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Abstract 1 

Symmetry generally makes stimuli less complex, and symmetric arrangements are also generally 2 

preferred to asymmetric ones. Here we investigated the roles of both local and global symmetry in 3 

subjective judgements of natural scenes. We collected ratings of complexity, aesthetic pleasure, 4 

and interest for 720 scene images and calculated average ratings for each image, as well as several 5 

measures of local and global symmetry. Global symmetry measures were calculated by creating 6 

an axis of symmetry at every column (vertical) and row (horizontal) of the grayscale image and 7 

correlating the rows or columns of pixels on either side of the symmetry axis, weighted by the 8 

proportion of pixels included in the correlation. Local symmetry measures were computed by 9 

converting each photograph into a line drawing and calculating the parallelism (ribbon symmetry) 10 

and distance (separation) between contours. To investigate the relationship between symmetry and 11 

participants’ ratings, we ran a canonical correlation analysis using twelve symmetry measures as 12 

predictors of the three subjective rating measures. The analysis revealed two significant and 13 

interpretable canonical roots. In the first root, local symmetry and vertical global symmetry were 14 

negatively related to complexity, aesthetic pleasure, and interest (i.e., symmetry reduces 15 

complexity and renders the scene boring and unpleasant). Conversely, in the second root, local 16 

symmetry and horizontal global symmetry were positively related to pleasure and interest. Our 17 

work reveals the distinct roles of global and local symmetry in perceptual judgements, and lends 18 

further support to the pleasure-interest model of aesthetic liking.  19 

 20 

Key words 21 

Local symmetry, global symmetry, aesthetic pleasure, complexity, interest, pleasure-interest 22 

model of aesthetic liking  23 



 3 

Introduction 1 

From the early 20th century, Gestalt psychologists described ways in which parts of visual 2 

stimuli were grouped together by the human visual system to form coherent percepts (Koffka, 3 

1922, 1935; Köhler, 1920; Wertheimer, 1922, 1923). These grouping principles have been 4 

studied extensively to uncover their roles in the perceptual phenomena of figure-ground 5 

segmentation and contour integration, among others (see Wagemans et al., 2012 for an extensive 6 

history and review of the Gestalt grouping principles). In the current study, we highlight one 7 

principle in particular – symmetry. In general, symmetry makes abstract shapes and patterns less 8 

complex (Bertamini et al., 2013; Day, 1968; Gartus & Leder, 2017) by repeating certain parts of 9 

the stimulus, thus reducing the amount of novel information to be processed. Notably, symmetry 10 

has also been studied in relation to the pleasantness of a stimulus, where symmetric shapes and 11 

patterns are often preferred compared to asymmetric ones (Bertamini et al., 2013; Chen et al., 12 

2011; Day, 1968; Gartus & Leder, 2013), although art experts find symmetric patterns less 13 

beautiful (Leder et al., 2019). Here, we move beyond simplistic stimuli and examine these 14 

relationships between symmetry, complexity, and aesthetic pleasure in images of real-world 15 

natural scenes. Importantly, we also distinguish between local and global aspects of symmetry, 16 

allowing us to gain insight into the different facets of these relationships that may exist. 17 

Global symmetry, as studied in visual perception, typically refers to mirror symmetry 18 

(i.e., symmetry with a reflection axis) across a central vertical, horizontal, or oblique axis, 19 

although vertical symmetry is the most salient one (Wagemans, 1997; Wagemans et al., 1992; 20 

Wagemans et al., 1993). Local symmetry, in contrast, refers to symmetry that occurs on a smaller 21 

and more local scale. For example, a person’s body is typically (roughly) symmetric across the 22 

central vertical axis (i.e., globally symmetric), and each individual limb and digit is likewise 23 
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symmetric on their own (i.e., locally symmetric). In addition to abstract patterns and shapes, as 1 

mentioned above, global mirror symmetry is also negatively related to complexity in higher-level 2 

stimuli, such as objects (Sukumar et al., 2008), scenes (Oliva et al., 2004), and even mobile app 3 

interface designs (Miniukovich & De Angeli, 2014). The study of local symmetry, on the other 4 

hand, has mostly been limited to dot patterns (Nucci & Wagemans, 2007) or simple object 5 

outlines (Panis & Wagemans, 2009), where it has also been found to generally increase 6 

processing fluency. How local symmetry relates to complexity within complex visual scenes is 7 

unclear. The role of local symmetry within scenes has only recently begun to be investigated, 8 

with the development of a novel method developed by Rezanejad and colleagues (2019) to 9 

obtain the shape skeleton of a line drawing of a real-world scene, which is then used to compute 10 

local symmetry at each contour. With this method, the researchers found that scene images that 11 

contained only the 50% most symmetric contours were significantly easier to categorize into 12 

their basic-level categories than scenes made up of the other 50% of contours (i.e., the least 13 

symmetric contours) (Rezanejad et al., 2019; Wilder et al., 2019). This superior performance 14 

afforded by the presence of local symmetry over asymmetry suggests that that local symmetry, 15 

like global symmetry, may also increase fluency by decreasing complexity in high-level stimuli. 16 

The current study formally tests this hypothesis by relating the presence of local symmetry to 17 

subjective ratings of perceived complexity in scenes.  18 

Furthermore, it is well-known that complexity, processing fluency, and aesthetic pleasure 19 

are tightly linked (Van Geert & Wagemans, 2020), although the results are somewhat 20 

inconsistent. Sometimes a medium level of complexity results in the highest aesthetic rating 21 

(Berlyne, 1971; Güçlütürk et al., 2016), while other times, the most fluently processed stimuli 22 

are preferred (Reber et al., 2004). In any case, an excessive level of complexity seems to have a 23 
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negative effect on aesthetic preference, which, along with the negative relationship between 1 

symmetry and complexity described above, suggests that symmetry should increase aesthetic 2 

pleasure by increasing processing fluency. Indeed, we know that people exhibit a preference for 3 

globally symmetric patterns over asymmetric ones (Bertamini et al., 2013; Chen et al., 2011; 4 

Gartus & Leder, 2013; Makin et al., 2012). However, local symmetry has not yet been explored 5 

in this regard. Additionally, while abstract patterns may allow for greater control of stimulus 6 

manipulations, they do not necessarily allow us to generalize the findings to higher-level stimuli, 7 

such as natural scenes. In terms of more ecologically-valid stimuli, the most one can say at the 8 

moment is that global mirror symmetry is associated with attractiveness and perceived health of 9 

faces (Little et al., 2011; Rhodes et al., 1998; Thornhill & Gangestad, 2006). However, the role 10 

of symmetry in aesthetic pleasure judgements of natural scenes has surprisingly only been 11 

investigated in one instance, as far as we know (Study 3 in Mayer & Landwehr, 2018).  12 

The current study uses photographs of natural scenes to allow us to study how these 13 

relationships might act in stimuli with greater ecological validity. More specifically, we will 14 

explore these relationships in natural scenes, which is especially important given the findings on 15 

the cognitive and emotional benefits of interacting with nature (Berman et al., 2008; Bowler et 16 

al., 2010). For instance, the Attention Restoration Theory posits that natural environments 17 

promote a “soft fascination”, meaning that they are automatically and fluently processed and that 18 

they are interesting without being overwhelming (Kaplan, 2001; Schertz & Berman, 2019), 19 

unlike a bustling city street, for example, which would demand too many attentional resources. 20 

This soft fascination allows for the finite top-down attention network to restore its resources, 21 

improving cognitive abilities and decreasing stress and anxiety. The theory seems to suggest that 22 

nature is aesthetically pleasing because it is fluently processed, therefore implying that 23 
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complexity is negatively related to aesthetic pleasure in natural scenes. In support of this 1 

hypothesis, Mayer and Landwehr (2018, Study 3) found that computationally derived simplicity 2 

and self-similarity positively predicted the number of views on images of landscapes, suggesting 3 

that people preferred to view scenes with low complexity. However, a positive linear relationship 4 

between complexity and aesthetic pleasure ratings in natural scenes has also been found 5 

