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The sedimentation at low Reynolds numbers of large, non-interacting spherical inclusions in networks of model
monodisperse, slender colloidal rods is investigated. The influence of rod concentration, rod length, and inclusion
stress on the inclusion’s creeping motion is investigated. The decrease of sedimentation speeds as a function of rod
concentration is compared to the Stokes law, using the zero-shear viscosity from the Doi-Edwards theory for semi-
dilute colloidal rods solutions. The experimental speeds display the same concentration dependence as the zero-shear
viscosity, and are thus strongly dependent on the rod length. The speed is, however, a fraction of 2 and 4 lower than
expected for rods of 0.88 and 2.1 µm, respectively. The results for both rod lengths superimpose when plotted against
the overlap concentration, hinting at an extra dependence on the entanglement.

I. INTRODUCTION

Suspensions of non-colloidal inclusions in a flowable con-
tinuous phase are omnipresent in industrial applications, rang-
ing from consumer products1,2 to building materials,3–5 and
geological materials such as lava and mud.6,7 The viscosity
profile of the continuous phase enables them to bear the mass
of fillers for long shelf life.8 In the case of structural materi-
als such as cement, fillers are added to tune the visco-elastic
properties.5 As for food products, fat droplets of targeted size
stabilized in high viscosity water based matrices, enable the
obtention and tuning of specific mouthfeel.1

Over long shelf life, unwanted heterogeneities may ap-
pear in the products, as gravity induces sedimentation or
creaming of solid fillers, bubbles or droplets,9 resulting in
altered end properties.10 Prediction of particle sedimenta-
tion in weak gels is needed to predict product stability over
long shelf life. Assessing the stability of systems with solid
inclusions in high viscosity fluids is an issue of both in-
dustrial applications1,3–5,8,11 and fundamental relevance.8,12,13

The ability of a matrix to stabilize inclusions over a long pe-
riod of time, indeed relates to the existence of a real or appar-
ent yield stress.13,14

Most of the theoretical and experimental work performed
on hard spherical inclusions in yield stress fluids was dedi-
cated to the following purpose: establishing a macroscopic
stability criterion to predict stability and flow. In finite ele-
ments numerical simulations, Beris and coworkers14 studied
the creeping motion of inclusions through unbounded Bing-
ham fluids. They showed that inclusion stability can be pre-
dicted, using macroscopic quantities such as the inclusion di-
ameter, density mismatch and the matrix yield stress. A di-
mensionless yield number is obtained, that is a descriptor of

a)Electronic mail: Blandine.Barabe@kuleuven.be
b)Electronic mail: p.lettinga@fz-juelich.de

the system’s stability versus sedimentation taking the ratio
of the buoyancy force exerted to the inclusion to the yield
force. Below a critical value, the inclusion is heavy enough
to yield a region of fluid around it, such that creeping through
the fluid is thus possible.14 The validity of this criterion in
the presence of wall effects was assessed for cylindrically
bounded Bingham15 and Herschel-Bulkley fluids,16 both us-
ing the Papanastasiou17 constitutive equation to solve discon-
tinuity between the solid and liquid region. Experimental as-
sessment of the stability of spherical inclusions in Carbopol
suspensions, modeled as Herschel-Bulkley fluids, confirmed
the value of the dimensionless yield number.10,18,19

As the process of yielding is an interplay between micro-
scopic changes in the material surrounding the inclusion20

and the sedimentation force exerted by the inclusion,13,14 it
is of interest to have a full understanding of this process. In
this paper we report an experimental study of sedimentation
speeds of large non-interacting spherical inclusions in a sus-
pension composed of colloidal rods, considered as ideal. We
show that using ideal colloidal rods as host medium facilitates
comparison between theory and experiments, as the rheolog-
ical behavior of rods suspensions is by now well described
by theory.21 In principle these systems do not show a yield-
ing behavior, while the zero-shear viscosity hugely depends
on length and concentration of the rods.

