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The present study is part of a larger research project with the goal of developing 
tools for large-scale corpus-based semantic analyses. One such tool involves 
representing semantic structure with vector space models (VSMs), which 
currently requires a deeper understanding of its inner workings and how its 
results relate to cognitive theories of meaning. As a distributional method, it 
builds on the context of a lexical item to describe it and compare it to others, 
which raises our main research question: how is that context defined, and how 
does it vary for different semantic phenomena? We investigate how models 
based on different parameter settings deal with a range of semantic issues, such 
as granularity of meaning. For this purpose, a set of 7 polysemous homonyms in 
Dutch was selected to test how the distance between homonymous usages of a 
lexical item are represented in relation to polysemous usages within the same 
homonym. The models were built from a 520MW corpus of contemporary Dutch 
and Flemish newspapers and the resulting VSMs were evaluated through visual 
analytics, via scatterplots where more similar tokens appear closer to each other. 
In addition, colorcoding of manual tags allows us to compare how they were 
grouped by human annotators and by the computational models in a way that is 
consistent with the cognitive approach to meaning and categorization. The 
results indicate that not one set of parameters deals well with granularity in all 
cases. For example, those that disambiguate stof ‘substance/fabric/topic, dust’ 
well fail with hoop ‘heap, hope’ and vice versa. Furthermore, for some nouns 
some senses may be well grouped while the homonyms are not. 

1. Introduction 
Usage-based linguistics has a lot to gain from Big Data. The availability of large 
amounts of textual data and computational tools to process it constitutes an 
attractive source for empirical analysis of language in use. However, understanding 
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of the tools and methods necessary to take advantage of these resources doesn’t 
always come hand in hand with understanding of and interest in linguistic issues. 
This paper presents a case study within a larger project aimed to merging these 
branches: applying tools from computational linguistics to research in lexical 
semantics. One such tool involves representing semantic structure with vector 
space models (VSMs), an established computational technique (see Turney & 
Pantel 2010 for an overview) that still requires a deeper understanding of its inner 
workings and how its results relate to cognitive theories of meaning. 
Count-based VSMs represent words as vectors of co-occurrence frequencies in a 
multidimensional space (Lenci 2018). As a distributional method, VSMs build on 
the context of a lexical item to describe it and compare it to others, which raises 
our main research question: how is that context defined, and how does it vary for 
different semantic phenomena, where the various context words play different 
roles? Although token-based VSMs are increasingly used in corpus-based 
cognitive semantics, we believe it is insufficiently appreciated how alternative 
parameter settings impact the final output. Accordingly, we investigate how models 
based on different parameter settings deal with a range of semantic issues, such as, 
in the case study described here, granularity of meaning. For that purpose we 
selected 7 Dutch nouns that present both homonymy and polysemy: each form has 
at least two very distinct, unrelated meanings, i.e. homonyms, and at least one of 
them presents polysemous (distinct but semantically related) usages1. The goal was 
to test how the distance between homonymous usages of a lexical item is 
represented in relation to polysemous usages within the same homonym. Ideally, 
tokens belonging to different homonyms will be far away from each other in the 
vector space and form two distinct groups, while the different sense distinctions 
within a homonym will be harder to pull apart. For example, literal and 
metaphorical senses of Dutch hoop ‘heap’ should be closer together and far from 
its homonym meaning ‘hope’. 
We will describe the technique in Section 2 and specify its application for the case 
study in Section 3. Results for the specific cases of Dutch hoop ‘hope, heap’ and 
stof ‘substance/fabric/topic, dust’ will be presented in Section 4 and we will finish 
with a conclusion in Section 5. 

2. Distributional semantics 
It this study we use vector space models (VSMs), a computational technique (Lenci 
2018, Turney & Pantel 2010), to model the semasiological structure of lexical 

 
1 The forms are blik ‘view, tin’, hoop ‘hope, heap’, horde ‘horde, hurdle’, schaal ‘scale, dish’, spot 
‘ridicule, spot(light)’, staal ‘steel, sample’ and stof ‘substance/fabric/topic, dust’. Sense tags were based 
on Van Dale (Sterkenburg, 1991) entries. 
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items. The method can take multiple forms and, while it constitutes a promising 
tool for exploiting the current Big Data availability in lexicological research, it is 
not so popular outside computational linguistics. A key distinction between the 
approach followed here and other computational perspectives on sense 
disambiguation (e.g. Reisinger & Mooney 2010, Neelakantan et al. 2015) is the 
goal and, therefore, the evaluation mechanism. Rather than aiming for a more 
precise result in NLP tasks, our ultimate goal is to aid lexicographical research with 
computational models. As such, we are interested in figuring out the linguistic 
interpretation of the results, if and how computational models agree with manual 
annotations, and the relationship between parameter settings (i.e. a model’s way of 
defining and representing context) and output. 
In this section we will offer a brief overview of what is known as VSMs and how 
they have been used in the area of cognitive linguistics. We will describe count-
based models, as opposed to prediction-based models, which use neural networks. 
We use the former rather than the latter because the connection between the 
parameter settings and the final output is more transparent. Nevertheless, they are 
indeed an interesting option to expand this line of research —especially 
architectures such as BERT (Devlin et al. 2019), since they can represent individual 
tokens as well. 