(Biederman & Vessel, 2006; Yue et al., 2007), suggesting that complexity in natural scenes may 6 

actually be pleasurable in some cases. Thus, the link between pleasure and complexity in natural 7 

scenes is still an open question. Additionally, how a range of local and global symmetry 8 

measures may modulate the effects has yet to be examined. Note here that when we refer to 9 

aesthetic pleasure, we are referring to the joy one experiences when viewing particular scenes. 10 

Due to these inconclusive results, and the scarcity of research on the role of symmetry in 11 

aesthetic experiences when viewing high-level stimuli, the current study uses an exploratory 12 

multivariate analysis approach – a canonical correlation – to understand the many relationships 13 

that may exist between pleasure, complexity, and interest in complex real-world scenes, and the 14 

roles that both global and local symmetry may play in those relationships. We find that different 15 

aspects of global and local symmetry play divergent roles. Vertical global symmetry reduces 16 

complexity, pleasure, and interest, while horizontal global symmetry is related to increased 17 

pleasure and interest ratings. Local symmetry is both positively and negatively related to the 18 

subjective ratings. We discuss our findings within the framework of the Pleasure-Interest model 19 

of Aesthetic liking (PIA; Graf & Landwehr, 2015), providing further evidence to the idea that 20 

both complexity and simplicity influence the aesthetic pleasure of natural scenes. Our work 21 

highlights the importance of considering both local and global aspects of symmetry when 22 
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discussing symmetry’s relationship with subjective complexity judgements and aesthetic 1 

experiences. 2 

Methods 3 

Stimuli 4 

In order to obtain a stimulus-set which could vary on ratings of pleasure and complexity, 5 

we collected images spanning a range of categories, such as beaches, deserts, fields, caves, 6 

waterfalls, etc. through Google image searches. Key words used in the searches, along with the 7 

category label, included “beautiful”, “ugly”, “calm”, “chaotic”, “simple”, “complex”, 8 

“interesting”, and “boring”. The images depict natural outdoor landscapes, though sometimes 9 

include people or human-made objects (such as benches or fences). All images were cropped or 10 

resized to 500 (width) x 375 (height) pixels. If the quality of the image could not be retained 11 

during resizing, the image was discarded. We were left with a total of 720 images, which were 12 

used in the rating experiment.  13 

Participants  14 

A total of 189 people (age 19 to 70; mean age = 37.2) participated in the rating 15 

experiment on Amazon Mechanical Turk and were paid 1.50 USD for their participation. Due to 16 

a technical error, gender information was not saved for the majority of participants (N = 142). Of 17 

the other 47 participants, 55% (N = 26) were women. This study was approved by the University 18 

of Toronto Research Ethics Board (Protocol number 30999). We recruited MTurk workers with 19 

at least a 99% approval rating, had completed a minimum of 100 HITS, and were located only in 20 

the United States or Canada. To check whether participants were paying sufficient attention to 21 

the task, we calculated the variance of responses within a 15-response-long (i.e., 5 trial-long; 3 22 

responses per trial) sliding window, as well as the mean reaction time across all trials, for each 23 
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participant. Participants failed the vigilance check if their mean variance was less than 0.2. 1 

Responses were made on 5-point Likert scales, thus a low variance implied that participants 2 

pressed the same number for long stretches of time during the experiment. Participants also 3 

failed the vigilance check if their mean reaction time was less than 250ms, implying that they 4 

were rushing through the experiment and may not have been paying attention (for reference, the 5 

average of mean reaction times across participants was 1946ms). Data from four participants 6 

were excluded from further analyses due to failing the vigilance criteria. 7 

Procedure 8 

The experiment was run using Inquisit software (millisecond.com). There were two 9 

versions of the experiment, with differing numbers of trials. In one version, each participant (N = 10 

142) viewed and rated a total of 244 images, chosen pseudo-randomly from the entire image set 11 

of 720 images. In another version, an additional 188 images were added to the total image set, 12 

and each participant (N = 47) now rated 310 images chosen from the new image set of 908 13 

images. The additional images were added as a pilot for a different experiment, thus are not 14 

analyzed in this experiment. In total, we collected approximately 54 individual ratings (range = 15 

49 to 58 ratings per image) for each of the original 720 images. The average time it took 16 

participants to complete the first version, with 244 photographs, was approximately 32 minutes, 17 

and the average time for the version with 310 photographs was approximately 40 minutes. These 18 

times included instructions and self-paced breaks. 19 

In both versions, a trial began with a blank white screen for 500ms. Then, each image 20 

was displayed in the center of the screen on a white background for 500ms before the first rating 21 

scale would appear below the image. Participants then had to respond on a 5-point Likert scale, 22 

using their computer mouse, to the following question: “How much do you enjoy looking at this 23 
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image?”. The response options were 1 = “not at all”, 2 = “barely enjoy”, 3 = “somewhat enjoy”, 1 

4 = “enjoy”, and 5 = “enjoy very much”. Following the response, the first rating scale 2 

disappeared, the image remained on screen, and the second rating scale appeared: “How simple 3 

or complex is this image?”. The response options were 1 = “very simple”, 2 = “simple”, 3= 4 

“neutral”, 4 = “complex” and 5 = “very complex”. After the response, the scale again 5 

disappeared, and the third rating scale was displayed: “How boring or interesting is this image?”. 6 

The response options were 1 = “very boring”, 2 = “boring”, 3 = “neutral”, 4 = “interesting”, and 7 

5 = “very interesting”. Participants had to respond to each question in turn before the next image 8 

would appear. There was no time limit for the responses. See Figure 1 for an example trial 9 

sequence. 10 

Participants were given a break every 40-50 trials and had to press the spacebar to 11 

continue with the experiment. Following the main experiment, participants filled out 12 

demographic information such as age and gender, and responded to the following questions by 13 

typing their answer into the response box: 1) “How would you describe the relationship between 14 

pleasure (liking the image) and complexity? (e.g., Did you prefer images that were more 15 

complex? Less? In the middle?). Which factors affected this relationship?”; 2) “How would you 16 

describe the relationship between pleasure and interest? Which factors affected this 17 

relationship?”; and 3) “How would you describe the relationship between interest and 18 

complexity? Which factors affected this relationship?”. These questions were included in order 19 

to gain insight into participants’ thoughts on the relationships between pleasure, complexity, and 20 

interest. These responses are not analyzed here.  21 

Subjective Ratings 22 
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 Average ratings of complexity, pleasure, and interest were calculated for each image 1 

based on participants’ ratings on the task described above. Firstly, the ratings were z-scored 2 

within each individual participant. Then, for each image, the z-scored ratings were averaged 3 

across all participants who saw that image, resulting in one rating per image for each of the three 4 

subjective measures (complexity, aesthetic pleasure, and interest). 5 

 6 

 7 

Figure 1: Example trial sequence. 8 
 9 

Symmetry Analysis 10 

 In order to relate symmetry to subjective ratings of complexity, pleasure, and interest, 11 

several global and local symmetry features were calculated from the images. 12 

Global Symmetry 13 
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 The images were first transformed into grayscale using Matlab’s rgb2gray function. 1 

Global symmetry measures were then obtained by creating an axis of symmetry at every column 2 

(vertical) and row (horizontal) of the image and correlating the rows or columns of pixel 3 

luminance values on one side of the axis of symmetry to an equal number of pixels on the other 4 

side. For instance, imagine the left-most column in an image. This column’s global symmetry 5 

score would be the correlation of that column to an equal number of columns to its right (in this 6 

case, one column). This correlation is then multiplied by the proportion of the total pixels 7 

included in the correlation in order to downweigh the symmetry scores at the edges of the image. 8 

We do this because adjacent columns (or rows) of pixels tend to be similar to each other. Thus, 9 

on the edges of the image, when only a small portion of columns or rows are involved in the 10 

calculation, the symmetry score (i.e., the correlation) tends to be disproportionately high. We 11 

also do not believe that those high values truly capture high global symmetry at the edges, since 12 

calculating the symmetry over a small portion of the image is inherently not truly a “global” 13 

measure. We then move to the next column, this time correlating the two columns on the left of 14 

the axis to the two columns on the right (weighted by proportion of pixels), and so on. 15 