However, a yielding-like behavior of inclusions in highly
concentrated dispersions of anisotropic particles cannot be ex-
cluded. Sedimentation studies of inclusions in yield stress
fluids composed of anisotropic particles were performed on,
amongst others, cellulose suspensions,22,23 castor oil colloidal
fibers in a surfactant suspension,24 laponite suspensions,25,26

viscoelastic polysaccharide solutions27,28 and wormlike mi-
cellar fluids.12,29,30 The latter do not possess true yield
stresses, but only an apparent yield stress when excited above
the characteristic relaxation time of the matrix. Characteris-
tic features of inclusions falling in shear-thinning fluids were
evidenced. For several of those shear-thinning fluids, negative
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wake was reported,12,25 which is local flow in the direction
opposite to sedimentation in the inclusions’ wake. It is as-
sociated to a fluid’s increase in viscoelasticity26 and has an
increased geometrical span for high extensional Deborah and
Reynolds numbers.12,27 For high extensional Deborah num-
bers, spheres and bubbles sedimenting in wormlike micellar
fluids are found never to reach a terminal speed and oscillate
in the direction along the gravity axis, amongst other reported
effects.12 Additionally, inclusions chaining was reported for
shear-thinning viscoelastic fluids such as xanthan, below a
critical distance between closest neighbours.27,31

The scope of our study is to stay in the creeping motion
domain for non-interacting inclusions at Reynolds numbers
lower than 10−6. For the model systems considered only a
classical monotonic sedimentation behavior is expected, ex-
cluding negative wake, oscillatory settling and particles chain-
ing effects. We consider a model composed of the simplest
anisotropic particles: suspensions of slender colloidal rods.
Fd and pf1 virus bacteriophages32 are the best suited33,34 for
this study, because they are very slender and monodisperse
by nature, differing about a factor two in length. They pro-
vide an exact interbatch reproducibility, while their rheolog-
ical behavior has been well characterized.21 These colloidal
rods are density matched with their dispersing solvent and can
be produced in high quantities. The rods’ electrostatic inter-
actions are tunable32 and they display an isotropic to nematic
transition at well characterized concentrations. Fd virus has
been used for studying the diffusion of spherical inclusions
through isotropic rod networks35,36 and the phase behavior of
rod-sphere mixtures;32,35–37 the size of the inclusions was of
the order of the length of fd or smaller, so that the fd ma-
trix could not be considered as a continuum with regards to
the inclusion. The ideal character of the system allows us to
study the effect of concentration. Concentration effects have
been reported earlier24,28, however, the used systems are not
straightforward to model.

In this paper, the dependence of the sedimentation speed on
inclusion stress is investigated in the semi-dilute regime for
two different rod lengths at least five times smaller than the
inclusions. We address the question whether this system pos-
sesses an apparent yield stress behavior, which would arrest
sedimentation at low inclusion stress and whether the sedi-
mentation speed can be understood on the base of the known
rheological behavior of the host system.
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II. THEORY

In this theory section, we first introduce the characteristic
numbers and equations associated to the sedimentation of a
rigid, spherical inclusion in an unbounded, unknown matrix.
Then, the equation for the sedimentation of an inclusion in
creeping flow conditions will be specified for a matrix that is
a colloidal suspension of rods.

The buoyancy force of the inclusion is non-zero when there
is a density mismatch with the suspending fluid. The inclusion
falls down or rises in the matrix with an average sedimenta-
tion speed V S and induces an average shear rate γ̇ . The latter
is usually expressed12,25 as the ratio of the average sedimen-
tation speed by the diameter of the inclusion:

γ̇ =
V S

2 R
, (1)

where V S is the terminal speed that is reached after establish-
ment of a steady-state of sedimentation dynamics, averaged
over all inclusions, of diameter R.

