter dat het enkel een 2D-
projectie produceert van de absorptie van een 3D-object. Ten 
opzichte van CT is het dus een grotere uitdaging om het onderscheid 
te maken tussen enerzijds contrast in het beeld veroorzaakt door 
interne gebreken en anderzijds contrast veroorzaakt door de vorm 
en interne structuur van de vrucht. Een anomaliedetectiemethode 
werd voorgesteld met behulp van deep learning om interne 
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aandoeningen in radiografieën van peren te detecteren. Hierbij 
werden de voordelen van de recente ontwikkelingen in deep 
learning meegenomen, terwijl de behoefte aan geannoteerde 
gegevens, die normaal nodig zijn voor het trainen van een model, 
wordt weggenomen. 

Het anomaliedetectiemodel werd uitsluitend getraind op 
radiografieën van gezonde peren, waarna deze werden beoordeeld 
op een test-dataset met radiografieën van gezonde en defecte peren. 
Defecte peren konden worden geïdentificeerd op basis van de 
anomaliescore die door het model werd voorspeld. Er werd 
aangetoond dat de prestaties aanzienlijk konden worden verbeterd 
door gebruik te maken van synthetische anomalieën. Hierin werden 
gebreken artificieel nagebootst en toegevoegd aan radiografieën van 
gezonde peren. ROC-analyse toonde aan dat de voorgestelde 
methode hetzelfde niveau behaalde (gemiddelde oppervlakte onder 
de curve (AUC) tot 0,962) als een state-of-the-art 
benchmarkmethode die verschillende voordelen kreeg (gemiddelde 
AUC = 0,963). Het beste anomaliedetectiemodel behaalde een 
classificatie nauwkeurigheid van 95 %, met percentages voor echt-
positieven en vals-positieven gelijk aan respectievelijk 91,8 en 
0,8 %. Door de prestaties te onderzoeken in functie van de graad van 
de interne gebreken werd aangetoond dat met de voorgestelde 
methode defecte vruchten met een holtepercentage > 1,0 % met 100 
% nauwkeurigheid konden worden gedetecteerd. Voor lagere 
holtepercentages was de nauwkeurigheid afhankelijk van de graad 
van intern bruin. De black-box benadering van neurale netwerken 
werd aangepakt door heatmaps te maken van de afwijkende regio's 
die door de modellen werden gevonden in de radiografieën. 

Een grote vooruitgang werd geboekt in de detectie van interne 
gebreken in peer met behulp van X-stralenbeeldvorming. Deep 
learning en X-stralenbeeldvorming zullen in toenemende mate door 
verschillende industrieën kunnen worden toegepast voor 
kwaliteitsinspectie. Hiertoe zouden de voorgestelde methodes 
eenvoudig kunnen worden gebruikt voor de inspectie van ander 
fruit of groenten, of worden uitgebreid naar andere toepassingen, 
zoals de detectie van vreemde voorwerpen in voedingsmiddelen. 
Toekomstig onderzoek kan zich toeleggen op het verder 



 ix 

onderzoeken van op deep learning gebaseerde methodes, zoals 
unsupervised learning, alsook op het verder ontdekken van de 
mogelijkheden, maar ook beperkingen, van op X-stralen gebaseerde 
inspectie van voedingsmiddelen. Om kwaliteitsinspectie naar een 
nog hoger niveau te tillen, is verder onderzoek nodig naar snelle, op 
productielijnen integreerbare CT-systemen en andere op X-stralen 
gebaseerde methoden, zoals fasecontrast beeldvorming. 
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Chapter 1  

 

Introduction 

1.1 Problem statement 

In 2019, Belgium was placed third in the list of top pear producing 
countries among the European member states (European 
Commission, 2020). Globally, Belgium ranked 8th for pear 
production in both value and quantity produced in 2019. Pear 
production thus represents an important part of the Belgian 
economy. It had a total value of 161 million euros in 2016, which was 
around 40 % of the Belgian fruit production (Danckaert et al., 2018). 
In terms of consumption, pears hold the 5th place in the top fruit 
consumption in Belgium (VLAM, 2021a). While Belgian pears are 
highly consumed in the domestic market, it is Belgium’s most 
valuable exported fruit with a value of 243 million euro in 2020. Up 
to 80 % of the annual pear production is exported (Avermaete et al., 
2018; VLAM, 2021b). Delivering quality fruit year-round is thus of 
high importance to maintain this position on the international 
market.  

To preserve the quality of fresh fruit after harvest, controlled 
atmosphere storage is applied (Mercier et al., 2017; Thompson et al., 
2018). Suboptimal storage conditions, however, can cause severe 
quality loss by chilling injury, accelerated ripening and senescence, 
fermentation, stimulated pathogen growth or other physiological 
decay. Examples are internal browning, watercore, bitter pit or 
cavities in fruit tissue. Detecting and removing defect fruit from the 
supply chain is of high importance. It must be prevented that defect 
fruit can reach consumers and reduce their trust and willingness to 
pay or to repeat their purchase. Additionally, it enables market 
players to differentiate themselves from others by providing top 
quality fruit. 
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The disorders that develop during growth or storage may not cause 
externally visible symptoms (Franck et al., 2007; Thompson et al., 
2018). As a result, they may be impossible to be detected by current 
commercial quality grading systems that are mainly focused on the 
external quality. In practice, whole batches are, therefore, discarded 
based on the manual destructive inspection of a small sample of fruit 
rather than of only filtering out the defect fruit. Batch-wise decision-
making leads to unacceptable collateral damage, i.e., financial loss 
and food waste due to the disposal of the healthy fruit still present 
in the batch. Moreover, the small subset of the batch that is selected 
for inspection may not be representative of the whole batch. 
Nondestructive methods for detecting internal disorders are thus 
required to enable a reliable and inline (i.e., on sorting lines) 
inspection of each individual fruit.  

Research has shown that X-ray imaging is a promising instrumental 
technique for detecting internal disorders (Arendse et al., 2018; 
Kotwaliwale et al., 2014; Nicolaï et al., 2014). Thanks to their high 
energy, X-rays have a good penetration depth through biological 
material that allows for the visualization of their internal structure. 
Different materials or material densities inside a sample cause 
differences in X-ray attenuation. This results in patterns on X-ray 
images that can be used to analyze the sample under investigation. 
X-ray imaging methods are mainly applied in two modes. In X-ray 
radiography, X-rays transmitted through an object are captured by 
a detector to create a 2D X-ray image, i.e., a radiograph or projection. 
In X-ray computed tomography (CT), on the other hand, many of 
such projections are taken from different angles and are combined 
to produce an information-rich 3D reconstruction of the sample. 
While X-ray radiography can be easily implemented inline using a 
source and line detector on either side of a conveyer belt, inline X-
ray CT requires more complex and expensive hardware. 

Due to the costly hardware requirements and insufficient speed, X-
ray CT based methods have mainly been used to characterize 
internal disorders using manual and semi-automatic image 
processing workflows rather than to detect internal disorders 
automatically. Additionally, the described characterization methods 
are often slow and involve manual annotation that does not scale to 
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large datasets. Automated X-ray CT based methods would allow for 
internal disorder detection and quantification. Since continuous 
developments are made towards inline X-ray CT, inline applications 
of such automated methods may become feasible in the future. 
Available X-ray radiography-based methods often use internal 
disorder and application specific algorithms. This complicates their 
transferability to other disorders and other biological products with 
significant differences in shape, size, and composition. A more 
general purpose multisensor algorithm has been developed, but it 
still requires application-specific 3D fruit models and complex 
sensor integration (van Dael et al., 2019, 2017). There is, thus, a need 
for a generally applicable method for nondestructive internal 
disorder detection that can be transferred to other applications with 
less effort, and which can be more easily implemented inline. 

1.2 Objectives and outline 

To this day, nondestructive detection of internal disorders in 
horticultural products remains a challenging problem. While X-ray 
imaging-based methods have been shown to be effective in research, 
their implementation is hard due to limited transferability to other 
contexts, or complex sensor integration. Particularly, all proposed 
methods so far relied on conventional machine learning methods. 
Herein, experts decide on how underlying algorithms should 
operate (e.g., image processing pipelines) or on what an algorithm 
needs (e.g., feature extraction) to solve a task. This results in 
suboptimal solutions that are biased and limited by the human 
capability of interpreting the data. Therefore, the aim of this PhD 
was to develop novel nondestructive methods for internal disorder 
inspection for X-ray CT and inline radiography using a new 
paradigm in machine learning, namely deep learning, in which a 
model can learn to solve a task end-to-end from “raw” data.  

In Chapter 2 a background is provided on internal disorders in pears, 
X-ray imaging and deep learning. Additionally, the current state of 
the art is reviewed, and the open challenges and opportunities 
related to the technologies and applications of this work are 
identified. 
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In the first research chapter (Chapter 3), a conventional machine 
learning-based method was developed for X-ray CT to 
nondestructively detect internal disorders in pears. Herein, a 
classifier was trained on features extracted by an image processing 
algorithm to discriminate between defect and sound fruit. Although 
the classification performed well, there was still room for 
improvement and the method did not provide output that could be 
used to further characterize internal disorders, e.g., disorder 
severity or location. 

In response to these shortcomings a deep neural network for image 
segmentation was developed for X-ray CT images to indicate 
internal disorders in pears on pixel level and quantify the disorder 
severity (see Chapter 4). The model was able to segment healthy 
tissue, the core, tissue affected by internal browning and cavities. 
Based on the volumes of internal disorders, healthy and defect fruit 
could be classified downstream at a high accuracy. 

In the final research chapter (Chapter 5), a deep learning method is 
developed for inline X-ray radiography to detect and localize 
internal disorders in pears. Herein, one of the problems of deep 
learning, the heavy reliance on labeled data, is tackled by 
approaching the problem as an anomaly detection challenge in 
which a model is trained in an unsupervised way. 

Finally, Chapter 6 delivers the general conclusions from this 
research and provides suggestions for future work. 
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Chapter 2  

 

State-of-the-art 

2.1 Introduction 

This chapter reviews internal disorders in pears and discusses 
methods proposed in the literature, with emphasis on X-ray imaging, 
to detect them. First, common internal disorders in pome fruit are 
discussed with a brief explanation on how most storage-related 
disorders develop during controlled atmosphere (CA) storage. 
Second, the state-of-the-art of internal disorder detection in 
horticultural products is presented. Third, the basic principles of X-
ray imaging are explained, including the interaction of X-rays with 
matter, X-ray radiography and X-ray CT. Next, relevant image-based 
machine learning and deep learning methods are discussed. Finally, 
as a conclusion of this review, the open challenges and opportunities 
related to internal disorder detection in horticultural products using 
X-ray imaging are formulated. 

2.2 Internal disorders in pome fruit 

Pre- and postharvest conditions may disturb the metabolic activity 
of fruit tissue and lead to various types of physiological disorders, 
including internal disorders. Due to their economic importance, 
internal disorders in pome fruit have been studied to better 
understand and prevent them. While apple and pear are two 
different species, it is assumed that in both species similar 
mechanisms are responsible for the development of internal 
disorders. Due to specific characteristics of different species and 
cultivars, however, the susceptibility towards different types of 
internal disorders is species and cultivar dependent. Examples of 
common internal disorders in pome fruit are internal browning and 
cavity formation, watercore and watercore breakdown, bitter pit 
and chilling injury. This section mainly discusses internal browning 
and cavity formation (see Figure 2.1) since these are the most 
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common internal disorders in ‘Conference’ pear, the most widely 
cultivated pear cultivar in Belgium (Franck et al., 2007). 

 
Figure 2.1: Conference pears affected by internal browning and cavity formation. Cavities 
are indicated by red arrows. 

For the development of internal browning during CA storage, the 
mechanism is presumably the following (Franck et al., 2007; 
Herremans, Verboven, et al., 2014; Ho et al., 2013; Pedreschi et al., 
2009; Veltman et al., 2003). As oxygen concentrations are lowered 
in CA storage to minimize aerobic respiration, the O2 concentration 
inside the fruit may become so low that a local hypoxic or even 
anoxic state is created due to the limited rate of oxygen supply 
through the fruit tissue. The rate of oxygen supply is then insufficient 
to maintain the respiration process and together with an increased 
CO2 concentration a shift can take place from respiration to 
fermentation. Compared to aerobic respiration, however, 
fermentation is an inefficient process that provides little energy. In 
addition, fermentation also produces ethanol which causes an off 
flavor. Due to the lowered energy supply, cells cannot keep up their 
maintenance processes, such as the repair of cell membranes. 
Moreover, the shift to fermentation also leads to an imbalance 
between the oxidative and reductive processes. In oxidative stress 
conditions, the antioxidant system works insufficiently to eliminate 
the reactive oxygen species (ROS) that will, among others, further 
degrade the cell membrane. Eventually, this leads to cell leakage and 
cell death. Due to cell decompartmentalization, phenols (located in 
the vacuole) can react with polyphenol oxidase (located in the 
plastids) to form the polymers that are responsible for the brown 
color. Cavities form once enough neighboring cells have died and the 
free liquid resulting from the leakage has diffused towards the 
boundary of the fruit and evaporated.  



 
7 

Several aspects influence the susceptibility of pome fruit towards 
internal browning. For instance, larger fruit have a higher risk of 
entering a hypoxic state due to the larger resistance against oxygen 
diffusion, resulting in a larger gradient from outer surface to the core 
of the fruit. Fruit porosity, which is species and cultivar dependent 
(Z. Wang et al., 2020), is positively correlated with gas diffusivity and 
thus negatively correlated with internal disorder development. Also, 
preharvest factors, such as seasonal characteristics and picking date 
influence internal browning susceptibility (Franck et al., 2007; 
Lammertyn et al., 2000). 

The spatial and temporal distribution of the developmental stages of 
internal browning has been investigated in apple and pear using X-
ray Computed Tomagraphy (CT) and Magnetic Resonance Imaging 
(MRI) (Gonzalez et al., 2001; Herremans et al., 2013; Lammertyn et 
al., 2003b, 2003a; Suchanek et al., 2017). It was found that in pear 
internal browning develops in two distinct patterns, i.e., radial 
browning and local browning (also called asymmetrical browning). 
In radial browning, the disorder follows the shape of the fruit 
concentrically, while in asymmetrical browning the disorder 
appears in specific local spots (Lammertyn et al., 2003b, 2003a). 
While the radial browning can be explained from the internal gas 
gradients, it is not yet fully understood how local defects may 
develop. Presumably, local microstructural characteristics, e.g., low 
pore connectivity, are responsible for making specific regions more 
susceptible (Herremans et al., 2013; Herremans, Verboven, et al., 
2014).  Moreover, it was found that from the moment the disorder 
was detected after several weeks of storage, the disorder intensity 
increased, but, counterintuitively, the affected region did not grow 
in size (Lammertyn et al., 2003a). On the microstructure level, 
Herremans at al. (2013) observed the flooding of pores due to cell 
collapse in brown tissue and the subsequent collapse of tissue and 
cavity formation during internal browning development in apples 
using X-ray CT (see Figure 2.2). They also observed that the middle 
(R – 5 mm > X > 0.65  R; R: fruit radius) and inner cortex 
(0.65  R > X) were more susceptible to internal browning than the 
outer cortex (R – 5 mm > X). 
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Figure 2.2: Cross-sectional slice of an X-ray CT scan of healthy tissue (a), flooded tissue (b) 
and tissue with cavities formed (c) of the middle cortex (located at radial distance X; 5 mm 
> X > 0.65  R; R: fruit radius) of ‘Braeburn’ apples. Arrows indicate remains of collapsed 
cells. Scale bars indicate 500 µm. Adapted from Herremans et al. (2013). 

Based on the above discussion on the mechanism of internal 
disorder development, several aspects about detecting internal 
disorders non-destructively must be considered. First, instrumental 
techniques used to detect internal disorders must provide sufficient 
depth into the fruit, since the sensitivity to internal disorders is a 
function of the radial distance from the core. Second, sufficient 
spatial information is required since internal disorders may not only 
develop in a radial pattern that is spread out over the whole fruit 
volume, but also locally, which might be more challenging to detect. 
Third, the success of the instrumental techniques will depend on the 
physical principles it is based on and on the developmental stage of 
the disorder. Fourth, severity can be interpreted in two ways: the 
size of the affected volume, or the degree of tissue degradation 
inside the affected volume. For clarity, the former will be further 
referred to as disorder severity, while the later will be denoted as 
disorder intensity. It is expected that both factors will affect the 
detectability of the disorder, which can differ for methods using 
different instrumental techniques. Nonetheless, consumers might 
tolerate low severity with high intensity (e.g., a cavity) more than 
high severity with low intensity (e.g., radial browning).  
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2.3 X-ray imaging 

X-ray imaging is a promising technique for internal disorder 
detection in pears. In the following sections, the interactions of X-
rays with matter and its suitability for internal quality inspection are 
discussed. Next, the process of transmission-based X-ray image 
generation is described. Thereafter, X-ray radiography and X-ray 
Computed Tomography (CT), the two most common and mature X-
ray imaging techniques, are explained. Finally, X-ray phase contrast 
imaging, a relatively new X-ray imaging technique that is still far 
away from practical application, is shortly discussed 

2.3.1 X-rays and their interaction with matter 

X-rays are, just like visible light, a type of electromagnetic radiation. 
Electromagnetic radiation are waves that propagate through space 
and are characterized by their frequency (or wavelength). The 
higher the frequency, the higher the electromagnetic radiation 
energy, and vice versa. The wavelength is inversely proportional to 
the frequency, i.e., a low frequency corresponds to a long 
wavelength. The electromagnetic spectrum (see Figure 2.3) is 
divided in different bands of wavelength ranges which are given 
specific names, e.g., X-rays (0.01 to 10 nm), ultraviolet light (10 to 
400 nm), visible light (400 to 700 nm), and infrared light (700 nm to 
1 mm). Each band has specific characteristics based on how the 
radiation is produced, the manner the waves interact with matter, 
and how they are used in applications. Together with ultraviolet and 
gamma radiation, X-rays are classified as ionizing radiation because 
of the high photon energy that can cause the ionization of atoms and 
subsequent chemical reactions (Kak & Slaney, 2001; Maier et al., 
2018). 
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Figure 2.3: The electromagnetic spectrum. Adapted from (My NASA Data, 2021). 

Due to their high energy, X-rays can penetrate through material in 
which they are partly absorbed and scattered via physical 
interactions. The X-ray beam is thus attenuated while passing 
through the material. For the energy range of photons most used in 
diagnostic imaging (20 to 150 keV), the main physical principles 
responsible for the X-ray attenuation via absorption and scattering 
are the photoelectric effect and Compton scattering, respectively 
(see Figure 2.4).  

 
Figure 2.4: Photoelectric absorption (a) and Compton scattering (b) (Sijbers & Jørgensen, 
2021).  
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In the photoelectric effect, an X-ray photon hits an inner electron of 
an atom. All the energy of the photon is then carried over to the 
electron, which causes the electron to overcome the binding energy 
within its shell. The excited electron escapes from its previously 
tightly bound state, while another electron from a higher energy 
outer shell takes its place. The latter results in the emission of 
characteristic radiation that is mostly reabsorbed by the 
surrounding tissue. While the X-ray photon seizes to exist, the 
photoelectric effect thus produces a free electron and an ion. 
Photoelectric absorption depends on the atomic number of the 
irradiated material and the energy of the incident photon. Compton 
scattering, on the other hand, is the phenomenon in which a photon 
hits either a free or a loosely bound outer shell electron. The collision 
causes the photon to be deflected from its original course into 
another direction. Herein, part of the photon’s energy is carried over 
to the electron, therefore ionizing the atom. Compton scattering 
depends on the electron density of the irradiated material (Kak & 
Slaney, 2001; Maier et al., 2018). 

For monochromatic X-rays, the number of X-rays attenuated by a 
material is described by the Lambert-Beer law, given by 

𝐼(𝑑) = 𝐼0𝑒−µ∙𝑑 

It states that the intensity of incoming radiation (𝐼0) decays 
exponentially when it propagates by a distance 𝑑 through a material 
with a linear attenuation coefficient µ. The linear attenuation 
coefficient incorporates the probability of all interactions between 
the X-ray photons and the material according to the principles 
described above. It is dependent on the electron density of the 
material and the energy of the X-ray photons. The electron density 
of a material, in turn, depends on the atomic number of the material 
elements and its mass density. While the linear attenuation 
coefficient is practical to use, it must usually be derived from the 
mass attenuation coefficient, which is normalized for the mass 
density and thus includes only atom-dependent effects in function of 
the radiation energy. For mixed materials, the total mass attenuation 
coefficient can be calculated as the weighted sum of the individual 
mass attenuation coefficients proportional to the weights of the 
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elements. The linear attenuation coefficient can then be calculated 
by multiplying the mass attenuation coefficient with the density of 
the material. In practice however, materials are often 
inhomogeneous in terms of composition. Obtaining linear 
attenuation coefficients of a material is thus not straightforward. In 
addition, X-ray radiation is often multispectral, requiring knowledge 
of the full spectrum of the X-ray source. Since biological tissue is 
mainly composed of hydrogen and carbon atoms, contrast in X-ray 
images caused by differences in X-ray attenuation originates mainly 
from differences in tissue density due to the presence of air pores 
(Kak & Slaney, 2001; Maier et al., 2018).  

2.3.2 X-ray image generation 

In X-ray imaging, the X-rays emitted by an X-ray source are produced 
using a high voltage vacuum tube. Electrons released by the cathode 
collide with a high velocity onto the anode, i.e., a metal target (e.g., 
tungsten), resulting in the emission of X-ray photons. The photon 
energy is limited by the energy of the colliding electrons, which in 
turn is proportional to the voltage of the tube. The emitted X-rays 
are generated by two different phenomena, i.e., characteristic X-ray 
emission and bremsstrahlung (see Figure 2.5). In characteristic X-
ray emission, an incident electron can liberate an orbital electron 
from the inner electron shell of a target atom, provided that the 
incident electron has sufficient energy to overcome the binding 
energy of the orbital electron. Thereafter, another orbital electron 
from a higher energy level can fill the vacancy at the lower energy 
level. This releases energy that is emitted as an X-ray photon. Since 
this phenomenon is dependent on the material of the target, it 
results in typical, or characteristic, discrete frequencies of emitted 
radiation. In contrast, bremsstrahlung produces a continuous 
spectrum. In bremsstrahlung, an X-ray photon is released via the 
deceleration of the incident electron when it is deflected by the 
electric field of other charged particles, e.g., orbital electrons. The 
lost kinetic energy is thus released as an X-ray photon (Kak & Slaney, 
2001; Maier et al., 2018). 
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Figure 2.5: X-ray spectrum of a tungsten tube with discrete peaks and the continuous 
spectrum corresponding to the characteristic radiation and bremsstrahlung, respectively. 
Adapted from (Maier et al., 2018). 

X-ray images are produced from the signal picked up by X-ray 
sensitive detectors, which in modern systems are flat panel 
detectors based on semiconductors that convert X-ray photons into 
an electric signal. Transistors are arranged into a grid, each attached 
to a light-absorbing photodiode responsible for an individual pixel. 
An electric signal is created that depends on the intensity of the 
striking photons that can then be combined to produce a digital 
image. Typically, a layer of scintillator material is placed before the 
photodiodes, which first converts X-rays into visible light that is then 
captured by the photodiodes (Kak & Slaney, 2001; Maier et al., 
2018). 

2.3.3 X-ray radiography 

In X-ray radiography, X-rays transmitted through an object are 
captured by a detector to create a 2D transmission X-ray image, i.e., 
a single radiograph or projection. In the radiograph, the intensity 
scales inversely with the accumulated amount of X-ray attenuation 
by the sample along the trajectory of the X-rays. Thus, X-ray 
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radiography does not retain all spatial information and instead 
produces a cumulative 2D projection of a 3D object (Kak & Slaney, 
2001; Maier et al., 2018). The detector can be a 2D array to image 
the whole sample at once, or a 1D line detector. The latter is often 
used for inline radiography in which a source and line detector are 
placed on either side of a conveyor belt. Using line detectors, an 
arbitrary number of line scans can be stitched together to produce a 
2D image. In current inline imaging hardware, detectors with a pixel 
size of 0.4 mm are readily available for speeds of 55 m/min. 

2.3.4 X-ray Computed Tomography 

In X-ray CT, many X-ray radiographs, i.e., projections, are taken from 
different angles and are combined to reconstruct 3D images of the 
X-ray attenuation by the sample. In micro-CT, i.e., industrial CT, the 
platform on which the sample is mounted rotates between a source 
and a detector that are stationary during image acquisition (see 
Figure 2.6). The position of the detector and sample relative to the 
source can often be configured to optimize the image quality and 
field of view. In medical CT, on the other hand, the source and 
detector rotate around the patient.  

 
Figure 2.6: The X-ray CT workflow. Multiple 2D projections are taken from different angles 
after which a 3D reconstruction is computed (Z. Wang, Herremans, et al., 2018).  
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Here, X-ray CT reconstruction will be described for the 2D case 
assuming parallel X-ray beams, which can be extended to 3D 
reconstruction using a cone beam (Kak & Slaney, 2001; Maier et al., 
2018). In X-ray CT, the goal is to reconstruct the object function 
𝑓(𝑥, 𝑦), which describes the linear attenuation coefficients at 
positions (𝑥, 𝑦). The image formation is based on two mathematical 
principles, i.e., the Radon transform and the Fourier slice theorem 
(Kak & Slaney, 2001; Maier et al., 2018). The Radon transform 
principle states that any integrable function 𝑓(𝑥, 𝑦) can be uniquely 
described as all straight-line integrals over its domain (Maier et al., 
2018), i.e.,  

𝑝(𝑙) =  ∫ 𝑓(𝑥(𝑙), 𝑦(𝑙))𝑑𝑙,    ∀𝑙: (𝑥(𝑙), 𝑦(𝑙))
𝑇+∞

−∞
∈ 𝑙𝑖𝑛𝑒 𝑙 (Eq. 1) 

In the context of X-ray CT, this means that a slice through the sample 
volume, described by 𝑓(𝑥, 𝑦), can be formulated in function of 
projections following straight lines through the sample. Eq. 1 can be 
formulated in polar coordinates to prevent duplicate 
representations of the lines, i.e., 

𝑝(𝜃, 𝑠) =  ∫ ∫ 𝑓(𝑥, 𝑦)𝛿(𝑥 cos(𝜃) + 𝑦 sin(𝜃) − 𝑠)𝑑𝑥𝑑𝑦
+∞

−∞
 (Eq. 2) 

With   the angle between the x-axis and the normal vector of the 
line, and 𝑠 the orthogonal distance between the line and the origin. 
Herein, only points on the line, i.e., satisfying 𝑥 cos(𝜃) + 𝑦 sin(𝜃) =
 𝑠, are selected using the Dirac function 𝛿. The complete set of line 
integrals required to describe 𝑓(𝑥, 𝑦) can then be obtained by 
covering the angles 𝜃 ∈ [0, 𝜋] and orthogonal distances 𝑠 ∈
[−∞, +∞]. A single projection is obtained for every fixed angle 𝜃 and 
variable distance to the origin 𝑠, i.e.,  𝑝𝜃(𝑠) =  𝑝(𝜃, 𝑠). All projections 
can then be arranged side-by-side to produce a 2-D image, i.e., a 
sinogram, which describes the projected values as a function of 𝜃 
and 𝑠. In the sinogram, every point except for the origin is found at 
different distances along the s-axis depending on the angle 𝜃 (Kak & 
Slaney, 2001; Maier et al., 2018).  
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Figure 2.7: The Radon transform. Projections as a function of the angle   and distance 𝑠 to 
the origin (left), and the resulting sinogram (right). Adapted from (Maier et al., 2018). 

In X-ray CT, the goal is to compute the inverse Radon transform, i.e., 
reconstructing 𝑓(𝑥, 𝑦) from a set of measured projections. Herein, 
the values of 𝑓(𝑥, 𝑦) are the linear attenuation coefficients of the 
imaged sample. To compute the inverse Radon transform, the 
Fourier slice theorem is used. The theorem states that there is an 
equivalence between the Fourier transform 𝑃(𝜉, 𝜃) of the projection 
𝑝𝜃(𝑠) and the line through the 2D Fourier transform 𝐹(𝑢, 𝑣) of 
𝑓(𝑥, 𝑦) following an angle 𝜃 through the origin in the 2D Fourier 
domain. Therefore, a good estimate of 𝐹(𝑢, 𝑣) can be obtained from 
many of such lines by using a complete set of projections. The 
function 𝑓(𝑥, 𝑦) is then obtained by calculating the inverse 2D 
Fourier transform of 𝐹(𝑢, 𝑣). In practice, the projections are back-
projected along their corresponding lines to compute 𝑓(𝑥, 𝑦). To 
overcome the oversampling of the center of the Fourier domain, a 
filter is used to enhance and dampen the high and low frequencies, 
respectively. This reconstruction technique is called the Filtered 
Back-Projection (FBP) algorithm, which is the most used analytical 
reconstruction algorithm in X-ray CT. The whole 3D volume can be 
reconstructed by stacking the computed slices (Kak & Slaney, 2001; 
Maier et al., 2018). 
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Figure 2.8: Equivalence between the Fourier transform 𝑃(𝜉, 𝜃) of the projection 𝑝𝜃(𝑠) and 
the line through the 2D Fourier transform 𝐹(𝑢, 𝑣) of 𝑓(𝑥, 𝑦) following an angle 𝜃 through 
the origin in the 2D Fourier domain. Adapted from (Maier et al., 2018). 

Alternatively, algebraic reconstruction algorithms and statistical 
methods can be used that compute the reconstruction iteratively. 
These techniques can leverage prior knowledge of the acquisition 
geometry and composition of the sample to produce images with 
improved resolution, signal-to-noise ratio, and reduction of 
artefacts. Even though these methods have a high computational 
cost, contemporary hardware has sufficient performance to 
implement them (e.g., using parallelization on GPU’s) (Beister et al., 
2012; Kak & Slaney, 2001; Maier et al., 2018; Palenstijn et al., 2011; 
Willemink et al., 2013).  

