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Abstract In this work, the combinatorial structures which imply polynomial-
time solvability in staff scheduling problems are investigated. We introduce hi-
erarchical constraints to emphasize the hierarchical relation among constraints
and contribute a characterization for a large class of tractable optimization
problems with totally unimodular matrices in their integer linear programs.
As a result, polynomial-time solvable personnel scheduling problems in liter-
ature can be further extended and generalized, as hierarchical management
requirements are often considered in practice. Furthermore, an approach to
derive the minimum cost network flow problems from the proposed hierar-
chical constraints is established. The newly obtained insight into the general-
ized boundary between tractable and intractable staff scheduling constraints
enriches the theoretical studies of staff scheduling problems’ complexity and
may lead to efficient models and methods for complex variations.
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1 Introduction

Staff scheduling or personnel scheduling is a common operational management
challenge with significant impact on operating costs, employee satisfaction, etc.
As practical personnel scheduling problems constantly arise from real world
applications, various methods including exact algorithms, heuristics and meta-
heuristics have been extensively investigated [4, 12, 2]. However, theoretical
studies of their models are relatively limited, as their importance has been
underestimated [11].

Many staff scheduling problems are NP-hard due to the presence of specific
constraints [8]. Recently, polynomial time solvable models in staff scheduling
have attracted growing attention, since they incorporate representative and
fundamental constraints involved in many industrial variants and they are
straightforward to analyze. The first systematic study on staff scheduling mod-
els was presented by Brucker, et al [3], where several polynomial-time solvable
rostering problems were recognized using minimum cost network flow mod-
els. The class of tractable rostering problems was extended by applying new
techniques of network flow reformulation [1, 10, 11, 7]. However, these studies
lack generality, as they are based on network flow models to be customized
for different problems.

To obtain general insights into characteristics of tractable staff schedul-
ing problems, we consider the polyhedra of associated linear programs and
find special hierarchical relations between constraints to develop a sufficient
condition for identifying tractable scheduling problems. Models in literature
[10, 11] are further extended to incorporate more realistic hierarchical require-
ments while preserving the polynomial-time solvability. Furthermore, a general
method to derive minimum cost network flow problems from a collection of the
proposed hierarchical constraints is presented to link this work with previous
studies of staff scheduling based on network flow models.

This paper is organized as follows. Section 2 introduces basic terminology
and properties of integer linear programs. Section 3 presents the hierarchi-
cal structures in constraints which make its integer program tractable and
a consequent algorithm to identify the polynomial-time solvability of integer
linear programs. Examples and applications of hierarchical constraints in staff
scheduling problems are explored in Section 4. Finally, Section 5 includes con-
clusions and future work.

2 Preliminaries

The integer linear program (ILP) is one of the most frequently used models in
staff scheduling. We consider an ILP P0 in a generic form:

P0 : min{cTx : Ax ≤ b,x ≥ 0,x ∈ Zn} (1)

of which c,b are vectors and A is a matrix with integer entries.
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H = {x|Ax ≤ b,x ≥ 0} defines the polyhedron of the linear programming
relaxation (LPR) of P0. In general, optimal solutions of the LPR of P0 can
be fractional and infeasible, but total unimodularity of A is an important
property which guarantees the integrality, as shown in Theorem 1.

Definition 1 A matrix Am×n is totally unimodular (TU) if each square sub-
matrix of A has determinant in {0, 1,−1} [9].

Theorem 1 A matrix A is totally unimodular if and only if the polyhedron
{x|Ax ≤ b,x ≥ 0} is integral for any integral vector b in P0 [5].

According to Theorem 1, if A is TU and constants b are all integers, P0 is
solvable in polynomial time, since its optimal solutions are the same as its
LPR’s solutions.

3 Hierarchical constraints and their systems

In this section, we introduce hierarchical constraints which are key in estab-
lishing the tractability of the aforementioned ILP formulation P0.

As shown in Section 2, constraints coefficients determine the complexity
of an ILP. We consider the coefficients in each constraint as a vector and
apply the Hadamard (entry-wise) product of constraint vectors to define the
hierarchical relationship between constraints.

Definition 2 The Hadamard product of two vectors a = (a1, ..., an) and b =
(b1, ..., bn) is denoted as a⊙ b = (a1b1, ..., anbn) [6].

Definition 3 Two constraints C1, C2 are hierarchical, if their coefficient vec-
tors c1, c1 has a Hadamard product such that c1 ⊙ c2 ∈ {0,±c1,±c2}. Ad-
ditionally, every entry of c2, c2 must be in {0, 1,−1} and constants in their
constraints must be integers.