The stress τ I exerted by the inclusion on the surrounding
matrix is then expressed as:

τ I =
F I

S
=

2
3

R g ∆ρ, (2)

where FI is the inclusion buoyancy force exerted on the sur-
face S. ∆ρ is the density mismatch and g the gravitational con-
stant.

The terminal speed of a spherical inclusion in an unbounded
viscous fluid is expressed using the Stokes law:

V t =
2
9

∆ρ

ηm(γ̇)
g R2. (3)

ηm(γ̇) is the shear rate dependent viscosity of the matrix. Us-
ing (2), the terminal speed can be expressed as a function of
the inclusion stress:

V t =
1
3

τ I
R

ηm(γ̇)
. (4)

In Newtonian fluids, ηm(γ̇) is a constant. However, in non-
Newtonian fluids ηm(γ̇) strongly depends on the shear rate. In
the case of semi-dilute colloidal rods for example, the viscos-
ity strongly decreases with increasing shear rate. Moreover,
for suspensions of colloidal rods, viscosity increases with rod
concentration. In the particular case of our system, we as-
sess the shear-rate and concentration dependance of viscosity.
For the stresses used in this work, the resulting sedimentation
rates will be so low that we only need to take the zero-shear
viscosity into consideration, as we will show later in the pa-
per. The zero-shear viscosity strongly depends on concentra-
tion as well as length, as has been recently shown for fd and
pf1.21 Based on the Doi-Edwards theory and the zero-shear
viscosity is given by21 as

ηm = ηS

[
1+ν

πL3

90 ln( L
2d )

+ν
3 πL9

30 K ln( L
2d )

]
. (5)

L and d are the length and diameter of a colloidal rod. ν is the
colloidal rods’ number density, ηS the solvent viscosity. K is a
proportionality constant that is best determined by rheology.21

For stiff rods we use the computed and experimentally vali-
dated Teraoka value, K = 1300. The experimental value of
K = 2300 accounts for the relatively higher flexibility of pf1.
In the zero-shear viscosity equation, the first term corresponds
to the contribution of the solvent viscosity. The second term
is the contribution of rotational diffusion of non-interacting
rods to the viscosity. The third term takes into account the
constrained rotational diffusion of a colloidal rod in the semi-
dilute case. As one can see, there is a strong dependence of the
zero-shear viscosity with the number density and thus, with
rod concentration, and a even more pronounced dependence
on the rod length.

Using the zero-shear viscosity from the Doi-Edwards the-
ory in the Stokes terminal speed expression, a predictive ex-
pression for the inclusion’s terminal speed can be derived.
This will be further referred to as the Stokes Doi Edwards
(SDE) prediction:

V t(ν) =
1
3

τ I
R

ηS

[
1+ν

πL3

90 ln( L
2d )

+ν3 πL9

30 K ln( L
2d )

] . (6)

III. MATERIALS

A. Rods suspension.

Fd and pf1 are bacteriophages composed of a DNA sin-
gle strand coated with a protein layer. They are nega-
tively charged in the dispersing solvent at pH 8.15 and
ionic strength 10 mM. Fd virus has a molecular weight of
MW = 1.64× 107 g/mol, a contour length of L = 880 nm,
a persistence length of LP = 2200 nm and a diameter of
Dbare = 6.6 nm. Fd was grown at the Forschungzentrum
Jülich following a protocol as are described elsewhere.35 Pf1
has a molecular weight of MW = 3.75×107 g/mol, a contour
length of L = 2 µm, LP = 2.2 µm and diameter Dbare = 6.6
nm. Pf1 phage was bought from Asla Biotech, Latvia. Viruses
were dispersed in a 20 mM tris-HCl buffer at pH 8.15, which
corresponds to an ionic strength of 10 mM. In the paper, we
use mass concentration, which is linked to number densities
by c = νMw/Na, and also scaling with the overlap concen-
tration c* = 3Mw/4πNa(

L
2 )