Using X-ray CT, 3D images of intact fruit can be produced at a high 
resolution (Piovesan et al., 2021). However, there is a trade-off 
between image quality and resolution on the one hand, and speed 
and equipment cost on the other hand. Due to the costly hardware 
requirements and insufficient speed, the usage of X-ray CT in 
industrial applications is currently limited to the inspection of high 
value products at a relatively slow rate, or to its usage in research 
and development stages (Buratti et al., 2018; Wevers et al., 2018). 
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However, recent developments in reconstruction algorithms and 
hardware have enabled X-ray CT measurements inline. For instance 
in translational X-ray CT, a sample is rotated and translated 
simultaneously (De Schryver et al., 2016; Janssens et al., 2016, 2018, 
2019; L. F. A. Pereira et al., 2016, 2017). Alternatively, gantry 
systems, similar to medical CT systems, can be developed for inline 
industrial CT. The first inline 3D X-ray CT systems are already 
offered commercially, e.g., “Mito” by BIOMETIC targeted at the food 
industry (www.biometic.com). In addition, reconstruction 
algorithms are being developed that incorporate deep learning to 
reduce the number of projections required to produce a high-quality 
image and thus to reduce the required acquisition time. However, 
these systems are not yet suited for sorting of high volumes of low 
value products. 

2.4 Detection of internal disorders in 

horticultural products 

Several instrumental techniques for nondestructive internal 
disorder detection have been proposed in literature, which are 
mainly based on visible and near-infrared (Vis-NIR) spectroscopy, 
MRI, X-ray radiography or X-ray CT, (Arendse et al., 2018; Lu & Lu, 
2017; Nicolaï et al., 2014; Piovesan et al., 2021; Srivastava et al., 
2018; Z. Wang, Herremans, et al., 2018). In this section, the most 
studied techniques for internal disorder detection are discussed, 
with a focus on the application to pome fruit. 

2.4.1 Visible and near-infrared (Vis-NIR) 

spectroscopy 

In Vis-NIR spectroscopy, a sample is irradiated with visible (400–
750 nm) or near-infrared (750–2500 nm) light which is absorbed 
and scattered by the material. Because of the limited absorption of 
Vis-NIR radiation by water, radiation can penetrate up to a few 
centimeters into biological tissue, depending on the wavelength. 
Light scattering causes the radiation to diffuse in the sample volume 
and to be reemitted at the tissue boundaries. The spectrum of the 
interacted light is measured by a wavelength-sensitive detector, 
which can then be analyzed (Nicolaï et al., 2007, 2014). It is mainly 
applied in three modes, i.e., reflectance, interactance and 

http://www.biometic.com/
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transmission. In reflectance mode, the spectrum of the reflected light 
from the surface is measured. However, due to the limited 
penetration depth of the used wavelengths, it can only be used to 
spot (sub)surface defects, e.g., bruises. To detect deeper internal 
defects, transmission is therefore required. However, for large fruit, 
such as apple and pear, the full transmission of Vis-NIR light is 
limited. Therefore, as a middle ground, interactance mode is often 
used to analyze intact fruit. Herein, the light that was partly 
transmitted through the sample and that was then reemitted via 
scattering is measured (Lu & Lu, 2017; Walsh et al., 2020). In 
general, the main downsides of Vis-NIR spectroscopy for internal 
disorder detection are the lack of spatial information and the 
difficultly of interpreting the measured spectrum, which depends on 
i.a., the fruit size, fruit shape, the cultivar, seasonal variation, and 
temperature. Therefore, large amounts of data are required to 
perform calibration. Moreover, since internal disorders are not 
always uniformly distributed in the fruit, long exposure times, a 
fixed orientation, or multiple measurements from different 
positions are required (Bobelyn et al., 2010; Lu & Lu, 2017; Nicolaï 
et al., 2007, 2014; Pasquini, 2003). 

Vis-NIR spectroscopy has been used successfully to detect internal 
disorders in research. Han et al. (2006) reported false positive and 
negative rates of respectively 4.3 and 5.3 % for brown core detection 
in ‘Yali’ pears using transmission Vis-NIR spectroscopy at three 
different locations per sample with precisely aligned pears. 
Khatiwada et al. (2016) used transmission Vis-NIR spectroscopy to 
detect internal browning in ‘Pink LadyTM’ apples with four spectra 
acquired of each fruit and reported an accuracy of more than 95 % 
for classifying acceptable and unacceptable fruit. Additionally, a 
coefficient of determination (R2) of 0.83 was found when predicting 
internal browning severity on a five-point scale. Similarly, Guo et al. 
(2020) reported an R2 of up to 0.91 for predicting watercore severity 
as the percentage of affected area on an equatorial transverse cut in 
‘Fiji’ apples using the average of three transmission spectra by 
rotating the fruit 120° between measurements. Huang et al. (2020) 
investigated transmission Vis-NIR spectroscopy to detect internal 
defects in ‘Honeycrisp’ apples by acquiring spectra from six different 
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locations per fruit. Using the mean spectrum of the six 
measurements, a classification accuracy of up to 93.1 % was 
reported. However, for fruit with a defective tissue area below 40 % 
of the total fruit tissue area being rated, the accuracy dropped to 
77.3 %.  

2.4.2 Magnetic Resonance Imaging (MRI) 

MRI is based on the interaction of the nuclear spin with an external 
magnetic field and radio waves and mainly provides information on 
the density and mobility of hydrogen nuclei. Different compositions 
and structures of sample tissue affect the extent to which the 
protons can interact with the magnetic field and the radio waves. By 
applying a spatially changing magnetic field across the sample, a 
signal with spatially varying frequency components is produced. In 
addition, radio waves are used to cause changes in the directions of 
the nuclear spin of the protons. In-between pulses of radio waves, 
the relaxations of the nuclear spins to an equilibrium state along the 
main magnetic field are recorded. The spatially and temporally 
varying signals can then be used to reconstruct a multimodal 3D 
image of the sample. Commonly, three measured tissue properties 
are visualized, i.e., proton density, the longitudinal relaxation time 
(T1) and the transverse relaxation time (T2) (Brown et al., 2014). 

MRI has been used for quality evaluation of fruit, including internal 
disorder detection (Srivastava et al., 2018). Characterization and 
detection of bruises was investigated using MRI in apple (McCarthy 
et al., 1995; Zion et al., 1995) and pear (Razavi et al., 2018). MRI was 
also used to investigate watercore in apple (Clark et al., 1998; Clark 
& Richardson, 1999; Herremans, Melado-Herreros, et al., 2014; 
Melado-Herreros et al., 2013; S. Y. Wang et al., 1988). Internal 
browning was studied using MRI in apple (Clark & Burmeister, 1999; 
Defraeye et al., 2013; Gonzalez et al., 2001) and pear (Hernández-
Sánchez et al., 2007; Lammertyn et al., 2003b, 2003a; Suchanek et 
al., 2017; C. Y. Wang & Wang, 1989). MRI has also been used for the 
detection of cavities in watermelons (Saito et al., 1996) and heat 
treatment injury in mango (Joyce et al., 1993). 

For MRI, the remaining concerns are low image acquisition speed 
due to physical constraints, the need for a sufficiently powerful and 
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homogenous magnetic field, high equipment costs, electromagnetic 
inference and motion artefacts (Brown et al., 2014; Colnago et al., 
2014; Nicolaï et al., 2014; Srivastava et al., 2018). 

2.4.3 X-ray radiography 

X-ray radiography was explored for detecting hollow heart in potato 
(Finney & Norris, 1973), and internal disorders and insect 
infestation in mango (Thomas et al., 1993, 1995). Casasent et al. 
(1998) used X-ray radiography to detect damaged pistachio and 
reported a classification accuracy of 88 %. Similarly, Kim & Schatzki 
et al. (2001) tested X-ray radiography to detect damaged almond 
nuts. A classification accuracy of up to 81 % was achieved. A method 
for detecting insect damage in wheat kernels was proposed by 
Karunakaran et al. (2004), who reported a classification accuracy of 
up to 86 %. Narvankar et al. (2009) developed a method for fungal 
infection detection achieving true negative and true positive rates of 
respectively 83 and 89-93 % (depending on the fungus). 
Kotwaliwale et al. (2007) investigated the use of X-ray radiography 
for the detection of damaged pecan nuts and reported a true positive 
and true negative rate of 76 and 100 %, respectively.  

The usage of X-ray radiography to detect defects in onions was 
reported by Tollner et al. (2005) with classification accuracies above 
90 %. Haff et al. (2006) showed that the use of X-ray radiography has 
a high potential for detecting translucency in pineapples. Jiang et al. 
(2008) proposed the use of X-ray radiography to detect and segment 
insect damage in guava and peach  fruit, reporting detection 
accuracies for infestation sites of 93 and 96 %, respectively. X-ray 
radiography was used to detect granulation and endoxerosis in 
oranges and lemons, respectively, with corresponding classification 
accuracies of 96 and 94 % (van Dael et al., 2016). 

For apple, Shahin et al. (1999, 2001) proposed a sorting system for 
detecting watercore using X-ray radiography and reported 
accuracies up to 88 % for classifying healthy, mildly affected and 
severely affected fruit, which were homogeneous in size. Kim & 
Schatzki et al. (2000) proposed a method for watercore detection in 
apple and achieved an overall accuracy of 60 % for classifying 
healthy, mildly affected and severely affected fruit on a larger 
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dataset with fruit of various sizes. The system correctly classified 
apples into the healthy and severe categories with false positive and 
negative rates in the range of 5 to 8 %. X-ray radiography was used 
to detect bruises in apple, achieving classification accuracies of up to 
93 and 60 % for old and new bruises, respectively (M. Shahin et al., 
2002). The potential of X-ray radiography for insect damage 
detection in apple was explored by Hansen et al. (2005). For the 
detection of mould core in apple using X-ray radiography, an 
accuracy of 95 % was reported by Yang et al. (2011).  

The X-ray radiography-based methods above mainly use disorder 
and application specific algorithms, e.g., dedicated feature extraction 
algorithms. This complicates their robustness and transferability to 
other biological products with considerable differences in shape, 
size, and composition. In addition, the contrast in the radiograph 
may suffer from effects of fruit shape, volume, and internal structure 
such that internal defects can be less prominent in the image when 
they are, e.g., shadowed by the core of the fruit. Therefore, a more 
general purpose multisensor algorithm was developed that 
combines prior knowledge in the form of shape and density 
distribution models with X-ray radiography (van Dael et al., 2019, 
2017). For instance, for internal disorder detection in pear, the 
method obtained true positive and true negative rates of 97 and 
90 %, respectively, compared to a dedicated reference method that 
obtained true positive and negative rates of 98 and 84 %, 
respectively (van Dael et al., 2017). The downside of the method is, 
however, that it still requires product specific 3D models of the 
shape and density distribution, and the complex integration of 
multiple sensors.   

2.4.4 X-ray Computed Tomography (CT) 

In terms of internal disorders, X-ray CT based methods have mainly 
been used to characterize them rather than to detect them 
automatically (Cantre et al., 2017; Diels et al., 2017; Herremans et 
al., 2013; Herremans, Melado-Herreros, et al., 2014; Herremans, 
Verboven, et al., 2014; Lammertyn et al., 2003b, 2003a; Mazhar et 
al., 2015; Muziri et al., 2016; Orina et al., 2017; Si & Sankaran, 2016). 
Most characterization methods were rather slow and involved semi-
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automated steps or manual annotation that does not scale to large 
datasets. Research was done towards automated internal disorder 
detection using X-ray CT. A method for the detection of internal 
decay in chestnuts was proposed by Donis-González et al. (2014), 
reporting accuracies of 85.9 %, 91.2 % and 96.1 % for classifying in 
five, three and two classes, respectively. Herremans, Melado-
Herreros, et al. (2014) proposed a method for watercore detection 
in apple, achieving a classification accuracy of up to 89 %. 
Jarolmasjed et al. (2016) developed a method for bitter pit detection 
in ‘Honeycrisp’ apples, reporting accuracies of 70 and 96 % for two 
different populations. 

A few studies compared X-ray CT to MRI for internal disorder 
detection. Lammertyn et al. (2003a) compared X-ray CT to MRI for 
the detection of internal browning during its development in 
‘Conference’ pears. They found that both techniques were reliable. 
However, incipient browning was harder to detect using X-ray CT 
due to the physical principle according to which the technique 
operates. In incipient browning, the cellular liquid of death cells has 
not yet diffused away, resulting in no change in density and X-ray 
attenuation. On the other hand, changes in proton mobility can 
already be observed earlier using MRI. For watercore detection in 
apple, it was found that with their method, better classification of 
heathy and affected fruit was achieved using X-ray CT, even though 
MRI provided better contrast between healthy and affected tissue 
(Herremans, Melado-Herreros, et al., 2014). 

2.5 Automated image interpretation 

X-ray images provide rich spatial and structural information on the 
imaged sample. To use X-ray imaging as a tool for internal quality 
inspection of foods at a high-throughput, automated image 
processing and interpretation is required. Computer algorithms 
must, therefore, be developed that “understand” the content of the 
images to solve various tasks, e.g., classification of healthy and defect 
fruit, or the segmentation of regions affected by internal browning. 
In this section, the field of image interpretation is, therefore, 
discussed in the context of quality inspection. First, the necessary 
background is provided on how digital images are presented to a 
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computer (section 2.5.1) and the general challenge in computer 
vision is described (section 2.5.2). Next, conventional machine 
learning techniques for interpreting images are discussed (section 
2.5.3). Finally, the current paradigm in machine learning, i.e., deep 
learning, is discussed in the context of images (section 2.5.4). This 
section is by no means a comprehensive review on deep learning, 
but introduces the main techniques used in this thesis. 

2.5.1 Digital images 

Digital images are indispensable tools for data analysis in many 
fields, e.g., field monitoring, plant phenotyping, medical diagnosis, 
and nondestructive inspection in manufacturing. They enable the 
acquisition of rich spatial and spectral data about the imaged object 
in a standardized way. Digital images comprise a regular grid of 
picture elements, i.e., pixels, that are the smallest addressable 
elements in an image. Each pixel is characterized by its position on 
the image, e.g., x- and y-coordinates, and its intensity. The intensity 
is typically represented in gray scale, going from black (minimal 
intensity) to white (maximal intensity). X-ray radiographs, for 
instance, are gray scale images in which the intensity corresponds to 
the attenuation of X-rays (see Figure 2.9). Images can comprise 
multiple channels, i.e., multiple layers of pixels that are 
superimposed over each other. For instance, a color image typically 
has a red, a green and a blue (RGB) channel that together contribute 
to the color of every pixel. Images can also be extended to 3D, e.g., 
CT volumes, in which the smallest addressable element is called a 
voxel. Volumetric images can be interpreted as a stack of 2D images, 
or slices, in which the distance between the slices is defined by the 
3rd dimension of the voxel size (i.e., the resolution of the CT image). 
Volumetric images can also have different channels to represent 
different image modalities of the same sample, e.g., proton density 
and T1 and T2-relaxation times in MRI. 
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Figure 2.9: Pixels in a digital image illustrated on an X-ray radiograph of a pear with internal 
disorders. The region indicated in a red box is zoomed in on when going to the left. A digital 
image is a matrix in which the values represent the color intensities. 

2.5.2 Computer vision 

Visual perception is the most important mechanism by which 
humans understand their surroundings. Human visual perception is 
thus also excellent at analyzing images. However, human 
interpretation does not scale to a high-throughput or large datasets 
of images. In addition, it can be subjective and inconsistent over 
time. Therefore, automated image analysis is strived for in high-
throughput, time sensitive or critical applications. While humans 
can interpret a rendered image easily, to a computer, digital images 
are nothing more than a grid of numbers, i.e., matrices. It has no 
knowledge of what the image represents, nor does it understand its 
content.  

With the emergence of computers and digital images, the field of 
computer vision emerged that deals with exactly how computers can 
obtain high-level understanding of images and videos (Szeliski, 
2010). In the context of quality inspection, typical computer vision 
tasks are image classification (e.g., sound vs defect samples) and 
segmentation (e.g., identifying the defect region).  

To make a computer understand or interpret an image, one could 
write an algorithm with explicit instructions that must be followed 
step-by-step by the computer to reach a final decision. However, 
designing a robust algorithm with fixed rules is extremely 
challenging for a large dataset of images considering the often large 
variability between samples, e.g., biological variability. Images can 
be interpreted as high-dimensional samples, i.e., each pixel or voxel 
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in the image is a single variable. A low-resolution image of 32 × 32 
pixels already contains 1024 variables. Just moving the object in an 
image slightly in any direction changes the values of many pixels. 
Interpreting images directly is, therefore, a challenging task. 
Therefore, huge effort has been made in developing machine 
learning (ML) techniques.  

2.5.3 Machine learning 

In ML, an algorithm explores the statistics of a training dataset to 
identify patterns that are needed to solve a certain task (Bishop, 
2006). It enables machines to perform a task by learning from data 
(“experience”), without being explicitly programmed how to do so. 
In general, learning can be implemented in three ways, i.e., 
supervised learning, unsupervised learning, and reinforcement 
learning. In supervised learning, models are trained using labeled 
data. Herein, learning occurs by providing direct feedback to the 
model by optimizing its predictions to match the ground truth labels 
on a training set. The idea is that a trained model can then be used 
to provide accurate predictions on unseen data. An example of 
supervised learning is classification in which the correct answers 
are available for training.  

Unsupervised learning, on the other hand, requires the model to 
discover the underlying structure in unlabeled data. Finding the 
underlying structure can be a goal on its own, e.g., clustering, in 
which samples must be assigned to several groups (clusters). 
Alternatively, unsupervised learning can be used as an intermediate 
step to provide useful representations of the data for other tasks. 
Finally, in reinforcement learning, a model, which in this case is 
referred to as an agent, learns from trial and error by receiving 
feedback from operating in an environment without relying on other 
instructions. In practice, supervised learning is by far the most used 
ML approach (Bishop, 2006; Goodfellow et al., 2016).  

Semi-supervised and self-supervised learning are two special cases 
of unsupervised learning. Semi-supervised learning assumes that 
most data is unlabeled, while a small subset of labeled data is 
available. An example of a semi-supervised learning strategy is to 
first train in an unsupervised way. Thereafter, the discovered 
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underlying structure can be used to more efficiently train the model 
to perform a specific task using the small subset of labeled data. In 
self-supervised learning, random transformations are applied on 
unlabeled data. This transformation, which is unknown to the 
model, must then be estimated or reversed by the model. The idea is 
that if a model can do this, it must understand certain underlying 
structures in the data. Again, the learned underlying structure can 
then be used for clustering or other downstream tasks. 

Typically, a dataset is divided in a training, validation, and test 
dataset. The training dataset is used to train the ML algorithm, while 
the validation dataset is used for evaluating the sensitivity towards 
hyperparameters, i.e., parameters that are not learned but that must 
be set by the operator. Finally, the trained model is tested on the left-
out test dataset to gauge its performance on unseen data. The 
features are often normalized, i.e., centered around the origin and 
scaled to variance equal to one, to make the features independent of 
their scale (Bishop, 2006; Goodfellow et al., 2016). 

In ML, the data is typically represented as a matrix with samples and 
variables (or features) as rows and columns, respectively. Each 
sample is thus represented as a vector, i.e., a feature vector. 
Therefore, to apply machine learning on images, features must be 
extracted using image analysis and processing techniques (Bishop, 
2006; Russ, 2006; Szeliski, 2010). Image processing algorithms can 
contain operations at various levels, e.g., low-level features (edge, 
corner, or blob detection), shape-based features (thresholding, 
morphological operations, template matching), or whole image 
analysis (pixel counting, histograms, clustering). Every sample has 
its own vector of features, which corresponds to a point in feature 
space. Thereafter, the features are fed to a ML algorithm for learning 
the task at hand, e.g., classification. For instance, van Dael et al. 
(2016) developed an algorithm to extract features from X-ray 
radiographs of oranges to differentiate heathy and defect fruit (see 
Figure 2.10). The features, i.e., the area, perimeter and solidity of the 
unaffected endocarp, were used to train a k-nearest neighbor (kNN) 
algorithm for classification. kNN uses the majority vote on the 
classes of the k closest training samples in feature space to predict 
the class of a new sample. Various other ML algorithms exist for 
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classification, e.g., Support Vector Machines (SVM), Bayesian 
classifiers, decision trees and random forests, and for other tasks, 
e.g., regression (Bishop, 2006). 

 

 
Figure 2.10: Feature extraction on an X-ray radiograph of an orange. Original (a) and 
segmented (b) image with the extracted features on the unaffected endocarp: area (c), 
perimeter (d) and solidity (e), calculated as the ratio of the white area in (c) to the area 
encapsulated by its convex hull in (e). The image in (b) was obtained by applying multiple 
Otsu-thresholds on image (a) (Otsu, 1979). Adapted from (van Dael et al., 2016) 

In the unsupervised case, classification comes down to clustering, 
e.g., the k-means clustering algorithm. Using some similarity 
measure in feature space, k-means clustering iteratively assigns 
samples to k clusters to maximize the similarity inside and minimize 
the similarity between clusters. Clustering can be applied inside a 
single image to segment different regions based on their pixel values 
and coordinates (Pal & Pal, 1993). For instance, the Otsu-threshold 
separates all pixels in two clusters based on the histogram of pixel 
values and is often applied to separate the foreground and 
background (Otsu, 1979). k-Means clustering can be used to cluster 
pixels in k clusters corresponding to different regions of interest 
(Bishop, 2006). Region growing is a semi-supervised region-based 
image segmentation algorithm. Starting from a given initial seed 
point, neighboring pixels are added iteratively to the region based 
on a similarity measure between all pixels already added to the 
region. Multiple seed points can be used for the same or different 
clusters (Pal & Pal, 1993). 

ML algorithms have proven to be effective in solving various tasks 
automatically. However, the necessary step of feature extraction has 
several downsides. First, features are often not transferable to other 
applications. Relevant features must thus be engineered for every 
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new application. Second, feature engineering requires expert 
knowledge and thus comes at a high cost. Third, even for experts 
finding useful features is labor-intensive and it requires a lot of trial 
and error. Finally, feature engineering potentially results 
suboptimal solutions that are biased and limited by the human 
capability of interpreting the data. Strategies have been developed 
to partly overcome this issue. For instance, instead of deciding on 
what features should be extracted from the image, random pattern, 
or texture, occurrences can be used to create feature vectors of 
images, e.g., histograms of oriented gradients or local binary 
patterns (Dalal & Triggs, 2005; Pietikäinen et al., 2011). These 
methods have a good performance due to their high discriminative 
power, computational simplicity, and invariance to grayscale 
changes (e.g., by illumination variations). However, since these 
methods only provide an unordered statistical distribution of local 
low-level features, the spatial and conceptual information that can 
be captured is limited. 

Therefore, in deep learning, the current paradigm of machine 
learning, the intermediate step of feature extraction is removed 
altogether. Instead, in deep learning models learn to solve a task 
end-to-end from “raw” data. In the learning process, the model itself 
decides which features should be extracted from to the data to map 
the inputs to the target outputs. 

2.5.4 Deep learning 

In deep learning, artificial neural networks (ANN) are used to learn 
the mapping from the input to the target output “end-to-end”. In 
classical neural networks, i.e., feedforward neural networks, 
information flows in one direction from the input to the output 
through a network of neurons that are connected in layers (see 
Figure 2.11). The neurons, also called nodes, are connected by 
weights that must be learned. In this context, the term “deep” refers 
to usage of multiple layers in the model architecture. A model’s 
depth is thus the number of layers it contains. 
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Figure 2.11: An artificial neural network. 

2.5.4.1 Artificial Neural Networks 

ANNs, originally inspired by the functioning of the brain, were 
already introduced in the 1960s, but only became state-of-the-art in 
many ML fields during the last decade. Mainly due to an increase in 
computation power and the availability of large datasets, deep ANN 
could be trained at the scale required to do better than other 
methods. Their dominance in performance on many benchmarks, 
e.g., AlexNet winning the ImageNet image classification challenge in 
2012 (Krizhevsky et al., 2012), was the spark to reignite research on 
ANN-based methods in many fields, including agriculture, medicine, 
natural language and transportation. 

The single layer perceptron is the simplest neural network 
(Rosenblatt, 1958). It only contains a single layer of output node(s) 
and each output is calculated directly as a weighted sum of the 
inputs. By applying a threshold or sigmoid function on the outputs, 
it can be used as a classifier. Not long afterwards, the idea of the 
multi-layer perceptron (MLP) was introduced that has at least one 
hidden layer, i.e., a layer between the input and output nodes 
(Rosenblatt, 1961). In contrast to the perceptron, which uses a 
threshold activation on the outputs, MLPs use in addition nonlinear 
activation functions (see Figure 2.12) on all nodes except for the 
input nodes. Additionally, each node can have a bias term. The use 
of such activations results in a model that can solve nonlinear 
problems. Since each neuron in a layer is connected to every neuron 
in the neighboring layers, MLPs are also called fully connected 
neural networks. 
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Figure 2.12: Activation functions. Adapted from (Activation Function, 2019). 

Zoomed in on a single neuron, its activation is calculated using two 
operations, i.e., a weighted sum of the activations in the previous 
layer and a nonlinear function. On the level of whole layers, the 
activations of 𝑙𝑎𝑦𝑒𝑟𝑖 results from a matrix multiplication between a 
weights matrix and the vector of activations of 𝑙𝑎𝑦𝑒𝑟𝑖−1 followed by 
an element-wise nonlinear function. In the context of classification, 
Figure 2.13 shows the learned representations of a single-layer 
perceptron and an MLP for linearly inseparable curves in the input 
space. Using only linear operations, the perceptron is unable to 
separate the classes. The MLP, on the other hand, can map the input 
space to a representation in which the curves are linearly separable. 
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Figure 2.13: Visualization of learned representations in a single-layer perceptron (a) and a 
MLP (b) for linearly inseparable curves in the input space. The blue and red curves 
represent data points of two different classes. The blue and red regions in the images 
indicate regions in the input and feature space that are separated by the classifier. In (a), 
the perceptron can only construct a line in the input space. Since the two classes are not 
linearly separable in the input space, some data points are assigned to the wrong class. In 
(b), a nonlinear transformation is first applied on the input variables. Thereafter, both 
classes become linearly separable in the transformed feature space. Adapted from (Olah, 
2015). 

2.5.4.2 Learning by back-propagating errors through 

the network 

To perform a task, ANNs must find the optimal weights that define 
the inner connections such that their prediction corresponds to the 
target output. The weights in an ANN are optimized via learning 
using the backpropagation mechanism (Rumelhart et al., 1986). 
After randomly initializing an ANN, an error is computed on its 
output using some objective function. In supervised learning, the 
objective function measures the similarity between the predictions 
and the target output. The error, also called loss, is then used to 
update the network’s weights. The optimization happens iteratively 
using gradient descent, i.e., the weights are updated in the direction 
that causes the loss to decrease. The partial derivative of the loss 

(a)

(b)
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with respect to each weight must thus be computed, which is done 
using the chain rule. The network’s weights 𝜃 are then iteratively 
updated according to 

𝜃 ← 𝜃 ± 𝜂∇𝐿(𝜃)  (Eq. 3) 

in which ∇𝐿(𝜃) is the gradient of the loss to each weight and 𝜂 is the 
learning rate. 𝜂 is a hyperparameter that determines the size of the 
updates. A too small learning rate causes slow convergence, while a 
too large learning rate can lead to only finding local minima. 
Gradient estimates are generally done on batches, i.e., random 
samples of the dataset. This is called stochastic gradient descent and 
results in a lower chance of getting stuck in local minima. Training is 
mostly done on several loops, i.e., epochs, over the whole training 
dataset. 

2.5.4.3 Deep learning on 2D and 3D images 

To apply fully connected networks on images, the images are 
flattened into a long vector. However, this vector is very high-
dimensional. A large number of weights are thus required to 
implement these networks directly, resulting in a complex model 
that requires more time and data to train, and which might easily 
overfit. Therefore, various weight sharing ideas have been proposed 
of which convolutional neural networks (CNN) are by far the most 
effective. In a CNN, the convolutional layers are used in which 
images are convoluted with kernels, i.e., filters. For a 2D input image 
with C channels, and H and W pixels in height and width, 
respectively, each filter has a size of 𝐶 × 𝐾 × 𝐾, in which 𝐾, a 
hyperparameter, is the kernel size. Therefore, instead of having each 
node in the layer being connected to all nodes in the previous one, 
each node has a small receptive field. Convolutions thus require less 
weights by limiting the receptive of each node and sharing the 
weights between nodes of the same layers. An additional benefit of 
convolutions is that they are invariant to translations in the input 
image. Multiple filters can be used in the same convolutional layer, 
which determines the number of channels in the output of the layer. 
In CNN, the outputs of the layers are often called feature maps. 
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Figure 2.14: 2D convolution of a 𝐻in × 𝑊in input image that has Cin channels. (a) 
Convolution of the Cin × 𝐻in × 𝑊in input image with a single Cin × 𝐾 × 𝐾 filter resulting in 
a 1 × 𝐻out × 𝑊out feature map. The filter slides over the input image along the height and 
width dimension. At each position, the convolution operates on a Cin × 𝐾 × 𝐾 region of the 
input (indicated in red on the left) and produces a single value in the output (indicated in 
red on the right). (b) Convolution of the Cin × 𝐻in × 𝑊in input image with N filters of Cin ×
𝐾 × 𝐾, resulting in a Cout × 𝐻out × 𝑊out output. Herein, Cout = N and 𝐻out and 𝑊out depend 
on how the convolution was implemented in terms of kernel size, stride and padding of the 
input image. The feature map produced by the orange filter is indicated on the right in a 
transparent orange overlay. Adapted from (Bai, 2019). 

