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Abstract— Autonomous vehicle driving systems face the chal-
lenge of providing safe, feasible and human-like driving policy
quickly and efficiently. The traditional approach usually in-
volves a search or optimization-based planning followed by
a model-based controller. This may prove to be inadequate
in some driving scenarios due to disturbance, uncertainties
and limited computation time. The more recent end-to-end
approaches aim at overcoming these issues by learning a
policy to map from sensor data to controls using machine
learning techniques. Although being attractive for its simplicity,
they also show some drawbacks such as sample inefficiency
and difficulties in validation and interpretability. This work
presents an approach that attempts to exploit both worlds,
combining machine learning-based and model-based control
into an imitation learning framework that mimic expert driving
behavior while obtaining safe and smooth driving. The dataset
is generated from high-fidelity simulations of vehicle dynamics
and model predictive control (MPC). A smooth spline-based
motion planning represents the policy provided by a constrained
neural network exploiting the convex hull property of B-splines.
The policy network is trained with few dataset aggregations
coming from its induced distribution of states. The learned
policy is used as guidance for model-based feedback control
and tested on a 15DOF high fidelity vehicle model.

I. INTRODUCTION

Recently, autonomous vehicle technologies have gained
significant interest from both industrial and academic re-
search. Generally, autonomous driving systems can be di-
vided into hierarchical blocks such as perception, planning
and control [1]. Perception is done through, i.e. segmen-
tation, object classification.... Motion planning algorithms
are based on graph-search, rapidly exploring random tree,
or optimization-based techniques. And trajectory tracking
is designed with feedback controllers acting on steering,
throttle and brake actuators. This hierarchical approach may
show some drawbacks in safety and computational efficiency.
First, the planning and control algorithms often rely on
simplified models, which may not represent sufficiently the
vehicle dynamics in certain driving scenarios. Second, while
optimization-based motion planning or control methods such
as model predictive control (MPC) have demonstrated po-
tential capabilities in dealing with complexities of traffic
environment, they are sometimes difficult to meet real-time
requirements in critical or complex scenarios. Third, it is
generally hard to incorporate human-like driving behavior
such as comfort and performance aspects into the design.

Considering its ability in learning from large amount of
data that is possible to get from human driving, imitation
learning techniques for autonomous driving have been inves-
tigated. For example, [2]–[4] discussed the promising end-to-
end approach that aims at mapping directly control actions
from raw sensor readings. The results have shown some
successes but their use in production vehicles is limited [5]–
[8]. Indeed, this approach suffers from sample inefficiency,
lack of interpretability and guarantees on safety. Moreover,
the deep neural network structures require large labeled
dataset and long training time.

In this paper, we exploit the advantages of both model-
based and machine learning-based approaches for a hierar-
chical mid-to-mid framework. The inputs to the proposed
learning model are representative features coming from pro-
cessed sensor data and the outputs are, in some form, the ref-
erence trajectories. This reduces the complexity of the neural
network architecture while leaving to model-based feedback
techniques to guarantee safety, feasibility and stability. The
imitation learning training model is implemented using on-
line dataset aggregation (DAgger) [9]. This is an iterative
supervised learning fashion, with an increasing dataset due
to the exposure of the expert driver to new states induced
by the learner. The dataset for learning is generated from
an advanced nonlinear MPC design proposed in [10]. This
MPC design guarantees safety in infinite horizon formally
using control barrier function. In the training loss function
of the neural network, we incorporate from beginning the
knowledge of safety objectives such as collision avoidance
with road boundaries through barrier function constraints.
Combined with DAgger, the proposed loss function will
show advantages on both safety improvement and conver-
gence speed.

Moreover, previous imitation learning works usually con-
sider output layers representing directly the trajectory coor-
dinates. This choice may lead to jerky motions that do not
represent well the expert behaviors, and also does not scale
well for long horizons. An interpolation post-processing
method could be used to deal with this problem, which
on the other hand, will increase computation and affect
safety. Consequently, we propose to use B-spline trajec-
tory parametrization, choosing spline coefficients instead of
points as output nodes for learning. Another advantage of this
method lies in the fact that a B-spline is always contained



in the convex hull of its coefficients, i.e. a spline function
is contained within the minimum and maximum value of
its coefficients. Therefore, safety constraints on generated
trajectories can be imposed by only constraining the spline
coefficients in the barrier function of the loss function.