3, which is 0.076 mg/mL for
fd and 0.013 mg/mL for pf1. We focus on semi-dilute sus-
pensions of rods, between 10× c* and the isotropic-nematic
transition: from 1 to 9 mg/mL for fd virus and from 0.1 to
3 mg/mL for pf1. Virus concentrations were determined by
UV-visible spectrometry using a Varian Cary R© 50 UV-Vis
Spectrophotometer, and NanoDrop 2000/2000c Spectropho-
tometer, Thermo Scientific.
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Sedimentation of large particles in a suspension of colloidal rods 4

FIG. 1. Birefringence image of sedimenting 10 µm polystyrene
spherical inclusions in a pf1 virus solution at c(pf1) = 2.8 mg/mL,
inclusion stress of 1.6 mPa. Although the contrast is enhanced, and
light intensity maximized in crossed polarized configuration, no bire-
fringence around the falling inclusions is observed.

B. Inclusions.

Polystyrene spherical inclusions were purchased from
Polysciences Inc., Polybead R© Microspheres. They have a
mean diameter of 10.0 µm, with a variance coefficient of
10 %. We determined the density of the beads by tracking
their sedimentation speeds Vs in buffers of varying densities.
The density is estimated at 1.0494 g/mL, performing an ex-
trapolation to Vs→ 0. In order to tune the stress applied by the
inclusion on the surrounding matrix, the inclusion’s buoyancy
was tuned. Buffers of densities ranging from 1.000 g/mL to
1.049 g/mL were prepared by mixing 20 mM Tris-HCl buffer
with deuterated water, Acros Organic, giving an ionic strength
I = 10 mM. This corresponds to buoyancy forces ranging be-
tween F = 0.25 ×10−12 N for the least matched inclusion and
2.05 ×10−15 N for the closest matching in the case of the I
= 10nmM water buffer. This corresponds to stresses ranging
from 0.0013 to 1.6 mPa, using τ = F/S. The final sample
was prepared by vortexing the stock fd virus suspensions, the
spherical inclusions suspensions and buffer for approximately
one minute. This ensures a random distribution of the inclu-
sions in the sample at t = 0, when the rectangular capillaries
of dimensions 2.0 mm × 0.2 mm were loaded. The volume
fraction of beads in the final samples is φ I = 0.07 % so that
we can neglect interactions between the beads.

The mixtures of virus and inclusion are considered to be
mixtures of rigid bodies, as used earlier in the study of the
phase diagram of rod-sphere mixtures37. Flexibility of the
rods will, however, affect the results to some extent, as will
be discussed below.

C. Imaging.

Sedimentation of inclusions in bacteriophage suspensions
was imaged with two set ups: a home-build horizontal micro-
scope based on Olympus components (BX-KMA-ESD imag-
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FIG. 2. The sedimentation height hS of the inclusions as a func-
tion of time. Blue lines: trajectories in the sedimentation direction
extracted from the timelapse images of polystyrene inclusions in fd
virus suspensions, post filtering using a speed histogram; scatter: av-
erage trace; red line: linear regression of the average trace. The
sample characteristics are: c = 7 mg/mL, I = 10 mM, τ I = 1.6 mPa.

ing revolver), equipped with a Hamamatsu ImagEM X2 EM-
CCD camera and a Keyence digital microscope, VHX-6000,
equipped with the VHX-S650 free angle observation system,
and operating with Keyence software. Both microscopes used
a 10 x objective and recorded with a frame rate of 1 image
per minute. Fig. 1 displays an image of the inclusions taken
between crossed polarizers in order to probe possible birefrin-
gence during sedimentation.

The inclusions positions were tracked using the particle-
tracking package Trackpy, which is the Python adaptation of
the Weeks and Crocker image analysis IDL code.38 The down-
wards trajectories hs of the inclusions are plotted in fig. 2 as
a function of the experimental time, t. The trajectories evolve
linearly with time as is the case for classical convective sedi-
mentation. Spurious features and trajectories are filtered out.
Traces are selected using speed histograms. Outlying lower
speeds are filtered out as they correspond to inclusions stuck
to the wall or interacting inclusions.39 The filtered traces are
averaged and a linear regression is carried out to extract the
average sedimentation speed. The standard deviation of the
slope is a measure of the experimental error.