A small receptive field, however, prevents the nodes from detecting 
larger and more abstract features in the image. Therefore, strategies 
are implemented to increase the receptive field of nodes deeper in 
the network. For instance, strided convolutions are used (i.e., the 
filter skips certain positions), or convolutions can be implemented 
without padding the borders of the image to reduce the height and 
width of the output. In addition, pooling layers are used to 
summarize the content of feature maps in a down-sampled form. For 
instance, a 2 × 2 max-pooling layer with two-pixel stride only keeps 
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the highest value in every 2 × 2  region, dividing the spatial 
dimension of the feature maps in half. Pooling layers are 
implemented after the non-linear activation function. 

After each pooling layer, the receptive field of the nodes in CNNs 
increases. The first convolution layers generally pick up low-level 
features, e.g., edges and corners, while the more high-level features 
are picked up in deeper layers. Layer-by-layer, the spatial resolution 
of the feature maps decreases, while the level of abstractness 
increases hierarchically. Often, a CNN consists of convolutional 
layers followed by fully connected layers that incorporate all 
activations of the last feature maps. For volumetric images, the 
convolution and pooling operations in CNNs can be extended to 3D, 
i.e., using filters with a channel, height, width and depth dimension. 

2.5.4.4 Image classification using CNNs 

For classification, the feature maps of the last convolution layer are 
flattened to a long vector, after which fully connected layers are used 
for final classification. For binary classification, a single output node 
is used combined with a sigmoid function to convert the output into 
a probability in the range [0, 1] (Figure 2.15).  

 
Figure 2.15: Simple CNN for binary classification. Several convolutional blocks, containing 
convolutional and pooling layers are coupled with fully connected layers and a single 
output node. The convolutional blocks serve as a learnable feature extractor, while the fully 
connected layers and output node perform the classification. In this model, ReLU is used as 
the nonlinear activation function (see Figure 2.12).  
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As a loss function, the binary cross-entropy (BCE) metric is most 
often used, i.e., 

𝐿𝑜𝑠𝑠 =  
1

𝑁
∑ (𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)𝑁

𝑖=1   (Eq. 4) 

in which 𝑁, 𝑦𝑖 and 𝑦̂𝑖 are the batch size, the ground truth label, and 
the model output, respectively. For multi-class classification in 𝐶 
classes, the output layer has 𝐶 nodes and the SoftMax function is 
implemented to convert the output in probabilities, i.e., the values of 
output nodes range between 0 and 1, and sum up to 1. The loss on 
the output vector 𝑥 is the sum of the cross-entropy (CE) loss 
calculated for every class 𝑐 (see Eq. 5). The total loss is then the mean 
of the loss calculated over the whole batch. For unbalanced datasets, 
a class-weighted version can be used. 

𝐿𝑜𝑠𝑠(𝑥, 𝑐) =  − log (
𝑒𝑥𝑝(𝑥𝑐)

∑ 𝑒𝑥𝑝(𝑥𝑖)𝐶
𝑖=1

)  (Eq. 5) 

2.5.4.5 Unsupervised image representation learning 

Instead of classifying images in discrete classes, it is often useful to 
have low dimensional representations of images. These 
representations can be used for multiple downstream tasks. A way 
of getting low dimensional representations is by using an 
autoencoder (AE). An AE is an ANN that learns to map the input back 
to itself while going through some bottle-neck representation, i.e., a 
vector of lower dimensions. AEs thus comprise two parts, i.e., an 
encoder that encodes the input into a low dimensional 
representation, and a decoder that tries to reconstruct the input 
from the encoded information. The low dimensional representation, 
also called code, motivates the model to retain only the most 
important information. For images, the encoder and decoder contain 
(multiple) convolutional and fully connected layers. AE are trained 
by minimizing the reconstruction error, e.g., the mean-squared error 
(MSE), between the input and output. 
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Figure 2.16: An autoencoder comprising an encoder that encodes the input in a low 
dimensional representation, i.e., code, and a decoder that reconstructs the input from the 
code. 

The encoder is thus pretrained in an unsupervised way and can be 
used for downstream tasks, such as classification or clustering. Since 
the dimensions are drastically reduced, not only DL but also 
conventional ML algorithms can be coupled to the encoder for the 
downstream tasks. Additional to the encoded representation, also 
the reconstruction error between the input and output can be useful. 
For instance, it can be used for anomaly detection. By training an AE 
on normal data only, the reconstruction error is expected to be 
higher for anomalies because anomalies were not included in the 
training set. The reconstruction error represents thus an anomaly 
score. 

To prevent AEs from learning the identity function and to improve 
the quality of the encoded representation, several regularization 
techniques can be used. In a denoising AE (DAE), the model is given 
a corrupted version of the input image and the objective is to restore 
the original undistorted image. The assumption is that the DAE 
learns higher-level features that generalize better to unseen data. 
More broadly, contractive autoencoders learn to map slight 
variations in the input to the same output. In sparse autoencoders, 
an extra term is added to the loss function to enforce sparsity by 
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penalizing activations (nonzero nodes). Therefore, the model learns 
to activate only a small subset of its hidden nodes when detecting 
statistical features in the input and leaves the activations of most 
other nodes close to zero. Hereby, the model is forced to learn more 
descriptive representations. 

A stacked AE refers to an AE that is trained layer by layer instead of 
jointly. This means that the AE is trained with an increasing number 
of layers, in which the previously added layers are frozen and only 
the newly added layers are trainable. This reduces the required 
memory for training and might speed up convergence compared to 
jointly training. A downside of a pure stacked AE approach is that 
learning is greedy. Only a single layer can be optimized at a time, 
while the previously trained layers cannot be jointly optimized to 
improve overall performance. Therefore, greedy learning is mostly 
used as a pretraining step, after which all layers of the AE are fine-
tuned together. 

2.5.4.6 Semantic image segmentation 

Semantic image segmentation is the task of classifying each 
individual pixel in one of 𝐶 classes. It is mostly approached as a 
supervised learning problem with labeled data. The labeled data 
must thus contain labels on the pixel level, which can be hard to 
obtain and often requires manual labeling. This is especially 
challenging for 3D data. A lot of work can be required for labeling a 
single sample.  

The most commonly used and effective neural network for semantic 
segmentation is the U-Net model (Çiçek et al., 2016; Ronneberger et 
al., 2015). The U-Net model is a CNN and similar to an autoencoder, 
it contains an encoder and decoder, which are mirrored versions of 
each other (see Figure 2.17). The task of the encoder is to capture 
different semantic concepts, while the decoder maps the semantic 
concepts to their spatial location in the image. In the encoder, the 
resolution of the feature maps decreases, while the number of 
feature maps (channels) increases. In the decoder, the resolution is 
again increased to the same resolution as the input image while the 
number of channels decreases. This structure is often depicted in a 
U-shape; hence the name U-Net.  
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Figure 2.17: U-Net model (Ronneberger et al., 2015) 

In the final step of the decoder, an output must be produced with 𝐶 
channels: a single channel for each class. Hereto, a final 1 × 1 
convolution is applied with 𝐶 filters. Each 1x1 filter combines all info 
in the previous channels into a single channel, while preserving the 
spatial resolution. It thus pools the feature maps in the channels 
dimension. Each pixel can then be assigned to one of the 𝐶 classes, 
by finding the channel for which it had the highest value. 
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Figure 2.18: Illustration of a 1x1 convolution with a single filter. The filter slides over the 
input image along the height and width dimension. At each position, the convolution 
operates on a Cin × 1 × 1 region of the input (indicated in red on the left) and produces a 
single value in the output (indicated in red on the right). Adapted from (Bai, 2019). 

Since its hard for the decoder to produce a detailed prediction from 
a representation with low spatial resolution, the U-Net model uses 
skip-connections. The skip-connections concatenate the feature 
maps of the encoder to the ones of the decoder at the same depth, 
i.e., with the same spatial resolution. Hereby, the decoder can 
incorporate more detail in its predictions from low-level features 
picked up by the first layers of the encoder. 

Common loss functions for semantic segmentation are the pixel-
wise CE loss, Dice-loss and the intersection over union (IoU) loss. 
Class imbalances are common for semantic segmentation tasks. 
While the Dice-score and IoU naturally incorporate class weighing, a 
class-weighted version of the pixel-wise CE loss is often used. The 
dice-loss is given by Eq. 6. 

 

𝐿𝑜𝑠𝑠𝐷𝑖𝑐𝑒 =  1 − 𝐷 =  1 −
2

𝐶
∑

∑ 𝑦𝑐𝑖𝑦̂𝑐𝑖
𝑁
𝑖=1

∑ 𝑦𝑐𝑖
2 +∑ 𝑦̂𝑐𝑖

2  𝑁
𝑖=1  𝑁

𝑖=1

𝐶
𝑐=1   (Eq. 6) 
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Herein, D, C, N, 𝑦𝑐𝑖 and 𝑦̂𝑐𝑖 are the Dice-score, number classes, the 
number of pixels, the ground truth, and the prediction, respectively. 
The ground truth labels are one-hot encoded, i.e., a binary image 
with C channels in which each class is thus provided as a binary 
image. The IoU-loss is described by Eq. 7 and illustrated in Figure 
2.19. In Eq. 7, A and B are the predicted and ground truth labels, in 
which the ground truth is one-hot encoded. The IoU can be 
computed directly from the Dice-score, i.e., 𝐼𝑜𝑈 = 𝐷/(2 − 𝐷).  

 

𝐿𝑜𝑠𝑠𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 = 1 −
|𝐴∩𝐵|

|𝐴∪𝐵|
  (Eq. 7) 

 

 
Figure 2.19: Intersection over union. 

2.5.4.7 Transfer learning and data augmentation 

Supervised learning is the most straightforward approach when it 
comes to applying deep learning. In practice, however, the absence 
of sufficient training data often limits its performance. Data 
annotation is a time-consuming job that requires expert knowledge. 
Various strategies have been proposed to overcome this problem. In 
transfer learning, a model pretrained on some other dataset is re-
used for another task. Most layers of the pretrained model are kept 
constant, while the final layers of the network are retrained on a 
smaller dataset. The idea is that since the model is pretrained on a 
large dataset, it can already capture descriptive features, which can 
also be used as a feature extractor for other applications. A concern, 
however, is that the success of the pretrained feature extractor 
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depends on the similarity between the pretraining dataset (often 
ImageNet) and the dataset of the application. 

Another approach is the use of data augmentation. Herein, the 
variation in the available dataset is artificially increased by applying 
transformations on the dataset during training, e.g., rotation, 
translation, cropping, scaling, or adding noise. This allows to make 
the model robust against these types of variations. 

2.5.4.8 Regularization 

A problem in machine learning is the phenomenon of overfitting on 
the training data. A model that is overparameterized relative to the 
size of the training dataset can perfectly fit the training data, without 
having the ability to generalize to unseen data. Deep neural 
networks have much more parameters than conventional ML 
algorithms and in theory should, therefore, be much more prone to 
overfitting. Note, however, that conventional ML algorithms rely on 
predefined features, while neural networks are trained end-to-end. 
Part of the model’s capacity is thus used for feature extraction. 

Several regularization techniques have been proposed to reduce the 
risk of overfitting in deep learning. The goal of regularization is to 
make it easier for the model to generalize than it is to overfit. It 
makes remembering the training data more expensive than finding 
more general solutions. The most common form of regularization is 
weight decay, which adds a term to the loss function that penalizes 
large weights. Another form of regularization is dropout. Herein, a 
changing set of nodes are randomly turned off during training which 
makes the training process noisier. The remaining nodes are forced 
to probabilistically co-adapt, resulting in a more robust model 
(Goodfellow et al., 2016).  

Batch normalization is often implemented between a convolution 
and the nonlinear activation function. It normalizes the input of the 
activation function, so that the next layer has a more consistent 
distribution of inputs. It is said that batch normalization mitigates 
internal covariate shift. As a layer’s weights change during training, 
it might change the distribution of its activations that will go to the 
next layer. This effect compounds layer-by-layer and could therefore 
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make it harder for models to converge. It has also been found that 
batch normalization improves generalization. It thus has a 
regularizing effect (Ioffe & Szegedy, 2015). 

Additionally, early stopping can be implemented in which training is 
stopped once the model loses performance on the validation set. 
Finally, variability introduced by stochastic gradient descent and 
data augmentation also makes overfitting less likely (Goodfellow et 
al., 2016). 

2.5.4.9 Deep learning in postharvest quality 

inspection 

Twenty years ago, ANN-based methods were already proposed for 
bruise and watercore detection in apple using X-ray radiography 
(Kim & Schatzki, 2000; M. Shahin et al., 2002; M. A. Shahin et al., 
2001). However, these methods still required feature engineering to 
provide inputs for a small MLP with a single hidden layer. These 
methods are, therefore, not considered “deep” learning. In recent 
years, deep learning has also been applied in agriculture and food 
science. Examples are disease or weed detection in the field, yield 
prediction, plant or fruit detection for automated picking, detection 
of food contamination, and food recognition and calorie estimation 
(Kamilaris & Prenafeta-Boldú, 2018; Zhou et al., 2019). 

Postharvest applications related to quality inspection have mainly 
been limited to the external quality. A CNN was used to detect 
mangosteen fruit with surface defects from RGB images, for which a 
classification accuracy of 97 % was reported (Azizah et al., 2017). 
Tan et al. (2016) trained a five-layered CNN for detecting apples 
with skin lesions in infrared images and reported an accuracy of 
97.5 %. The detection of apples with external defects in RGB images 
using a CNN was presented by Fan et al. (2020). A classification 
accuracy of 92 % was achieved compared to a SVM that scored 87 %. 
The detection of bruised blue berries based on hyperspectral images 
was investigated by Wang et al. (2018). They reported classification 
accuracies of 88 % using ResNet based architectures, which in their 
work outperformed conventional ML methods including SVM 
(81 %), linear regression (76 %), random forest (73 %), bagging of 
multiple decision trees (71 %), and MLP (78 %).  
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Pesticide residue detection on apples using hyperspectral imaging 
was tested using an AlexNet-based model for which a classification 
accuracy of 95 % was reported (B. Jiang et al., 2019). The online 
detection of surface defects of carrots based on RGB images using 
various CNNs, including AlexNet, ResNet, ShuffleNet with transfer 
learning was proposed by Deng et al. (2021). All CNNs had similar 
binary and multiclass classification accuracies of around 99.8 and 
93.0 %, respectively, which all performed better than a Bayesian 
classifier on extracted features (93.1 and 91.0 % on the same tasks). 
Damaged root-trimmed garlic detection with RGB images using a 
CNN based on a pretrained VGG16 model was tested by Thuyet et al. 
(2020). Their system achieved an overall classification accuracy of 
89 %. 

Zhang et al. (2020) proposed a method to segment the normal 
surface, calyx region and bruises in hyperspectral images of 
blueberries using a fully convolutional network with a VGG-16 
backbone. 1 x 1 convolutions with the number of output channels 
equal to the number of classes were applied on the final and 
intermediate feature maps, which were up-sampled and merged 
into a final prediction map. An overall IoU of 0.81 was achieved and 
it was found that transfer learning did not improve performance. 
The authors assigned the latter to large differences between their 
images and the ones in the large dataset used for pretraining, i.e., 
ImageNet. Additionally, they hypothesized that their integration of 
the models pretrained on 3-channel RGB images could be improved 
to better accommodate the application to hyperspectral images. 

A method for online detection of citrus fruit with external defects 
was proposed by Chen et al.  (2021). Their system used a pretrained 
MobileNetV2 model as backbone coupled with a PANet. The 
backbone CNN captured multiscale features in each of its layers, 
after which these feature maps were integrated by PANet for 
classification and bounding box prediction. The predicted bounding 
boxes were used to track the rolling fruit and integrate the predicted 
classes from multiple frames into a final prediction to overcome 
scenarios in which a defect would be invisible on a single frame. An 
overall multiclass classification accuracy of 87 % was achieved for 
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single frame classification, which was improved to 93 % using 
multiple frames via object tracking. 

Fazari et al. (2021) deployed a ResNet101 model on hyperspectral 
images to detect external fungi infection of olives. The model was 
initialized with the weights pretrained on ImageNet, after which the 
whole model was fine-tuned on their dataset using data 
augmentation. To couple the multi-channel hyperspectral input 
images to the pretrained model that only accepts three input 
channels, a trainable convolutional layer with 1 x 1 kernels was 
added to the beginning of the network to bring the number of 
channels down to three. An overall classification accuracy of 91.8 % 
was achieved. 

Several works have also focused on internal quality inspection. Yu et 
al. (2018) used a stacked autoencoder and a fully connected neural 
network to predict firmness and soluble solids content of pears 
based on hyperspectral imaging and achieved coefficients of 
determination (R2) of 0.89 and 0.92, respectively. The deep learning-
based method outperformed partial least squares regression and 
least-squares SVM models that achieved R2 values up to 0.84 and 
0.83 for respectively firmness and soluble solids content.  

Liu et al. (2018) used deep learning for inline detection and 
classification of cucumber surface and internal (watery regions or 
cavities) defects from hyperspectral images. First, a CNN was 
coupled with a SVM and trained in a supervised way to classify image 
patches of normal and defect tissue. Herein, the CNN functioned as a 
trainable features extractor, while the SVM did the classification. In 
addition, a stacked sparse autoencoder was trained in an 
unsupervised way on the spectral signals of defect surfaces and its 
final representations were used to train a classifier to distinguish 
between different types of defects. The inspection system was then 
created by coupling all models and a final classification accuracy of 
91.1 % was achieved. This significantly outperformed other tested 
methods for spectral-spatial classification, i.e., extended 
morphological profile SVM (68.3 %) and bag-of-visual-words 
(73.0 %).  
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A custom CNN and transfer learning with MobileNet and VGG19 
models (pretrained on ImageNet) were used to classify crambe 
seeds from X-ray radiographies. Accuracies of 91, 95 and 82 % were 
reported for discriminating seeds based on internal tissue integrity, 
germination capacity and vigor, respectively. It was noted that the 
custom CNN and pretrained VGG19-based model performed better 
than the pretrained MobileNet-based model. Additionally, the 
custom CNN converged faster than the other models. Potentially, the 
features learned on ImageNet transferred poorly to their dataset 
(Medeiros et al., 2021).  

2.6 Conclusions 

Many instrumental techniques for nondestructive internal disorder 
detection have been proposed in literature. From these techniques, 
X-ray imaging has been identified as especially interesting for 
internal disorder detection due to the good penetration depth of X-
rays through biological material, and the spatial and structural 
information that it provides. It can, therefore, be used to detect 
internal disorders related to density changes in the fruit, which has 
already been illustrated for some cases.  

X-ray radiography is best suited for inline applications. However, the 
fact that it produces a cumulative 2D projection of a 3D object 
complicates the detection if internal disorders. Deviating patterns 
such as internal defects can be less prominent in the image due to 
the cumulation of information and the variability between samples. 
Current methods, therefore, rely on application specific algorithms 
or require product specific 3D models of the shape and density 
distribution.  

By providing 3D information, X-ray CT can overcome these issues. It 
has shown to be effective for characterizing internal disorders, but 
methods for automated detection of internal defects are still lacking. 
Automated methods could potentially be used for more reliable 
nondestructive detection of internal disorders and could also be a 
valuable tool for researchers investigating the phenomenon. While 
X-ray CT is still too expensive and too slow for high volume inline 
inspection of low value products, it might become feasible in the 
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future with ongoing innovations in acquisition geometries and 
reconstruction software.  

Current methods for internal disorder detection using X-ray imaging 
mostly rely on image processing to extract features, followed by a 
ML algorithm. However, the step of feature extraction has several 
downsides. First, features are often not transferable to other 
applications. Second, feature engineering requires expert 
knowledge which comes at a high cost. Third, even for experts 
finding useful features is labor-intensive and requires a lot of trial 
and error. Finally, potentially suboptimal solutions are created that 
are biased and limited by the human capability of interpreting the 
data. Therefore, in DL the intermediate step of feature extraction is 
removed altogether. Instead, models learn to solve a task end-to-
end. In the learning process, the model discovers which features 
should be extracted to map the inputs to the target outputs. 

DL already showed to be impactful in several fields, e.g., medical 
imaging using X-ray or MRI (Lee et al., 2017a; Litjens et al., 2017; 
Shen et al., 2017; Suzuki, 2017). Postharvest applications of DL to 
quality inspection have mainly been limited to classification 
problems related to external attributes. DL remains largely 
unexplored for the internal quality inspection of fruit. Therefore, 
there is an opportunity to apply deep learning to internal disorder 
detection in pears with X-ray imaging.  

From the conclusions of the state-of-the-art above, the following 
targeted contributions are formulated: 

 Developing a fully automated method for detecting healthy 
and defect pears based on 3D X-ray CT volumes 

 Using deep learning to quantify disorder severity directly by 
segmenting internal disorders in 3D X-ray CT volumes of 
pears to improve classification 

 Developing an inline method to detect and localize internal 
disorders in pears using deep learning in an unsupervised 
way on X-ray radiographs, which does not require a large 
labeled dataset 
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Chapter 3  

 
Nondestructive Internal 

Quality Inspection of 

Pear Fruit by X-ray CT 

using Machine Learning1 

3.1 Introduction 

X-ray CT has shown to be an effective tool to characterize internal 
disorders in horticultural products. For instance, it has been used to 
investigate the spatial distribution of internal browning in pear and 
apple (Herremans et al., 2013; Lammertyn et al., 2003b). However, 
an automated approach for detecting pears with internal disorders 
is lacking. Currently, the analysis of 3D data often requires semi-
automatic or long-lasting workflows that do not scale to large 
datasets. Additionally, research in image acquisition geometries and 
reconstruction algorithms is progressing towards inline 
implementations of X-ray CT. For instance, in translational CT, the 
sample is rotated and translated simultaneously. Alternatively, a 
gantry system can be used in which source and detector pairs rotate 
around a translating sample. Automated methods for detecting fruit 
with internal disorders using X-ray CT could therefore become 
feasible for quality inspection in the future.  

The aim of this chapter is to present a nondestructive method for 
automated internal quality grading of pear fruit using X-ray CT and 
machine learning. The internal quality grading is presented as a 

                                                        
1 This chapter is based on: Van De Looverbosch, Tim, Md. Hafizur Rahman 
Bhuiyan, Pieter Verboven, Manuel Dierick, Denis Van Loo, Jan De Beenhouwer, 
Jan Sijbers, and Bart Nicolaï. “Nondestructive Internal Quality Inspection of Pear 
Fruit by X-Ray CT Using Machine Learning.” Food Control 113 (2020). 
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classification problem between healthy and defect samples. Hereto, 
a classical machine learning based approach is preferred over a deep 
learning based approach due to the limited number of samples (CT 
volumes). A 3D image processing algorithm is proposed to extract 
relevant quantitative features to discriminate between healthy and 
defect pears. Thereafter, a binary linear Support Vector Machine 
(SVM) is trained with these features and tested on labeled X-ray CT 
reconstructions of the cultivars Pyrus communis L. cv. ‘Conference’ 
and Pyrus communis L. cv. ‘Cepuna’. In addition, a feature selection 
procedure is implemented to reduce model complexity and duration 
of the image processing algorithm. ‘Conference’ is one of the most 
important commercial cultivars in Europe, represents almost 90 % 
of the acreage of Belgian pears (Statbel, 2018), and is known to be 
susceptible to internal browning (Franck et al., 2007). ‘Cepuna’ is a 
cross between ‘Conference’ and ‘Doyenné d’Hiver’ and used for 
testing the transferability of the method to other cultivars. 

3.2 Materials and methods 

3.2.1 Pear fruit and long-term storage 

‘Conference’ and ‘Cepuna’ pears were respectively harvested on 14 
and 25 September 2017 and delivered by a grower member of the 
Flemish fruit cooperatives BFV and Belorta (Belgium), respectively. 
Starting from the harvest date, the fruit was stored for six months 
following two treatments, with approximately 50 kg fruit per 
treatment. In the first treatment, the storage conditions were set 
according to the recommendations of the Flanders Centre of 
Postharvest Technology (VCBT, Leuven, Belgium) for commercial 
sale (Ultra Low Oxygen treatment, ULO) to deliver control fruit 
without internal disorders (VCBT, 2017). Herein, the temperature, 
O2 and CO2 partial pressures were set to -1.0 °C, 3.0 kPa and 0.7 kPa, 
respectively. Prior to the ULO storage, fruit following this treatment 
underwent an acclimatization period of 21 d at -1.0 °C. In the second 
treatment, suboptimal storage conditions based on the findings of 
(Lammertyn et al., 2000), were applied to deliver fruit with internal 
disorders. Herein, the temperature, O2 and CO2 partial pressures 
were respectively -1.0 °C, 1.0 kPa and 5.0 kPa.  A low O2 partial 
pressure causes hypoxia in the fruit. In combination with increased 
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CO2 partial pressure, this promotes the shift from respiration to 
fermentation, resulting in a limited availability in energy and an 
imbalance between oxidative and reductive processes. As such, cell 
membranes are degraded by reactive oxygen species, leading to cell 
leakage and cell death, which result in internal browning and cavity 
formation (Franck et al., 2007; Pedreschi et al., 2009; Veltman et al., 
2003).  

3.2.2 X-ray CT scans and data labeling 

After approximately 6 months, the fruit was removed from storage 
on 2018-02-27 at the end of the day. Fruit were acclimatized to room 
conditions before X-ray CT scanning the next day. Minimally 50 fruit 
per treatment were randomly selected and scanned individually. 
The fruit were scanned with their stalk-calyx axis approximately 
aligned with the rotation axis of the scanner. To stabilize the samples 
during scanning, the fruit was placed on a sample holder consisting 
of three styrofoam cones glued on a stainless-steel plate which was 
mounted on top of the rotation table. The system comprised a 
micro-focus L9181 X-ray source (Hamamatsu Photonics, 
Hamamatsu, Japan) and a 1512 Dexela CMOS Flat Panel X-ray 
Detector (PerkinElmer, Waltham, Massachusetts, USA). The rotation 
table and detector were placed at respectively 674.8 mm and 
784.2 mm from the source. The X-ray projections did not fit entirely 
in the X-ray detector frame. Therefore, two scans per fruit were 
performed at different heights and stacked together to reconstruct 
the whole fruit in the CT volume. The scans were performed with a 
source voltage of 130 kV at 300 mA and pixel size of 598.4 µm. The 
exposure time was 80 ms. An aluminum filter of 1 mm thickness was 
used to improve the contrast in the radiographic projections and to 
reduce beam hardening effects. The projections were obtained with 
an angular step of 0.9° and were 242 × 192 pixels in size. The 
samples were rotated over 360° around the central rotation axis of 
the scanner, resulting in 400 projections. For the acquisition, 
ACQUILA software was used (Tescan XRE nv, Ghent, Belgium). A 3D 
image of each fruit was reconstructed with the filtered back-
projection algorithm using the ACQUILA-RECON reconstruction 
software (Tescan XRE nv, Ghent, Belgium). A combination of a 
polynomial and a Gaussian filter was applied to reduce ring 
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artefacts. The resulting tomographs had a size of 241 × 241 × 309 
voxels, with each isotropic voxel measuring 

514.9 × 514.9 × 514.9 µm3. In total, scanning (32 s/scan), moving 
the sample stage down and starting the second scan (2 s), stacking 
and reconstruction (23 s) amounted on average to 1 min and 30 s 
per sample. The samples were assigned a ground truth label 
(‘healthy’ or ‘defective’) by visual inspection of the CT reconstruction 
of each fruit. However, to prevent missing  incipient browning and 
to consider consumer acceptance and preferences in future 
research, it is suggested to perform an expert panel survey for 
labeling the fruit based on images of cut fruit in addition to a visual 
inspection of the CT data. 

Figure 3.1 shows the experimental X-ray CT setup and a cut-open 
image and orthogonal slices through the CT volume of a ‘Cepuna’ 
pear severely affected by internal browning. Internal browning can 
be observed in the lower intensity regions on the CT slices. 

 
Figure 3.1: Experimental setup and a ‘Cepuna’ pear’s cut-open image and CT scan. (a) 
Experimental setup with X-ray source (left), and mobile X-ray detector (right) and rotation 
stage (middle); (b) image of a cut-open ‘Cepuna’ pear affected by internal browning; (c) 
orthogonal slices through the CT volume of the same fruit. The XZ and YZ slices are zoomed 
in on the region affected by internal browning. 
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3.2.3 Internal disorder detection method for CT 

images 

An algorithm was developed to perform internal disorder detection 
for pear fruit using the CT images. Recent developments in the 
medical imaging field reported interesting results for disease 
detection in CT and MRI data using deep learning based 
segmentation methods (Lee et al., 2017b; Shen et al., 2017). 
However, these approaches typically require many manually 
labelled samples for training. Due to the limited number of samples 
and the high cost of manually labelling them, a more classical 
machine learning approach was chosen. First, a feature extraction 
algorithm was developed to calculate valuable quantities, or 
features, from the 3D image datasets (see section 3.2.3.1). 
Subsequently, the features were statistically compared between the 
cultivars and classes (see section 3.2.3.2). Thereafter, support vector 
machines (SVM) were trained separately on the ‘Conference’ feature 
dataset to classify the fruit. Then, it was investigated whether 
features could be eliminated while minimizing the reduction in the 
classification performance. Finally, to test the generalizability of the 
method, the classifier trained on the ‘Conference’ data was validated 
on fruit of the ‘Cepuna’ cultivar and compared with classifiers 
trained on the combined dataset (see section 3.2.3.3). All code was 
written in MATLAB using the Image Processing and Statistics and 
Machine Learning Toolboxes (MATLAB, 2019b, 2019a). 