The following is an explanation of the hierarchy of two constraints C1,
C2, based on the vectorized computation of their constraint coefficient vectors
c1, c1:

1) c1 ⊙ c2 = 0 ⇐⇒ the two constraints are disjoint, i.e., they contain no
common variable (with nonzero coefficients). For example, C1 : 1x1 + 1x2 +
0x3 + 0x4 ≤ b1 and C2 : 0x1 + 0x2 + 1x3 + 1x4 ≤ b2.

2) c1⊙c2 = c1 or −c1 ⇐⇒ all the variables in C1 are included in C2. For
instance, C1 : 1x1+1x2+0x3+0x4 ≤ b1 and C2 : −1x1−1x2−1x3−1x4 ≤ b2;

3) c1 ⊙ c2 = c2 or −c2 ⇐⇒ C1 has all the variables in C2. In other
words, C1 contains C2;

4) c1 ⊙ c2 /∈ {0,±c1,±c2} ⇐⇒ C1 and C2 are not hierarchical.

The relationship level of two hierarchical constraints is defined as follows.
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Definition 4 The hierarchical level of a constraint C1 is lower than that of
a constraint C2 denoted as C1 ≤H C2, if their coefficient vectors have a
Hadamard product c1 ⊙ c2 ∈ {±c1} and c1 ̸= ±c2. Furthermore, C1 <H C2

donates the case that there is no other constraint C3 with a hierarchical level
between that of C1 and C2, i.e., C1 ≤H C3 ≤H C2.

Since there are usually more than two constraints in an ILP of P0, a special
collection of constraints is defined in Definition 4.
Definition 5 A hierarchical constraint system is a collection of constraints
in which every pair of constraints is hierarchical.

For example, constraints x1 + x2 + x3 ≤ b1, −x2 − x3 ≤ b2 and −x1 ≤ b3
are a system of hierarchical constraints.

Theorem 2 If the constraints of an ILP consist of no more than two hierar-
chical constraint systems, the problem can be solved in polynomial time.

Proof According to Theorem 1, Definition 3 and Definition 5, we only need
to prove total unimodularity in the constraint coefficient matrix A of an ILP
with at most two hierarchical constraint systems H1 and H2.

Mathematical induction is applied to show that an arbitrary square sub-
matrix B of A, has determinant det(B) ∈ {0,±1}. If only one element is in
B, det(B) ∈ {0,±1} by definition. Assume det(Bk×k)∈ {0,±1} for any square
submatrix with k dimensions (k > 1), the case (det(B(k+1)×(k+1)) ∈ {0,±1})
of any k+1 dimensions square submatrix remains to be verified.

It is noted that det(B(k+1)×(k+1)) will at most change its sign and preserve
magnitude by applying the following elementary row operations. For a row in
B(k+1)×(k+1) from a constraint with level n in H1 or H2, we replace it by the
entrywise sum or difference with other rows from constraints in level n − 1
of the same hierarchical constraint system. Repeating this procedure until we
get a new matrix B′

(k+1)×(k+1) of which at most two nonzero entries are in
each column, because there are at most two hierarchical constraint systems.
Finally, the proof is concluded as follows.

1) If B′
(k+1)×(k+1) has a column with only zero entries, det(B′

(k+1)×(k+1)) =

det(B(k+1)×(k+1)) = 0;
2) If B′

(k+1)×(k+1) contains a column of a single nonzero entry (1 or -1),
det(B′

(k+1)×(k+1)) = ±det(B(k+1)×(k+1)) ∈ {0,±1}, using determinant expan-
sion by minors;

3) If all columns in B′
(k+1)×(k+1) have two nonzero entries, the sum of the

rows from H1 must equal to that from H2 by Definition 3 and Definition 5.
Consequently, det(B′

(k+1)×(k+1)) = det(B(k+1)×(k+1)) = 0.

Hierarchical constraint systems can be used for fast identification of a wide
range of polynomial-time solvable problems with no more than two hierarchi-
cal constraint systems according to Theorem 2. The number of hierarchical
constraint systems is counted by using the Hadamard products of pairwise
constraints’ coefficient vectors in Definition 3. If two constraints are not hier-
archical, they must be in different hierarchical constraint systems.
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4 Applications of hierarchical constraints in staff scheduling

4.1 Tractable personnel scheduling problems

A general personnel rostering problem is to assign employees i ∈ E = {1, 2, ..., |E|}
to shifts k ∈ S = {1, 2, ..., |S|} on days j ∈ T = {1, 2, ..., |T |}, considering op-
erational constraints and objectives (e.g., costs or employee satisfaction) [11].
The assignment of employee i to shift k on day j is denoted as xijk = 1,
otherwise xijk = 0.