Translational and rotational diffusion coefficients of virus
particles in virus suspensions were obtained from mean square
displacements and mean square angular displacements. These
are obtained from fluorescence microscopy on tracer amounts
of fluorescently labeled tracer viruses (Alexa Fluor from
ThermoFischer).40 A Zeiss Axiovert equipped with a 100x
NA oil immersion objective, a Prizmatix LED lamp and an
Andor sCMOS camera was used for the imaging at frame rates
between 10 and 100 fps, depending on the concentration. In
order to properly extract the angular diffusion information, a
length filter was applied to the traces, so that only particles
which diffuse parallel in the plane are tracked. The rotational
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Sedimentation of large particles in a suspension of colloidal rods 5

diffusion rates, approach the Doi prediction, where Dr is pro-
portional to the scaled number density νL3, see fig. 3. The
pf1 data deviate more as the rod is effectively more flexible.

1 10 100 1000

0.1

1

10

 Dr pf1  Dr fd

 Dt pf1  Dt fd

D
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2
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-1
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nL3
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1 D
t  (µ

m
2.s

-1)

-2

FIG. 3. Rotational and translational diffusion constants for fd and pf1
virus as a function of virus number density time virus length power 3.
The diffusion constants stem from fluorescent imaging experiments.

IV. RESULTS

We assessed how inclusion stress, rod concentration and
length influence the sedimentation speed. Fig. 4a displays
an overlay of absolute sedimentation speeds as a function of
inclusion stress for the different considered fd rod concentra-
tions. We performed a linear fit of the increasing sedimenta-
tion speed with increasing inclusion stress and compared the
resulting slopes 〈V S/τ〉 with the SDE prediction, eq. 6. The
results are plotted in fig. 4). This prediction gives the correct
functional dependence of 〈V S/τ〉 on the rod concentration.
Nevertheless there is a remarkable and unexpected shift of a
factor 2.5 between the experimental data and the SDE predic-
tion over the studied concentration range. Note that for the
pure solvent the slope corresponds with the Stokes-Einstein
prediction.

Fig. 5a displays the reduced sedimentation speed versus the
concentration for fd as well as pf1 at a fixed inclusion stress
of 1.6 mPa. As expected, a deviation from the SDE predic-
tion for stiff rods is also observed in this representation. It
is similar for both rods, but more pronounced for the longer
pf1 system than for the shorter fd. Furthermore, the deviation
for pf1 is even more pronounced when using the SDE pre-
diction accounting for pf1 flexibility. Again, we can fit the
data by correcting the SDE prediction for fd with a factor 2
and the SDE prediction for pf1 with a factor 4, when the rod
is considered stiff. The SDE prediction for pf1 accounting
for flexibility can be scaled with a factor 7. This scaling is
obviously only valid for the high concentrations. The more
pronounced slowing down for pf1 is in accordance with eq. 6,
which states that the longer rod length will result in an overall

3 4 5 6 7 8 9
1

10

100

<
V

S
/t

>
 (
m

m
/P

a)
c (mg/mL)

 Experimental datapoints

 SDE prediction

 Weighted SDE prediction

b
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m

m
/s
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S
 (
m
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)

FIG. 4. For fd virus, a) Raw sedimentation speed as a function of
inclusion stress, with linear regression. The 0 concentration sedi-
mentation speeds are in the inset. b) Slopes obtained from (a) as a
function of concentration. The solid line is the SDE prediction. The
dashed lined is the SDE prediction divided by a factor 2.5.

higher viscosity for an undisturbed isotropic network of rods
and therefore in slower sedimentation speeds for pf1. In order
to take into account the very different overlap concentrations
of both systems, we scale the concentration with c∗, see fig.
5b. Surprisingly, the experimental values for pf1 and fd col-
lapse on one master plot.