3.2.3.1 Feature extraction algorithm 

A feature extraction algorithm was developed to extract 10 features 
from the CT volume of each pear fruit, which produced 2 feature 
datasets, one for each cultivar. To extract the features, five 3D binary 
masks were generated indicating different regions of the fruit (see 
Figure 3.2).  
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Figure 3.2: Orthogonal slices through the original grayscale CT reconstruction and 
generated 3D binary masks of a ‘Conference’ sample with disorders. (a) Orthogonal slices 
through the original grayscale CT reconstruction of the sample; cavities can be observed 
around the core (core indicated by red arrow); (b) orthogonal slices through the fruit mask 
(white); (c) orthogonal slices through the tissue (cyan) and internal air masks (dark blue); 
(d) orthogonal slices through the internal air (dark blue), low-density tissue (green) and 
high-density tissue (yellow) masks. Each 3D binary mask indicates whether a certain voxel 
belongs to a certain segment of the volume (value = 1) or not (value = 0). 
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Each 3D binary mask specified whether a certain voxel belonged to 
a certain segment of the volume (value = 1) or not (value = 0). First, 
a binary mask that indicated which voxels were part of the fruit 
tissue (tissue mask) was generated using a 3D global Otsu-threshold 
(Otsu, 1979). Second, a fruit mask was generated by filling up all 
internal holes of the tissue mask so that voxels outside and inside 
the fruit had the values 0 and 1, respectively. Third, an internal air 
mask, only including voxels part of holes, was obtained by 
subtracting the tissue mask from the fruit mask. Finally, a low-
density and a high-density tissue mask were generated by applying 
a 3D adaptive threshold on all tissue voxels based on the local mean 
intensity in a 31 x 31 x 31 voxel neighborhood. In pome fruit, tissue 
of higher density can typically be observed around the core and in 
the surface region. In-between those regions, typically a higher 
porosity can be found (Nugraha et al., 2019). Low-density and high-
density tissue regions are thus generally always present, but a large 
difference between those regions can indicate the occurrence of 
water loss due to internal tissue breakdown. In the reconstructed CT 
volume, voxels with a relative low intensity value had a lower X-ray 
attenuation, and thus lower density (higher porosity), than voxels 
with a higher intensity value. 

Features were extracted using the generated masks. By subtracting 
the tissue mask from the fruit mask and counting the number of 
remaining voxels, the internal air volume could be calculated. As a 
first feature, the internal air volume normalized for the total fruit 
volume was used. For the second to ninth feature, the mean and 
standard deviation of the intensities of fruit voxels, tissue voxels, low 
density tissue voxels and high-density tissue voxels were calculated 
by using the fruit, tissue, low density tissue and high-density tissue 
mask, respectively. As a final feature, the Kolmogorov-Smirnov test 
statistic (KS-value) of the Two-Sample Kolmogorov-Smirnov Test 
between the cumulative intensity distributions of the low- and high-
density tissue voxels was used (Massey, 1951; MATLAB, 2019c). 
Here, the KS-value was interpreted as a measure of homogeneity of 
the fruit tissue by comparing the intensity distributions of both 
regions. A lower KS-value indicates that the low-density and high-
density tissue regions are of similar density, suggesting that internal 
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tissue breakdown such as browning is less probable (Franck et al., 
2007). This is illustrated for a ‘defective’ and ‘healthy’ ‘Conference’ 
fruit in Figure 3.3.  The feature datasets were centered and scaled 
using the corresponding column mean and standard deviation. 

 
Figure 3.3: Orthogonal slices through CT volume, cumulative intensity distributions and KS-
value of the low- (green) and high-density tissue (yellow) in a ‘defective’ (left) and ‘healthy’ 
(right) ‘Conference’ pear. The ‘healthy’ sample has more similar intensity distributions and 
lower KS-value compared to the ‘defective’ sample 

3.2.3.2 Statistical feature comparison 

A quantitative feature comparison was performed to explore the 
data, investigate differences between the cultivars or classes and 
infer relevant features for classification. Hereto, it was tested if the 
normal distributions of the features were significantly different 
between the ‘Conference’ and ‘Cepuna’ cultivars on the one hand and 
the ‘defective’ and ‘healthy’ classes on the other hand using a Two-
Sample t-test at the 5% significance level. Moreover, the linear 
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correlation coefficients between all features of the ‘Conference’ 
feature dataset were calculated. 

3.2.3.3 Binary linear Support Vector Machine 

classifiers 

Using the ‘Conference’ feature dataset, a binary support vector 
machine (SVM) with a linear kernel was trained and evaluated to 
classify the fruit. The box constraint, i.e. maximum penalty imposed 
on margin-violating observations, was set to the default value of 1.0. 
All variables were standardized using their corresponding mean and 
standard deviation. A linear kernel was chosen over non-linear 
approaches because of its simplicity in terms of the number of 
parameters, because it allows to interpret the importance of each 
feature for classification and because it is less prone to overfitting 
compared to non-linear methods. 

Confusion matrices were used to present the classification results 
with true positives (the correctly classified fruit with internal 
disorders) and true negatives (the correctly classified fruit without 
internal disorders) shown as a percentage on the matrix diagonal. 
The false positives and false negatives are shown as a percentage on 
the bottom left and the top right, respectively. 

Thereafter, it was investigated whether the number of features used 
by the classifier could be reduced without losing classification 
performance. Hereto the SVM recursive feature elimination method 
(SVM RFE) as described by (Guyon et al., 2002) was used in which 
the importance of each feature relative to the other features was 
evaluated based on the weights that define the decision boundary of 
the SVM in feature space. The higher the squared weight value, the 
more important the corresponding feature is for classification. Note 
that doing it this way is only possible when using a linear kernel in 
the SVM, as for nonlinear kernels, a generalized version of SVM RFE 
must be used (Guyon et al., 2002). In practice, a series of classifiers 
was trained and evaluated on the ‘Conference’ dataset using 5-fold 
cross-validation (further referred to as the ‘Conference’ based SVMs). 
In each iteration, the feature with the lowest squared weight value 
was eliminated. By tracking the average cross-validation 
classification accuracy and false positive and negative rates, a 
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decision was made on which features were the most critical and 
which classifier should be used. In the 5-fold cross-validation, the 
data was randomly partitioned into 5 sets. Every set was reserved 
as a validation set after the model was trained using the other four 
sets. 

Next, the generalizability of the trained classifier to other cultivars 
was evaluated and it was investigated whether the generalizability 
would increase with a reduction in the number of features. Hereto, 
the series of trained classifiers was validated on the feature dataset 
of the ‘Cepuna’ cultivar. Finally, the ‘Conference’ and ‘Cepuna’ 
datasets were combined and the performance of the series of 
‘Conference’ based SVMs was compared with two series of SVMs 
retrained on this combined dataset. The first series was forced to use 
the same features as the ‘Conference’ based SVMs in each iteration, 
while in the second series the feature elimination algorithm decided 
which features were retained. 

3.3 Results 

3.3.1 X-ray micro-CT reconstructions and labeled 

datasets 

For ‘Conference’, 102 samples were scanned of which 42 and 60 fruit 
were assigned a ‘healthy’ and ‘defective’ label, respectively, from 
expert inspection of the CT images. For ‘Cepuna’, 15 ‘healthy’ and 87 
‘defective’ fruit were observed in the 102 scanned samples.  

Examples of orthogonal slices and grayscale intensity profiles 
through CT reconstructed volumes of ‘healthy’ and ‘defective’ 
‘Conference’ and ‘Cepuna’ fruit are shown in Figure 3.4. In the 
‘healthy’ fruit (Figure 3.4, rows b and d) a gradient in voxel intensity 
can be observed from the center to the fruit surface. Higher 
intensities due to higher tissue density were observed around the 
core. When moving from the core towards the fruit surface, the 
intensities first decreased and thereafter increased again closer to 
the surface, confirming the observed density distributions from 
other research (Nugraha et al., 2019). The ‘defective’ ‘Conference’ 
fruit (Figure 3.4, row a) showed regions of lower voxel intensities 
that were affected by internal browning (Franck et al., 2007; 
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Lammertyn et al., 2003b; van Dael et al., 2017). Severe internal 
browning resulted in cavity formation, which was observed around 
the core and stalk-calyx axis. The ‘defective’ ‘Cepuna’ fruit (Figure 
3.4, row c) were also affected by internal browning, but cavity 
formation was far less severe. In the grayscale intensity profiles of 
the ‘defective’ fruit, the regions affected by internal browning caused 
a stronger slope compared to those of the ‘healthy’ fruit. 

 
Figure 3.4: Column 1-3: Orthogonal slices through the CT reconstructions of ‘defective’ and 
‘healthy’ ‘Conference’ and ‘Cepuna’ fruit. Column 4: Grayscale intensity profile through the 
widest position of the fruit in the XZ slices. (a) ‘defective’ ‘Conference’ pear; (b) ‘healthy’ 
‘Conference’ pear; (c) ‘defective’ ‘Cepuna’ pear; (d) ‘healthy’ ‘Cepuna’ pear. 

3.3.2 Quantitative feature comparison 

The average of the extracted features and their corresponding 
standard deviations for ‘Conference’ and ‘Cepuna’ ‘defective’ and 
‘healthy’ fruit are shown in Table 3.1. Using a Two-Sample t-test at 
the 5 % significance level, it was tested if the distributions of feature 
values were significantly different between the ‘Conference’ and 
‘Cepuna’ cultivars on one hand and the ‘defective’ and ‘healthy’ 
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classes on the other hand. Figure 3.5 presents the linear correlation 
coefficients (R) between all features of the ‘Conference’ feature 
dataset.  

Table 3.1: The average of feature values and their corresponding standard deviations for 
‘Conference’ and ‘Cepuna’ ‘defective’ and ‘healthy’ fruit. Different letters in superscript 
indicate significantly different normal distributions at the 5% significance level using the 
Two-Sample t-test. 

Feature Label ‘Conference’ ‘Cepuna’ 

Normalized cavity 
volume [%] 

Defective 0.752 ± 0.745c 1.205 ± 1.297d 

Healthy 0.195 ± 0.156b 0.002 ± 0.002a 

Mean fruit intensity Defective 0.829 ± 0.015c 0.802 ± 0.017a 

Healthy 0.835 ± 0.012d 0.824 ± 0.008b 

Std fruit intensity Defective 0.091 ± 0.025c 0.102 ± 0.038c 

Healthy 0.066 ± 0.008b 0.053 ± 0.001a 

Mean tissue intensity Defective 0.835 ± 0.013c 0.812 ± 0.013a 

Healthy 0.836 ± 0.012c 0.824 ± 0.008b 

Std tissue intensity Defective 0.062 ± 0.004c 0.064 ± 0.006d 

Healthy 0.056 ± 0.002b 0.053 ± 0.001a 

Mean low-density 
tissue intensity 

Defective 0.814 ± 0.019c 0.782 ± 0.023a 

Healthy 0.825 ± 0.013d 0.806 ± 0.010b 

Std low-density tissue 
intensity 

Defective 0.027 ± 0.060c 0.039 ± 0.020d 

Healthy 0.020 ± 0.002a 0.023 ± 0.002b 

Mean high-density 
tissue intensity 

Defective 0.856 ± 0.012c 0.838 ± 0.013a 

Healthy 0.854 ± 0.011c 0.846 ± 0.006b 

Std high-density 
tissue intensity 

Defective 0.025 ± 0.003c 0.031 ± 0.005d 

Healthy 0.023 ± 0.002a 0.023 ± 0.001a 

KS-value Defective 0.578 ± 0.116b 0.586 ± 0.129b 

Healthy 0.506 ± 0.048a 0.610 ± 0.038b 
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Figure 3.5: Linear Correlation Coefficients between all features of the ‘Conference’ dataset. 

The features ‘Normalized cavity volume’ and ‘Std fruit intensity’ were 
highly correlated (R = 0.98). This was expected as fruit with more or 
large cavities would also have a high variability in voxel intensity. A 
lower linear correlation was found between the features 
‘Normalized cavity volume’ and ‘Std tissue intensity’ (R = 0.71). The 
‘Std tissue intensity’ only considers non-cavity voxels, but fruit with 
a relatively high number of cavities could have more partial volume 
artefacts (the loss of contrast in voxels that are occupied by multiple 
types of tissue due to insufficient resolution), or internal browning 
and thus a higher variability in fruit tissue intensity.  

We also observed that the features ‘Mean fruit intensity’, ‘Mean tissue 
intensity’, ‘Mean low-density tissue intensity’ and ‘Mean high-density 
tissue intensity’ were highly correlated, with linear correlation 
coefficients ranging between 0.66 and 0.95. Not surprisingly, the 
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correlations were higher between the features of which the regions 
indicated by the 3D binary masks were more similar, e.g., ‘Mean fruit 
intensity’ and ‘Mean tissue intensity’ had a higher correlation than 
‘Mean low-density tissue intensity’ and ‘Mean high-density tissue 
intensity’. 

Obviously, as the fruit and tissue masks only differ in the cavity 
voxels, a rather high correlation (R = 0.78) was found between ‘Std 
fruit intensity’ and ‘Std tissue intensity’. ‘Std tissue intensity’ and ‘Std 
low-density tissue intensity’ had a linear correlation of R = 0.64.‘Std 
high-density tissue intensity’ and ‘KS-value’ were not highly 
correlated with other features, except for moderate negative 
correlations with ‘Mean low-density tissue intensity’. 

3.3.3 Classification results 

3.3.3.1 ‘Conference’ based SVM 

The classifier trained on the whole ‘Conference’ feature dataset, 
comprising 60 ‘defective’ and 42 ‘healthy’ samples, reached an 
average classification accuracy of 92.2 % for ‘Conference’ in a 5-fold 
cross validation with an 88.3 % true positive and a 97.6 % true 
negative rate, respectively. The confusion matrix with classification 
results for ‘Conference’ is shown in Table 3.2. The runtime for 
feature extraction and classification was on average 2.3 s per sample 
on a quad-core 3.8 GHz processor with 32 GB of RAM memory. 

Table 3.2: Confusion matrix with average classification results of the ‘Conference’ specific 
classifier on ‘Conference’ in 5-fold cross validation. 

 Predicted 

Defective Healthy 

Ground truth Defective 88.3 % 11.7 % 

Healthy   2.4 % 97.6 % 

Overall classification accuracy:  92.2 %  

The weights that determine the separating plane are shown in 
Figure 3.6. The features with a high absolute value of the weight are 
the most important for determining the class of a fruit. The top three 
features were ‘Std tissue intensity’, ‘Std high-density tissue intensity’ 
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and ‘Std low-density tissue intensity’. Features that measure 
variability rather than absolute values had higher absolute weights 
and, thus, were more important for classifying pear fruit. Moreover, 
fruit with higher values for these features were more likely to be 
classified as ‘defective’ fruit, i.e., the positive class, due to the positive 
corresponding weights. Both the weights of ‘Mean tissue intensity’ 
and ‘KS-value’ features were rather insignificant. 

 
Figure 3.6: Weights of the ‘Conference’ based SVM sorted by descending weight value. 

3.3.3.2 Feature selection 

From the previous results, it was observed that not all features were 
equally important for classification. Some features, e.g., ‘KS-Value’, 
‘Mean Tissue Intensity’ and ‘Mean low-density tissue intensity’, have 
relatively low weights compared to others (see Figure 3.6). As 
explained in section 3.2.3.3, the SVM RFE method was applied to 
select the most relevant features. A series of classifiers was trained 
and evaluated on the ‘Conference’ dataset and in each iteration the 
feature with the lowest squared weight value was removed for the 
next iteration. The resulting features used by each classifier and its 
obtained classification accuracy are shown in Figure 3.7. 
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Figure 3.7: Plot of features used for training each SVM on the ‘Conference’ dataset. Each 
column represents a classifier in a series of classifiers, in which the number of features 
allowed to be used decreased from the left (10 features) to the right (1 feature). Every 
column thus shows the features used by a classifier in the series, while each row shows in 
which classifiers a certain feature was used. A colored tile indicates a feature was used, 
while a black tile indicates a feature was eliminated for the specific SVM in the feature 
elimination procedure. The color of each column represents its obtained classification 
accuracy. 

Figure 3.8 shows a plot of the classification accuracy, true positive, 
true negative, false positive and false negative rate of the SVM series 
trained with 1 up to 10 features of the ‘Conference’ dataset in a 5-
fold cross-validation. 
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Figure 3.8: Plot of classification accuracy, true positive rate, true negative rate, false positive 
rate and false negative rate of SVMs trained with 1 and up to 10 features of the ‘Conference’ 
dataset. 

From Figure 3.8 it can be observed that the performance metrics 
only slightly decreased up until the last SVM trained with only 1 
feature, for which the accuracy dropped to 75.5 %. The SVM trained 
with two features, (‘Std tissue intensity’ and ‘Std low-density tissue 
intensity’, see Figure 3.7) still achieved an accuracy of 91.2 % with a 
false positive rate of 4.8 % and a false negative rate of  13.3 %, which 
is slightly higher than the 11.7 % for the best classifier.  

3.3.3.3 Validating the ‘Conference’ based SVMs on 

the ‘Cepuna’ cultivar 

To test the generalizability to other cultivars, the series of 
‘Conference’ based SVMs was validated on the ‘Cepuna’ cultivar 
without retraining the classifiers on the ‘Cepuna’ data. The ‘Cepuna’ 
dataset comprised 87 ‘defective’ and 15 ‘healthy’ fruit. The ten-
features classifier reached a good classification accuracy of 95.1 % 
for ‘Cepuna’ with 94.3 % true positive and 100.0 % true negative 
rate, respectively. The confusion matrix with classification results 
for ‘Cepuna’ is shown in Table 3.3. 
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Table 3.3:  Confusion matrix with classification results of the ten-features ‘Conference’ 
based SVM on ‘Cepuna’ without retraining the SVM. 

 Predicted 

Defective Healthy 

Ground truth Defective 94.3 %     5.7 % 

Healthy   0.0 % 100.0 % 

Overall classification accuracy:  95.1 %  

When testing the ‘Conference’ based SVM series trained with 1 to 10 
features on the ‘Cepuna’ dataset, the classification performance 
remained the same for the classifiers using between ten and five 
features. For the classifiers using between 4 and 2 features, the false 
positive rate increased from 0.0 % to 6.7 %, while the accuracy 
remained 95.1 % and the false negative rate reduced from 5.7 % to 
4.7 %. With only one feature, the last classifier had a false positive 
rate of 80.0 %. However, due to the low number of ‘healthy’ samples 
in the ‘Cepuna’ dataset (fifteen), the accuracy only dropped to 
86.7 %. 

3.3.3.4 Testing the ‘Conference’ based SVMs and 

retrained classifiers on the combined dataset 

The series of ‘Conference’ based SVMs was tested on the combined 
dataset. The confusion matrix with classification results of the ten-
features classifier is shown in Table 3.4.  

Table 3.4: Confusion matrix with average classification results of the ten-features 
‘Conference’ based SVM on the combined dataset. 

 Predicted 

Defective Healthy 

Ground truth Defective 91.8 %   8.2 % 

Healthy   1.7 % 98.3 % 

Overall classification accuracy:  93.6 %  

Like the previous results, the classification accuracy, true positive 
rate, true negative rate, false positive rate and false negative rate of 
the ‘Conference’ based SVMs classifiers using between ten and two 



 
66 

features tested on the combined dataset was similar. The two-
feature ‘Conference’ based SVM achieved an accuracy of 93.1 % and 
a false positive and false negative rate of 3.5 % and 8.2 %, 
respectively.  

Next, a first series of SVMs was retrained on the combined dataset 
but was forced to use the same features as their corresponding 
‘Conference’ based SVM (see Figure 3.7). The SVMs were thus only 
allowed to change the weight associated to a certain feature. The 
classifiers using ten and two features achieved the same 
classification metric scores, with an accuracy of 92.7 % and false 
positive and false negative rate of 5.3 and 8.2 %, respectively. 
However, the accuracy and false positive rate were slightly worse 
compared to the two-feature ‘Conference’ based SVM, that achieved 
the same false negative rate with an accuracy of 93.1 % and false 
positive rate of 3.5 %. 

Finally, a second series of SVMs was retrained on the combined 
dataset which was now allowed to change the selected features at 
each iteration. The used features are shown in Figure 3.9. The ten-
feature classifier reached an accuracy of 92.7 % and false positive 
and false negative rates of 5.3 and 8.2 %, respectively. The two-
feature classifier scored an accuracy of 91.2 % with a false positive 
and false negative rate of 12.3 and 7.5 %, respectively. The latter 
classifier used the features ‘Mean fruit intensity’ and ‘Mean high-
density tissue intensity’ in contrast to the two-feature ‘Conference’ 
based SVM that used the features ‘Std tissue intensity’ and ‘Std low-
density tissue intensity’. 
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Figure 3.9: Plot of features used for retraining each SVM on the combined dataset. Each 
column represents a classifier in a series of classifiers, in which the number of features 
allowed to be used decreased from the left (10 features) to the right (1 feature). Every 
column thus shows the features used by a classifier in the series, while each row shows in 
which classifiers a certain feature was used. A colored tile indicates that the feature was 
used, while a black tile indicates that a feature was eliminated for the specific SVM in the 
feature elimination procedure. The color of each column represents its obtained 
classification accuracy. 

3.4 Discussion 

3.4.1 Internal variability must be measured to 

separate ‘defective’ from ‘healthy’ pear fruit 

Internal browning and cavity formation were introduced in 
‘Conference’ and ‘Cepuna’ pears by exposing them to suboptimal 
storage treatments for six months. The internal disorders differed in 
severity, location and appearance. Internal browning was 
characterized by reduced voxel intensity in the CT reconstructions 
of the fruit due to reduction in tissue density associated with water 
loss in the affected regions. In regions with severe internal disorder 
development, cells broke down completely and cavities were 
observed. This is in line with observations for pear made by 
(Lammertyn et al., 2003b; Muziri et al., 2016; van Dael et al., 2017). 
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To further characterize ‘defective’ and ‘healthy’ pear fruit, features 
were extracted from the CT volumes and compared between 
‘Conference’ and ‘Cepuna’ ‘defective’ and ‘healthy’ fruit (see Table 
3.1). First, the features ‘Std fruit intensity’, ‘Std tissue intensity’, ‘Std 
low-density tissue intensity’ and ‘Std high-density tissue intensity’ 
seemed to be the most relevant ones for separating the classes 
‘defective’ and ‘healthy’, regardless of the fruit cultivar. The ‘defective’ 
class had significantly higher values for these four features due to a 
wider range in voxel intensity and thus in tissue density. This 
suggests that when looking for features that separate the ‘defective’ 
from ‘healthy’ pear fruit, features that measure variability rather 
than absolute values will be more performant for classifying pear 
fruit regardless of their cultivar. 

Second, for the ‘Cepuna’ cultivar a significantly lower ‘Mean tissue 
intensity’ for both ‘healthy’ and ‘defective’ fruit was observed 
compared to ‘Conference’ fruit. This might indicate that on average, 
the ‘Cepuna’ fruit have a lower density, i.e. higher porosity, than 
‘Conference’ fruit (Nugraha et al., 2019).  

Third, other features like ‘Mean fruit intensity’ and ‘Mean low-density 
tissue intensity’ were significantly different between the classes for 
each cultivar, but no clear threshold can be indicated that works for 
both cultivars.  

Fourth, the KS-value showed to be a good feature to separate 
‘healthy’ and ‘defective’ ‘Conference’ fruit with higher KS-values for 
‘defective’ fruit. However, the KS-value was not significantly 
different for both classes of ‘Cepuna’ fruit. Even an opposite, 
although not significant, trend was observed with slightly higher 
values for ‘healthy’ fruit.   

Finally, compared to the observed ‘healthy’ ‘Cepuna’ fruit, the 
‘healthy’ ‘Conference’ fruit had significantly higher normalized 
cavity volumes. As such, relative to the total fruit volume, 
‘Conference’ fruit might have larger cores than ‘Cepuna’ fruit. 

One must be careful when generalizing these results because 
environmental factors potentially influencing the fruit 
characteristics were not investigated. Fruit characteristics and 
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susceptibility for internal disorders can be seasonal and location 
specific. Moreover, only fifteen ‘healthy’ ‘Cepuna’ fruit where 
included in the dataset. Unfortunately, a large part of the ‘Cepuna’ 
fruit subjected tot the control treatment also developed internal 
disorders. Due to the small sample size of ‘healthy’ ‘Cepuna’ fruit, the 
observed differences between classes and cultivars must thus be 
interpreted with caution.  

3.4.2 X-ray CT and machine learning can be 

implemented inline to classify fruit reliably 

The large variability in severity, location and appearance of the 
internal disorders makes it challenging to develop algorithms that 
detect ‘defective’ fruit reliably. However, for the internal disorder 
detection in ‘Conference’ pears, a SVM achieved a classification 
accuracy of 92.2 % with false positive and false negative rates of 
respectively 2.4 and 11.7 % (see Table 3.2). Moreover, the number 
of features was reduced from ten to two while keeping the 
classification performance high by using the SVM RFE method (see 
Figure 3.7 and Figure 3.8). The classifier trained with the features 
‘Std tissue intensity’ and ‘Std low-density tissue intensity’ still achieved 
an accuracy, false positive rate and false negative rate of respectively 
91.2, 4.8 and 13.3 %.  

Furthermore, without retraining or other adaptions to the method 
the ‘Conference’ based SVMs performed excellent on the ‘Cepuna’ 
cultivar as well. An overall classification accuracy of 95.1 % with a 
false positive and a false negative rate of respectively 0.0 and 5.7 %, 
was achieved by the ten-feature ‘Conference’ based SVM (see Table 
3.3). Compared to the ten-feature classifier, the two-feature 
classifier scored the same accuracy with a better false negative rate 
of 4.6 %, but worse false positive rate of 6.7 %. This shows that the 
classifiers trained on the ‘Conference’ cultivar generalize well to the 
‘Cepuna’ cultivar and suggests that the method can be used for other 
pear cultivars too without much effort. However, an increase in 
generalizability by reducing the number of features used by the 
classifiers was not observed, as the performance of all classifiers 
using between ten and two features was very similar for both 
cultivars. 
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The ‘Conference’ based SVMs were compared to two series retrained 
on the combined dataset. The first series was forced to use the same 
features as the ‘Conference’ based SVMs, but was allowed to adapt the 
weights. In the second series, also the selected features were 
allowed to be altered by re-implementing the SVM RFE method. In 
both cases, the ‘Conference’ based SVMs scored better, even though 
no ‘Cepuna’ data was included in the training process. The two-
feature SVM of the second series trained on the combined dataset 
used the features ‘Mean fruit intensity’ and ‘Mean high-density tissue 
intensity’ in contrast to the two-feature ‘Conference’ based SVM that 
used the features ‘Std tissue intensity’ and ‘Std low-density tissue 
intensity’. Differences in performance and selected features are 
probably caused by the imbalance in the combined dataset.  Only 28 
% of the combined dataset was ‘healthy’ as just fifteen out of the 102 
‘Cepuna’ samples were ‘healthy’, compared to 42 out of the 102 
‘Conference’ samples. The classification metrics for both two-
features classifiers on the combined dataset, the ‘Conference’ subset 
and the ‘Cepuna’ subset are summarized in Table 3.5. The classifier 
retrained on the combined dataset scored very poorly on ‘healthy’ 
‘Cepuna’ fruit, with a 40.0 % false positive rate. Due to the small 
number of ‘healthy’ ‘Cepuna’ samples, however, this only had a 
limited effect on the overall classification accuracy over the ‘Cepuna’ 
and combined datasets. 
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Table 3.5: Confusion matrix with average classification results on the combined dataset, 
‘Conference’ dataset and ‘Cepuna’ dataset of the two-features ‘Conference’ based SVM vs 
the two-feature classifier that was retrained on the combined dataset with the features 
‘Mean fruit intensity’ and ‘Mean high-density tissue intensity’. 

 Predicted 

Combined dataset ‘Conference’ based SVM Retrained SVM 

Defective Healthy Defective Healthy 

Ground 
truth 

Defective 91.8 % 8.2 % 92.5 %   7.5 % 

Healthy   3.5 % 96.5 % 12.3 % 87.7 % 

Overall 
classification 
accuracy:  

93.1 %  91.2 % 

   

  Predicted 

‘Conference’ subset ‘Conference’ based SVM Retrained SVM 

Defective Healthy Defective Healthy 

Ground 
truth 

Defective  86.7 % 13.3 % 85.0 % 15.0 % 

Healthy    4.8 % 95.2 %   4.8 % 95.2 % 

Overall 
classification 
accuracy:  

 91.2 %  89.2 % 

  

 Predicted 

‘Cepuna’ subset ‘Conference’ based SVM Retrained SVM 

Defective Healthy Defective Healthy 

Ground 
truth 

Defective 95.3 %   4.7 % 97.7 %   2.3 % 

Healthy   6.7 % 93.7 % 40.0 % 60.0 % 

Overall 
classification 
accuracy:  

95.1 %  92.2 % 

Overall low false positive rates by the ‘Conference’ based SVMs were 
achieved, ranging between 0.0 and 6.7 % (see Table 3.2, Table 3.3, 
Table 3.4 and Table 3.5). Low false positive rates ensure that the 
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number of ‘healthy’ fruit that are falsely rejected, are minimized. 
Furthermore, there were false positives that did not have a 
pronounced internal disorder but showed small deviating 
characteristics. For instance, one rejected ‘Conference’ fruit had a 
relatively big open core which might be indeed disliked by some 
consumers (see Figure 3.10). Economically, it makes sense to 
minimize the false positive rate for this application, since during 
inspection the occurrence of internal disorders in a certain batch 
might be relatively low and the false negatives might not have severe 
defects. In contrast, with a high false positive rate to ensure a low 
false negative rate, the added benefit of detecting ‘defective’ fruit 
might be offset by the falsely rejected ‘healthy’ fruit. Of course, this 
depends on the severity of the internal disorders. To balance the 
compromise between the false positive and false negative rate in a 
desired way, one could set a different threshold for the decision 
boundary of the classifier instead of placing it at f(x) = 0. For 
‘Conference’, the classifier had a true positive rate of 86.7 % with a 
false positive rate of 4.8 %. To have 0 % false positives, the true 
positive rate had to drop to around 82 %. To achieve a true positive 
rate of 100 %, the false positive rate had to be increased to 60 %. 

 
Figure 3.10: Orthogonal slices through the CT reconstructions of a false positive 
‘Conference’ pear example with relatively big open core. 