The paper is organized as follows. In Section II, previous
works are presented and compared to ours. Section III
presents some relevant background and Section IV discusses
architecture of the proposed network. The simulation frame-
work and settings for the offline and online learning illus-
trated in. Finally, Section VI comments the results obtained.

II. RELATED WORKS

Since the late 1980s, end-to-end imitation learning for
self-driving cars was investigated by Pomerleau, with his
work on ALVINN [2]. More recently, this approach has
gained new attention from Nvidia [4], where a CNN was
trained to steer a car directly from camera images, after
3000 miles of driving. This approach was also presented in
Pan et al. [3] for high-speed off road driving of a small
experimental rally car. However, the end-to-end approach is
generally not recommended for production vehicles due to
sample inefficiency [6] or safety and validation reasons [7].
A complete framework in this fashion has been developed
by Sun et al. [5], where a shallow fully-connected neural
network is employed in the long-term planning, while a low
level MPC guarantees short-term safety and control. The
work by Zhan et al. [11] showed the potential of training
losses different from L2 in case of safety-critical single
maneuvers. The use of additional training losses has been
also exploited by Waymo in ChaffeurNet [8], where a RNN
was trained to predict the trajectory to be consumed by
a controller. In that case it has been chosen not to train
the network in an online learning manner, and synthetized
perturbations have been created to avoid using algorithms
like DAgger [9].

Our work demonstrates a mid-to-mid approach with sim-
ple fully-connected networks trained using online learning
and an augmented training loss, investigating the interaction
between them. We propose a combination of different tech-
niques learned from model-based control community such
as safety-critical nonlinear MPC in data generation, barrier
functions in loss functions, and different choice of output
variables parameterizing the predicted trajectory to reduce
the number of output nodes. The solution is practically
promising to improve driving safety, comfort, convergence
speed, and computational effort.

III. BACKGROUND

This section presents some background and notions used in
the proposed motion planning framework. First, we discuss
briefly imitation learning and how it differs from pure
supervised learning. Second, B-splines and motivation to
consider B-spline are presented. Third, model predictive
control design as expert planner is given.

A. Imitation Learning

Imitation learning is a type of machine learning that,
given demonstrations, is able to directly learn how to mimic
a certain behavior. The expert policy is defined as at =
π∗(ot), i.e. the mapping between observations and actions
that needs to be learned. First of all, the policy π∗ is run
and a dataset of observations and actions is collected for
each visited state s of the system. We can call this dataset
D∗ = {(o1, a1), ..., (oN , aN )} and define the set of visited
states as S∗. Applying supervised learning on D∗, a policy
π̂ is learned such that π̂ = arg minπ loss(π, π

∗). This is also
known as behavioral cloning. The supervised learning is not
always accurate, and π̂ will present imperfections that will
lead the system to reach states not included in S∗, for which
the policy behavior becomes unpredictable. This is usually
called compounding of errors problem and it is due to the
fact that the statistical i.i.d. assumption between training and
testing data is not valid for sequential predictions.

To overcome this issue, several algorithms have been
proposed and one common solution is DAgger (Dataset
Aggregation) proposed by Ross et al. [9]. Starting from the
policy trained on D∗, we let this policy control the system
(policy rollout), while the expert labels each new visited
state with the actions it would have taken. This generates
a new dataset D1 = {(o1, a∗1), ..., (oN , a

∗
N )} of observations

coming from the states visited by the learner and actions
labeled by the expert. The two datasets are aggregated and a
new policy is trained on D = {D∗ ∪ D1}. The algorithm
is repeated until the policy performance on the learner
distribution of states, based on a certain metric, does not
improve anymore. The algorithm guarantees that the policy
will converge and its loss will be inversely proportional to
the number of policy rollouts N .

B. B-splines parametrization

Splines are piecewise polynomial function that can easily
represent trajectories as smooth, continuous functions by
only a limited number of variables. The points where the
pieces meet are the knots which are sorted in non-decreasing
order and not necessary to be distinct. A spline is expressed
as a linear combination of B-splines basis function Bi(τ)
with spline coefficients αi as

s(τ) =

n∑
i=1

αiBi(τ). (1)

The number of coefficients n depends on the basis func-
tion degree d and the number of spline knots m, that is,
n = m − d. The coefficients αi can be points in the x, y
plane. As discussed, the main reason that we adopt B-spline
parametrization is the convex hull property: the spline always
lies within the convex hull of the control polygon. This is
explained visually in Fig. 1. Consequently, a constraint on
the values of the αi coefficients would imply constraint
on the amplitude of the spline function s(τ) for any τ .
B-splines parametrization has been exploited for real-time
optimal motion planning of robotics applications in order to



Fig. 1: An example of a spline of order 3 constrained inside
its convex hull

enforce constraints at all times rather than conventional time-
gridding constraints approach [12]. Note that this B-spline
relaxations also introduce some conservatism coming from
the distance between the control polygon and the spline.