V. DISCUSSION

The first conclusion we can draw from our experiments is
that the existence of an apparent yield stress for dispersions
of semi-dilute ideal slender rods cannot be claimed. Indeed,
the data shown in fig. 4a in principle all extrapolate to zero.
The absence of convective motion for the lowest stress is at-
tributed to the very low density mismatch between the inclu-
sions and the medium. We do observe a substantial slowing
down of the sedimentation, which displays the same concen-
tration dependence as predicted by the SDE prediction based
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 pf1, experiments
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S
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FIG. 5. a) Reduced sedimentation speed for fd and pf1 at an inclu-
sion stress of 1.6 mPa with the SDE prediction in the case of pf1 for
two values of K. b) Reduced sedimentation speed as a function of
reduced rod concentration c/c *, for both systems fd wild type and
pf1.

on the rotational relaxation of the rods. However, the SDE
underestimates the slowing down by a factor that seems to de-
pend on the rod length.

To interpret the results, we start by validating the assump-
tion that the relevant viscosity is the zero-shear viscosity, see
eq. 6. To this end we need to compare the sedimentation-
induced shear rate with the relevant relaxation times per sys-
tem, which is the rotational diffusion in the case of rods.
The characteristic sedimentation time is defined as the time
needed for an inclusion to fall over a distance of one diame-
ter, 2 R/V S = 1/γ̇ . For the suspension of colloidal rods, we
define a rotational network relaxation time, 1/ Dr where Dr is
an experimentally determined rotational diffusion coefficient
associated to rods in the semi-dilute regime.41

The rotational Peclet number for a spherical inclusion is
expressed as follows:41

Per = λ γ =
V S

2 R Dr
. (7)

10 100
0.01

0.1

1

10

100

 fd

 pf1

P
e t

c/c*

-2

b

10 100

0.001

0.01

0.1 a

 fd

 pf1

P
e r

c/c*

-1.5

FIG. 6. Rotational (a) and translational (b) Peclet number for fd and
pf1 as a function of rod concentration rescaled by c*; the Peclet num-
bers are calculated using sedimentation rates from experiments. The
characteristic diffusion times at the corresponding rod concentrations
are extrapolated from 3.

Fig. 6a displays the experimental rotational Peclet number
for fd and pf1 as a function of rod concentration rescaled by
c*. For both rods, the rotational Peclet number is always much
smaller than 1, so the sedimentation is slower than network re-
laxation and no shear thinning takes place for the considered
systems, as experimentally confirmed by the absence of bire-
fringence during sedimentation, see fig. 1.26 This validates
the use of the zero-shear viscosity.

The fact that the experimental speeds are smaller than com-
puted from the macroscopic SDE relation rather implies that
the inclusions sense a higher viscosity than the zero-shear vis-
cosity obtained from the bulk rheology. Hence, we need to un-
derstand whether a local flow-induced shear thickening could
develop in front of the inclusion, as opposed to the shear thin-
ning discussed above. In bulk rheology a homogeneous shear
flow is exerted on all the probed fluid. In contrast, a falling
inclusion exerts an inhomogeneous, localized stress on the
medium, so that local microscopic effects around the inclu-
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sions need to be considered. Indeed, complex velocity pat-
terns around inclusions were evidenced by particle tracking
velocimetry in the vicinity of large inclusions falling in yield
stress fluids,18,26 and for shear-thinning fluids composed of
anisotropic-like particles12,27 in the creeping flow regime. For
small inclusions diffusing in fd virus networks, Kang35,36 as-
sumed a local density variation below (higher rods density in
the sedimentation front) and above (lower density in the sed-
imentation wake) inclusions. This may explain discrepancies
between the viscosity in the vicinity of the inclusion, and the
one measured with macroscopic rheometry.