In the end, this pixel correlation procedure along the length (and height) of the image 16 

results in a vector of vertical global symmetry scores and a vector of horizontal global symmetry 17 

scores for each image. See Figure 2 for example images displayed with their vertical and 18 

horizontal global symmetry vectors. The largest peak (i.e., global maximum) value of the vertical 19 

and horizontal global symmetry vectors for each image were recorded.  20 

We also included two other measures of global symmetry, which represented variations 21 

of global symmetry within an image: the sum of the global symmetry range, and the number of 22 

peaks in the global symmetry vector. First, we calculated the sum of absolute differences in 23 
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global symmetry values between every peak and trough of the global symmetry vector, 1 

separately for vertical and horizontal symmetry. In order to calculate the range, the vector needs 2 

to contain at least one peak and one trough. If the vector has only one peak without a trough, the 3 

symmetry range is 0. This global symmetry range score represented the degree to which there are 4 

large variations in luminance in the horizontal or vertical directions within an image. For 5 

example, the left image in Figure 2 has clear horizontal bands of dark-light-dark-light 6 

alternations, and its horizontal symmetry range score was large due to the large differences 7 

between each peak and trough in the horizontal symmetry vector. The final measure we included 8 

was the number of peaks in the global symmetry vectors, again separately for vertical and 9 

horizontal symmetry. The number of peaks represents the amount of unidirectional (i.e., vertical 10 

or horizontal) luminance changes, as described above, within an image.  11 

 To summarize, the global symmetry measures included in our analysis were the overall 12 

vertical and horizontal global symmetry of the image (Vertical Peak, Horizontal Peak), the 13 

global symmetry range (Vertical Range, Horizontal Range), and the volatility of global 14 

symmetry (# Peaks Vertical Symmetry, # Peaks Horizontal Symmetry).   15 

 16 

 17 

 18 
 19 
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Figure 2: Vertical and horizontal global symmetry vectors for two example images. The global 1 
symmetry values corresponding to each image are displayed. The main global symmetry peak 2 
and several other obvious minor peaks and troughs have been marked along the global symmetry 3 
vectors using the * and +/ – symbols, respectively. Not all peaks and troughs have been marked, 4 
as they sometimes occur very close together along the symmetry vector.  5 
 6 

Local Symmetry 7 

 Where global symmetry looks for a mirror, translational, or rotational symmetry in the 8 

image as a whole, local symmetry looks for a similar type of pattern in a local region of the 9 

image. For example, a vase is a symmetric object, but can be placed in a scene such that the 10 

scene as a whole is not symmetric. In this case the vase has local mirror symmetry. A garden 11 

hose, when laid straight has local mirror symmetry, but when coiled, or bent, the mirror 12 

symmetry is disrupted. However, there is still a constant distance from a central axis through the 13 

hose. This is another type of local symmetry that is referred to as local parallelism or local ribbon 14 

symmetry. Since local symmetry survives many changes in an image, such as those due to 15 

changes in the camera position, the relative positions of objects in scenes, and articulation of 16 

object parts, local symmetry is more common in scene images than global mirror symmetry, 17 

which requires the non-accidental alignment of objects in the scene and a particular positioning 18 

of the camera or observer. Indeed, local symmetry has been shown to be important for human 19 

perception (Kootstra & Schomaker, 2009; Nucci & Wagemans, 2007; Rezanejad et al., 2019; 20 

Wilder et al., 2019).  21 

Local symmetry measures, such as ribbon symmetry, were obtained from line drawing 22 

versions of each image. In order to render all images as line drawings and calculate their local 23 

symmetry measures, we used the publicly available method developed and described by 24 

Rezanejad and colleagues (Rezanejad et al., 2019).  25 
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This method is used to score the local symmetry of contours or lines in the images, that 1 

is, the extent to which two nearby contours are locally symmetric with one another. As we are 2 

using colour photographs, we first perform edge detection on the colour image, using the 3 

publicly available structured edge detection toolbox as implemented in the 4 

LineDrawingExtraction package by Rezanejad et al. (2019; see https://github.com/mrezanejad). 5 

Once the edge map is obtained, the image is binarized using per image adaptive thresholding, 6 

resulting in a line drawing image with contour fragments that are 1 pixel wide. Finally, each 7 

contour fragment is spatially smoothed with a Gaussian kernel (σ = 1) to remove any 8 

discretization artifacts (i.e., to obtain smooth and continuous contours).  9 

To calculate the symmetry scores on the line drawing (i.e., the contour image), we 10 

computed the medial axis of each region in the image (i.e., the regions between neighbouring 11 

pairs of contours) using the SalienceScoresForScene package (Rezanejad et al., 2019). It may be 12 

useful to think of the medial axis, sometimes called the shape skeleton, as being a stick figure for 13 

a shape. We wish to score the contours in our image based upon their behaviour around their 14 

medial axes. Traditionally the medial axis is defined for closed shapes, where it is the union of 15 

the centers of maximal inscribed discs within a shape (Blum, 1973). In our images, it is not easy 16 

to define what is the interior vs. exterior of shapes, therefore we obtained the medial axis for 17 

each region of the image. At each point on the medial axis, we know the radius of the disc 18 

centered at that point. For an entire medial axis, the set of radii are characterized by the radius 19 

function. Using the radius function, we calculated two types of symmetry scores: ribbon 20 

symmetry, and separation. Local parallelism (ribbon symmetry) is the extent to which the 21 

contours maintain a constant distance from the medial axis. A pair of contours with constant 22 

separation receives a high score. A pair of contours that have varying distances from one another 23 
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will receive a low score. Local separation is the overall distance between two contours. More 1 

distal contours, yet still neighbouring contours (i.e. without any other contours between them), 2 

will receive a high score. Proximal neighbouring contours will receive a low score.  3 

Concretely, for separation, the score assigned to each contour pixel is simply the radius 4 

itself. The larger the radius of the circle, the higher the separation score. Thus, contours that are 5 

far apart have high separation scores, while contours that are very close together have low 6 

separation scores. In the case that the contour was associated with two medial axes, the contour’s 7 

separation score was the maximum of the two values.  8 

For ribbon symmetry, the rate of change of the radius function was calculated along the 9 

length of each skeleton contour, within a threshold window with a length of 2K + 1, where K = 5 10 

pixels. The lower the rate of change, the higher the ribbon symmetry score, because this means 11 

that the distance between contours remains locally constant along the length of the contours. 12 

Again, the contour pixels were assigned the maximum of the ribbon symmetry values from the 13 

closest points along the medial axis on either side. See Figure 3a for an example image at each 14 

step of the local symmetry calculation process. See Figure 3b for simplified shape examples that 15 

illustrate how the local symmetry measures change depending on the relationships between 16 

contours. 17 

To obtain the overall local ribbon symmetry within an image, the median value of all 18 

ribbon symmetry scores within an image was recorded. We also included two other measures of 19 

local symmetry for each image, which were chosen to explore the influence of the presence of 20 

any local symmetry or asymmetry within an image. For example, an image may have several 21 

parallel contours and several asymmetric contours (e.g., an image of a forest with parallel tree 22 

trunks and asymmetric groups of branches and leaves). This image would receive a medium 23 
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overall symmetry score, but the mere presence of the locally symmetric or asymmetric objects 1 

may play a role in subjective judgements of complexity, pleasure, or interest. For this reason, we 2 

included a measure of the proportion of symmetric pixels (i.e., the proportion of pixels within the 3 

image with ribbon symmetry scores greater than 0.75) and the proportion of asymmetric pixels 4 

(the proportion of pixels with ribbon symmetry scores less than 0.25). The same measures were 5 

also included for the separation measure.  6 

While ribbon symmetry is a clear measure of local symmetry, or parallelism, separation 7 

reflects local symmetry in a very different way. It measures relatively longer-range interactions 8 

between local parts of a scene, capturing the extent to which a medial axis extends its influence. 9 