Apart from imposing vehicle position constraints over the
entire time horizon, we could also impose other kinematic
limits such as velocity, acceleration and jerk constraints in
the similar manner. It is because the derivative of a B-spline
of degree d is a function of B-splines of degree (d− 1). As
a result, the velocity bounds vmin ≤ ṡ(τ) ≤ vmax can be
replaced by constraints on the spline coefficients of ṡ(τ).

C. Model predictive control (MPC)

MPC is a model-based control algorithm that optimizes
the control action on a certain cost function while satisfying
constraints on inputs and states [13]. The model is usually
given as a state-space nonlinear/linear model. The optimiza-
tion problem is solved at each time step and, according to the
receding horizon principle, only the first computed control
input is applied. A MPC problem can be written as following,

minimize
x(.), u(.)

N−1∑
k=0

Ck(xk, uk) + VN (xN ) (2)

subject to xk+1 = f(xk, uk) k = 0, . . . , N − 1

xk ∈ X , uk ∈ U k = 0, . . . , N − 1

xN ∈ Xf
x0 = x(t0).

The cost function Ck(xk, uk) and constraints represent de-
sign objectives (trajectory tracking, stability) and may also
indicate driving style preferences such as comfort or ag-
gressive. MPC has been applied successfully in different
industries such as chemical plants and smart building. And
recently, thanks to the advancement in both theory and
algorithms for solving optimization problems in real-time
environment, the controller have been shown also capable for
fast dynamics systems including autonomous driving. Still, it
is hard to guarantee real-time optimal solution in all driving

scenarios. In this work, MPC is investigated to be the expert
driver, generating dataset for the imitation learning.

We apply the recent proposed nonlinear safety-critical
MPC [10] to deal with safety state and input constraints.
As it can be seen by the problem formulation, MPC does
not only produces the optimal control input, but also the
optimal trajectory of the states. Since we are not interested
in learning the control inputs, we consider the MPC only as
an optimal trajectory planner. The considered output is the
state x(t),∀t ∈ [t0, t0 + H], where t0 is the current time
instant when we perform the optimization and Hp ≤ N is
the time horizon for the trajectory that the learner predicts.

IV. SPLINE-CONSTRAINED POLICY NETWORK

A policy network aims at producing motions that can
mimic the behavior of an expert. The inputs to the policy are
the observations ot, which can be only a part of the state x(t)
observed by the expert. The outputs at can be either controls
or trajectories. As discussed in the introduction, we desire to
prioritize safety and interpretability of the framework, hence
consider using policy networks to generate state trajectories
and let them be tracked by a model-based feedback control.
The main characteristics of the studied policy network are
the use of B-splines coefficients to parametrize the trajec-
tory and the addition of barrier-function constraints in the
backpropagation loss.

A. B-spline coefficients

To be comparable with the expert performance, the out-
put trajectory of the policy network should be as smooth
and safe as the expert one. Usually, policy networks
have a certain number of vehicle poses as output nodes
at = {(x1, y1), . . . , (xi, yi), . . . } and an interpolation is
performed between them to obtain the complete trajectory.
This may show some drawbacks due to possible jerky
motions, difficulty in scalability for longer horizons and the
impossibility to impose constraints in between the predicted
poses. For this reason, the outputs of the policy network
have been chosen to be the coefficients of a spline written
in B-form, with predefined knots:

at = {αi=1:n}.

Using coefficients as outputs allows a forced smooth trajec-
tory, imposition of constraints at each time instant just by
limiting the coefficient values and few output nodes. In this
way, it is more scalable for longer horizons.