The ‘Conference’ based SVMs had false negative rates ranging 
between 11.7 and 13.3 % for ‘Conference’ and between 4.7 and 
5.7 % for ‘Cepuna’. Compared to the false positive rates, the false 
negative rates are thus higher. As explained above, however, in this 
application it might be more important to reduce the false positive 
rate. Moreover, most of the false negative samples had only a very 
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small internal defects that may not even be noted by the end 
consumer. As an example, Figure 3.11 shows orthogonal slices 
through the CT reconstructions of a ‘Conference’ and ‘Cepuna’ pear. 
These examples make clear that for interpreting classification 
results, it is important to investigate how the data was labeled. 

 
Figure 3.11: Orthogonal slices through the CT reconstructions of a false negative 
‘Conference’ (a) and ‘Cepuna’ (b) pear examples. 

This analysis showed that the inspection of the internal quality of 
pear fruit can be done in 3D using X-ray CT at high classification 
accuracies and low false positive rates. In the current experiment, 
the achieved inspection speed (1.5 minute for scanning, stacking and 
reconstruction, plus 2.3 s for feature extraction and classification) 
was not yet compatible with the commercial speed of existing 
sorting lines, requiring at least 10 fruit per second per lane. 
Nonetheless, it should be noted that both the experimental CT setup 
and the feature extraction algorithm were not optimized for 
reducing the runtime. With advanced reconstruction algorithms 
available for translational X-ray CT (De Schryver et al., 2016; 
Janssens et al., 2018), prototypes of inline CT systems can be 
developed. Speed improvements can be made using a dedicated 
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system combined with a trained reconstruction algorithm that 
needs far less projections (Beister et al., 2012; De Schryver et al., 
2016; Janssens et al., 2018; Willemink et al., 2013). Moreover, a 
stacked scan was needed due to the relatively small detector size, 
requiring two full 360° sample rotations, intermediate height 
adjustments and a stacking procedure. With a detector of 
appropriate size, the scanning time can thus already be reduced by 
50 %. The method could also be tested with other scanning settings, 
like exposure time and number of projections to reduce the scanning 
time, or pixel and voxel sizes to reduce the computational cost 
during reconstruction and analysis. Additionally, the feature 
extraction algorithm could be optimized and it was shown that the 
number of features can be reduced to further reduce the processing 
time. In terms of hardware, technical challenges must be overcome 
to transition from prototype systems to fast inline CT systems, e.g., 
the development sample holders that stabilize and rotate the sample 
while translating at adequate speed. For industrial application 
continuing developments in both hardware and software are thus 
needed to increase the inspection speed and reduce the equipment 
costs. In addition, the internal quality inspection system can be used 
on a limited part of the supply in which a high occurrence of internal 
disorders is expected. In this case, lower inspection speeds might be 
adequate. 

The proposed method uses machine learning in which a classifier is 
trained on a training set in feature space. However, the features were 
still hand-crafted and thus possibly suboptimal and application 
specific. Application on other fruit products, like apples, might 
require other features to be used making feature determination 
more difficult. In the feature extraction algorithm, the KS-value was 
calculated as a measure of similarity between the low intensity (low 
density) and high intensity (high density) tissue regions. It was 
expected to be an important feature for separating the classes, but 
only low corresponding weights were given to this feature by the 
classifiers. This illustrates that intuitive hand-crafted features that 
seem smartly designed, may not always be the best choice, and 
presents a limitation of machine learning. In deep learning, valuable 
representations of the data are learned and extracted by the model 
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itself. Hand-crafted features must thus no longer be engineered 
(Goodfellow et al., 2016). Deep learning on X-ray imaging is 
increasingly adopted, e.g., in medical applications (Lee et al., 2017b; 
Shen et al., 2017), and might thus be considered as an alternative 
method in future research (see Chapter 4). 

3.5 Conclusion 

A combination of machine learning and X-ray computed tomography 
was proposed to detect ‘Conference’ and ‘Cepuna’ pear fruit with a 
wide range in internal disorder severity automatically. Trained 
SVMs achieved good classification accuracies ranging between 90.2 
and 95.1 % depending on the cultivar and number of features that 
were used. Moreover, low false positive rates were obtained, ranging 
between 0.0 and 6.7 %, while the false negative rates, ranging 
between 5.7 and 13.3 %, were higher. While the method could detect 
most defect pears, there is this room for improvement. Classifiers 
trained on ‘Conference’ data achieved high validation scores on the 
‘Cepuna’ cultivar suggesting generalizability to other cultivars as 
well. 

With continuing developments in both hardware and software to 
increase inspection speed and to reduce the equipment costs, the 
method could be implemented in inline X-ray CT for industrial 
application. In addition, the methods could be used by researchers 
investigating internal disorder development to screen for fruit with 
internal disorders. Further research could test the robustness of the 
method with faster inline CT image acquisition with reconstructions 
of potentially lower quality as a compromise.  

The proposed method required a hand-crafted feature extraction 
algorithm. However, potentially better features that were not 
conceived remained unexplored. In addition, the feature extraction 
algorithm is possibly application specific. Furthermore, while the 
method allowed for classifying defect and sound fruit, it could not 
quantify the severity of the disorders which may be of high 
importance for consumers and thus for making decisions on 
discarding fruit or not. The direct quantification of disorder 
severities, which is tackled in Chapter 4, is thus expected to improve 
classification performance.     
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Chapter 4  

 
Nondestructive 

Quantification of Internal 

Disorders in Pears using 

X-ray CT and Deep 

Learning2 

4.1 Introduction 

A promising technology for nondestructive internal quality 
inspection is X-ray computed tomography (CT), since spatial 
information on density differences can be provided in 3D (Chigwaya 
et al., 2018; Diels et al., 2017; Herremans et al., 2013; Herremans, 
Verboven, et al., 2014; Lammertyn et al., 2003b, 2003a). Significant 
progress has been made towards inline X-ray CT applications for 
food inspection (De Schryver et al., 2016; Janssens et al., 2016, 2018, 
2019; L. F. A. Pereira et al., 2016, 2017), with one of the main 
challenges remaining automatic image analysis. The previous 
chapter has shown that automated feature extraction on X-ray CT 
data of pear fruit followed by a classification by means of a support 
vector machine (SVM), is effective in classifying fruit based on the 
presence of internal disorders. However, this approach did not allow 
to quantify the severity of the internal disorders. Moreover, the used 
features had to be hand-crafted and finding the right features 
required considerable trial and error. Automatic and accurate 
segmentation of the internal disorders would enable the 

                                                        
2 This chapter is based on: Van De Looverbosch, Tim, Ellen Raeymaekers, Pieter 
Verboven, Jan Sijbers, and Bart Nicolaï. “Non-Destructive Internal Disorder 
Detection of Conference Pears by Semantic Segmentation of X-Ray CT Scans Using 
Deep Learning.” Expert Systems with Applications 176 (2021) 
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quantification of their severity and potentially improve 
classification results. However, due to the large biological variability, 
the development of such algorithms using classical image processing 
and machine learning approaches is challenging. Fortunately, deep 
learning has recently become a viable tool for pattern recognition 
and image interpretation tasks and was found to be successful in 
tasks using medical X-ray CT data (Goodfellow et al., 2016; LeCun et 
al., 2015; Litjens et al., 2017; Shen et al., 2017). 

The aim of this study is two-fold. First, a nondestructive quality 
inspection method is developed to quantify internal disorders in 
pear fruit based on X-ray CT scans. Hereto, a deep neural network 
for semantic segmentation (U-net) is trained to indicate various 
structures and tissues, including internal disorders, in the X-ray CT 
scans. Second, it is investigated if the quantitative data can be used 
to accurately classify the fruit, on the one hand, in “consumable” or 
“non-consumable” categories and, on the other hand, into “healthy”, 
“defect but consumable” or “non-consumable” categories. Herein, 
ground truth classifications were obtained by a survey with images 
of cut fruit, in which participants indicated if they could spot internal 
disorders (“defect”) or not (“healthy”) and whether they would eat 
the fruit (“consumable”) or not (“non-consumable”). 

4.2 Materials and Methods 

The materials and methods are discussed in detail in the following 
sections. In Figure 4.1, a flowchart is presented to provide a general 
overview of the materials and methods.
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Figure 4.1: Method flowchart as a general overview of the materials and methods.
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4.2.1 Pear fruit and storage protocols 

A Flemish grower (50°53'06.4" N 5°01'32.2" E, Kortenaken, 
Belgium) harvested and delivered 160 kg of Conference pears on 
August 24, 2018. The fruit were randomly divided in two groups and 
put in long term storage for eight months in controlled atmosphere 
(CA) storage facilities of the Flanders Centre of Postharvest 
Technology (VCBT, Leuven, Belgium). For the first 25 days both 
groups were put at -1 °C in normal atmosphere to acclimatize to the 
cold temperature, after which different CA conditions for each group 
were implemented in CA containers with a volume of 1 m3. The first 
group received the control optimal storage treatment following the 
recommendations of the VCBT for commercial sale, with a 
temperature, O2 partial pressure and CO2 partial pressure of -1 °C, 
2.5 kPa and 0.7 kPa, respectively (VCBT, 2017). For the second 
group, experimental conditions were implemented to induce 
internal disorder development with a temperature, O2 partial 
pressure and CO2 partial pressure of respectively -1 °C, 1.0 kPa and 
4.0 kPa. The fruit were removed from CA storage on May 9, 2019. 90 
fruit of each treatment were selected randomly and stored at -1 °C 
in normal atmosphere before further measurements. 

4.2.2 X-ray CT scans and data pre-processing 

Of each treatment, 90 samples were randomly selected. The fruit 
were then divided into groups of thirty over six plastic boxes in 
which they were separated by styrofoam grids. The grids divided 
each box into two layers of fifteen samples and facilitated image 
processing afterwards by guaranteeing fruit were not touching each 
other. Next, the boxes were carefully brought to the UZ Leuven 
hospital in Leuven (Belgium) for obtaining X-ray CT images with a 
gantry CT system (SOMATOM Definition Flash, Siemens, Germany). 
Three boxes could be imaged at once. The system operated at 100 
kVp with a voxel size of 0.9766 x 0.9766 x 0.3000 mm³.  

Next, CT data were processed in MATLAB (MATLAB, 2019b, 2019a). 
Figure 4.2 shows the X-ray CT scan of one box (Figure 4.2a, b and c) 
and illustrates some of the performed image processing steps. First, 
the volumes were resampled to a 0.9766 x 0.9766 x 0.9766 mm³ 
voxel size. Individual fruit were then cropped (Figure 4.2d) 
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automatically and identified based on their position to link their CT 
images to their reference images (see section 2.3). The background 
of the CT volumes was removed with a global Otsu threshold (Figure 
4.2e) (Otsu, 1979) and intensity values of the CT volumes were 
scaled between [0, 1] by dividing the intensities by the maximum 
value encountered over all volumes. Since fruit position was not 
fixed in the boxes, pears in the 3D volumes had to be aligned to the 
same pose. Therefore, each sample was centralized and rotated so 
that their principal axis aligned with the Z-axis and the fruit was in 
upwards orientation. To ensure upwards orientation, the fruit were 
rotated 180° over the x-axis if the center of mass was in the top half 
of the volume (Figure 4.2f). Finally, all volumes were padded with 
background voxels to the maximum size in the X-, Y- and 
Z-dimension encountered over all 180 volumes, resulting in 
identical volumes of 184 x 179 x 198 voxels. 

 
Figure 4.2: X-ray CT scans using a gantry CT system and data pre-processing. (a) Boxes of 
samples on the CT system on the left and top view of the styrofoam grid on the right; (b) 
Volumetric representation of one of the boxes; (c) Orthogonal slices through the CT volume 
of the box in (b); (d) Cropped CT volume containing one sample; (e) Cropped CT volume 
containing the sample in (d) after removal of the background noise; (f) Illustration of the 
alignment of the pear volumes with the Z-axis. 
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4.2.3 Reference images and ground truth 

classification 

Following the CT scans, the fruit were consecutively cut open and 
reference images of the fruit flesh were taken. Multiple slices were 
cut perpendicular to the style-calyx axis and spread out below an 
RGB-camera (see Figure 4.3). Afterwards, an online survey was 
organized with the reference images in which the participants were 
asked to indicate on the one hand whether they found the fruit to be 
healthy or defective and on the other hand if they considered the 
fruit consumable or not. The survey was sent out to everyone 
working for the research group and completed by 17 participants. A 
majority vote was implemented over all participants to decide on 
the ground truth classification of each fruit (“healthy” vs. “defect” 
and “consumable” vs. “non-consumable”). Herein, the strength of the 
inter-annotator agreement, as measured by Fleiss’ kappa statistic, 
was found to be moderate (0.52) (Fleiss, 1971; Landis & Koch, 
1977). This resulted in a dataset of 128, 26 and 26 samples labelled 
as “healthy”, “defect but consumable” and “non-consumable”, 
respectively. 

 
Figure 4.3: Reference images of respectively a “healthy” (a), a “defect but consumable” (b) 
and a “non-consumable” (c) sample. 

4.2.4 Manual ground truth annotation 

CT volumes of 51 out of the 180 pears were manually annotated 
using the free and open-source 3D Slicer software (3D Slicer, 2020, 
p. 3; Fedorov et al., 2012). Prior to manual annotation of each 
sample, the cut open reference image of each fruit was examined for 
the presence and severity of internal disorders. In the segmentation 
software, voxels were given one of five different classes: “external 
air”, “healthy tissue”, “core”, “cavity” and “internal browning”. First, 
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“external air” was indicated by applying a global Otsu-threshold and 
preserving the largest island, i.e., the largest connected component. 
Secondly, the other volumes with a value below the Otsu-threshold 
inside the fruit were assigned to the “core” or “cavity” class. Hereby, 
the “core” island was manually indicated. Third, between 5 and 10 
seed points were manually placed in regions of “healthy tissue” and 
regions affected by “internal browning”. Then, the region growing 
algorithm in 3D Slicer (“Grow from seeds”) was used to complete the 
annotation. Herein, the other classes were fixed. Finally, a smoothing 
operation was done on the “healthy tissue” and “internal browning” 
regions using the “Joint smoothing” method in 3D slicer with a 
smoothing factor of 0.50. Figure 4.4 shows the steps in the manual 
annotation procedure of the CT volumes. 

 
Figure 4.4: Steps in the manual annotation of CT volumes. (a) Initial CT volume after 
background noise removal with global threshold; (b) CT volume with external (dark blue), 
core (green) and cavity (orange) voxel indicated; (c) Addition of seed points of healthy 
tissue (light blue) and browning (red) voxels for subsequent region growing step; (d) Final 
result of the annotation procedure with healthy tissue (light blue) and browning (red) 
voxels resulting from region growing using the seeds in (c). 
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4.2.5 Dataset generation 

The YZ slices (179 x 198 pixels) of the pre-processed CT and 
corresponding manually annotated volumes were used to train the 
U-net segmentation model. For the input of the model, three 
consecutive slices were concatenated in the third dimension, 
resulting in an image with three channels. As target, the manually 
annotated slice of the middle of the three input slices was used. The 
slices adjacent to the middle input slice were thus used to provide 
contextual information. The slices of the 51 annotated volumes were 
divided in training, validation and test sets. Hereof, slices with only 
external air were omitted since they are not of interest. The slices of 
36 samples were used for training and validation, including 14 
“healthy”, 10 “defect but consumable” and 12 “non-consumable” 
samples. 10 % of the slices were used for validation during the 
training process. The training and validation set included in total 
2172 and 241 slices, respectively. Finally, the test set included the 
slices of 5 “healthy”, 5 “defect but consumable” and 5 “non-
consumable” samples with 2760 slices in total.  

4.2.6 Network architecture and training for 

segmentation 

A U-Net based network of four downsampling and four upsampling 
blocks was adapted to learn the multi-class semantic segmentation 
of regions of interest (“external air”, “healthy tissue”, “core”, “cavity” 
and “internal browning” pixels) in the YZ X-ray CT slices (Milesial, 
2019; Ronneberger et al., 2015). The model architecture is 
presented in Figure 4.5. The input layer had three channels of 
179 x 198 pixels. After each 3x3 convolution, batch normalization 
and the ReLU activation function were applied (Ioffe & Szegedy, 
2015; Nair & Hinton, 2010). In the downsampling steps, max pooling 
with a 2x2 kernel was used. Upsampling was done using a scale 
factor of 2 and bilinear interpolation. Skip connections were used to 
concatenate the output of each downsampling block to the output of 
the corresponding upsampling block. Herein, the output of the 
upsampling block was padded with zeros to match the height and 
width of the output of the downsampling block. The output layer had 
five channels of the same size, one for each class. The segmented 
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image (only one channel) was then obtained by assigning each pixel 
to the class with the largest probability in the output layer. 

 
Figure 4.5: U-net model architecture. Blue boxes correspond to multi-channel feature maps, 
while white boxes correspond to copied feature maps. The number of channels of each 
feature map is indicated above each box. Adapted from (Ronneberger et al., 2015). 

 The model was implemented in python using the PyTorch 
framework version 1.4.0 (Paszke et al., 2019) and trained from 
scratch for 20 epochs, i.e., for 20 passes over the training set. As loss 
function, i.e., the function used to calculate the error between the 
model’s prediction and the ground truth, the class-weighted cross-
entropy loss function was used to account for class imbalance in the 
data (Sudre et al., 2017). The used class-weights were determined 
based on the ground truth data in the training set. Hereto, the 
differences between the total number of voxels and the number of 
voxels belonging to each class were first calculated. Then, the ratio 
of these differences and the total number of voxels was used as class-
weight, resulting in the following weights: 0.08 (“external air”), 0.93 
(“healthy tissue”), 1.00 (“core”), 1.00 (“cavity”) and 0.99 (“internal 
browning”). The performance on the validation set was tested after 
every epoch and was used to optimize the batch size and initial 
learning rate hyper-parameters. The batch size is the number of 
samples the model handles during one iteration. During training, the 
weights of the model were updated after each iteration proportional 
to the loss on each batch. The magnitude of the weight changes 
depended on the learning rate, which started from the initial 
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learning rate set by the operator. Here, the Adam optimizer was used 
to dynamically change the learning rate during training (Kingma & 
Ba, 2014). The effect of data augmentation in the form of affine 
image transformations (random mirroring, rotating, shearing and 
scaling) on the training data was tested. 

4.2.7 Segmentation performance validation 

After model training was finished, the segmentation performance 
was validated by comparing the predictions with the ground truth 
annotation using the intersection over union metric (IoU, also 
known as the Jaccard index) (Rezatofighi et al., 2019). The IoU is a 
common metric to evaluate the correspondence between two 
shapes and has a range between 0 (no correspondence between 
prediction and ground truth) and 1 (full correspondence between 
prediction and ground truth). It was calculated for each label on slice 
level for the test set. The IoU for a certain label was not calculated 
for slices in which the label was not present in the prediction or 
ground truth. The mean IoU was calculated per pear and the overall 
mean and box plot for the IoU of each label were calculated. Finally, 
the mean and box plots were also calculated for the slices of 
“healthy”, “defect but consumable” and “non-consumable” samples, 
separately. 

4.2.8 Classification 

Quantitative data obtained from the output of the trained 
segmentation model was used to classify the fruit. Therefore, all 
consecutive slices of all 180 samples were segmented by the U-net 
model and the percentages of the fruit volumes corresponding to 
“cavity” and “internal browning” were calculated. The same 
calculations were performed on the manual ground truth 
segmentations. First, the accuracy of the predicted percentage of 
internal browning was investigated. Hereto, bins were made of 2 % 
in size, resulting in the bins [0.0-2.0 %, 2.0-4.0 %, …, 98-100 %] and 
it was tested if the prediction fell into the same bin as the ground 
truth. Second, a binary classifier, a logistic regression model (Kutner 
et al., 2005), was fitted using a 5-fold cross-validation to separate 
“consumable” and “non-consumable” samples based on the 
quantitative data of cavity and brown volume fraction. Finally, a 
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multiclass classifier, a quadratic discriminant model (Tharwat, 
2016), was fitted on the same features using a 5-fold cross-
validation to separate “healthy”, “defect but consumable” and “non-
consumable” samples. The classification results for both classifiers 
are presented using confusion matrices and receiver operating 
characteristic (ROC) curves (Fawcett, 2006; Metz, 1978).  

4.3 Results 

4.3.1 Segmentation model training 

The best results were obtained without data augmentation and with 
a batch size and initial learning rate of 4 and 1.0-4, respectively. Final 
training and validation losses of, respectively, 0.004 and 0.011 were 
achieved. The training and validation loss during training is 
presented in Figure 4.6. Interestingly, data augmentation did not 
improve the results (final validation loss of 0.016). The remainder of 
this section therefore discusses the results obtained without data 
augmentation. 

 
Figure 4.6: Training and validation loss during training. (a) Training loss (gray dashed line) 
and smoothed training loss (blue solid line) during training with one data point per batch; 
(b) Validation loss (gray dashed line) and smoothed validation loss (orange solid line) 
during training with one data point per 60 batches of the training data. Smoothing was done 
using the exponentially weighted moving average filter with a weight of 0.6. 

Figure 4.7 shows a CT slice, its ground truth segmentation, its 
predicted segmentation and reference image of five samples of the 
test set. In the first row, a slice of a “defective” pear is shown in which 
the core and a large cavity were connected, i.e., the core and cavity 
were indistinguishable. Therefore, no core was labelled during the 
ground truth annotation, while only cavity is indicated in the 
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prediction. The second row shows a slice of a “healthy” pear that was 
correctly segmented. On the third row, the results on a slice of a 
“defect” pear with cavities and browning is shown. The ground truth 
and prediction correspond quite well. Finally, in the fourth row a 
slice of another “defect” pear is shown with good similarity between 
the ground truth and prediction. 

 
Figure 4.7: Examples of visual segmentation results on the test set. Each row represents 
another pear. (a) XY slice of the original CT scan; (b) the corresponding ground truth 
segmentation; (c) the corresponding predicted segmentation; (d) the reference image of 
the corresponding pear. 
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4.3.2 Segmentation performance validation 

In Figure 4.8, the boxplots of the mean IoU scores, calculated per 
pear in the test set, are shown for the different label categories. For 
“external”, “healthy tissue” and “core” high mean IoU scores were 
obtained, meaning there is a good agreement between the ground 
truth and predicted segmentation. For “core”, also outliers with a 
lower score are present. The median IoU for “cavity” is still quite 
high (0.95), but the interquartile range is greater, meaning there is a 
larger spread in the scores. For “internal browning”, a median and 
mean IoU of 0.0 and 0.2 were found. The low median and mean IoU 
originate from the fact that 8 out of 15 pears of the test set got a 
mean IoU score of 0.0. In case of IoU score of 0.0, no overlap was 
found between the ground truth and the prediction. It can also 
indicate the presence of a certain label in the prediction, which is not 
present in the ground truth (or vice versa). 

 
Figure 4.8: Boxplots of the mean IoU scores per pear and per category of the test set. The 
red line represents the median and the bottom and top line of the blue boxes represent the 
25th and 75th percentiles, respectively. The black dashed lines represent the whiskers 
which extend until the minimum and maximum data point, that are not considered as 
outliers. Individual outliers are represented as the red plus symbols.  
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Figure 4.9 shows IoU scores calculated on individual slices of the 
three different categories of pear (“healthy”, “defect but 
consumable” and “non-consumable”) for the test set. For “internal 
browning”, the IoU scores are equal to 0.0 for both the categories 
“healthy” and “defect but consumable”: there is actually no or very 
little browning present in these pears. For the “non-consumable” 
category, however, the median is equal to 0.61 and the IoU scores 
are overall higher. This shows that due to the low IoU scores of the 
first two categories the overall IoU score of “internal browning” is 
low. In the plot the first category, high IoU scores are present for 
“external”, “healthy tissue” and “core”, which is desirable since this 
category contains healthy fruit. There is, however, also an IoU score 
of 0.0 for “cavity” present, meaning an incorrect prediction of cavity. 
For the other categories, also the first three labels exhibit high 
scores. For “cavity”, the median is high, but outliers are present with 
lower scores. 

 
Figure 4.9: Boxplots of the IoU scores per category of the test set. The red line represents 
the median and the bottom and top line of the blue boxes represent the 25th and 75th 
percentiles, respectively. The black dashed lines represent the whiskers which extend until 
the minimum and maximum data point, that are not considered as outliers. Individual 
outliers are represented as the red plus symbols.  
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4.3.3 Classification 

Based on the majority vote on survey results, all 180 samples were 
assigned to a ground truth category. 128, 26 and 26 samples were 
found to be “healthy”, “defect but consumable” and “non-
consumable”, respectively. Thereafter, the trained U-net model was 
used to segment all slices of each fruit and the percentage of “cavity” 
and “internal browning” was calculated. Subsequently, the predicted 
percentages of “internal browning” were compared to the 
percentages obtained from the ground truth segmentation of the 
test set by testing if the predicted percentages fell into the same bins 
as the ground truth ([0.0-2.0 %, 2.0-4.0 %, …, 98-100 %]) (see 
section 2.8). Figure 4.10 shows a histogram of the predicted and 
ground truth percentages of “internal browning” for the test set. The 
prediction of only two samples of the test set was put in the wrong, 
but adjacent, bin. Note that the test set included samples with 
internal browning up to around 15 %. However, it was found that 
for the training set, with internal browning percentages going up to 
around 45 %, the predicted and ground truth bin were in 
disagreement for only three samples (results not shown). 

 
Figure 4.10: Histogram of internal browning percentage in bins of 2 % for the ground truth 
and as predicted by the model for the test set. 
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Thereafter, a binary (“healthy” and “defective”) and a multiclass 
(“healthy”, “defect but consumable” and “non-consumable”) 
classifier were fitted to the predicted percentages of “internal 
browning” and “cavity” data of all 180 fruit in a 5-fold cross-
validation. Figure 4.11 shows the scatterplots of the dataset with 
ground truth categories for the binary and multiclass classification. 

 
Figure 4.11: Scatterplots of the classification dataset divided in two (a) and three (b) 
classes. Colors and shape of the marker indicate the category of the samples. Filled markers 
indicate correct predictions, while open markers indicate incorrect predictions. 

The confusion matrices of the binary (logistic regression model) and 
multiclass classifiers (quadratic discriminant model) are shown in 
Table 4.1 and  

Table 4.2. The binary classifier achieved an overall accuracy, true 
positive and true negative rate of 99.4, 96.0 and 100.0 % in 
classifying “consumable” and “non-consumable” samples. The 
multiclass classifier achieved an overall accuracy of 92.2 % and true 
positive rates of 97.0, 65.0 and 96.0 % for “healthy”, “defect & 
consumable” and “defect & non-consumable”, respectively. While 
high accuracies were thus obtained for the “healthy” and “defect & 
non-consumable” categories, a substantial part of the “defect & 
consumable” category was misclassified as “healthy”. 
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Table 4.1: Confusion matrix of the binary classifier. 

 

Predicted 

Consumable Non-consumable 

Ground truth Consumable 100.0 % 0.0 % 

Non-consumable 4.0 % 96.0 % 
 

Overall accuracy 99.4 % 

 

 

Table 4.2: Confusion matrix of the multiclass classifier. 

 

Predicted  

Healthy Defect but 
consumable 

Non-
consumable 

Ground 
truth 

Healthy 97.0 % 3.0 % 0.0 % 

Defect but 
consumable 

31.0 % 65.0 % 4.0 % 

 
Non-
consumable 

0.0 % 4.0 % 96.0 % 

 

Overall 
accuracy 

92.2 % 

 

 

 

Since the binary classifier obtained a true positive and false positive 
rate of respectively 96.0 and 0.0 %, no ROC-curve is shown for this 
classifier (area under the curve (AUC) = 1). Figure 4.12 shows the 
ROC curves of the multiclass classifier. Herein, the ROC-curves are 
presented per category using a one-vs-all approach, i.e., the ROC-
curves are shown for each category with the respective category as 
the positive class and the others combined as the negative class. The 
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AUC were equal to 0.93, 0.87 and 1.00 for respectively, “healthy”, 
“defect & consumable” and “defect & non-consumable” as positive 
class. 

 
Figure 4.12: ROC-curve of the multiclass classifier. 

4.4 Discussion 

4.4.1 An efficient and reproducable 3D manual 

annotation procedure 

The manual annotation of 3D data is relatively difficult, especially 
when it can only be performed on 2D slices. Therefore, we developed 
a reproducible procedure that uses 3D operations minimally 
dependent on subjective factors. The threshold to separate voxels 
comprising air and tissue was determined objectively using Otsu’s 
method (Otsu, 1979).  

The external air, cavities and core could also be objectively 
determined for most samples. However, some pears were found 
“difficult” to annotate when cavities were connected with the core of 
the fruit (see Figure 4.13). During the ground truth annotation, the 
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connected core and cavity were respectively labelled as “core” and 
“cavity” when they could easily be distinguished, e.g., only a small 
hole connecting both areas. However, in case the core and cavity 
could not be distinguished anymore, the whole opening was labelled 
as “cavity”. It was found that in these cases, the deep neural network 
labelled some voxels of the internal space as “core”, even though no 
clear boundary could be identified between the “core” and “cavity”. 
Of course, the way of annotating these samples had an impact on the 
segmentation metrics for the “cavity” and “core” label. 

 
Figure 4.13: Example of a sample with a connected core and cavity. Since no clear boundary 
could be identified between the two, the whole internal space was labelled as “cavity” 
during the ground truth annotation. In the predicted image, however, the trained model 
indicated some pixels as core. 