However, just like images with symmetric contours are better categorized than images with 10 

asymmetric contours, images with the 50% of contours with the highest separation scores are 11 

categorized more easily than images with the 50% lowest separation contours (Rezanejad et al., 12 

2019). This result suggests that the contours with greater separation also facilitate mid-level 13 

perceptual organization (e.g., figure-ground segregation, segmentation into salient regions) and 14 

may cue the layout of the scene, allowing for more efficient scene categorization. Thus, we chose 15 

to include both ribbon symmetry and separation in our analysis. 16 

In sum, the local symmetry measures included in our analysis were the overall ribbon 17 

symmetry and separation scores of each image (Ribbon: median, Separation: median), the 18 

proportion of symmetric and far contours (Ribbon: proportion symmetric, Separation: proportion 19 

far), and the proportion of asymmetric and near contours (Ribbon: proportion asymmetric, 20 

Separation: proportion near).   21 

 22 
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 1 

Figure 3: a. Calculation of local symmetry measures for one example image; The image is first 2 
transformed from a colour photograph to a line drawing. The medial axis transform is then 3 
computed, allowing for the symmetry scoring of each contour pixel. The local symmetry values 4 
corresponding to the image are displayed. b. Simplified examples of shapes with varying 5 
amounts of ribbon symmetry and separation, with their corresponding local symmetry values. 6 
The grey dotted lines represent the medial axis skeletons of the shapes. The circles’ contours are 7 
perfectly parallel, therefore their ribbon symmetry is high, while their separation scores depend 8 
on the distance between contours. The rightmost shape contains sections that are not perfectly 9 
parallel, therefore its ribbon symmetry is relatively lower compared to the circles. Its separation 10 
scores also differ from those of the circles because this shape contains sections of contours that 11 
are close together as well as those that are further apart. 12 
 13 
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Canonical Correlation Analysis 1 

 A canonical correlation analysis was used in order to determine the relationships within 2 

and between two variable sets. One variable set included the symmetry features; 6 global 3 

symmetry variables, and 6 local symmetry variables. The other variable set included the three 4 

subjective ratings of complexity, aesthetic pleasure, and interest.  5 

 Due to the high correlations between the three subjective rating variables (see Appendix 6 

A), a multivariate statistical approach was preferred over separate univariate regressions in order 7 

to account for these relationships among the dependent variables. The additional advantage of 8 

using a canonical correlation analysis, rather than a multivariate regression analysis, for example, 9 

is that it further allows us to find more than one relationship between the dependent and 10 

independent variables, if more than one relationship exists. In this sense, a canonical correlation 11 

is equivalent to a multivariate regression followed by linear discriminant analysis (Lutz & 12 

Eckert, 1994). Due to the inconsistent findings in the literature regarding the relationships 13 

between aesthetic pleasure, complexity, and symmetry, we hypothesized that a singular 14 

regression outcome would not properly capture the nuances of these relationships. Thus, we 15 

believe that a canonical correlation analysis was the most appropriate way to explore our study 16 

question. 17 

Concretely, the canonical correlation seeks to maximize the correlations between two 18 

variable sets (Sherry & Henson, 2005) – a set of dependent variables and a set of independent, or 19 

predictor, variables. It does so by fitting a linear equation to the observed predictor variables (in 20 

our case, the symmetry measures) to create a single synthetic predictor variable, and another 21 

linear equation to the observed dependent variables (i.e., the subjective rating variables) to create 22 

a synthetic criterion variable, and then maximizing the correlation between the two synthetic 23 
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variables. The process repeats itself using the residual variance of the first maximal correlation. 1 

Each of these maximal correlations is called a canonical root. This analysis yields as many 2 

canonical roots as variables in the smaller variable set, and each root is orthogonal to the 3 

previous root(s). Thus, this approach allows us to assess the several different relationships that 4 

may exist within and between our variable sets (i.e., within and between different symmetry 5 

measures and subjective ratings of complexity, pleasure, and interest). 6 

Results  7 

In order to evaluate the multivariate shared relationship between symmetry and 8 

subjective ratings of complexity, pleasure, and interest, we conducted a canonical correlation 9 

analysis using the twelve symmetry measure variables as predictors of the three subjective rating 10 

variables. The analysis was run in R (R Core Team, 2018) using the “cc” function from the CCA 11 

package (González & Déjean, 2012).  The analysis yielded three canonical roots with squared 12 

canonical correlations (Rc
2) of 0.28, 0.17, and 0.04 for each successive root. Collectively, the full 13 

model across all three roots was statistically significant, Wilks’ λ = 0.576, F(36, 2083.73) = 14 

11.89, p < 0.0001. Wilks’ λ represents the variance that was not explained by the model, 15 

therefore 1 – λ yields the full model effect size. Thus, the full model explained a substantial 16 

portion, approximately 42.4%, of the variance shared between the variable sets.  17 

Statistical significance of the canonical roots can be assessed with a dimension reduction 18 

approach, using the asymptotic test function (“p.asym”) from the CCP package (Menzel, 2012) 19 

in R. As noted above, the full model (i.e., roots 1 to 3) was significant. Additionally, roots 2 to 3, 20 

and root 3 alone were also statistically significant, F(22, 1412) = 7.83, p < 0.0001, and F(10, 21 

707) = 2.85, p = 0.002, respectively (see Table 1). Although this test shows that all three roots 22 

are statistically significant, only the first two roots were considered noteworthy in the context of 23 



 20 

this study. The first and second roots explained 27.5% and 12.6% of the model variance, 1 

respectively, while the third root only explained 2.3%, and thus was not examined further (see 2 

Table 2).  3 

 4 
Table 1: Hierarchical statistical significance tests  5 
 6 

Roots Wilks’ λ F Hypothesis DF Error DF Significance of F 

1 to 3 0.576 11.893 36 2083.729 0.000 

2 to 3 0.794 7.829 22 1412.000 0.000 

3 to 3 0.961 2.846 10 707.000 0.002 

 7 
 8 
Table 2: Canonical correlations for each root 9 
 10 

Roots Canonical Correlations Squared Correlation % of shared variance % of model variance 

1 0.524 0.275 27.5 27.5 

2 0.417 0.174 17.4 12.6 

3 0.197 0.039 3.9 2.3 

                                Total variance explained by the model:              42.4% 

 11 

Table 3 presents the standardized canonical function coefficients and structure 12 

coefficients for roots 1 and 2. Canonical function coefficients are analogous to beta weights in a 13 

regression, as they represent the standardized coefficients used in the linear equations to combine 14 

the observed predictor variables (in our case, symmetry measures) and criterion variables 15 

(subjective ratings) into two synthetic variables. Structure coefficients represent the correlation 16 

between an observed variable and the synthetic variable created from the linear equation, and 17 

define which variables are useful in the model. The squared structure coefficients are also shown.  18 

Finally, we include the communalities (h
2
) across the two functions for each variable. 19 

Communalities are the sums of the squared structure coefficients, and represent the proportion of 20 



 21 

variance explained across the interpretable canonical roots for each variable. Across the two 1 

roots, the most useful variables (i.e., communality coefficients > 35%) for the canonical 2 

correlation solution were the three subjective rating variables (Pleasure, Complexity, and 3 

Interest), and several local and global symmetry variables: the overall local symmetry (Ribbon: 4 

median) and separation (Separation: Median) within an image, the proportion of separated 5 

contours (Separation: Proportion Far), as well as the overall global symmetry (Vertical Peak, 6 

Horizontal Peak), and the number of luminance changes within an image (# Peaks Vertical 7 

Symmetry, # Peaks Horizontal Symmetry).  8 

We could also assess which variables were most relevant to each individual root 9 

according to their structure coefficients (i.e., structure coefficients greater than |0.45|). Firstly, in 10 

root 1, we found that all three subjective rating variables were relevant, especially Complexity, 11 

which has a very large structure coefficient. These rating variables are positively related to each 12 

other, as their structure coefficients have the same sign (i.e., positive).  13 

Regarding the symmetry variable set in root 1, the primary contributors were local 14 

symmetry (Ribbon: Median) and separation (Separation: Median), the proportion of separation 15 