B. Constraints

The expert behavior that the policy network has to mimic
is made of individual characteristics but also of hard con-
straints, such as collision avoidance or lane boundary limits.
As demonstrated by previous works [8], [11], the pure
imitation loss given by the mean squared error between
the expert and policy network outputs is not sufficient to
obtain the compliance to constraints. Indeed, the MSE does
not incorporate any information about safety, and in case
the vehicle is near the boundaries of the constraints, the



Fig. 2: B-Splines parametrizing the trajectory (0.5s)

policy network may violate them. To overcome this issue,
we add constraints in the form of barrier functions to the
loss function used in training. The pure imitation loss can
be represented as MSE = 1

dim(at)

√
(at − a∗t )2, while the

constrained loss can be seen as the addition between the
imitation loss and a barrier function, yielding

CL = MSE + I(ot, at, a
∗
t ). (3)

Note that the barrier function I(ot, at, a
∗
t ) can reflects not

only safety conditions but also design objectives on velocity,
acceleration and jerk states. In this way, the constrained
policy network can incorporate constraints while imitating
the high quality driving behaviour of the expert.

Combining B-splines and constrained loss, we can obtain a
policy network providing safe and smooth trajectories with
computational efficiency both in training and deployment.
The barrier functions can be written as ReLu functions
limiting the values of the coefficients according to collision
avoidance or lane boundaries constraints and, thanks to the
convex hull property, the overall trajectory will be contained
inside the safe area.

V. SIMULATION AND DATA GENERATION SETTINGS

In order to test the validity of the spline-constrained
policy network, we implemented a lane keeping scenario in
a simulated environment. In this scenario, we performed the
DAgger algorithm using a high fidelity vehicle dynamics,
realistic sensor data, a NMPC expert and a simple PID
decoupled control.

The vehicle is represented by a 15DOF high-fidelity
model implemented in Simcenter Amesim, including chassis,
steering, braking, suspensions, and tyre dynamics model.
This allows to easily get a fairly big amount of high quality
training data in terms of physical accuracy. We suppose that
all the vehicle states can be measured and the environment
data from sensors models is obtained via Simcenter Prescan.
More details on this simulation toolchain for autonomous
driving testing are presented in [1].

The expert is made by a safety-critical nonlinear MPC
producing an optimal trajectory based on a cost function that

maximizes comfort while keeping the vehicle on its lane and
with hard-constraints on the lane boundaries. The NMPC
is implemented using CasADi with IPOPT solver [14]. The
sampling time is 0.01s. The low-level control to track the
trajectory is realized by a PID controller for the longitudinal
dynamics and a pure pursuit for the lateral dynamics. These
controllers are simple for computational efficiency reasons.

The policy networks, both constrained and unconstrained,
are implemented and trained using Keras. To ensure a fair
comparison, all networks share common characteristics:

A. NN Architecture

Two hidden layer fully-connected architecture with 20
nodes in each hidden layer.

B. Inputs

The features shall take into account the road ahead and
the states of the vehicle. The inputs are expressed as the
current longitudinal velocity and the coordinates of the road
boundaries (right and left) in the local reference frame of
the vehicle, with origin in its center of mass and rotated
according to the yaw angle. Defining Ho as the observation
horizon:

ot = {vx(t), rj0 + ∆i = (xji , y
j
i )},

∀j = right, left; i = 0, . . . ,Ho.
(4)

The ∆i intervals don’t need to be all equal. Indeed, as noted
in [5], the closest points matter more and so the intervals can
increase along with i. Furthermore, if the speed has a high
dynamics, the amplitude of the intervals shall be proportional
to it. In our case, we considered 10 road points with fixed
increasing intervals (small interval of possible speeds: (10÷
8.5)m/s). The first road point corresponds to ∆0 = 0, and
so the coordinates xj0 for j = right,left are always null and
neglected. The total number of features is 39.

C. Outputs

The networks output the coefficients of the B-splines
fitting the trajectory. Since the trajectory is short (0.5s at
a maximum of 10m/s) and the curvature is limited, a spline
of order 3 is sufficient to describe it. The chosen knot
vector is T = (0, 0, 0, 0.49, 0.49, 0.49). The resulting three
B-splines basis functions can be seen in Figure 2. Since
the trajectory always starts from the origin of the current
local reference frame, the coefficient multiplying the first B-
spline is always null and can therefore be neglected. The
total number of outputs is then 4: at = {αx1 , α

y
1 , α

x
2 , α

y
2}.

The described components are imported into the simulation
toolchain implementation.

VI. SIMULATION RESULTS

In this section, we compare different policy networks
performance in a lane keeping scenario according to the
settings defined previously in V. The metric that we consider
to evaluate the performance of the learner is:

e =
1

T

T∑
t=1

max(||s∗(t)− s(t)||2) + Lfail, (5)
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Fig. 3: Comparison between different choices of the policy
outputs

i.e., the maximum euclidean distance between the points
of the expert and learner trajectories, averaged on the time
length of the policy rollout, summed to an additional loss
in case the learner fails the lane keeping task, violating the
hard constraints of the expert.