The annotation of “tissue” and “internal browning” was relatively 
fast using the semi-automatic seeded region growing algorithm (see 
Figure 4.4b and c). The placements and number of the initial seeds, 
however, was done subjectively and different seed points could 
possibly cause different results. Alternatively, the use of a 
predetermined threshold to segment these regions would make the 
process easier. However, this was impossible due to the variability 
in intensity values of the healthy tissue and internal browning 
between different samples. Lammertyn et al. (2003b) used 
minimally different thresholds on each pear to separate the tissue 
and internal browning segments, which is, however, a subjective and 
equally time-consuming approach. Our annotation process was 
done by one person. Preferably, this should be done by multiple 
operators. Although reference images of all fruit were present to 
guide the operator, this could prevent an operator-specific 
annotation and improve the performance of the segmentation 
model. 
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4.4.2 A segmentation model to quantify the 

internal disorder severity 

A deep neural network was trained to automatically segment 
different tissue types and structures in slices of X-ray CT scans of 
pear fruit. Data augmentation in the form of affine transformations 
on the training data did not improve on the results obtained without 
data augmentation. In general, data augmentation is useful for 
preventing neural networks from overfitting on the training data. 
However, overfitting on the training data was not observed for the 
model trained without data augmentation (see Figure 4.6). The 
effect of data augmentation might thus be insignificant. Additionally, 
the nature of our dataset possibly makes data augmentation less 
effective. In the preprocessing of the data, all CT reconstructions 
were put in the same pose (see section 2.2). The preprocessing, 
which can also be done on new data, makes sure all samples are 
presented to the model in the same manner. Images resulting from 
data augmentation might therefore not be encountered in the actual 
dataset. The model would then generalize to irrelevant cases. It was 
therefore decided to use the model trained without data 
augmentation. 

Visually, the predicted segmentations of many samples 
corresponded well with the ground truth annotations (see section 
3.1). A validation of the segmentation performance using the IoU 
metric on an independent test set (see section 3.2) showed high 
scores for the labels “external”, “healthy tissue” and “core”. A high 
median IoU was also obtained for the “cavity” label, but a larger 
range was found including lower values. Interestingly, low IoU 
scores were found for the “internal browning” label, even though 
visually most predictions seemed sufficiently accurate. It turned out 
this was mainly caused by errors on small volumes and volume 
edges. Since the IoU metric is relative to the ground truth, the 
absolute size of the volumes did not matter, resulting in low IoU 
scores even though the error by the model was rather negligible. 

Particularly, it was observed that many low IoU scores for “internal 
browning” were caused by the incorrect labelling of small pixel 
regions, or regions forming a boundary around the core or cavities 
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in the predicted image (see the first row in Figure 4.7). These 
misclassified regions resulted in an IoU of 0.0 if no “internal 
browning” was present in the ground truth. Typically, these 
misclassified regions had lower grey scale intensity values similar to 
the intensity of regions affected by internal browning. The latter had 
lower intensity values due to a lower density and higher porosity 
(Nugraha et al., 2019). However, for the experienced eye, supported 
by the reference images, it was clear that internal browning had 
often not occurred. Rather, the partial volume effect of the CT 
imaging was probably responsible for the local decrease in pixel 
intensity (Barrett & Keat, 2004). Due to the limited resolution of the 
CT scans (0.9766 x 0.9766 x 0.9766 mm³ voxel size), voxels in the 
transition between two regions with different X-ray attenuations 
(e.g., different densities) have an intensity somewhere in-between. 
The partial volume effect is thus present at the boundary of the core 
or cavities, resulting in the misclassification of the affected pixels by 
the network. Moreover, some cavities were too small to be 
thresholded in the CT scans and were therefore not annotated as 
“cavity” during ground truth annotation. Nonetheless, these small 
cavities caused small spots with lower intensity due to the partial 
volume effect and were often indicated as “internal browning” in the 
predicted image (see the last row in Figure 4.7). Even though low 
IoU scores were obtained for “internal browning”, it was shown that 
the severity of the internal disorders could be accurately predicted, 
and the misclassified voxels had a relatively small impact on the 
subsequent classification. 

An interesting case was found in which a cavity was predicted to be 
the core of the fruit (see Figure 4.14). Indeed, when looking at the 
CT slice in Figure 4.14a, the shape and location of the cavity in the 
slice resembles the typical shape and location of the core. From 
examining the CT volume, however, it clearly was a cavity and was 
labeled as such during ground truth annotation (see Figure 4.14b). 
Since the model does its predictions slice-by-slice, it lacks the 3D 
information required to correctly recognize the whole as a cavity. A 
3D implementation of the U-Net model could be beneficial to avoid 
such mistakes (Çiçek et al., 2016). However, to train such model 
more labelled CT-scans would be required. 
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Figure 4.14: Example of a sample where a cavity was predicted as a core due to a similar 
location and shape of the internal space. 

Several strategies can be followed to improve the segmentation 
results and robustness. First, as stated before, a 3D implementation 
of the segmentation model could be applied so that the model can 
use 3D information to prevent mistakes as presented in Figure 4.14. 
Second, more samples could be manually annotated, including more 
“difficult” samples. Here, 51 out of the 180 available samples were 
annotated with a preference for “easier” samples, i.e., with cavities 
not connected to the core. To segment “difficult” samples, one must 
attempt to design an objective method. Third, data augmentation, 
using other techniques than affine transformations, could be applied 
on the CT scans and/or CT slices to artificially increase the size and 
variability of the dataset. Finally, additional datasets could be 
included of fruit from different years, origins and maturity stages.  

In addition, the evaluation of the segmentation performance could 
be improved. For evaluating the performance of segmenting fine 
structures, Multiscale IoU could be used (Ahmadzadeh et al., 2021). 
Metrics such as the region-wise over- and under- segmentation 
measures could be used in conjunction with IoU to evaluate the 
agreement between the prediction and ground truth in terms of 
overlap and number of connected regions (Y. Zhang et al., 2021). 
These metrics could be incorporated in the loss function for training 
the model. 

4.4.3 Classification based on quantitative data 

The trained deep neural network was used to obtain accurate 
predictions on the severity of internal disorders, expressed in 
percentages of the fruit volume affected by a disorder (see Figure 
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4.10). Based on the quantitative data, classifiers were trained to 
separate “consumable” and “non-consumable” fruit on the one hand, 
and “healthy”, “defect but consumable” and “non-consumable” fruit 
on the other hand. Excellent classification performance was 
achieved for the former classifier, with an overall accuracy, false 
positive and false negative rate of 99.4, 0.0 and 4.0 % (see Table 4.1). 
“Non-consumable” fruit can thus be reliably separated from sound 
fruit using our method. For the multiclass classifier, great 
performance was achieved for “healthy” and “non-consumable” 
samples, but a true positive rate of only 65.0 % was achieved for the 
“defect but consumable” category (see  

Table 4.2). It was found that 89.0 % of the misclassified samples of 
this category were predicted to be “healthy”. This could be caused 
by similar percentages of “cavity” and “internal browning” as 
“healthy” samples, e.g., only very small internal disorders. This 
reasoning was confirmed, as all misclassified samples were located 
in the bottom left corner of Figure 4.11. Additionally, possibly an 
insufficient segmentation of the defective regions might have 
occurred, causing an underestimation of the actual disorder 
severity. Moreover, it should be noted that the alignment step of the 
pears during pre-processing included interpolation and resampling 
procedures that might have altered the appearance of the CT scan. 
However, the majority of this category could be identified correctly, 
and misclassifications might not be a big concern since the fruit was 
still considered consumable. 

It was found that some internal defects were visible in the reference 
images of the cut-open fruit, but not in the CT volumes. Recent 
bruises, for instance, might manifest themselves in the reference 
image as regions with free water in the intercellular space. Since the 
water has not evaporated yet, there might not yet be a difference in 
density and thus X-ray attenuation. An alternative explanation might 
be that the bruises only occurred after the CT scans were acquired 
during transport in the period before the reference images were 
taken. These defective regions were, therefore, visible in the 
reference images but could not be segmented in the prediction or 
the ground truth volumes and were, hence, not quantified. Figure 
4.15 shows the reference image and orthogonal slices of a bruised 
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fruit categorized as “defect but consumable”. Contrary, some 
disorders might have been invisible in the reference images due to 
the positions where the cuts were made, resulting in an incorrect 
categorization.  

 
Figure 4.15: Orthogonal slices through the CT volume (a-c) and reference image (d) of a 
bruised sample classified as “defect but consumable”. While the bruise is visible in the 
reference image, it is invisible in the CT scan. 

Deep learning-based classifiers that are trained end-to-end (from 
input to output) are black-box systems by nature. Here, we proposed 
a two-step approach, in which a semantic segmentation model is 
used to deliver quantitative data based on which the fruit are 
subsequently classified. The classification is thus not trained end-to-
end, which brings a few benefits. First, this approach is transparent, 
because the output of the segmentation model that precedes the 
classification can be visualized and expressed quantitatively. 
Second, the method can be easily adapted for different markets, as it 
would only require retraining the classifier on categories specific to 
the different markets. The segmentation can be assumed 
independent of the market and retraining the segmentation model 
would thus not be required. End-to-end trained classifiers, on the 
other hand, would require retraining for each market. In future 
work, an end-to-end system could be investigated in which a trained 
3D segmentation model is used as an initialization of a model with 
the same architecture, followed by a small convolutional neural 
network for final classification. To adapt the model to a certain 
market, the segmentation layers could be frozen, while the 
classification layers are retrained with market specific categories. 
Alternatively, the segmentation and classification could be learned 
simultaneously, using multi-task learning (Ruder, 2017).  
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4.4.4 Potential applications 

Automatic segmentation of CT-scans can significantly speed up the 
analysis of internal defects in foods. Various promising applications 
are conceivable. First, the method could be applied to non-
destructively inspect the internal quality foods in a quantitative way 
and to accurately predict the severity of internal defects. This would 
not only allow separating non-consumable from consumable 
products, but also to separate consumable products of different 
internal quality. Since the absence of internal defects can be 
guaranteed, higher margins are justifiable. However, significant 
improvements are needed in hardware and software to implement 
automated X-ray CT analysis at the throughput of commercial 
sorting lines (e.g. at least ten products per second for fruit sorting). 
In this regard, research is done on obtaining high quality 
reconstructions with a minimal number of projections and inline X-
ray CT approaches (De Schryver et al., 2016; Janssens et al., 2016, 
2018, 2019; L. F. A. Pereira et al., 2016, 2017). Second, this method 
might facilitate more fundamental research on internal defect 
development on a larger scale, since cumbersome manual analysis 
of large datasets can be automated. A larger quantity of samples 
could be included, or the same samples could also be analysed at 
different time-points during storage with short intervals for CT 
scanning. Finally, the method could be adapted for foreign object 
detection in foods (Edwards, 2004; Graves et al., 1998). 

4.5 Conclusion 

A non-destructive inspection method was developed to quantify 
internal disorders in pear fruit in X-ray CT scans using a deep neural 
network for semantic segmentation. Herein, a model was trained to 
indicate healthy tissue, core and regions affected by internal 
disorders, i.e., cavity formation and internal browning, in slices of 
the scans. The severity of internal disorders could be predicted 
successfully from the segmentations. Moreover, it was shown that 
the resulting quantitative data can be used to classify “consumable” 
vs “non-consumable” fruit at high accuracy (99.4 %) on the one hand 
and “healthy” vs “defect but consumable” vs “non-consumable” 
classification on the other hand (92.2 %). For the latter, the 
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classification performance on the “defect but consumable” fruit was 
poor (true positive rate of 65.0 %), with most misclassified fruit 
assigned to the “healthy” class. 

Being able to reliably separate fruit from the three classes would 
facilitate different market strategies and could justify larger margins 
on the “healthy” category since high internal quality is guaranteed. 
While the presented method could reliably prevent non-consumable 
fruit from reaching consumers, additional research is required to 
improve the separation of top quality from acceptable fruit. In 
addition, a large scale consumer survey is recommended to better 
understand consumer tolerances with respect to internal defects. 

The X-ray CT-based method presented in this chapter can quantify 
the internal disorder severity of pears, which can then be used to 
obtain a high accuracy in internal disorder detection. The presented 
method might be of great interest to researchers and industry 
working on quality assurance, product analysis and foreign object 
detection in foods and other industries. However, an inline 
implementation at speeds of commercial sorting lines is not yet 
possible with current hardware.   
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Chapter 5  

 
Inline Nondestructive 

Internal Disorder 

Detection in Pear Fruit 

using Explainable Deep 

Anomaly Detection on X-

ray images 

5.1 Introduction 

For inline applications using X-ray imaging, X-ray radiography is 
currently the most straightforward to implement inline with an X-
ray source and line detector on either side of a conveyor belt. X-ray 
radiography has been studied for internal disorder inspection of 
fruit using application specific algorithms (Casasent et al., 1998; Kim 
& Schatzki, 2000; M. A. Shahin et al., 2001; van Dael et al., 2016). Van 
Dael et al. (2019, 2017) developed a more general purpose method 
for internal quality inspection. However, it still required application 
specific shape and density distribution models (DDM). Moreover, 
the method is relatively hard to implement due to its complexity. 
Hence, there is a need for a generally applicable method for 
nondestructive internal disorder detection that can be easily 
implemented inline. 

Over the past decade, deep learning has shown to be very useful in 
pattern recognition tasks and does not require hand-crafted 
features or sophisticated image processing pipelines. Instead, each 
task can be learned end-to-end from data (LeCun et al., 2015). It has 
been successfully used in many fields, including food and agriculture 
(Kamilaris & Prenafeta-Boldú, 2018; Zhou et al., 2019). Most 
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commonly, deep learning is used in a supervised way, i.e., using 
labeled data. However, acquiring a labeled and balanced dataset of 
sufficient size is often hard in practice due to high labor or data 
acquisition costs, or other practical limitations (Goodfellow et al., 
2016; Kamilaris & Prenafeta-Boldú, 2018; LeCun et al., 2015; Zhou 
et al., 2019). In the case of internal disorder detection in pome fruit, 
it is challenging to acquire sufficient defect samples for several 
reasons. First, storage conditions are optimized to preserve high 
quality fruit. Defect fruit are, therefore, exceptions, and their 
availability is unpredictable. Second, while treatments are available 
to induce internal disorder development during storage, their 
success is variable, and the required duration of the storage is a 
disadvantage. Moreover, it is unclear whether the induced defects 
are representative of all defect fruit encountered in practice. Third, 
regardless of the origin of the defect fruit, it is hard to obtain a 
dataset with a wide range in disorder severity. Fourth, since internal 
disorders are invisible externally, destructive methods are required 
to perform ground truth annotations which complicates the tracking 
of the disorder development over time and the prediction of the 
utility of the sample in the first place. Finally, it is uncertain whether 
a model that is trained on a certain dataset is transferable to new 
data. In contrast, healthy fruit are abundant, immediately available 
after harvest, and can be easily obtained from various locations and 
consecutive harvest years. 

Therefore, it seems promising to approach the detection of defect 
fruit as an anomaly detection problem (Chandola et al., 2009). In 
anomaly detection (AD), a model is constructed using normal data 
and a certain metric is used as anomaly score to measure the extent 
to which a new sample deviates from normality. Anomaly detection 
has been extensively investigated using conventional machine 
learning techniques for a wide range of applications, but had limited 
success in high dimensional spaces, e.g., image data. Recently, deep 
learning-based anomaly detection (deep AD) methods have been 
developed showing promising results on image datasets 
(Chalapathy & Chawla, 2019; Ruff, Kauffmann, et al., 2021). Deep AD 
is mostly seen as an unsupervised learning task in which unlabeled 
data is used that is assumed to be normal. Alternatively, it can be 
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done in a semi-supervised setting in which few labeled anomalies 
are used during training. Recently, a method called outlier exposure 
(OE) was introduced for semi-supervised AD in the absence of real 
labeled anomalies for training (Hendrycks et al., 2019). Herein, 
random natural images from an auxiliary dataset were used as 
labeled anomalies. It has been shown that OE can improve the 
performance of AD even though these labeled anomalies are 
unrelated to the first dataset. In this case, the OE images are referred 
to as “out-of-class” anomalies, i.e., the anomaly images may contain 
a totally different content than the normal class of images 
(Hendrycks et al., 2019). However, in practice one typically also 
wants to detect anomalies with subtle deviations instead of totally 
different images. In the context of AD detection in manufactured 
goods, Liznerski et al. (2021) introduced the usage of synthetic 
anomalies in which nominal images were subtly distorted using 
“confetti noise” after which they were used during training as 
labeled anomalies. Inspired by their method, we developed a 
pipeline to create synthetic anomalies of X-ray radiographs of pears. 
We compare this to using the ImageNet dataset as a general auxiliary 
dataset for OE, and to using “confetti noise”. 

In this chapter, the application of deep AD is targeted to detect pear 
fruit with internal disorders using X-ray imaging. Unsupervised 
(Bergmann, Fauser, et al., 2019; Bergmann, Löwe, et al., 2019) and 
(semi-)supervised deep AD methods (Liznerski et al., 2021; Ruff, 
Vandermeulen, et al., 2021) are compared to the multisensor 
internal disorder detection method (van Dael et al., 2019, 2017) on 
a dataset of simulated X-ray radiographs. Herein, also the 
explainability of each method was evaluated using saliency maps, or 
heatmaps, that highlight the anomalous regions. 

5.2 Materials and methods 

Three deep AD methods are benchmarked against the multisensor 
inspection method (van Dael et al., 2019, 2017) for detecting 
internal disorders in inline X-ray radiographs of pear fruit. Hereto, a 
simulated dataset of radiography images was generated from X-ray 
CT scans of pears to allow for a controlled environment and for 
making abstraction of some technical implementation challenges. In 
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addition, by simulating the data, a much larger dataset could be 
generated compared to acquiring it physically, and we prevent 
biases that could otherwise have been introduced unintentionally 
during image acquisition. Section 5.2.1 describes the simulated 
dataset. The different deep AD methods are discussed in Section 
5.2.2. The multisensor inspection AD method is explained in Section 
5.2.3. Training details are discussed for the deep AD methods in 
Section 5.2.5. Finally, Section 5.2.6 discusses how the AD methods 
were evaluated. 

5.2.1 Simulated Radiography Datasets 

A labeled dataset of inline X-ray projection images of pear fruit was 
simulated from the CT dataset of 180 samples that was acquired in 
Chapter 4 (see sections 4.2.2 and 4.2.4). Herein, all samples were 
labeled “Healthy”, “Defect but consumable” or “Defect and non-
consumable” (see Figure 5.1). In addition, predictions of the internal 
disorder severity of each sample, i.e., volume percentages of cavities 
and internal browning, were available from the trained 
segmentation model developed in Chapter 4. Here, we defined 
anomalies as “Defect and non-consumable” fruit (#26), while 
“Healthy” fruit (#128) were considered nominal. The “Defect but 
consumable” fruit (#26) were not included in the anomaly dataset, 
since these samples had only minor defects which were not 
considered off-putting for consumption. For completeness, the 
performances of all methods were also evaluated on the “Defect but 
consumable” group. The simulation of X-ray radiographs is 
described in Appendix A1.1. The dataset contained 9000 simulated 
projections in total. Herein, 6400 were nominal, while 1300 were 
anomalies. The remaining 1300 images were simulated from the 
“Defect but consumable” class. Every image had a fixed size of 300 ×
 300 pixels. Note that for visualization purposes, the grayscale 
values in the projection were inverted compared to normal 
transmission images. 
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Figure 5.1: Classes in the CT dataset. Column (a) “Healthy”, column (b) “Defect and non-
consumable” and column (c) “Defect but consumable”. Red circles in column (c) indicate 
minor defects. 

5.2.2 Deep AD methods 

5.2.2.1 Unsupervised deep AD using an autoencoder 

AD is generally approached as an unsupervised learning problem 
where the goal is to model nominal data and detect samples that 
deviate significantly from normality. A common approach for deep 
AD is to train an autoencoder (AE) on nominal data with the task of 
reconstructing the input (Bergmann, Fauser, et al., 2019; Ruff, 
Kauffmann, et al., 2021). The architecture of the AE contains an 
encoder and a decoder connected by a shared latent representation 
of limited size. This representation acts as a bottleneck, forcing the 
encoding of only the most informative features in it. The output is 
then reconstructed from this latent representation by the decoder, 
after which the reconstruction error between the input and output 
is calculated. This builds on the assumption that the AE is worse at 
reconstructing anomalous compared to nominal samples, because it 
is only trained on nominal data. The reconstruction error can thus 
be used as an anomaly score. Moreover, the reconstruction error can 
be visualized as anomaly heatmap, e.g., the pixel-wise squared 
difference between the input and output, since anomalous regions 
are assumed to be reconstructed worse. 
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Here, we train an AE on a training dataset comprising only nominal 
data, and evaluate it on a test set. The test set comprises an equal 
number of nominal and anomalous samples. The full architecture for 
the AE is described in Appendix A4.1. As loss function, both the Mean 
Square Error (MSE) and Structural Similarity Index (SSIM) between 
the AE’s input and output were tested (Z. Wang et al., 2004). Details 
on the model training are discussed in Section 5.2.5.  

5.2.2.2 Fully Convolutional Data Description (FCDD) 

Deep one-class classification methods learn to map nominal data 
close together in feature space, while mapping anomalies further 
away (Ruff, Kauffmann, et al., 2021). They can often be trained in a 
semi-supervised way, where a few example anomalies are available 
during training. For instance, the semi-supervised AD method Deep 
SAD (Ruff et al., 2020) maps nominal data close to the center of a 
hypersphere in feature space and maps anomalies further away 
from this center, i.e., hypersphere classification. However, in terms 
of explainability, Deep SAD does not naturally produce an anomaly 
heatmap. Therefore, a method called Fully Convolutional Data 
Description (FCDD) (Liznerski et al., 2021) was used to perform 
explainable deep AD. In FCDD, the output matrix of the model 
functions as a down-sampled anomaly heatmap. This is 
accomplished by using only convolutional and pooling layers in the 
model, limiting the receptive field of each output pixel and 
preserving spatial information. By up-sampling the anomaly 
heatmap, anomalous regions can be indicated in the input image. 
The same FCDD model architecture as the one described by 
Liznerksi et al. (2021) was used (see Figure 5.2). A detailed overview 
of all layers is provided in the Appendix A4.2.  
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Figure 5.2: Schematic illustration of the FCDD model architecture. 

FCDD is trained using nominal and anomaly samples (𝑋1, … , 𝑋𝑛) that 
are labeled with (𝑦1, … , 𝑦𝑛), where 𝑦𝑖 = 1 and 𝑦𝑖 = 0 represent the 
label of an anomaly and a nominal sample, respectively. The fully 
convolutional architecture performs the mapping with weights 𝑊of 
the input image 𝑋 to a feature matrix, i.e., 𝜙(𝑋, 𝑊): ℝ𝑐×ℎ×𝑤 → ℝ𝑢×𝑣. 
Herein, 𝑐, ℎ and 𝑤 are respectively the number of channels, the 
height, and the width of the input image, and 𝑢 and 𝑣 are the height 
and width of the output matrix, respectively. It then utilizes the 
following objective function (Liznerski et al., 2021): 

min
𝑊

    
1

𝑛
∑(1 − 𝑦𝑖)

1

𝑢 ∙  𝑣

𝑛

𝑖=1

‖𝐴(𝑋𝑖)‖1 

− 𝑦𝑖 log (1 − exp (−
1

𝑢 ∙ 𝑣
‖𝐴(𝑋𝑖)‖1)) (Eq. 8) 

Here, 𝐴(𝑋) = (√𝜙(𝑋, 𝑊)2 + 1 − 1) is the pseudo-Huber loss 

function on the output matrix 𝜙(𝑋, 𝑊), with all operations applied 
element wise, and ‖𝐴(𝑋)‖1 is the sum of all elements of 𝐴(𝑋), which 
are all positive. The FCDD loss function minimizes ‖𝐴(𝑋)‖1 for 
nominal data, while maximizing it for anomaly data, which allows 
the use of ‖𝐴(𝑋)‖1 as anomaly score. In other words, output pixels 
that contribute to ‖𝐴(𝑋)‖1 are indicative for anomalous regions in 
the input image. Training was performed on the nominal training 
data combined with our OE pipeline to introduce synthetic 
anomalies (see Section 5.2.2.4). 
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5.2.2.3 Supervised deep AD 

Supervised learning is often infeasible for AD due to limited 
availability of labeled anomalies, i.e., the dataset insufficiently 
captures what it means to be anomalous. Therefore, in classical AD 
methods (e.g., one-class SVM), a classifier is trained to discriminate 
between concentrated nominal data and unconcentrated anomalies 
which are assumed to be uniformly distributed (Steinwart et al., 
2005). Yet, this approach is assumed to be ineffective for high 
dimensions because it would require sampling massive amounts of 
anomalies in feature space. However, it was recently shown that a 
pure classification-based AD method can work surprisingly well on 
images when trained using OE (Ruff, Vandermeulen, et al., 2021). 
The authors hypothesized that this is due to the multiscale structure 
of images that makes OE samples highly informative for AD. 
Therefore, a supervised classification-based AD method was 
evaluated on the simulated dataset. Herein, a ResNet18 model (He 
et al., 2015) was trained from scratch to classify nominal and 
anomalous samples using the binary cross-entropy loss function 
(BCE). This method is further denoted as the BCE classifier. Training 
was performed on the nominal training data combined with the 
same OE pipeline as used for FCDD to introduce synthetic anomalies 
(see section 5.2.2.4). Details on the model training are discussed in 
Section 5.2.5. 

5.2.2.4 Outlier exposure 

OE was applied during training for methods that allow for (semi-) 
supervised training, i.e., FCDD and the BCE classifier. During 
training, each nominal sample had a 50 % chance of being replaced 
by an OE image and being labeled as anomalous, resulting in 
balanced batches for large batch sizes. Hereto, a synthetic defect OE 
pipeline was developed in which images are being manipulated by 
adding synthetic defects. This resulted in a projection with blobs 
resembling real defects. The pipeline is illustrated in Figure 5.3 and 
discussed in detail in the Supplementary materials. The synthetic 
defect OE pipeline was compared to using the ImageNet dataset as a 
general auxiliary dataset for OE, and to using “confetti noise” as 
proposed by Liznerski et al. (2021) (see Appendix A3). Since the best 
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performance was achieved when using the synthetic defect OE 
pipeline, this approach was used in the rest of the paper. To evaluate 
the benefit of OE, the performance of models trained with 50, 40, 30, 
20, 10 and 0 % chance for OE were compared (see section 5.3.2). 

 
Figure 5.3: Outlier exposure pipeline with synthetic defects. (a) Nominal input image; (b) 
Area in which seed points for synthetic defects are sampled resulting from threshold and 
erosion on (a); (c) Sampled seed points (blue squares) in the area in (b), which is overlayed 
in green; (d) Ellipsoidal blobs resulting from a distance transform followed by a gaussian 
filter on deformed disks centered around the seed points in (c). Grayscale values are 
normalized between [0.0, 0.1]; (e) Input image with synthetic defects resulting from 
subtracting (d) from (e). 

5.2.3 Multisensor AD Benchmark 

As a benchmark for the deep AD methods, the multisensor AD 
method (van Dael et al., 2019, 2017) was used in a simulated setup. 
The method is based on the combination of 3D shape measurement 
and X-ray imaging and incorporates prior knowledge of the product 
in the analysis. The principle is that a statistical shape (SSM) and 
density distribution model (DDM) are first developed offline. In the 
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inline setup, the fruit is imaged with a 3D-imaging camera and an X-
ray radiograph is acquired. The SSM and DDM are then fitted to the 
3D point cloud after which a reference X-ray image can be computed. 
This reference image can be thought of as being the predicted X-ray 
projection which is expected in case no internal defects are present. 
Subtracting the reference from the measured radiograph results in 
a residual image on which deviant internal features light up. This 
enables the detection of any internal disorders associated with a 
structural change leading to density differences. A similarity 
measure between both images can therefore be used as anomaly 
score. In this work, the Mean Squared Error (MSE) between the 
reference image and the measured radiograph was used as anomaly 
score. Although the multisensor method does not require training 
like the deep learning methods, it does also need prior work and 
data to determine the SSM and DDM.  

For the multisensor AD method, two corresponding reference 
images were simulated for each simulated inline scan (see Appendix 
A1.2), i.e., one using a homogeneous DDM (Multisensor HODDM) 
and another using a heterogeneous DDM (Multisensor HEDDM). The 
homogeneous DDM assumes no internal density gradients, while the 
heterogeneous DDM accounts for the overall density gradients in the 
fruit. The DDMs themselves were generated using the CT data of all 
healthy samples as described by van Dael et al. (2019, 2017). In 
Figure 5.4, orthogonal slices through the CT volume and fitted 
homogeneous and heterogenous DDMs are shown for a healthy fruit. 
For visualization purposes, grayscale values are plotted in the 
[0.5, 1] range using a colormap. 
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Figure 5.4: Orthogonal slices through the CT volume and fitted DDMs of a healthy fruit; (a-
b) Orthogonal slices through the CT volume in grayscale (a) and with colormap 
visualization (b); Orthogonal slices through the fitted heterogeneous DDM (c) Orthogonal 
slices through the fitted homogeneous DDM (d). To clearly visualize the internal gradient, 
the grayscale values in these plots are scaled between [0.5, 1] and a colormap is used. 

Figure 5.5 shows these simulated projections for one nominal and 
two anomalous samples. For the naked eye, using a homogeneous or 
heterogeneous DDM resulted in approximately the same reference 
image. However, in the grayscale line profiles (Figure 5.5 (e)) a slight 
drop in the grayscale values can be observed at the position of the 
core in the HEDDM reference image. Note that for the first sample, 
the DDMs can quite accurately predict the grayscale values along the 
line profile except for the area around the core. The same can be 
observed for the second sample, even though it has severe internal 
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browning. For the third sample, the grayscale values along the line 
profile deviate substantially from the predictions by the DDMs, i.e., 
lower grayscale values are found than expected.  

 
Figure 5.5: Image of cut open fruit (a), simulated projections (b-d) and grayscale line 
profiles through the core (e) from a nominal sample (1st row) and two anomalous samples 
(2nd and 3rd row). (b) Simulated projection with the CT volume; (c) Simulated projection 
with the heterogeneous DDM; (d) Simulated projection with the homogeneous DDM. (e) 
grayscale line profiles through the core in the images in red for (b), green for (c) and blue 
for (d). 