(Separation: Proportion Far), vertical global symmetry (Vertical Peak), and large luminance 16 

changes within an image (Vertical Range and Horizontal Range). With the exception of Vertical 17 

Range, all relevant symmetry variables had the same sign (i.e., negative), indicating that they 18 

were all positively related to each other, though they were negatively related to the subjective 19 

rating variables. Conversely, Vertical Range was negatively related to the other symmetry 20 

variables, but positively related to the rating variables.  21 

 22 



 22 

Table 3: Canonical solution for features predicting ratings for root 1 and 2 1 
 2 

 3 

These relevant variables also tended to have medium-to-large standardized canonical 4 

function coefficients, with the exception of Horizontal Range, which had a relatively small 5 

function coefficient but a large structure coefficient. This result is due to multicollinearity that 6 

this variable had with other symmetry variables. Multicollinearity within the context of a 7 

canonical correlation is not a problem, since the canonical correlation is an exploratory analysis 8 

 Root 1  Root 2   

Variable Coef rs rs
2(%)  Coef rs rs

2(%)  h2(%) 

Ribbon: Median -0.792 -0.614 37.66  -0.541 -0.523 27.31  64.97 

Ribbon: Proportion Symmetric 16.194 -0.330 10.91  3.505 -0.393 15.47  26.38 

Ribbon: Proportion Asymmetric 15.063 0.330 10.89  3.548 0.392 15.38  26.27 

Separation: Median -0.431 -0.531 28.15  0.097 -0.397 15.76  43.91 

Separation: Proportion Far -0.342 -0.507 25.66  0.177 -0.501 25.12  50.78 

Separation: Proportion Near 0.282 -0.241 5.82  -0.200 -0.165 2.72  8.54 

Vertical Symmetry Peak -0.420 -0.607 36.87  0.587 0.079 0.63  37.50 

Vertical Symmetry Range 0.369 0.564 31.86  -0.240 -0.037 0.14  32.00 

# Peaks Vertical Symmetry -0.099 0.385 14.84  0.762 0.537 28.86  43.70 

Horizontal Symmetry Peak -0.244 -0.195 3.79  -0.332 -0.643 41.28  45.07 

Horizontal Symmetry Range -0.071 -0.548 30.00  0.163 -0.214 4.56  32.84 

# Peaks Horizontal Symmetry -0.548 -0.083 0.69  0.353 0.705 49.64  50.33 

Pleasure 0.287 0.659 43.41  -0.589 -0.748 56.00  99.41 

Complexity 2.060 0.912 83.24  1.928 -0.396 15.70  98.94 

Interest -1.497 0.714 50.95  -1.921 -0.689 47.44  98.39 

Note: Structure coefficients (rs) greater than |0.45| are underlined. Communality coefficients (h2) greater than 35% are 

underlined. Coef = standardized canonical function coefficient; rs = structure coefficient; rs
2 = squared structure coefficient; h2 = 

communality coefficient.   
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to find relationships within the data, and the variables are not necessarily assumed to be 1 

independent. In any case, the multicollinearity still indicates that the Horizontal Range variable’s 2 

specific relationship to the dependent variables cannot be estimated independently from other 3 

symmetry variables and should be interpreted with caution. 4 

Conversely, the proportion symmetric and asymmetric variables (Ribbon: Proportion 5 

Symmetric, and Ribbon: Proportion Asymmetric) had very high function coefficients but small 6 

structure coefficients. This indicates that those variables are acting as suppressor variables, 7 

which are variables that do not necessarily relate to the dependent variable set on their own, but 8 

nonetheless may contribute to the model because their inclusion increases the predictive validity 9 

of other variables (MacKinnon et al., 2000; Nimon et al., 2015). In other words, the proportion 10 

symmetric and asymmetric variables may explain some of the variance in other variables, thus 11 

including them makes the effects of those other variables stronger. However, excluding them 12 

does not have a large effect on the model nor the structure coefficients of the symmetry and 13 

rating variables, thus we can safely interpret the proportion symmetric and proportion 14 

asymmetric variables as not contributing much to the canonical correlation model.  15 

Overall, the pattern of results found in root 1 indicates that presence of symmetry 16 

decreases complexity, pleasure, and interest. This is the case for both the local symmetry 17 

measures (i.e., ribbon symmetry and separation), as well as vertical global symmetry. Large 18 

global symmetry variations in the horizontal and vertical directions are also related to the 19 

subjective ratings, with horizontal variations being related negatively to complexity, pleasure, 20 

and interest, while vertical variations are positively related to complexity, pleasure, and interest.  21 

Moving on to root 2, the structure coefficients in Table 3 suggest that the rating variables 22 

of relevance for this root were Pleasure and Interest, but not Complexity. Recall that the 23 
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relationships found in this root are orthogonal to those found in the first root, thus this root is 1 

explaining the variance in subjective pleasure and interest scores that are independent from their 2 

relationship to subjective complexity. Again, the relevant rating variables (i.e., Pleasure and 3 

Interest) had the same sign and thus were positively related to each other. 4 

As for the symmetry variables, the variables related to the number of luminance changes 5 

within an image (# Peaks Vertical Symmetry, # Peaks Horizontal Symmetry) were dominant 6 

contributors to this root and were inversely related to Pleasure and Interest. The relevant local 7 

symmetry variables (i.e., Ribbon: Median, and Separation: Proportion Far), however, were this 8 

time positively related to Pleasure and Interest. Horizontal global symmetry (Horizontal Peak) 9 

also contributed significantly to this root and was positively related to the rating variables. 10 

Therefore, unlike root 1, in root 2, we found the overall pattern that symmetry increases pleasure 11 

and interest.  12 

In a control analysis (see Appendix B) including measures of simplicity (i.e., ZIP 13 

compressibility of the image) and self-similarity, the symmetry measures no longer contribute to 14 

the model in the first root. Instead, simplicity is the only contributing variable. However, a 15 

multiple linear regression analysis revealed that the symmetry measures that are significant in 16 

our original canonical correlation analysis are highly predictive of the simplicity measure in this 17 

regression analysis, F(12,707) = 98.91, p < 0.0001, adjusted R2 = 0.62, suggesting that symmetry 18 

is still indeed predictive of subjective complexity, pleasure, and interest (i.e., negatively 19 

correlated), but the contributions of the symmetry measures are captured within this broader 20 

simplicity measure (see Appendix B, Table B2). This makes sense, as the redundant information 21 

available in symmetric images makes the image more easily compressible.  22 
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In root 2, the pattern of results was not affected by the inclusion of the control variables. 1 

In this root, the symmetry measures still positively related to aesthetic pleasure and interest, and 2 

self-similarity also contributed positively to the model. The simplicity measure did not contribute 3 

to the model in root 2. 4 

Taken together, these results are supportive of the theoretically expected relationships 5 

between (dis)fluency/complexity and pleasure and interest suggested by the Pleasure-Interest 6 

Model of Aesthetic Liking (PIA; Graf & Landwehr, 2015). The PIA model suggests that 7 

aesthetic preference is partially due to automatic and fluent processing (termed “aesthetic 8 

pleasure”), and partially due to the reduction of disfluency that is achieved through cognitive 9 

elaborations and reflections (termed “aesthetic interest”). If there is no disfluency to be reduced, 10 

the result is boredom and thus a negative aesthetic experience. Conversely, if disfluency exists 11 

and is sufficiently reduced, the result is interest and a positive aesthetic experience.  12 

Since symmetry is known to increase fluency, and symmetry was negatively related to 13 

complexity, pleasure, and interest in the first root, we labeled root 1 as “boredom”. We labeled 14 

root 2 as “interest”, since symmetry here was positively related to pleasure and interest (see 15 