Problem P1 [10] is an example of staff rostering with hierarchical con-
straints and is presented here to demonstrate an application of Theorem 2 to
other real problems. A cost cijk is incurred by the assignment xijk = 1. The
objective is to minimize the total cost of the final schedule. The total num-
ber of shifts (or days) that employee i should work is ai. The minimum and
maximum number of employees required for shift k on day j are dljk and dujk
respectively. The ILP of P1 is formulated as follows.

P1 : Min
∑
i∈E

∑
j∈J

∑
k∈S

cijkxijk (2)

s.t.
∑
k∈S

xijk ≤ 1, ∀i ∈ E, j ∈ T (3)∑
j∈T

∑
k∈S

xijk = ai, ∀i ∈ E (4)

∑
i∈E

xijk ≤ dujk, ∀j ∈ T, k ∈ S (5)∑
i∈E

−xijk ≤ −dljk, ∀j ∈ T, k ∈ S (6)

xijk ∈ {0, 1}, ∀i ∈ E, j ∈ T, k ∈ S (7)

Inequalities (3) are single assignment constraints, which restrict that an
employee work at most one shift per day. The total assignment constraints
(4) ensure that the total assignments of employee i equals ai. The coverage
constraints (5) and (6) define the range of requirements of employees for shift
k on day j. Integrality of decision variables is constrained by (7). As the
decision variables and their coefficients in constraints of P1 are integers, all the
constants (ai, dljk, dujk) in the form in constraints must be integers, otherwise
we just round them into integers.

It is trivial to convert P1 into the generic problem P0 by replacing the total
assignment constraints (4) with two inequality constraints. Fig. 1 shows the
constraint coefficient matrix of P1 with |E| = |T | = |S| = 2. There are two
hierarchical constraint systems partitioned by the line in Fig. 1, of which the
correctness can be easily verified by Definition 3. It is noted that the integer
constraints (7) are hierarchical with all constraints in P1, since their linear
relaxations have an identity matrix of coefficients. Therefore, P1 not only has
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a polynomial-time solvable network flow model as shown in [10], the ILP of
P1 is also tractable by Theorem 2.

x1,1,1 x1,1,2 x1,2,1 x1,2,2 x2,1,1 x2,1,2 x2,2,1 x2,2,2



Con(3)


1 1

1 1

1 1

1 1

Con(4)


1 1 1 1

−1 −1 −1 −1

1 1 1 1

−1 −1 −1 −1

Con(5)


1 1

1 1

1 1

1 1

Con(6)


−1 −1

−1 −1

−1 −1

−1 −1
Con(7){ I8

Fig. 1: The partition of constraint matrix of A1

An important tractable extension to P1 is adding constraints (8), where
D̄i is a set of pairwise disjoint subsets of the day set T for each employee i,
i.e., F1 ∩ F2 = ∅, F1 ⊆ T, F2 ⊆ T, ∀F1, F2 ∈ D̄i. This new type of constraint
can limit the number of working shifts (or days) of an employee i in the range
[ml

iF ,m
u
iF ] within disjoint periods such as weekends [11].

ml
iF ≤

∑
j∈F

∑
k∈S

xijk ≤ mu
iF , ∀i ∈ E,F ∈ D̄i (8)

Constraints (8), (3) and (4) are in the same hierarchical constraint system
according to Definition 5. Here we present a more general set of constraints (9)
replacing constraints (8) to preserve polynomial-time solvability. In constraints
(9), Gi is a set of subsets of the day set T for employee i, and F1 ∩ F2 ∈
{F1, F2, ∅}, F1 ⊆ T, F2 ⊆ T , ∀F1, F2 ∈ Gi. This extension enables the inclusion
of assignment restrictions of employees within hierarchical periods in P1. For
example, the constraints that restrict the range of assignments (workload) of
an employee in hierarchical periods such as weekends, weeks and months.

ml
iF ≤

∑
j∈F

∑
k∈S

xijk ≤ mu
iF , ∀i ∈ E,F ∈ Gi (9)

Furthermore, constraints with a hierarchy among employees can also be
included in P1. A common situation is that there are coverage constraints in
terms of particular groups of employees (such as skilled workers, interns and
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general workers) required for a shift k on a day j, as formulated by constraints
(10). Qk are a collection of subsets of the employee set E such that L1 ∩L2 ∈
{L1, L2, ∅}, L1 ⊆ E,L2 ⊆ E, ∀L1, L2 ∈ Qk. In other words, all sets in Qk are
hierarchical instead of pairwise disjoint.