5.2.4 Dataset splits 

Training and test sets were created from the simulated dataset of 
9000 samples, with for each sample the following simulated 
projections: a projection simulated with the CT volume, a projection 
simulated with the homogeneous DDM and a projection simulated 
with the heterogeneous DDM. All samples of the fruit labeled as 
anomaly, i.e., 1300 samples, were included in the test set together 
with an equal number of nominal samples. The remainder of 
nominal samples were used for training. Images of every fruit were 
included in only one of the two sets. To evaluate the effect of how the 
data was split, a 5-fold cross-validation was implemented. This 
resulted in five different splits in which the nominal samples were 
assigned to the training or test set at random while the anomalous 
samples in the test set were always the same. Thereafter, all 
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methods discussed above were evaluated on these five dataset 
splits. Note that only nominal samples were used for training and all 
available anomalous samples were used for testing. No validation 
set was used to maximize the number of anomalies available for 
testing. In addition, all hyperparameters were left to the defaults of 
the used libraries, except for the learning rates, which were 
optimized for each method based on the performance on the 
training set (see section 5.2.5). 

5.2.5 Training details 

All models were trained on the 5-fold cross-validation data splits for 
50 epochs and a batch size of 256. An epoch was defined as a full 
iteration over all batches in the training set. For each of these data 
splits, a different seed was used for reproducibility, i.e., determining 
the random initialization of the models, sample order and 
composition of the batches, and data augmentation and OE 
outcomes. On every data split, all methods thus used the same 
random seed. The initial learning rate that resulted in the lowest 
final loss on the training set was used. For all models, this resulted 
in an initial learning rate of 1.0 × 10−4. During training, the Adam 
optimization method (𝛽 = (0.0, 0.999)) was used in combination 
with a learning rate scheduler that reduced the learning rate by a 
factor 0.1 once a plateau was reached on the training loss (Kingma 
& Ba, 2014). Herein, a patience of five epochs was used and the 
learning rate was allowed to drop to a minimum of 1.0 × 10−8. The 
data preprocessing consisted of a min-max normalization between 
[0, 1]. For training the AE, random cropping to an image size of 
224 × 224 was used for data augmentation. For the FCDD and the 
BCE classifier models, the data augmentation during training 
consisted of random cropping to an image size of 224 × 224 and OE 
with the ImageNet OE pipeline or OE with synthetic anomalies using 
an OE rate of 50 %. In addition, the effect of OE was investigated on 
one of the dataset splits using a probability of 50, 40, 30, 20, 10 and 
0 %.  

5.2.6 Test and evaluation details 

After training the models, all methods (including the multisensor AD 
method) were evaluated on the test sets of the 5-fold cross-
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validation data splits. Every test image was min-max normalized 
between [0, 1] and center cropped to a size of 224 × 224 pixels. A 
receiver operating characteristic (ROC) analysis (Fawcett, 2006) 
was performed on the anomaly scores of each method, which is a 
commonly used method for quantitative evaluation in AD (Ruff, 
Kauffmann, et al., 2021). The performances of all methods were 
compared based on the ROC curves and Area Under the (ROC) Curve 
(AUC) scores. The optimal threshold on the anomaly score of each 
method anomalies was identified based on the Youden index 
(Youden, 1950), where the threshold with the highest index was 
considered optimal. This coincides with the highest point on the ROC 
curve above the chance line, i.e., the point of highest performance 
compared to a random classifier. Note, however, that the optimal 
threshold may also depend on the acceptable trade-off between the 
true positive and false negative rates which is application specific. 

In addition to the quantitative evaluation, the methods were 
compared qualitatively based on their explainability in terms of 
anomaly heatmaps. Herein, the goal is to indicate anomalous regions 
in the input image in case internal defects are present. The AE, FCDD 
and the multisensor AD methods naturally produce anomaly 
heatmaps. For AE and the multisensor AD methods, the squared 
pixelwise difference between the input and output was used as 
anomaly heatmap. For FCDD, the output was up-sampled to the 
input image size using nearest neighbor interpolation to produce a 
full resolution anomaly heatmap. Since the BCE classifier does not 
naturally produce anomaly heatmaps, a gradient-based method, i.e., 
Guided Gradient-weighted Class Activation Mapping (Guided Grad-
CAM) (Selvaraju et al., 2017), was used to visualize anomalous 
regions. 

5.3 Results 

5.3.1 Quantitative evaluation of deep AD methods 

The AUC scores, mean AUC score and standard errors of means for 
all methods on the five data splits using a different random seed are 
provided in Table 5.1. The highest mean AUC score was obtained by 
the Multisensor HEDDM (mean AUC = 0.966). This method was 
closely followed by the BCE classifier (mean AUC = 0.962) and FCDD 
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(mean AUC = 0.961). Multisensor HODDM obtained the lowest mean 
AUC score of all methods (0.911). For the multisensor method, using 
a heterogenous instead of a homogeneous DDM thus significantly 
improved the results. Relatively high standard errors on the AUC 
score were found for the AE MSE (0.019) and BCE classifier (0.010), 
while similar and lower standard errors on the AUC score were 
found for all other methods (in the range [0.004, 0.006]). 

Table 5.1: AUC scores, mean AUC scores and standard errors of means for all methods over 
the test sets of the 5-fold cross-validation data splits. For each method, the highest AUC 
score over all random seeds is indicated in bold. Multisensor HEDDM: Multisensor AD using 
heterogenous DDM; BCE classifier; FCDD: Fully Convolutional Data Description; AE SSIM: 
Autoencoder using SSIM loss; AE MSE: Autoencoder using MSE loss; Multisensor HODDM: 
Multisensor AD using homogeneous DDM. 

Method Random seed 

Mean AUC 1 2 3 4 5 

Multisensor HEDDM 0.964 0.973 0.957 0.967 0.968 0.966  0.005 

BCE classifier 0.943 0.972 0.968 0.966 0.961 0.962  0.010 

FCDD 0.963 0.965 0.953 0.962 0.962 0.961  0.004 

AE SSIM 0.922 0.934 0.925 0.928 0.932 0.928  0.004 

AE MSE 0.926 0.878 0.913 0.924 0.928 0.914  0.019 

Multisensor HODDM 0.918 0.905 0.919 0.908 0.904 0.911  0.006 

Figure 5.6 shows the mean ROC curves and AUC scores for all 
methods over the 5-fold cross-validation data splits. For each 
method, the local standard deviations are shown calculated over the 
5-fold cross-validation data splits. Herein, Multisensor HEDDM, the 
BCE classifier and FCDD had similar ROC curves. At the most crucial 
part of the ROC curve, i.e., in the region where the FPR is < 5 %, FCDD 
performance was the most robust to changes in the training and test 
datasets, i.e., it had overall the smallest deviations from the mean 
ROC curve. For the AE-based methods, AE SSIM outperformed AE 
MSE, which is in line with previous findings that AEs perform better 
for AD when trained using SSIM instead of MSE (Bergmann, Fauser, 
et al., 2019). In addition, AE SSIM also had smaller standard 
deviations along the mean ROC curve, i.e., it had a more consistent 
performance on different dataset splits compared to AE MSE. 
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Figure 5.6: (a) ROC curves of all methods with AUC scores; (b) ROC curves in (a) zoomed in 
on the [0.0, 0.2] and [0.7, 0.1] range for the FPR and TNR, respectively (see red box in (a)). 
Bold lines indicate the mean ROC curve for each method calculated from the individual ROC 
curves of each data split. The transparent areas indicate the local standard deviation 
calculated from the individual ROC curves of each data split. Multisensor HODDM: 
Multisensor AD using homogeneous DDM; Multisensor HEDDM: Multisensor AD using 
heterogenous DDM; BCE classifier; FCDD: Fully Convolutional Data Description; AE MSE: 
Autoencoder using MSE loss; AE SSIM: Autoencoder using SSIM loss. 

To investigate the failure cases of the AD methods, the classification 
performance was tested after setting a threshold on the anomaly 
scores based on the Youden index on the ROC curve. Herein, the best 
performing model and corresponding test set for each method was 
used (see Table 5.1). In Table 5.2, the confusion matrices for each 
method are shown using the previously described threshold on the 
anomaly scores. The BCE classifier and FCDD both achieved a TPR 
and TNR of > 90 %. The multisensor HEDDM and HODDM, 
respectively, had a TPR of 88.4 and 86.2 %, while the AE-based 
methods achieved TPRs of around 74 %. All methods had a TNR 
close to 100 %, apart from Multisensor HODDM, which had a TNR of 
86.3 %. 
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Table 5.2: Classification performance of each method on the anomaly test dataset using the 
threshold on the anomaly score that maximizes the Youden index of the ROC curve. 
Columns: TPR: true positive rate (%); FNR: false negative rate (%); FPR: false positive rate 
(%); TNR: true negative rate (%); ACC: overall accuracy (%). Multisensor HEDDM: 
Multisensor AD using heterogenous DDM; BCE classifier; FCDD: Fully Convolutional Data 
Description; AE MSE: Autoencoder using MSE loss; AE SSIM: Autoencoder using SSIM loss; 
Multisensor HODDM: Multisensor AD using homogeneous DDM. 

Method TPR FNR FPR TNR ACC 

Multisensor HEDDM 88.4 11.6 0 100.0 94.2 

BCE classifier 91.8 8.2 0.8 99.2 95.0 

FCDD 90.2 9.8 3.2 96.8 93.5 

AE SSIM 74.0 26.0 1.5 98.5 86.2 

AE MSE 74.4 25.6 0.5 99.5 87.0 

Multisensor HODDM 86.2 13.8 13.6 86.4 86.3 

Figure 5.7 shows the accuracy of each method as a function of the 
disorder severity of the anomaly samples in the test dataset. Every 
marker represents one fruit with its disorder severity expressed as 
percentage of the fruit volume affected by cavity formation and 
internal browning. The color of each marker represents the accuracy 
of the AD method on the 50 images simulated from the fruit. The 
accuracy on all the images of each sample is also plotted inside the 
sample’s marker. From the plots, the sample distribution over the 
cavity and browning percentage ranges can be observed. Anomalies 
with both a high cavity and browning percentage and samples with 
very low cavity percentages were underrepresented. All methods, 
apart from the AE-based methods, had an accuracy of 100 % on all 
samples with a cavity percentage of > 1.0 %. For samples with a 
lower cavity percentage, the accuracy depended on the internal 
browning percentage. Samples with low cavity and browning 
percentages were especially hard to detect. Remarkably, all methods 
had a poor accuracy (64 % for the BCE classifier and FCDD, 0 % for 
the others) on the anomaly with a cavity and browning percentage 
of 0.3 % and 47.0 %, respectively. On a similar anomaly, with a 
cavity and browning percentage of 0.2 % and 41.7 %, respectively, 
Multisensor HEDDM, the BCE classifier and FCDD achieved an 
accuracy of 98, 94 and 84 %, respectively.  
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Figure 5.7: AD accuracy of all methods in function of the disorder severity on the anomaly 
samples in the test dataset using the threshold on the anomaly score that maximizes the 
Youden index of the ROC curve. 

The same analysis was performed on the images of the 26 pears 
labeled as “Defect but consumable”, which were not considered true 
anomalies. In this analysis, the same nominal samples were used as 
in the previous test set, while all anomaly images were replaced by 
“Defect but consumable” samples. The same thresholds on the 
anomaly scores were used as before. On this second test set, the 
performance of all methods dropped significantly (see Table 5.3). 
Note that TNR and FPR remained the same for all methods since the 
same nominal images and thresholds on the anomaly scores were 
used as before. While all methods had a poor TPR ( 43.8), FCDD and 
the BCE classifier outperformed both multisensor AD methods on 
this dataset with small defects. 
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Table 5.3: Classification performance of each method on the “Defect but consumable” 
dataset using the threshold on the anomaly score that maximizes the Youden index of the 
ROC curve. Columns: TPR: true positive rate (%); FNR: false negative rate (%); FPR: false 
positive rate (%); TNR: true negative rate (%); ACC: overall accuracy (%). Multisensor 
HEDDM: Multisensor AD using heterogenous DDM; BCE classifier; FCDD: Fully 
Convolutional Data Description; AE MSE: Autoencoder using MSE loss; AE SSIM: 
Autoencoder using SSIM loss; Multisensor HODDM: Multisensor AD using homogeneous 
DDM. 

Method TPR FNR FPR TNR ACC 

Multisensor HEDDM 7.7 92.3 0.0 100.0 53.8 

BCE Classifier 43.8 56.2 0.8 99.2 71.5 

FCDD 35.3 64.7 3.2 96.8 66.1 

AE SSIM 8.6 91.4 1.5 98.5 53.5 

AE MSE 9.6 90.4 0.5 99.5 54.6 

Multisensor HODDM 17.3 82.7 13.6 86.4 51.8 

Figure 5.8 shows the accuracies of each method in function of the 
disorder severity of the ‘’Defect, but consumable’’ samples in the 
second test dataset. It can be observed that apart from three pears, 
all ‘’Defect but consumable’’ fruit had a cavity and browning 
percentage below 2.0 %. Samples with a cavity percentage below 
1.0 % showed to be especially difficult to detect, regardless of the 
browning percentage. Most samples with a cavity percentage above 
1.0 % could be detected reliably by FCDD and the BCE classifier, 
while this was not the case for both multisensor methods.  
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Figure 5.8: AD accuracies of all methods in function of the disorder severity on the “Defect 
but consumable” samples using the threshold on the anomaly score that maximizes the 
Youden index of the ROC curve. 

5.3.2 The effect of outlier exposure 

To evaluate the benefit of OE, the performance of the BCE classifier 
and FCDD models trained with 50, 40, 30, 20 10 and 0 % chance for 
OE were compared. Figure 5.9 (a) shows the ROC curves of these 
BCE classifiers trained and tested with the same random seed 
(random seed 2), i.e., only differing in the OE probability that was 
used during training. Even only 10 % of OE (AUC = 0.954) was 
sufficient to significantly improve the AD performance from the 
unsupervised case (AUC = 0.917). Figure 5.9 (b) shows the same 
evaluation for FCDD. Similar to the BCE classifier, all models trained 
with OE performed equally well. In the unsupervised case, i.e., 
without OE, FCDD (AUC = 0.934) performed better than the 
unsupervised AE-based AD method (AUC = 0.928, see Table 5.1). The 
main observation is that OE, even only applied at a low rate, 
significantly improved the AD performance for the FCDD and BCE 
classifier.  
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Figure 5.9: ROC curves of the BCE classifier (a) and FCDD (b) and models trained with an 
OE probability of 50.0, 40.0, 30.0, 20.0 10.0 and 0.0 %. 

5.3.3 Qualitative evaluation of the explainability 

of deep AD methods 

All methods were compared qualitatively based on their 
explainability, i.e., the quality of the anomaly heatmaps. Figure 5.10 
shows the heatmaps produced by each method for two nominal 
samples, two synthetic anomalies produced by our OE pipeline and 
two anomaly samples. To visualize and compare the anomaly 
heatmaps for all methods, the heatmaps produced by FCDD were 
first rescaled between [0, 1]. Hereto, all plotted heatmaps produced 
by FCDD were min-max normalized using the minimal and maximal 
value found in all the plotted FCDD heatmaps. The heatmaps for AE 
and both multisensor AD, which were naturally in the [0, 1] range, 
were for visualization purposes min-max normalized between 
[0.0, 0.01]. 
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Figure 5.10: Anomaly heatmaps produced by each method for two nominal samples ((a) 
and (b)), two synthetic anomalies by adding artificial defects to the nominal images in (a) 
and (b) ((c) and (d)) and two anomalies ((e) and (f)). 

The heatmaps of AE were found to be the least informative (last 
row). While anomalous regions were indicated, many other regions 
at the edge of the fruit body, around the core and at the fruit calyx 
were indicated as well. These regions often had higher anomaly 
scores than the present defects, especially for subtle defects. The 
multisensor AD methods (2nd and 3rd row) produced more accurate 
heatmaps than the AE. However, they also often indicated the core 
as anomalous (see columns (a-b)). Moreover, small defects were 
often insufficiently highlighted compared to the core area (see 
column (c)). In the heatmaps of Multisensor HODDM, the outlines of 
the fruit were highlighted. This was caused by the fact that the 
homogeneous DDM assumes equal density for all fruit voxels, while 
in the CT scans voxels at the fruit surface have lower grayscale 
values due to the partial volume effect. Since the heterogeneous 
DDM incorporates the partial volume effect, it does not suffer from 
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this. However, sometimes small errors occurred in the fitting the 
heterogeneous DDM, resulting for example in heatmaps in which 
regions close to the pedicel were falsely indicated as anomalous (see 
3rd row of columns (b), (d), (e) and (f)). The BCE classifier’s 
heatmaps produced using Guided Grad-CAM was found to be 
effective in indicating anomalous regions in the image (see 4th row). 
Overall, these indicated regions were found to be very noisy but still 
facilitated interpretation. Guided Grad-CAM indicated the areas with 
defects, while areas without any defects were not indicated. FCDD 
produced the most informative and clean heatmaps (see 3rd row), 
with highlighted blobs covering most individual defects (see 
columns (c-f)) and low values for normal tissue. Compared to the 
other methods, the BCE classifier and FCDD were overall found to be 
the least indicating the core as anomalous. 

5.4 Discussion 

5.4.1 Deep AD methods are on par with the state-

of-the-art multisensor method 

In a simulated setup, deep AD methods were compared to the 
recently proposed multisensor AD method (van Dael et al., 2019, 
2017), which is a state-of-the-art conventional method for detecting 
internal defects in X-ray images of agricultural products. For the 
multisensor AD method, both a homogeneous (Multisensor 
HODDM) and heterogeneous DDM (Multisensor HEDDM) were used. 
For the deep AD method, we tested an unsupervised AE-based AD 
method, FCDD and a BCE classifier-based AD method. Herein, FCDD 
and the BCE classifier were trained in a semi-supervised way using 
OE, i.e., the generation of labeled synthetic anomalies by adding fake 
defects into the images of nominal samples. To evaluate the 
robustness of the methods towards the randomness introduced in 
the splitting of the dataset, the order and composition of batches 
during training and the initialization of the model parameters, all 
methods were tested using five different random seeds.   It was 
found that the BCE classifier-based (mean AUC = 0.962) and FCDD 
(mean AUC = 0.961) deep AD methods trained with OE were on par 
with Multisensor HEDDM (mean AUC = 0.963) and significantly 
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outperformed AE SSIM (mean AUC = 0.928), AE MSE (mean AUC = 
0.914) and Multisensor HODDM (mean AUC = 0.911) (see Table 5.1). 

Similar to what van Dael et al. (2019) concluded for apple, it was 
found that using a heterogenous instead of a homogeneous DDM is 
beneficial for pear as well, although in previous work it was ignored 
(van Dael et al., 2017). In practice, however, the method has several 
downsides. First, to generate accurate reference images, the X-ray 
geometry, the spectrum of the X-ray source, the detector signal, the 
sample pose and the sample movement must be precisely known. 
Second, errors in fitting the SSM result in errors in the reference 
radiographs. Third, developing the homogeneous and 
heterogeneous DDM respectively required 3D shapes and CT scans 
of a representable nominal dataset to be available. Fourth, the DDM, 
as implemented by van Dael et al. (2019, 2017), only represents the 
mean density distribution of the cultivar and does not consider 
potential variations related to the product shape and size, and the 
shape of the core. Finally, real-time implementation is challenging 
due to the sequence of steps in which models must be fitted. Given 
that the multisensor methods were tested in their best-case 
scenario, it is reasonable to assume that their performance would 
significantly decrease in practice due to the accumulation of small 
errors over all consecutive steps. Moreover, provided that nominal 
data is abundant, the proposed deep AD methods have the benefit of 
being able to work on the inline X-ray radiographs directly without 
requiring additional sensors and tedious calibration of a 
multisensor system. This significantly simplifies their usage on new 
applications. 

Deep AD is often approached as a semi-supervised learning task, 
since supervised learning is often infeasible due to limited 
availability of labeled anomalies, i.e., the dataset insufficiently 
captures what it means to be anomalous. However, Ruff, 
Vandermeulen et al. (2021) recently showed that for images a pure 
classification-based AD method worked surprisingly well to detect 
“out-of-class” anomalies, i.e., anomaly images which contained a 
totally different content than the normal class of images. Here, we 
demonstrated that this approach is also effective for detecting subtle 
anomalies: The BCE classifier performed slightly better than the 
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semi-supervised FCDD method. In addition, using Guided Grad-CAM, 
anomaly heatmaps could be produced which were quite accurate in 
terms of indicating defects. However, the heatmaps were much 
noisier compared to the ones produced by FCDD. 

5.4.2 Outlier exposure with synthetic anomalies 

can significantly improve AD performance 

Deep AD models were trained on a dataset of nominal samples 
which was augmented using OE with synthetic anomalies by adding 
fake defects to some of the nominal images during training. Herein, 
the effect of the OE rate was investigated, i.e., comparing the 
performance after converting 50, 40, 30, 20, 10 or 0 % of the images 
into synthetic anomalies during training (see Figure 5.9). OE allowed 
the FCDD and the BCE classifier to be trained in a semi-supervised 
way, i.e., on nominal samples and an equal, or smaller, number of 
labeled synthetic anomalies. It was found that for both methods, OE 
significantly improved AD performance over the unsupervised case, 
even when only applied at a low rate (i.e., OE probability of 10 %). 
For the BCE classifier and FCDD, using a 10 %OE rate improved the 
AUC from respectively 0.917 and 0.934 to respectively 0.978 (6.7 % 
improvement) and 0.973 (4.2 % improvement) on the same test 
dataset. Our results confirm previous findings that OE is effective for 
improving AD performance even when applied at a low rate 
(Liznerski et al., 2021; Ruff et al., 2020; Ruff, Vandermeulen, et al., 
2021).  

We hypothesize that the AD performance is mainly determined by 
how well the neural network can model nominal data. A low OE rate 
might improve AD over the unsupervised case because it allows the 
model to better estimate the boundaries of the nominal distribution. 
Increasing the OE rate might not improve AD, because the model 
might try to estimate the distribution of the OE samples. The latter 
might not be fully comparable to the distribution of the real 
anomalies. In fact, it was observed that the models trained with a 
50 % OE rate were slightly outperformed by the models trained with 
a lower OE rate, although these differences might not be significant 
(see Figure 5.9). 
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At first sight, it might seem surprising that the BCE classifier and 
FCDD trained in an unsupervised way still achieved AUC scores of 
0.917 and 0.934, respectively. Note, however, that the ROC curve is 
determined by a ranking on the anomaly scores. So, a model could 
learn the distribution of the nominal training data and consistently 
return anomaly scores close to zero. However, still slightly higher 
anomaly scores would be assigned to anomalies that fall outside of 
this distribution. 

Yet, one could expect that the models would suffer from mode 
collapse, i.e., returning a constant anomaly score of zero and predict 
all samples as nominal. In that case, the output would be 
independent from the input and the models would perform much 
worse on the test set. We hypothesize that mode collapse is 
prevented by the use of stochastic gradient descent and batch 
normalization. While the stochasticity during training causes the 
weights to converge over time, it still causes them to slightly change 
between batches. Weights are therefore unlikely to become zero. In 
addition, if weights would converge to very small values and thus 
result in small activations, batch normalization would still normalize 
the activations to the same scale. Therefore, the models would not 
return a constant value. 

Given that enough data would be available, training in a supervised 
way using real anomalies would be preferred over using the OE 
pipeline. However, a benefit of using the OE pipeline is that it has as 
a regularizing effect. During training, fake defects are added to 
nominal samples at random. Over all training epochs, the model thus 
sees the same image multiple times, each time with or without fake 
defects that are different in location, size and quantity. It is therefore 
incentivized to focus on internal defects, because other features, e.g., 
the fruit shape or size, become uninformative. A model trained in a 
purely supervised way might be biased towards large fruit because 
internal disorders are more likely to develop in larger fruit in which 
hypoxia conditions might occur more frequently or faster. 
Moreover, the model could also memorize the fruit shape of the 
anomalies in the training set instead of focusing on the defects. In 
contrast, a model trained with OE would be penalized if it 
memorized the fruit shape of an anomaly, since the same image 
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could later be presented as a nominal sample without defects. Note, 
however, that these biases could also be partially overcome by using 
data augmentation techniques, such as resizing and distorting the 
images during training.  

Liznerski et al. (2021) hypothesized that using “out-of-class” 
anomalies would be unsuited for detecting subtle anomalies. 
Therefore, they proposed using “confetti noise” to create synthetic 
anomalies. However, they did not compare their OE method to using 
a general auxiliary dataset for OE. Here, it was found that models 
trained using OE with synthetic defects or confetti noise 
outperformed models that were trained using ImageNet as a general 
auxiliary dataset for OE (see Appendix A3). Our findings support the 
hypothesis that using a general auxiliary dataset for OE is 
uninformative for detecting subtle anomalies at test time. It was also 
found that in our application, the synthetic defect OE method 
outperformed the confetti noise OE method, which is presumably 
due to the closer resemblance of the synthetic defects to real defects, 
e.g., to the rounded edges, the occurrence of more elongated shapes 
and an internal gradient (see Appendix A3). To have a generally 
applicable OE method for image-based anomaly detection problems, 
e.g., defect or foreign object detection, it is advised to adapt the 
confetti noise OE method to include more randomness in the shapes 
of the produced blobs. In addition, blobs with internal gray scale 
gradients could be explored. 

In future work, alternative OE pipelines could be explored for 
internal disorder detection. For instance, fake defects could be 
added into CT volumes instead of into radiographs which would 
allow for defining the disorder severity in terms of volume and 
changes in X-ray attenuation or density. However, that would in turn 
lead to other challenges, such as defining the 3D shape and location 
of the disorder. Alternatively, it would be interesting to investigate 
if these kinds of OE data augmentation techniques could become 
learnable as well (Antoniou et al., 2018; Cubuk et al., 2019; DeVries 
& Taylor, 2017; Lim et al., 2019; Tran et al., 2017), i.e., a trainable 
data augmentation model which introduces synthetic defects and 
which is trained either prior to or during the training of the AD 
model. 
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5.4.3 Anomaly heatmaps allow for interpreting 
anomaly detections and localizing disorders 

in X-ray images 

There is a growing interest in explainable artificial intelligence (AI) 
with the goal of overcoming the black-box nature of trained neural 
networks. Deep learning-based methods that can provide 
interpretable decisions are favorable for many reasons, including 
their validation by human observers, the potential to discover 
previously unknown factors that might have been found by the 
model, and the security against adversarial attacks (Adadi & 
Berrada, 2018; Barredo Arrieta et al., 2020; Gunning et al., 2019; 
Montavon et al., 2018; Samek et al., 2017). While work has been 
done to more deeply investigate what neural networks learn 
internally (Bau et al., 2017), for images it is often sufficiently 
informative to provide visual explanations, i.e., saliency maps or 
heatmaps, that indicate the areas in the images which contributed 
the most to the output of the model. In this work, different AD 
methods were tested, each requiring a different method for 
obtaining anomaly heatmaps.  

For the AE-based method, anomaly heatmaps were obtained by 
comparing the model’s input and output. The assumption was that 
since the AE is only trained on nominal data, it is bad at 
reconstructing the internal defects in anomaly images. The internal 
defects are thus poorly reconstructed in the output, so that they are 
highlighted when compared to the input image. While internal 
defects were indeed indicated, the anomaly heatmaps of the AE were 
found to be quite noisy. Regions at the edge of the fruit body, around 
the core and at the fruit calyx had often also high anomaly scores. 
This may indicate that the AE also had difficulties in reconstructing 
nominal images due to the limited capacity of the encoder to encode 
enough information in a latent vector of limited size. Increasing the 
size of the latent vector could increase the reconstruction capability 
of the AE for nominal samples. However, this could also increase the 
risk of overfitting. 

The anomaly heatmaps of the multisensor based methods 
conceptually mostly resembled the heatmaps produced by the AE. In 
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essence, both the AE-based and the multisensor AD method try to 
produce a defect-free reference image to which the input image is 
compared. The AE achieved this by being trained end-to-end on 
nominal data. In contrast, the multisensor approach predicted the 
reference image by using prior knowledge in the form of 
parametrized models developed from a representable nominal 
dataset and knowledge of the fruit pose and the X-ray system. The 
multisensor methods produced heatmaps of higher quality than 
those of the AE. With perfect knowledge, the multisensor AD method 
can produce high quality heatmaps, however, in the absence of this 
knowledge it is probable that errors will be introduced, e.g., due to 
errors in the estimation of the fruit shape or the X-ray geometry.  

Due to its fully convolutional architecture, FCDD naturally produced 
low resolution heatmaps that could be up-sampled to the original 
resolution of the input size. It produced the most informative and 
clean heatmaps of all methods with highlighted blobs covering most 
individual defects and low values for normal tissue. Compared to the 
other methods, FCDD was overall found to be the least susceptible 
to indicating the core as anomalous. Presumably, the reason for 
these high-quality heatmaps of FCDD is that the quality of the 
heatmaps directly dictates the loss during training (see equation 
(1)). 

For the BCE classifier, the gradient-based method Guided Grad-CAM 
was used to produce anomaly heatmaps. Guided Grad-CAM could 
indicate the defect regions to a comparable degree as FCDD, but its 
heatmaps were much noisier. Similar to FCDD, Guided Grad-CAM 
was not susceptible to indicating the core as anomalous. 