Discussion section for further elaboration).  16 

Discussion 17 

Using a canonical correlation analysis, we found two significant and interpretable 18 

canonical roots that revealed two distinct relationships between symmetry and subjective ratings 19 

of complexity, pleasure, and interest. The first root, which we termed “boredom”, involved many 20 

negative relationships between the symmetry measures and the subjective ratings. The second 21 

root, on the other hand, involved positive relationships between symmetry and pleasure and 22 

interest, thus we labeled it as “interest”. We will now delve into each root individually and 23 
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describe the specific relationships we found, interpreting our results within the framework of the 1 

pleasure-interest model of aesthetic liking (PIA) (Graf & Landwehr, 2015). 2 

Beginning with root 1, as expected, we found that vertical global symmetry relates 3 

negatively to complexity. The more globally symmetric the scene, the lower the complexity 4 

score it received. In addition to complexity, we also found that a similar relationship exists 5 

between vertical global symmetry and aesthetic pleasure and interest as well, and that all three 6 

subjective rating measures were positively related to each other. This implies that, as symmetry 7 

increases and makes a scene less complex, it also renders the scene less pleasing and interesting. 8 

Importantly, we have shown that this is not only the case for vertical global symmetry, but also 9 

for our local symmetry measures. Local symmetry measures had not previously been explored in 10 

relation to aesthetic pleasure, especially with natural scene stimuli. Using our novel method of 11 

extracting local symmetry directly from colour photographs of scenes (Rezanejad et al., 2019), 12 

we were able to show that local ribbon symmetry and separation related negatively to the 13 

subjective ratings in the first canonical root. In other words, local symmetry also decreases scene 14 

complexity and makes the image less pleasant and interesting. It is also important to note that 15 

local symmetry and vertical global symmetry were positively related to each other in root 1, 16 

meaning that images with high vertical global symmetry also tended to have higher local 17 

symmetry. Similar to how a combination of global and local symmetries results in the greatest 18 

detectability of regularities in dot patterns (Nucci & Wagemans, 2007), we suggest that the 19 

combination of vertical global symmetry and local symmetry in scenes results in a highly simple 20 

scene without much to be processed, rendering it boring and therefore unpleasant.  21 

The other two measures involved in this root were the vertical and horizontal global 22 

symmetry range scores. More specifically, vertical global symmetry range was positively related 23 
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to the subjective ratings, while the horizontal global symmetry range was negatively related to 1 

the subjective ratings. Though they were calculated directly from the global symmetry scores, 2 

the range measures are not so much measures of symmetry, but rather of horizontal or vertical 3 

regularities (i.e., bands of alternating high and low luminance values) that exist within an image. 4 

This is an interesting finding because it implies that vertical bands are considered to be relatively 5 

complex while the horizontal bands are seen as less complex. This may be due to people’s 6 

general biases to scan their environments along the horizon, or in a horizontal fashion (Foulsham 7 

et al., 2008; Tatler & Vincent, 2008), even as infants (Van Renswoude et al., 2016), likely 8 

allowing for more fluent processing when visual features (e.g., luminance) remain relatively 9 

constant horizontally compared to when there are fluctuations (as would be the case in an image 10 

with high vertical range).  11 

Interestingly, in a control analysis, we found that the symmetry measures which 12 

contribute to the first root are almost completely captured by a computational measure of 13 

simplicity (i.e., ZIP compression). This finding is particularly important because these types of 14 

objective measures of simplicity and symmetry are often treated as separate measures. However, 15 

we have shown that such a division is inappropriate when more specific aspects of symmetry, 16 

such as local symmetry and vertical or horizontal luminance regularities, are considered. Just as 17 

symmetry is thought to contribute to subjective simplicity (Bertamini et al., 2013; Day, 1968; 18 

Gartus & Leder, 2017), our findings suggest that symmetry measures may also contribute to 19 

more objective or computational measures of simplicity, such as ZIP compression. Thus, future 20 

studies that explore both symmetry and simplicity should consider this potential overlap before 21 

drawing strong conclusions regarding their relative contributions. 22 
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Overall, the pattern of results found in the first canonical root (labeled “boredom”) seems 1 

to reflect the idea that when landscapes are too simple, due to the symmetry and horizontal 2 

regularities present in the scene, people find them uninteresting and not particularly pleasing. For 3 

this reason, we suggest that symmetry leads to increased boredom, within the framework of the 4 

PIA model (Graf & Landwehr, 2015). The model suggests that one aspect of aesthetic liking 5 

comes from a controlled contemplative process meant to decrease disfluency (e.g., coming to 6 

admire a piece of abstract art after reflecting on one’s personal experience while viewing the art 7 

piece). Within our stimulus set of natural scene images, however, all scenes are relatively easy to 8 

understand, and therefore would not require much contemplation to begin with. Thus, if a scene 9 

was highly symmetric, this would leave even less room for contemplation or elaborated 10 

processing, rendering the experience dull and unpleasant. 11 

The second canonical root reveals a contrasting pattern. In the second root, the 12 

contributing local symmetry measures are positively related to pleasure and interest. 13 

Additionally, horizontal global symmetry is also positively related to pleasure and interest. This 14 

finding now implies that combinations of local symmetry and horizontal global symmetry render 15 

the scene more pleasant and interesting. This is further supported by the negative relationship 16 

between the subjective ratings and the number of vertical and horizontal global symmetry 17 

variations (# peaks vertical symmetry and # peaks horizontal symmetry). A high number of 18 

peaks represents an unstable global symmetry vector, implying a lack of a single clear global 19 

symmetry axis. Thus, we suggest that it is the presence of a well-defined horizontal global 20 

symmetry axis, as well as local ribbon symmetry and a large proportion of far contours, that 21 

make a scene interesting and pleasant.  22 
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Again, within the framework of the PIA model, we believe that symmetry in the second 1 

canonical root (labeled “interest”) relates to increased aesthetic pleasure and interest. A point of 2 

significance is that horizontal global symmetry relates positively to pleasure and interest here 3 

while vertical global symmetry relates negatively (in the first root). This is perhaps due to the 4 

fact that horizontal global symmetry is not as salient as vertical global symmetry (Wagemans et 5 

al., 1992; Wenderoth, 1994), thus requiring a slightly longer amount of time to process than 6 

vertical symmetry. This extra time may have helped to avoid processing the image too quickly or 7 

fluently. Indeed, a recent study found that vertical global symmetry, but not horizontal 8 

symmetry, was related to subjective fluency of artistic photographs (Vissers & Wagemans, in 9 

press). However, we argue that the presence of (horizontal) symmetry still allows for a reduction 10 

of disfluency, resulting in feelings of interest and pleasure. Similarly, in predictive coding terms, 11 

pleasure comes from being able to explain away prediction errors (Van de Cruys & Wagemans, 12 

2011). Thus, it is also possible that the uniqueness of scenes with horizontal symmetry initially 13 

creates a prediction error which is then resolved by further processing of the scene. 14 

Finally, our work also strongly highlights the importance of investigating the role of local 15 

symmetry within high-level stimuli. Local symmetry cues in real-world scenes are important for 16 

rapid scene categorization (Rezanejad et al., 2019; Wilder et al., 2019), and they attract category-17 

specific eye movements (Damiano et al., 2019). Here, we have shown that they also relate to 18 

subjective aesthetic judgements, in both a negative (root 1) and positive (root 2) way. These 19 

results help to clear up the apparent discrepancies that exist within the literature regarding the 20 

link between complexity and aesthetic pleasure in natural scenes (i.e., fluency vs. complexity). In 21 

our stimulus set, complexity and pleasure were highly correlated, suggesting that complexity is 22 

indeed pleasurable in natural scenes. However, it is also the case that symmetry was, in part, 23 



 30 

positively related to pleasure, which implies that fluency, at least to the extent that symmetry can 1 

be related to fluent processing, also plays a role.  2 

One previous study that also explored the link between aesthetic pleasure and visual 3 

features in landscape images found that symmetry did not significantly relate to the number of 4 

views on an image, which was used as a measure of aesthetic liking (Study 3 in Mayer & 5 