We showed above that in our experiments, the sedimen-
tation of the inclusion does not affect the local orientational
order. However, it could indeed be that there is a densifica-
tion in the front of the sedimenting inclusion, which would
lead to a higher local viscosity. Such a mechanism has been
mentioned for inclusions sedimenting or creaming in cellu-
lose suspensions.22,23 As the relevant relaxation mechanism
for concentration gradients is translational diffusion, we intro-
duce the experimentally defined translational relaxation time.
It is defined as the time needed for a rod to translationally
diffuse over the diameter of the inclusion, equilibrating local
concentration gradients: (2R)2/Dt , where Dt is the parallel
diffusion coefficient associated to rods. The corresponding
translational Peclet number is now defined as

Pet = λ γ = 2R
V S

Dt
(8)

Fig. 6b displays the translational Peclet number for fd and
pf1 as a function of the rescaled rod concentration. Over the
full concentration range Pet is about two orders of magni-
tude higher than the rotational Per. This does indicate that
the translational reorganization is not instantaneous as is the
case for the rotational reorganization. We hypothesize that a
crowding effect in front of the inclusion is at the origin of the
slower sedimentation speed observed, in comparison with the
SDE prediction. However, the continuous decrease in Pet con-
tradicts the observed constant deviation from SDE, especially
at high concentrations. Moreover, at fixed concentrations Pet
is lower for pf1 than for fd, which cannot explain the larger
discrepancy between experimental and theoretical speeds for
pf1.

For a deeper understanding, we need to consider the fact
that the data for fd and pf1 superimpose when plotted against
the concentration scaled with the overlap concentration. This
suggests that the sedimentation speed depends on the number
of entanglements per rod, which is not the same as the tube
diameter that is the base of Doi’s theory as reflected in eq.
6. Although the relaxation of entanglements is still correctly
described by Doi, given the correct concentration dependence
of V S and results from rheology,21 there is apparently an ex-
tra contribution to the viscosity when dragging an inclusion
through an entangled medium. Assuming that there is a densi-
fication in front of the falling inclusion, there will be an imbal-
ance in the osmotic pressure between the wake and the front
of the inclusion. This imbalance would drive the inclusion in
the direction opposite to the sedimentation direction. This ex-

tra contribution would be concentration and length dependent.
The overlap concentration is also key to explain the increased
discrepancy for pf1 between experimental speeds and the SDE
prediction when accounting for flexibility. Flexibility causes
on the one side a lower macroscopic zero shear viscosity21

due to the extra relaxation mode, but hardly affects the overlap
concentration. On the other side, the sedimenting inclusion is
not sensitive to this relaxation, as it does not affect the overlap
concentration. This is an important notion, considering the
many semi-flexible systems used in applications. When flexi-
bility increases further, the overlap concentration will at some
point be affected, as for linear polymers for instance.

VI. CONCLUSION.

Sedimenting, inert spherical inclusions suspended in semi-
dilute dispersions of ideal monodisperse rod-like particles, of
lengths 0.88 and 2.1 µm, were tracked. The influence of rod
concentration, rod length and inclusion stress on the sedimen-
tation speed was investigated. We report a strong decrease
of the reduced sedimentation speed as a function of rod con-
centration, and no apparent yield stress could be identified for
the system. Using a theoretical prediction for the zero-shear
viscosity of these systems, we find the correct concentration
dependence of the sedimentation speed. Hence, the effect of
the rod length is very pronounced so that a two-fold increase
in the length of the rod slows down the sedimentation speeds
by two orders of magnitude at a fixed concentration. The re-
sults for both rod lengths superimpose, however, when scaling
the concentration with the overlap concentration and there is a
constant difference between experiment and theory of a factor
2 and 4 for the shorter and longer rods, respectively. When
flexibility is taken into account, the difference with theory is
even larger. We infer that crowding in front of the inclusions,
causing an increased viscosity, is not sufficiently equilibrated
by translational diffusion of the rods. This phenomenon still
needs a theoretical underpinning.
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