Firstly, we validate the use of B-splines parametrization
comparing it to the trajectory points prediction, without
the use of constraints in the training loss.In the case of
predicted points, they are interpolated using cubic splines. As
it can be seen from Figure 3, the trajectory obtained by the
points prediction is sometimes jerky. It does not incorporate
well the comfort parameters of the expert, leading to an
uncomfortable driving. On the other hand, the B-splines
based approach produces a smooth trajectory and similar to
expert driving.

Secondly, we introduce barrier function constraints in the
training loss of the networks. The choice of the barrier func-
tion is not unique and therefore influences the performance
of the constrained policy network. The function must be
coherent with the hard constraints of the expert:

yr(k) + 0.45 ≤ y(k) ≤ yl(k)− 0.45,∀k = 0, . . . , N − 1,

and it should also take into account the conservatism in-
troduced by the convex hull. Several functions have been
tested and it must be noted that some of them even worsened
the performance with respect to the unconstrained network.
Here, we show the results for the following barrier function,

I(ot, at) = C ·max(0, αy1 − yl1) + C ·max(0, αy2 − yl1)

− C ·min(0, αy1 − yr1)− C ·min(0, αy2 − yr1), (6)

where C = 1000. The limits in the y-coordinate can be seen
graphically in Figure 4. The function grows linearly with a
high slope when the coefficients violate the lane boundaries.

In Figure 5, we can see the performance evolution of the
unconstrained and constrained networks across the various
policy rollouts of the DAgger algorithm. On the y-axis, it
is represented the error of the learner, defined according to
the metric (5). The unconstrained policy (UPN), at its first

Fig. 4: Lane boundaries coordinates constraints used in the
lane keeping scenario

iteration, causes a crash and a subsequent interruption of the
rollout. The constrained policy (CPN), instead, is already
able to keep the car on the track and so it allows us to gather
more data from the first rollout. After the second rollout, the
constrained policy worsens its performance both in terms of
mean and standard deviation, even leading to a crash after
some iterations. From this, we can deduct that the theoretical
guarantees of the DAgger algorithm may not hold in case of
other loss functions other than the standard imitation ones
(Mean Squared Error, L2...). To keep improving across the
rollouts, an adaptive loss function may be used (ACPN): at
each iteration the slope of the barrier functions is decreased.
In this way, the adaptive constrained policy network is able
to perform better than the UPN at almost every rollout.
The difference between them is anyway really small, in
the order of 10−3. Figure 6 and Figure 7 demonstrate the
euclidean error to the lane center and the vehicle trajectory,
respectively, after the 10th rollout. The results show that
the vehicle can follow the lane center using the proposed
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Fig. 5: Average maximum error between expert and learner:
Error of the learner over ten DAgger policy rollouts, us-
ing Unconstrained (UPC), Constrained (CPN) and Adaptive
Constrained (ACPN) Policy Networks



Fig. 6: Euclidean distance error between the ACPN and the
expert on a 300s trajectory after the 10th rollout

Fig. 7: (x, y) trajectory of the ACPN (black line) after the
10th rollout

algorithm.
The main advantage of the CPN may be the incorporated

knowledge of the task objective that allows the vehicle not
to fail and its speed in reaching very good performance after
just one dataset aggregation. This may be useful in case
of more complex scenarios and larger datasets, where each
policy rollout is expensive, or in case of a human-in-the-loop,
where the vehicle is required not to fail its basic task.

VII. CONCLUSIONS AND FURTHER WORK

The work proposes a framework for autonomous vehicle
control relying on imitation learning-based planning and
model-based control, and the algorithm is tested for a lane
keeping application. The planner can be a shallow fully-
connected neural network. It is shown how a parametriza-
tion of the planned trajectory can improve the prediction
characteristics in terms of smoothness and scalability for

longer horizons. This choice may show more improvements
on the computational efficiency of the training phase for
larger datasets. The results also show that the convergence
speed of the learner during online training (following DAgger
algorithm) can be enhanced by the use of constraints in the
training loss, incorporating the task objectives in advance.
However, a theoretical analysis of the DAgger guarantees in
convergence with augmented losses should be studied more
in depth. Furthermore, the influence of the additional losses
definition on the performance requires furthur investigation.
It would also be of interest to apply the proposed approach
on human driving datasets and other driving scenarios.
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