Landwehr, 2018). However, they found that two objective measures (i.e., ZIP compression and 6 

fractal self-similarity) did positively predict aesthetic liking. Thus, we ran a control analysis that 7 

included these two variables (see Appendix B). Interestingly, when we controlled for objective 8 

simplicity (i.e., ZIP compressibility) and self-similarity, we found that the symmetry measures 9 

no longer contributed to our model in the first canonical root. The symmetry measures were 10 

instead accounted for by the simplicity measure. This is not surprising, given the nature of ZIP 11 

compression. That is, because compressibility proceeds in a row-wise fashion, redundant 12 

information that occurs horizontally along the image (as is the case with vertical symmetry and 13 

the horizontal range measures) is directly related to its compressibility (i.e., the simplicity value). 14 

Thus, a possible reason that symmetry did not seem to relate to aesthetic judgements in Mayer 15 

and Landwehr’s (2018) Study 3 is that its role may have been captured by the simplicity 16 

measure.  17 

Another difference between this previous study and our current study is that we found a 18 

negative relationship between simplicity and aesthetic pleasure while they found a positive 19 

relationship. We speculate that this difference is due to the aesthetic liking measure used in their 20 

study vs. ours (i.e., number of image views vs. subjective ratings by participants, respectively). 21 

Their measure likely captures an automatic aesthetic experience because, while scrolling through 22 

a photography site (Flickr), people will only click on (i.e., view) images that automatically 23 



 31 

capture their attention. Thus, in terms of the PIA model, their measure better reflects the 1 

automatic portion of the model where aesthetic pleasure is based on fluent processing (i.e., the 2 

simpler the better), as opposed to the more contemplative portion of the model where the 3 

reduction of disfluency is more important to the aesthetic experience. Our subjective rating 4 

measure likely captures this contemplative portion more strongly, therefore simplicity in our case 5 

is actually negatively related to pleasure because it leads to boredom. 6 

It is important to note that we cannot rule out the possibility that some of our results may 7 

be driven by the content of the images rather than the symmetry, per se. For example, many of 8 

the scenes with high horizontal global symmetry depict a mountain or forest scene reflected on a 9 

still body of water. Thus, the category of the scene may drive the aesthetic pleasure judgement, 10 

rather than the horizontal symmetry alone. To rule out this possibility, rather than complex 11 

natural scenes, future studies could explore these relationships in other high-level stimuli, such 12 

as collections of real-world objects that have been organized in unique and pleasant ways (i.e., 13 

neatly organized compositions) that also show a positive relationship between complexity and 14 

aesthetic preferences (Van Geert & Wagemans, 2019). 15 

In summary, we found that symmetry is negatively related to complexity judgements and 16 

both positively and negatively related to aesthetic pleasure and interest judgements. We 17 

discussed our results within the framework of the Pleasure-Interest model of Aesthetic liking 18 

(PIA). The results found in the first canonical root suggest that scenes with combinations of high 19 

vertical global symmetry and local symmetry create a highly simplistic visual percept, resulting 20 

in boredom. Conversely, horizontal global symmetry along with local symmetry result in 21 

aesthetic interest. Within the model, these outcomes come about via the contemplative processes 22 

that occur once a stimulus has been processed and are the result of a lack of disfluency (i.e., no 23 
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disfluency to be reduced), and disfluency reduction, respectively. Our experimental design did 1 

not allow for us to assess the role of symmetry in the ‘automatic processing’ portion of the PIA 2 

model, as participants had an unlimited amount of time to view the image before making their 3 

judgements. In the future, it would be fruitful to explore whether the relationships between 4 

symmetry, complexity, pleasure, and interest, change if the image can only be processed for a 5 

very short amount of time (i.e., a brief flash).  6 

Overall, our results lend support to the idea that both complexity and simplicity influence 7 

the aesthetic pleasure of natural scenes. Our work highlights the importance of considering both 8 

local and global symmetry when exploring symmetry’s relationship with subjective judgements, 9 

as it is the combination of different aspects of local and global symmetry that reveals the nuances 10 

of the relationships that exist between symmetry perception and aesthetic experiences in natural 11 

scenes. By studying the fundamental principles of perceptual organization in relation to 12 

aesthetics, especially using an ecologically valid stimulus set, we move closer to the ultimate 13 

goal of understanding the elaborate links between human perception, cognition, and emotion.   14 
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Appendix A 1 
 2 

Univariate Analyses 3 

Here, we include three separate univariate regressions, predicting each of the subjective 4 

rating variables from the local and global symmetry measures (see Tables A1, A2, and A3). 5 

While all regressions are significant, we opted for a multivariate statistical analysis (i.e., 6 

canonical correlation) as our main approach, due to the high correlations between the three 7 

subjective rating variables (see Table A4).  8 

 9 

Table A1: Regression model predicting subjective complexity from symmetry measures. 10 
F(12,707) = 20.36, p < 0.0001, adjusted R2 of 0.24. 11 
 12 

 coefficient std. error t p 

(Intercept) -302.0 202.0 -1.49 0.14 

Ribbon: Median -50.74 12.97 -3.91 <0.0001*** 

Ribbon: Proportion Symmetric 360.4 203.2 1.77 0.08 

Ribbon: Proportion Asymmetric 333.8 205.0 1.63 0.10 

Separation: Median -5.27 2.18 -2.42 <0.05* 

Separation: Proportion Far -2.37 2.18 -1.10 0.27 

Separation: Proportion Near 2.41 10.30 2.34 <0.05* 

Vertical Symmetry Peak -0.83 0.15 -5.63 <0.0001*** 

Vertical Symmetry Range 0.38 0.008 4.67 <0.0001*** 

# Peaks Vertical Symmetry -0.004 0.002 -2.60 <0.001** 

Horizontal Symmetry Peak -0.28 0.03 -1.71 0.09 

Horizontal Symmetry Range -0.13 0.08 -1.72 0.09 

# Peaks Horizontal Symmetry -0.001 0.002 -7.07 <0.0001*** 

 13 

 14 

 15 

 16 

 17 

 18 
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Table A2: Regression model predicting subjective aesthetic pleasure from symmetry measures. 1 
F(12,707) = 16.32, p < 0.0001, adjusted R2 of 0.20. 2 
 3 

 coefficient std. error t p 

(Intercept) -191.3 218.7 -0.88 0.38 

Ribbon: Median -17.28 14.02 -1.23 0.21 

Ribbon: Proportion Symmetric 215.2 219.7 0.98 0.32 

Ribbon: Proportion Asymmetric 198.1 221.7 0.89 0.37 

Separation: Median -4.21 2.36 -1.79 0.07 

Separation: Proportion Far -1.94 2.32 -0.84 0.40 

Separation: Proportion Near 18.43 11.14 1.66 0.09 

Vertical Symmetry Peak -0.98 0.16 -6.16 <0.0001*** 

Vertical Symmetry Range 0.39 0.09 4.51 <0.0001*** 

# Peaks Vertical Symmetry -0.008 0.002 -4.33 <0.0001*** 

Horizontal Symmetry Peak -0.10 0.17 0.57 0.57 

Horizontal Symmetry Range -0.12 0.08 -1.48 0.14 

# Peaks Horizontal Symmetry -0.01 0.002 -6.36 <0.0001*** 

 4 

Table A3: Regression model predicting subjective interest from symmetry measures. F(12,707) 5 
= 16.93, p < 0.0001, adjusted R2 of 0.21. 6 
 7 

 coefficient std. error t p 

(Intercept) -240.7 217.0 -1.11 0.27 

Ribbon: Median -27.34 13.91 -1.97 <0.05* 

Ribbon: Proportion Symmetric 275.6 218.0 1.26 0.21 

Ribbon: Proportion Asymmetric 252.0 219.9 1.15 0.25 

Separation: Median -4.77 2.34 -2.04 <0.05* 

Separation: Proportion Far -2.35 2.30 -1.02 0.31 

Separation: Proportion Near 25.34 11.05 2.29 <0.05* 

Vertical Symmetry Peak -0.95 15.73 -6.01 <0.0001*** 

Vertical Symmetry Range 0.38 0.09 4.33 <0.0001*** 

# Peaks Vertical Symmetry -0.007 0.002 -3.79 <0.001** 

Horizontal Symmetry Peak -0.009 0.17 -0.05 0.96 

Horizontal Symmetry Range -0.17 0.08 -2.04 <0.05* 

# Peaks Horizontal Symmetry -0.01 0.002 -6.63 <0.0001*** 

 8 

 9 

 10 

 11 

 12 
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Table A4: Bivariate correlation matrix. 1 