5.4.4 Internal disorder detection depends on the 

disorder type and severity 

To investigate the AD performance of all methods in function of the 
disorder severity, the methods were tested in detecting the 
anomalies based on the anomaly score (see section 5.3.1). Herein, 
the threshold on the anomaly scores was set using the Youden Index, 
which identifies the point on the ROC curve with the highest 
performance compared to a random classifier. Note, however, that 
in practice the optimal threshold depends on the acceptable trade-
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off between the true positive and false negative rates which is 
application specific. All methods, apart from the AE-based methods, 
had an accuracy of 100 % on all anomalies with a cavity percentage 
above 1.0 % (see Figure 5.7). This indicates that for detecting defect 
fruit with cavities of sufficient size, X-ray imaging is a very powerful 
technique. Cavities cause a large change in X-ray attenuation, which, 
in relatively homogeneous fruit like pear, can quite easily be 
observed in the X-ray image even for low cavity percentages. The AE 
based method was found to be less effective for detecting small 
cavities, presumably due to the low signal to noise ratio in its 
anomaly heatmaps. For samples with a cavity percentage < 1.0 %, 
the accuracy depended on the internal browning percentage. 
Samples with low cavity and browning percentages were especially 
hard to detect. Note that the results may be dependent on the used 
X-ray geometry in the simulated environment, e.g., detector pixel 
size. However, detecting even smaller cavity proportions may not be 
commercially relevant anymore. 

Remarkably, all methods struggled with a sample which had a cavity 
and browning percentage of 0.3 and 47.0 %, respectively (see Figure 
5.7). On this anomaly, the BCE classifier and FCDD had a poor 
accuracy (66 and 64 %, respectively), while all other methods 
achieved an accuracy of 0 %. However, for a similar anomaly with 
cavity and browning percentage of 0.2 and 41.7 %, respectively, 
Multisensor HEDDM, the BCE classifier and FCDD achieved an 
accuracy of respectively 98, 94 and 82 %, while the other methods 
had an accuracy < 2 %. Figure 5.11 shows an image of the fruit and 
two simulated X-ray images of a nominal sample (a-b) and both 
anomalous samples with a browning percentage > 40 % (c-d and e-
f). In addition, the corresponding anomaly heatmaps for both 
multisensor methods, the BCE classifier and FCDD are shown. In the 
images of the fruit flesh, severe internal browning can be observed 
for the two anomalous samples (1st row of c-f). In the X-ray images 
(2nd row of c-f), however, the internal browning cannot be detected 
with the naked eye. Depending on the angle from which the 
projection was taken, small cavities can be observed in (d) and (f), 
but not in (c) and (e). From the FCDD and BCE classifier anomaly 
heatmaps (5th and 6th row), it can be seen that the models easily 
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detect small cavities, while internal browning is not indicated. In 
contrast, larger parts of the fruit flesh, i.e., the regions affected by 
internal browning, light up in the heatmaps of the multisensor AD 
methods (also compare to the heatmaps of the nominal sample (a-
b)). Presumably, the cellular liquid released by the damaged cells in 
the regions affected by internal browning has evaporated, resulting 
in a lower density and X-ray attenuation which can be detected by 
the multisensor methods. Note, however, that the multisensor 
methods were not always able to indicate internal browning (see 
rows 2-3 in Figure 5.10 (e) and row 3 in Figure 5.11 (c-d)) due to the 
assumption of average density which might not hold true for all fruit, 
e.g., porosity can differ from fruit to fruit and density can be affected 
by general dehydration or depend on the stage of internal disorder 
development.  
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Figure 5.11: Heatmaps of each method for a nominal sample and two samples of the test 
set with high browning and low cavity percentage. (a-b) Image of the fruit flesh and two X-
ray projections of the same nominal fruit; (c-d) Image of the fruit flesh and two X-ray 
projections of the same anomalous fruit (cavity and browning percentage of 0.3 and 47.0 %, 
respectively). (e-f) Image of the fruit flesh and two X-ray projections of the same anomalous 
fruit (cavity and browning percentage of 0.2 and 41.7 %, respectively). The visibility of 
cavities depends on the projection angle. 

The above observations might indicate that for some samples in 
which internal browning is severe and cavities are absent, 
knowledge of the fruit shape might be required to detect the 
disorder in the X-ray radiographs reliably. For instance, brown 
patches generally have a lower density, and thus lower the X-ray 
attenuation along the path. The deep AD methods only looked at the 
X-ray image and had no knowledge of the fruit shape. The observed 
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X-ray attenuation could therefore be caused by either internal 
browning, or just by a different fruit shape. For cases in which 
internal browning has affected a major part of the fruit volume and 
cavities are absent, the networks were thus less able to detect an 
anomalous pattern. In contrast, the multisensor AD methods which, 
in this experiment, had perfect knowledge of the fruit shape, were 
able to detect this type of anomaly more reliably. Note, however, that 
it should also be investigated if anomalies with severe browning and 
cavity percentage < 1.0 % are common, or if cavity development is 
almost guaranteed when internal browning is severe. An alternative 
explanation for the poorer performance of the deep AD methods on 
anomalies with (severe) browning and hardly any cavities is that the 
models could be biased towards focusing on cavities compared to 
browning due the implemented OE pipeline. The OE pipeline 
introduced synthetic defects that might more strongly resemble 
cavities than browning. As discussed in section 5.4.2, other OE 
algorithms could be explored in future research. 

Future work should extensively test the performance of X-ray based 
methods on a dataset with large variability in disorder severity, 
which additionally is uniformly distributed over the disorder 
severity ranges. In practice, it is hard to obtain such dataset since the 
outcome of disorder development cannot be guaranteed. Factors 
such as the fruit origin, environmental conditions during fruit 
development, the fruit size, and storage conditions and duration are 
expected to have an important role. In fact, this was one of the main 
motivations of testing an anomaly detection approach in this work. 
Our test dataset had a relatively large variability in disorder severity 
(see Figure 5.7), but contained images simulated from only 26 pears. 
Moreover, it lacked fruit in the range of high cavity and browning 
percentages. Additionally, fruit affected by browning, but with low 
cavity percentages (< 1.5 %) were underrepresented. While it is 
expected that samples of the former will be easily detected, more 
samples of the latter would allow for deeper investigation of the 
limitations of the evaluated AD methods and the capabilities of X-ray 
based inspection in general. Hereto, a more elaborate study could be 
done using a simulated dataset with artificial defects (see section 
5.4.2) if acquiring such dataset in practice shows to be infeasible. 
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5.5 Conclusion 

Deep anomaly detection (AD) methods were found to be effective for 
the inline nondestructive detection of internal disorders in X-ray 
images of pear fruit. The semi-supervised method FCDD and a 
supervised learning-based classifier were trained using outlier 
exposure, i.e., with synthetic anomalies, and achieved mean Area 
Under the ROC Curve scores (AUC) of 0.961 and 0.962, respectively, 
over all test sets. Both methods were only slightly outperformed by 
our benchmark, i.e., the multisensor AD method which had perfect 
knowledge of the fruit shape, pose and position, and the X-ray 
geometry and characteristics.  

While the multisensor method was developed as a generally 
applicable method for internal quality inspection, it still requires the 
development of application specific shape and density distribution 
models. In contrast, it was shown that the deep AD methods can 
simply work directly on raw X-ray radiographs which allows for an 
easier transfer of the approach to other applications. By 
investigating AD performance in function of internal disorder 
severity, it was shown that using inline X-ray imaging, defect fruit 
with a cavity percentage > 1.0 % could be detected 100 % accurate, 
while for lower cavity percentages the accuracy depended on the 
internal browning severity. In addition, it was shown that anomaly 
heatmaps can be used for interpreting anomaly detections and 
localizing internal disorders in X-ray images of pear fruit.  

Future research should further investigate AD methods for quality 
inspection. In addition, capabilities of X-ray radiography-based 
inspection in general in function of disorder severity should be 
explored. In particular, the possible uncertainty about detecting 
fruit with internal browning in the absence of cavities should be 
tackled.  
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Chapter 6  

 
General conclusions and 

future perspectives 

6.1 General conclusions 

The overall goal of this research was to develop nondestructive 
inspection methods to detect internal disorders in pear fruit using 
X-ray imaging and machine learning (ML). The use of X-ray imaging 
was motivated by the fact that X-rays can easily penetrate through 
biological material, which allows for the visualization of internal 
disorders causing density changes. Automated analyses of X-ray 
data are required for objective and high-throughput inspection. 
Hereto, machine learning was applied. 

In literature, X-ray CT, which provides a 3D image of the fruit, was 
found to be a very effective tool to study and characterize internal 
disorders. However, the methods described were mainly semi-
automatic and time-consuming. Therefore, in Chapter 3, a method 
was proposed to automatically extract features from CT scans, after 
which a classifier was trained to classify defect and sound fruit based 
on these features. The trained classifiers achieved classification 
accuracies ranging between 90.2 and 95.1 % depending on the 
cultivar and number of features that were used. Low false positive 
rates ranging between 0.0 and 6.7 % were obtained. However, the 
false negative rates, ranging between 5.7 and 13.3 %, were rather 
high. Moreover, a downside of the method described in Chapter 3 is 
that the feature extraction algorithm is application specific and that 
it cannot quantify the severity of internal disorders. In addition, the 
features that were extracted might have been suboptimal.  

These issues were addressed in Chapter 4, in which the use of deep 
learning was proposed, which has remained largely unexplored for 
internal quality inspection. In deep learning, a model learns end-to-
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end from data, instead of relying on handcrafted features to be 
extracted from it. A supervised deep neural network was used to 
segment internal structures, including internal disorders, in CT 
scans. Manually annotated CT scans of healthy and defect fruit were 
used as training data. A high agreement was found between the 
predicted and ground truth “healthy tissue”, “core” and “cavity” 
labels (average IoU  0.95). Interestingly, low IoU scores were found 
for the “internal browning” label, even though visually most 
predictions seemed sufficiently accurate. It turned out this was 
mainly caused by errors on small volumes and volume edges. Since 
the IoU metric is relative to the ground truth, the absolute size of the 
volumes did not matter, resulting in low IoU scores even though the 
error by the model was rather negligible. From the predicted labels 
of the model, the severity of the internal disorders could be 
quantified by calculating the affected volumes. The resulting 
quantitative data was used to classify “consumable” vs “non-
consumable” fruit at high accuracy (99.4 %) on the one hand and 
“healthy” vs “defect but consumable” vs “non-consumable” 
classification on the other hand (92.2 %). For the latter, the 
identification of “defect but consumable” fruit showed to be difficult 
(true positive rate of 65.0 %), with most misclassified fruit assigned 
to the “healthy” class. While the presented method could with high 
certainty prevent non-consumable fruit from reaching consumers, it 
was not successful in separating top quality from acceptable fruit. 

A concern with X-ray CT is that it is currently not applicable inline at 
the speed of commercial sorting lines (10 fruit/s). X-ray 
radiography, on the other hand, can easily be implemented inline 
using an X-ray source and detector on either side of a conveyor belt. 
For detecting defect fruit using 2D X-ray radiography, conventional 
machine learning-based methods were already reported in 
literature, i.e., using image processing to extract features followed 
by a machine learning algorithm for classification based on these 
features. However, these methods required application specific 
feature extraction algorithms. Van Dael et al. (2019, 2017) 
developed a more general purpose multisensor method for internal 
quality inspection. However, it still required application specific 
shape and density distribution models (DDM). Moreover, the 
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method is relatively hard to be implement due to its complex 
integration of multiple sensors and model fitting procedures. 

Deep learning-based methods could work directly on raw X-ray 
radiographs to overcome the need for application specific feature 
extraction algorithms, or shape and density distribution models. 
Additionally, no extra sensors would be required. However, a large, 
annotated dataset is typically needed to train neural networks, 
which is labor intensive to acquire. In addition, in the case of internal 
disorders in pome fruit, it is challenging to acquire sufficient and 
representative defect samples with a wide range in disorder 
severity. In contrast, healthy fruit are abundant, immediately 
available after harvest, and can be easily obtained from various 
locations and harvest years. 

In Chapter 5, an anomaly detection approach using deep learning 
was therefore proposed, recognizing recent advantages in deep 
learning, while overcoming the need for annotated data normally 
required for supervised learning. In anomaly detection, a model is 
constructed from nominal data and a certain metric is used as 
anomaly score to measure the extent to which a new sample 
deviates from normality. Neural networks were trained exclusively 
on X-ray radiographs of healthy pears, after which they were 
evaluated on a test set with healthy and anomalous data. 
Performance could be significantly improved by using synthetic 
anomalies in which nominal images were subtly distorted and used 
during training as labeled anomalies. The proposed method reached 
a mean AUC of up to 0.962 (area under the ROC curve). This was on 
par with the multisensor method (mean AUC = 0.963) (van Dael et 
al., 2019, 2017) which was given the advantage of perfect knowledge 
of the fruit shape, pose and position, and the X-ray geometry and 
characteristics. By investigating the performance in function of 
internal disorder severity, it was shown that using the proposed 
method, defect fruit with a cavity percentage > 1.0 % could be 
detected 100 % accurate, while for lower cavity percentages the 
accuracy depended on the internal browning severity. The black-box 
nature of neural networks was addressed by producing saliency 
maps of the anomalous regions found by the models. 
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In conclusion, it was shown that X-ray imaging is an effective tool for 
internal disorder detection methods in pear fruit. Significant 
progress was made using deep learning approaches to work on X-
ray images directly. In X-ray CT, the severity of internal disorders 
could be quantified automatically, allowing accurate detection of 
non-consumable fruit. For inline inspection, a deep anomaly 
detection approach was proposed using X-ray radiography. Hereby, 
the need for having application specific shape and density models or 
labeled datasets was overcome. 

6.2 Future perspectives 

A large step forward was made towards internal disorder detection 
in pears using X-ray imaging. Nonetheless, improvements and 
further research are required. 

In Chapter 4, deep learning showed to be effective for semantically 
segmenting CT volumes. While the presented method could reliably 
prevent non-consumable fruit from reaching consumers, additional 
research is required to improve the separation of top quality from 
acceptable fruit. In addition, a large scale consumer survey is 
recommended to better understand consumer tolerances with 
respect to internal defects. 

The model presented in Chapter 4 was trained in a supervised way 
and segmented the CT volumes in a slice-by-slice fashion. In future 
work the model could be extended to do 3D segmentation, e.g., using 
3D U-Net (Çiçek et al., 2016), to improve performance. A downside 
of the supervised approach was that a manually annotated dataset 
was required for training the models. It could be investigated 
whether defect regions could be detected in an unsupervised way, 
e.g., using the saliency maps of anomaly detection models as 
presented in Chapter 5. Cavities and browning could then be 
distinguished easily based on the grayscale values in the images. 
However, it seems more difficult to distinguish other defects from 
each other with an anomaly detection model.  

To allow for the method presented in Chapter 4 to be applied inline, 
it could be coupled to an inline X-ray CT system in which a fast 
reconstruction is made from a limited number of projections. In 
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current inline X-ray CT research, artificial neural networks are often 
used to improve the quality of an initial, coarse reconstruction. Since 
in practice the CT images would serve as an input for another task, 
e.g., the detection of internal disorders, a neural network could be 
trained to directly perform the task on the coarse reconstruction, 
e.g., semantic segmentation. Herein, the model does not have to 
precisely predict gray scale values, and instead must only classify 
pixels. It could, however, be difficult for the model to accurately 
predict region boundaries from the coarse reconstruction. 

For inline detection of internal disorders, additional research is 
recommended. Since the deep anomaly detection method presented 
in Chapter 5 was only tested on a simulated dataset, in future work 
it should be validated on a real dataset. Compared to other methods, 
e.g., multisensor inspection (van Dael et al., 2019, 2017), the 
presented method is relatively easy to implement on a real inline X-
ray radiography system, as the model works on X-ray images 
directly. Moreover, the model can be trained on only healthy data 
that is readily available, with expected performance improvements 
when using outlier exposure or a limited number of labeled 
anomalies. 

In Chapter 5, it was shown that defect pears with 1 % of their volume 
affected by cavity formation can be detected reliably using a single 
X-ray radiograph. In the absence of cavities, however, it might be 
hard to detect a deviant pattern in the X-ray contrast for defect fruit 
with severe and uniformly distributed browning disorder. Relatively 
small defects might show as notable patches, but a large brown 
defect might affect such a large region in the X-ray image that it 
might look normal, i.e., the fruit could have another shape instead of 
being affected by browning. Potentially, multiple radiographs from 
different angles are required for 1) having the possibility to detect 
the disorder more easily from another viewpoint; or 2) use the 
additional radiographs to make inferences about the fruit shape 
such that anomalous X-ray attenuation can be recognized.  

Furthermore, attention should be given to early browning. In this 
work, fruit were stored for several months to simulate long term CA 
storage. For defect fruit, this allowed the cellular liquid released 
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from damaged cells to evaporate and result in density changes. For 
fruit that are sold earlier, however, internal disorders could also 
have developed over a period of several weeks. In that case the 
change in density might not yet be sufficient to be detected in X-ray 
transmission images. It is expected that this would be less of an issue 
for X-ray CT, since a reduction in porosity due to the leaked cellular 
liquid might result in more uniform regions in terms of CT 
intensities, i.e., a change in texture, which could be detected. 

In addition to a validation on a real dataset, a thorough in silico study 
is recommended to investigate the limits of X-ray radiography for 
internal defect detection in horticultural products. Herein, synthetic 
samples (e.g., from shape and density distribution models) in 
random poses could be used that include artificial defects varying in 
shape, size, location, and relative density. Using deep anomaly 
detection with a model trained on healthy samples, the feasibility of 
detecting internal disorders could be mapped as a function of the 
characteristics of the defects. Early browning could be simulated as 
defects with a density very close to the density of the surrounding 
tissue. In addition, it could be tested whether the usage of a multiple 
radiographs from different angles can improve performance. The 
results of the in silico study could be used to make strategic decisions 
on the usage and design of X-ray based inline inspection systems. 
Furthermore, the method could be used to test the feasibility of X-
ray radiography based foreign object detection in products with 
variable shape and density. 

While no direct comparison was made between the CT based 
method presented in Chapter 4 and the inline X-ray radiography 
based method presented in Chapter 5, it would be interesting to 
investigate what can be gained from having 3D data available. In 
addition, it could be investigated if disorder severities could be 
estimated inline from projection data. 

Further research is required into the dynamic process of internal 
disorder development, e.g., the onset and rate of tissue degradation. 
Hereto, multiple scans should be taken throughout the storage 
period. Disorder development following a radial pattern can be 
understood from simulating the overall gas gradients in the fruit 
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(Herremans, Verboven, et al., 2014; Ho et al., 2013). However, this is 
much harder for local defects, since that would require high 
resolution imaging of the microstructure to map porosity and pore 
connectivity (Janssen et al., 2020). This poses a problem for current 
hardware, since high resolution imaging of tissue is mostly done 
destructively, while the microstructure is needed of a healthy fruit 
which must be imaged again after internal disorder development to 
validate where the disorders developed. Potentially, deep neural 
networks could predict regions with highest probability of 
developing disorders based on porosity maps (Nugraha et al., 2019). 
With better understanding of dynamic process of internal disorder 
development, fruit could potentially be sorted based on how long the 
fruit can be stored without developing internal disorders. 

In the near future, significant technological progress in X-ray 
imaging is expected. Inline X-ray CT systems are expected to become 
faster and more affordable. Commercial systems for 3D inspection 
are already offered today, e.g., “Mito” by BIOMETIC targeted at the 
food industry (www.biometic.com). Furthermore, X-ray phase-
contrast imaging, which can visualize phase shifting and scattering 
information, could be a great tool for internal disorder detection 
(Einarsdóttir et al., 2016; Endrizzi, 2018). While some disorders 
might have absorption characteristics similar to healthy tissue, e.g., 
early browning, they might differ significantly in scattering 
behavior. X-ray phase-contrast imaging can be applied in CT and 
projection modes. In addition, dual energy systems, or the usage of 
multispectral X-ray detectors, might facilitate better detection of 
internal disorders, although these methods are mostly targeted at 
identifying materials with different chemical composition 
(Andriiashen et al., 2021; Einarsson et al., 2017). Materials are 
distinguished based on differences in X-ray attenuation for specific 
energy bands. However, it is expected that healthy and affected 
tissue may have similar attenuation curves.  

  

http://www.biometic.com/
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Appendix A 

A1 Simulation of the radiography dataset 

A1.1 Simulated inline scans 

A dataset of inline X-ray images was simulated from the CT data in a 
virtual inline X-ray geometry. Hereto the ASTRA Toolbox (version 
1.9.9.dev) was used in MATLAB 2020b (imec-Vision Lab & CWI, 
2019; MATLAB, 2020; Van Aarle et al., 2015, 2016). For each 
simulated inline X-ray image, the CT volume of a sample was rotated 
randomly in 3D after which 300 consecutive line scans were 
simulated, while considering the movement of the source and 
detector relative to the sample, the line rate of the detector and the 
speed of the conveyor belt. To prevent pears in the rotated CT 
volumes from pointing directly towards the X-ray source (which is 
unrealistic on a conveyer system), the rotation of the main fruit axis 
in that direction was limited to a maximum of 36°. For the simulated 
system, a source-to-detector and a source-to-object distance of 
0.47 and 0.32 m were used, respectively. The line detector had 300 
pixels with a pixel size of 0.5 mm. The conveyor belt speed and 
detector line rate were respectively set to 0.27 m/s and 540 Hz. This 
resulted in images of 300 × 300 pixels. From each of the 180 CT 
volumes, 50 inline scans were simulated, resulting in a dataset of 
9000 images. Herein, 6400 were nominal, while the 1300 were 
anomalies. The remaining 1300 images were simulated from the 
“Defect but consumable” class. The random 3D rotation of the CT 
volume ensured that each X-ray image was unique and to ensured 
that models trained on the data can handle various fruit poses. 

A1.2 Simulated reference images 

Reference images were simulated using the following steps. First, for 
each image, the CT volume of the fruit was placed in the same pose 
as was used for the generating the simulated inline scans. Second, 
the DDMs were fitted to the fruit shape. For fitting the homogeneous 
DDM, the CT volume was simply thresholded and filled to result in a 
homogeneous volume, i.e., the same value for all voxels inside the 
fruit surface. For fitting the heterogeneous DDM, a mesh of the outer 
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surface was created using the marching cubes algorithm (Lorensen 
& Cline, 1987) and the DDM was fit to this mesh. Finally, reference 
images with the homogeneous and heterogenous DDMs were 
simulated with the same protocol as used for the simulated inline 
radiographs. Note that by directly using the fruit shape from the CT 
volume, or a mesh which is directly computed from it, it is assumed 
that the shape of the fruit is perfectly known. 

A2 The synthetic defect OE pipeline 

In the synthetic defect OE pipeline, the following image processing 
steps were taken to introduce synthetic defects (see Figure 5.3). 
First, the fruit body was segmented from the background using Otsu 
thresholding (Otsu, 1979). Second, the suspectable area, i.e., the area 
in which the presence of defects is plausible, was indicated by 
applying an erosion on the segmented fruit body (Figure 5.3 (b)). 
This operation removed the outer border of the projected fruit body, 
as internal defects are more plausible in the center of the fruit 
compared to close to the fruit surface. Third, pixels in the 
suspectable area were sampled at random for being a seed point for 
a synthetic defect (Figure 5.3 (c)). The number of seed points, and 
thus the number of individual defects in the image, was controlled 
by uniformly sampling the probability of a pixel being selected for a 
seed point in a range of [0.01 %, 0.1 %]. Fourth, at every seed point 
a binary circular area was added, with a radius uniformly sampled 
between [3, 15] pixels. Fifth, each circular area was deformed using 
a shearing transformation resulting in ellipsoidal blobs. Sixth, a 
distance transform followed by a gaussian filter was applied to all 
pixels within the mask, resulting in irregularly shaped grayscale 
blobs (Figure 5.3 (d)). Finally, the grayscale values were normalized 
between [0.0, 0.1] and subtracted from the original projection 
(Figure 5.3 (e)). The values of the parameters in the pipeline were 
set based on visual comparison between the resulting synthetic 
anomalies and real anomalies. 

A3 Comparison of OE pipelined 

The synthetic defect OE pipeline was compared to using the 
ImageNet dataset as a general auxiliary dataset for OE, and to using 
“confetti noise” as proposed by Liznerski et al. (2021). In the 
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ImageNet OE pipeline, the images were simply replaced by random 
grayscale versions of the images in ImageNet. In the confetti noise 
OE pipeline, random grayscale rectangular blobs are subtracted 
from the input image. Herein, we used the same probability range of 
a pixel being selected for a seed point, i.e., [0.01 %, 0.1 %], and 
minimal and maximal blob sizes, i.e., [3, 15] pixels, as were used in 
the synthetic defect OE pipeline. Similar as to the synthetic defect OE 
pipeline, the grayscale values of all blobs normalized between 
[0.0, 0.1] prior to subtracting them form the input image (see section 
5.2.2.4). Figure A.1 shows four OE samples of each pipeline. The 
ImageNet images were of course totally different from the images in 
our dataset. The synthetic defect OE pipeline produces rounded 
ellipse-shaped blobs with an internal gradient, while the confetti 
noise OE pipeline produced homogeneous rectangular blobs. 

 
Figure A.1: Four OE samples from each OE pipeline. ImageNet OE pipeline (1st row); 
Synthetic defect OE pipeline (2nd row); Confetti noise OE pipeline (3rd row). 

The performances of the BCE classifier and FCDD trained with each 
OE pipeline using a 50 % OE rate is shown in Table A.1. Overall, the 
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best performance was achieved using the synthetic defect OE 
pipeline, which is presumably due to the closer resemblance of the 
synthetic defects to real defects, e.g., to the rounded edges, 
potentially more elongated shapes and an internal gradient. 

Table A.1: BCE classifier and FCDD model performance after training with the synthetic 
defect OE pipeline, general OE using ImageNet, and the confetti noise OE pipeline using a 
50 % OE rate. AUC scores, mean AUC scores and standard errors of means for all methods 
over the test sets of the 5-fold cross-validation data splits. For each method, the highest 
AUC score over all OE pipelines is indicated in bold for each random seed. 

Method Random seed 
Mean 
AUC 1 2 3 4 5 

BCE classifier (synthetic 
defect OE) 

0.943 0.972 0.968 0.966 0.961 0.962  
0.010 

BCE classifier 
(ImageNet OE) 

0.842 0.836 0.781 0.698 0.828 0.797  
0.054 

BCE classifier (confetti 
noise OE) 

0.917 0.919 0.918 0.944 0.913 0.922  
0.011 

FCDD (synthetic defect 
OE) 

0.963 0.965 0.953 0.962 0.962 0.961  
0.004 

FCDD (ImageNet OE) 0.939 0.951 0.906 0.952 0.919 0.933  
0.018 

FCDD (confetti noise 
OE) 

0.948 0.928 0.941 0.955 0.955  0.010 
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A4 Neural network architectures  

A4.1 Autoencoder 

Table A.2: Autoencoder model architecture (Liznerski et al., 2021). 

Layer Output shape Parameters # 

Conv2d-1 [-1, 8, 224, 224]         200 

BatchNorm2d-2 [-1, 8, 224, 224] 0 

MaxPool2d-3 [-1, 8, 112, 112] 0 

Conv2d-4 [-1, 32, 112, 112] 6,400 

BatchNorm2d-5 [-1, 32, 112, 112] 0 

MaxPool2d-6 [-1, 32, 56, 56] 0 

Conv2d-7 [-1, 64, 56, 56] 18,432 

BatchNorm2d-8 [-1, 64, 56, 56] 0 

Conv2d-9 [-1, 128, 56, 56] 73,728 

BatchNorm2d-10 [-1, 128, 56, 56] 0 

MaxPool2d-11 [-1, 128, 28, 28] 0 

Conv2d-12 [-1, 128, 28, 28] 147,456 

BatchNorm2d-13 [-1, 128, 28, 28] 0 

MaxPool2d-14 [-1, 128, 14, 14] 0 

Conv2d-15 [-1, 64, 14, 14] 73,728 

BatchNorm2d-16 [-1, 64, 14, 14] 0 

MaxPool2d-17 [-1, 64, 7, 7] 0 

Linear-18 [-1, 1536]        4,816,896 

BatchNorm1d-19            [-1, 1536]   0 

Linear-20 [-1, 784]        1,204,224 
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BatchNorm1d-21 [-1, 784]                0 

Reshape-22 [-1, 16, 7, 7]            0 

ConvTranspose2d-23 [-1, 64, 7, 7]            9,216 

BatchNorm2d-24       [-1, 64, 7, 7] 0 

ConvTranspose2d-25         [-1, 128, 14, 14] 73,728 

BatchNorm2d-26 [-1, 128, 14, 14] 0 

ConvTranspose2d-27                 [-1, 128, 28, 28] 147,456 

BatchNorm2d-28 [-1, 128, 28, 28] 0 

ConvTranspose2d-29          [-1, 64, 56, 56]           73,728 

BatchNorm2d-30     [-1, 64, 56, 56] 0 

ConvTranspose2d-31 [-1, 32, 56, 56]           18,432 

BatchNorm2d-32 [-1, 32, 56, 56] 0 

ConvTranspose2d-33 [-1, 8, 112, 112]            6,400 

BatchNorm2d-34  [-1, 8, 112, 112] 0 

ConvTranspose2d-35         [-1, 1, 224, 224] 200 

Trainable parameters 6,670,224  
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A4.2 FCDD model 

Table A.3: FCDD model architecture (Liznerski et al., 2021). 

Layer Output shape Parameters # 

Conv2d-1 [-1, 8, 224, 224]    200 

BatchNorm2d-2 [-1, 8, 224, 224]       0 

MaxPool2d-3        [-1, 8, 112, 112] 0 

Conv2d-4 [-1, 32, 112, 112] 6,400 

BatchNorm2d-5 [-1, 32, 112, 112] 0 

MaxPool2d-6 [-1, 32, 56, 56] 0 

Conv2d-7 [-1, 64, 56, 56] 18,432 

BatchNorm2d-8 [-1, 64, 56, 56] 0 

Conv2d-9 [-1, 128, 56, 56]           73,728 

BatchNorm2d-10 [-1, 128, 56, 56]                0 

MaxPool2d-11              [-1, 128, 28, 28] 0 

Conv2d-12        [-1, 128, 28, 28] 147,456 

Conv2d-13 [-1, 1, 28, 28]              128 

Trainable parameters  246,344  
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