ml
kL ≤

∑
i∈L

∑
j∈T

xijk ≤ mu
kL, ∀k ∈ S,L ∈ Qk (10)

Similarly, there are constraints with a hierarchy in terms of shifts, repre-
sented by constraints (11). This kind of constraints models the restriction on
the number of shifts in several categories (Y ∈ Wi) worked by an employee
i, where Y1 ∩ Y2 ∈ {Y1, Y2, ∅}, Y1 ⊆ T, Y2 ⊆ S, ∀Y1, Y2 ∈ Wi. For example,
contractual constraints restrict the maximum workload in terms of morning
shifts, daytime shifts and evening shifts defined in Wi. In this case, the day-
time shifts include morning shifts (their intersection equals to the morning
shifts). The set of evening shifts are disjoint with the morning shift set and
the daytime shift set.

mu
iY ≤

∑
j∈T

∑
k∈Y

xijk ≤ mu
iY , ∀i ∈ E, Y ∈ Wi (11)

However, at most two kinds of constraints from (9), (10) and (11) can
be included in a polynomial-time solvable model, as there are at most two
hierarchical constraints systems according to Theorem 2.

It is also noted that the inclusion of soft constraints [7] to P1 is tractable,
if no additional hierarchical constraints systems are introduced.

4.2 Derivation of network flow problems

Network flow models can be more efficient than the ILP formulations for a
polynomial-time solvable rostering problem [10]. The challenge is that the
network layout varies from problem to problem. Hence, this section presents
a general method to derive a minimum cost flow problem from an ILP with
at most two hierarchical constraint systems (H1, H2), as an application of the
proposed hierarchical constraints. The main procedures are described below.
Without loss of generality, we assume that H1 and H2 are not empty.

1. Node generation: add a variable node for each decision variable; gen-
erate constraint nodes corresponding to constraints in H1 and H2

2. Arc generation I: add an arc from a variable node to constraint nodes
associated with the lowest-level constraints in H1, if the corresponding variable
has nonzero coefficient (±1) in that constraint; connect variable nodes with the
constraint nodes from H2 with the same manner but in the opposite direction.

2. Arc generation II: add an arc (u, v) between constraint nodes u and
v which correspond to constraints C1 and C2 with adjacent hierarchical levels
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in H1 respectively such that C1 <H C2; develop arcs in the reverse direction
among constraint nodes from H2 using the same rule.

3. Parameter configuration: set the supply and demand of a source node
s and a sink node t and connect them with the constraint nodes associated with
top-level constraints in H1 and H2 respectively; set capacity of arcs according
to the constants of their relevant constraints in H1 and H2.

Fig. 2: The derived network flow problem from P1

Generating the network is generic for any ILP with one or two hierarchical
constraint systems, but the parameter configuration is problem dependent.
Fig. 2 illustrates the network created by applying the presented approach on
an instance of P1. The supply of the source s and the demand of the sink t are
equal to

∑
i∈E ai. The lower and upper bound of flows from s to constraint

nodes associating the coverage constraints (5) and (6) in H2 are dljk and dujk
respectively. Then a flow from these constraint nodes to their upper constraint
nodes corresponding to constraints (7) is limited in the range of [0,1]. There is a
unit cost cijk of the flow to the variable node associating the decision variable
xijk from the constraint nodes associated with constraints (7). As a result,
costs of assignments can be calculated as the costs of flows. Furthermore, the
flow from the bottom hierarchical level nodes associated with constraints (3)
in H1 to their upper nodes has a capacity of one unit, according to the single
constraint (3). Finally, the flow from the top-level constraint nodes representing
total assignment constraints (4) in H1 to t is bounded by ai, i.e., the required
number of total assignments (working days) of employee i. Therefore, the
derived minimum cost network flow problem is an equivalent of P1.
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5 Conclusions

This paper presents theoretical results concerning the constraints’ effects on
the complexity of optimization problems in a general setting of integer linear
programs. Hierarchical constraints are identified and formulated to charac-
terize the ILPs with polynomial-time solvability for a large class of personnel
scheduling problems, without problem-dependent reformulations into tractable
network flow problems [3, 10, 11, 7]. Consequent applications are introduced,
including vectorized testing of polynomial-time solvability, several extensions
of well-known tractable problems and the derivation of network flow problems
from hierarchical constraints systems. These examples and applications vali-
date that the hierarchy in constraints is one of the structural reasons why some
staff scheduling problems/models are easy and can be remodeled as tractable
minimum cost network flow problems in previous work [3, 10, 11, 7].

In the future, our focus will shift to the integration of tractable models
into solution methods for complex personnel scheduling problems.
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