 2 

 3 

  4 

 

 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 

S
u
b
je

ct
iv

e 

R
at

in
g
s 

1. Pleasure –                  

2. Complexity .89 –                

3. Interest .98 .94 –               

L
o
ca

l 
S

y
m

m
et

ry
 

4. Ribbon: Median -.05 -.20 -.07 –              

5. Ribbon: Proportion Symmetric .002 -.08 .001 .80 –             

6. Ribbon: Proportion Asymmetric -.001 .08 -.001 -.79 -.99 –            

7. Separation: Median -.07 -.18 -.07 .69 .72 -.71 –           

8. Separation: Proportion Far -.03 -.15 -.04 .85 .89 -.89 .90 –          

9. Separation: Proportion Near -.03 -.09 -.04 -.05 -.45 .45 .15 -.06 –         

G
lo

b
al

 S
y
m

m
et

ry
 

10. Vertical Symmetry Peak -.19 -.28 -.20 .34 .34 -.34 .40 .44 .10 –        

11. Vertical Symmetry Range .21 .27 .22 -.29 -.29 .29 -.32 -.36 -.10 -.58 –       

12. # Peaks Vertical Symmetry -.03 .09 -.01 -.44 -.49 .48 -.51 -.59 -.08 -.75 .57 –      

13. Horizontal Symmetry Peak .14 .008 .11 .26 .21 -.21 .21 .27 .08 .23 -.01 -.31 –     

14. Horizontal Symmetry Range -.12 -.23 -.15 .47 .32 -.31 .37 .43 .14 .45 -.48 -.47 .30 –    

15. # Peaks Horizontal Symmetry -.25 -.16 -.23 -.30 -.34 .34 -.38 -.45 -.11 -.38 .27 .60 -.47 -.34 –   

C
o
n
tr

o
ls

 

16. Simplicity (ZIP compression) -.33 -.48 -.36 .57 .41 -.41 .55 .59 .27 .60 -.53 -.58 .28 .54 -.37 –  

17. Self-similarity -.25 -.15 -.23 -.51 -.51 .51 -.57 -.61 -.07 -.19 .14 .48 -.27 -.31 .47 -.38 – 

Note: all significant correlations (p < 0.05) are bolded. 
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Appendix B 1 

Control Analysis 2 

 Previous work investigating the influence of visual features on aesthetic pleasure of 3 

landscape scenes found that computational simplicity (i.e., ZIP compression) and fractal self-4 

similarity, but not symmetry, significantly predicted aesthetic pleasure (Mayer & Landwehr, 5 

2018). Thus, we performed a control analysis, including simplicity and self-similarity in our 6 

model to see how they relate to our symmetry measures and the subjective ratings.  7 

 We first extracted simplicity and self-similarity using the image-fluency package in R. 8 

We then ran another canonical correlation analysis, this time including simplicity and self-9 

similarity in the predictor variable set along with our symmetry measures. The control model 10 

was significant, Wilks’ λ = 0.428, F(42, 2086.20) = 16.44, p < 0.0001, explaining approximately 11 

57.2% of the variance shared between variable sets. The critical question is, what happened to 12 

the relationship between the symmetry variables and the subjective ratings when the control 13 

variables were added.  14 

Table B1 shows the variables that significantly contribute to the model in root 1 and root 15 

2. We can see that, in root 1, the simplicity measure is the only independent variable that 16 

contributes to the model. The effect of the symmetry variables has disappeared. This result 17 

suggests that the variance explained by the symmetry variables in the original model is contained 18 

in the variance explained by the simplicity variable. To test this, we ran a multiple linear 19 

regression analysis, predicting the simplicity measure on each image from the symmetry values. 20 

The multiple linear regression analysis yielded a significant regression equation, F(12,707) = 21 

98.91, p < 0.0001, with an adjusted R2 of 0.62. The significant predictors of simplicity were the 22 

symmetry values that had significantly contributed to the original canonical correlation model. 23 
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Taken together, these results show that the simplicity measure can be explained in large 1 

part by the symmetry measures, indicating that symmetry is indeed significantly related to 2 

subjective ratings of complexity, aesthetic pleasure, and interest.  3 

Table B1: Canonical solution of control analysis for features predicting ratings for root 1 and 2. 4 
 5 

 6 

 7 

 Root 1  Root 2   

Variable Coef rs rs
2(%)  Coef rs rs

2(%)  h2(%) 

Ribbon: Median -0.244 -0.370 13.71  -0.814 -0.691 47.73  61.44 

Ribbon: Proportion Symmetric 9.308 -0.182 3.30  9.930 -0.473 22.40  25.70 

Ribbon: Proportion Asymmetric 8.924 0.182 3.30  9.455 0.472 22.29  25.59 

Separation: Median -0.465 -0.331 10.93  -0.014 -0.545 29.75  40.68 

Separation: Proportion Far 0.176 -0.295 8.68  -0.035 -0.633 40.12  48.80 

Separation: Proportion Near 0.268 -0.152 2.31  -0.068 -0.235 5.51  7.82 

Vertical Symmetry Peak -0.019 -0.442 19.50  0.287 -0.280 7.85  27.35 

Vertical Symmetry Range 0.065 0.431 18.56  -0.033 0.157 2.50  21.06 

# Peaks Vertical Symmetry -0.026 0.195 3.82  0.588 0.628 39.42  43.24 

Horizontal Symmetry Peak -0.054 -0.032 0.10  -0.405 -0.662 43.88  43.98 

Horizontal Symmetry Range -0.028 -0.371 13.77  0.124 -0.387 14.99  28.76 

# Peaks Horizontal Symmetry -0.385 -0.185 3.41  0.105 0.622 38.78  42.19 

Simplicity (ZIP compression) -0.956 -0.767 58.90  0.169 -0.446 19.87  78.77 

Self-similarity -0.425 -0.163 2.67  0.197 0.678 46.00  48.67 

Pleasure 0.539 0.844 71.25  -0.561 -0.534 28.49  99.47 

Complexity 1.457 0.984 96.96  2.411 -0.122 1.48  98.44 

Interest -1.016 0.876 76.72  -2.170 -0.458 20.97  97.69 

Note: Structure coefficients (rs) greater than |0.45| are underlined. Communality coefficients (h2) greater than 35% are 

underlined. Coef = standardized canonical function coefficient; rs = structure coefficient; rs
2 = squared structure coefficient; h2 = 

communality coefficient.   
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Table B2: Regression model predicting simplicity from symmetry measures. 1 

 coefficient std. error t p 

(Intercept) -17.93 42.0 -0.43 0.67 

Ribbon: Median 14.05 2.7 5.22 <0.0001*** 

Ribbon: Proportion Symmetric 2.89 42.1 0.07 0.95 

Ribbon: Proportion Asymmetric 8.14 42.5 0.19 0.85 

Separation: Median -0.33 0.45 -0.73 0.47 

Separation: Proportion Far 1.65 0.45 3.71 <0.0001*** 

Separation: Proportion Near 3.26 2.14 1.53 0.13 

Vertical Symmetry Peak 0.22 0.03 7.09 <0.0001*** 

Vertical Symmetry Range -0.10 0.02 -6.04 <0.0001*** 

# Peaks Vertical Symmetry -0.00003 0.0003 -0.10 0.92 

Horizontal Symmetry Peak 0.08 0.03 2.53 <0.05* 

Horizontal Symmetry Range 0.05 0.02 2.97 <0.01** 

# Peaks Horizontal Symmetry 0.0003 0.0004 0.74 0.46 

 2 