2.1. Vector space models 
At the core of vector space models, aka distributional models, we find the 
Distributional Hypothesis, which is most often linked to Harris’s observation that 
“difference of meaning correlates with difference of distribution” (1954:156). In 
other words, items that occur in similar contexts in a given corpus will be 
semantically similar, while those that occur in different contexts will be 
semantically different. Distributional models operationalize this idea by 
representing words as vectors (i.e. arrays of numbers) coding frequency 
information. Typically, the raw frequency is transformed to some association 
strength measure, such as pointwise mutual information (PMI, see Church & 
Hanks 1989), which compares the frequency with which two words occur close to 
each other and the expected frequency if the words were independent. Since 
negative PMI values tend to be unreliable (Bullinaria & Levy 2007, Kiela & Clark 
2014, Jurafsky & Martin 2020:109), PPMI (positive PMI) is used instead, by 



Mariana Montes 

 

4 

turning the negative PMI values to zeros. For example, Table 12 shows small 
vectors representing the English nouns linguistic, lexicography, research and 
chocolate, as well as the adjective computational, as series of association strengths 
with a set of lemmas. 

Table 1: Example of type-level vectors. 

target language/n word/n flemish/j english/j speak/v 

linguistics/n 4.37 0.99 0 3.16 0.41 

lexicography/n 3.51 2.18 0 2.19 2.09 

computational/j 1.60 0.08 0 0 0 

research/n 0.20 0 0.04 0 0 

chocolate/n 0 0 1.28 0 0 

 
Each row is a vector coding the distributional information of the lemma it 
represents. As we can see in this example, words with similar vectors 
(e.g. linguistics and lexicography) are semantically similar, while words with 
different vectors (e.g. linguistics and chocolate) are semantically different. 
The vectors in Table 1 are type-level vectors: each of them aggregates over all the 
instances of a given word, e.g. linguistics, to build an overall profile. As a result, it 
collapses the internal variation of the lemma, i.e. its semasiological structure. One 
way of uncovering such information is to build vectors for the individual instances 
or tokens, relying on the same principle: items occurring in similar contexts will 
be semantically similar. For instance, we might want to model the three 
occurrences of study in (1) through (3), where the target item is in italics. 
 
(1) Would you like to study lexicography? 
(2) They study this in computational linguistics as well. 
(3) I eat chocolate while I study. 
 
Given that, at the aggregate level, a word can co-occur with thousands of different 
words, type-level vectors can include thousands of values. In contrast, token-level 
vectors can only have as many values as the individual window size comprises, 

 
2 PPMI values in these table are based on symmetric window of 10 in the GloWbE corpus. The letter to 
the right of the word indicates the part-of-speech: n for nouns, j for adjectives and v for verbs. 
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which drastically reduces the chances of overlap between vectors. In fact, the three 
examples don’t share any item other than the target. As a solution, inspired by 
Schütze (1998), we replace the context words around the token with their 
respective type-level vectors (De Pascale 2019, Heylen et al. 2015). For example, 
we could represent example (1) with the vector for its context word lexicography, 
that is, the second row in Table 1; example (2) with the sum of the vectors for 
linguistics (row 1) and computational (row 3); and example (3) with the vector for 
chocolate (row 5). This not only solves the sparsity issue, ensuring overlap between 
the vectors, but also allows us to find similarity between (1) and (2) based on the 
similarity between the vectors for lexicography and linguistics. 
From applying this method we obtain numerical representations of occurrences of 
a word. We can compare them to each other by calculating pairwise distances, 
which is at the base of clustering analyses and visualization techniques based on 
dimensionality reduction. 

2.2. Distributional models in cognitive linguistics 
Vector space models were originally developed in computational linguistics but 
they are increasingly being used in corpus-based cognitive linguistics, particularly 
in lexical semantics (Heylen et al. 2012, 2015), diachronic construction grammar 
(Hilpert & Correia Saavedra 2017, Hilpert & Flach 2020, Perek 2016, 2018), 
lectometry (De Pascale 2019, Ruette et al. 2016), and lexical typology 
(Koptjevskaja-Tamm & Sahlgren 2014). Most of them make use of type-level 
vectors, while some include token-level vectors as well. 
These developments notwithstanding, we believe it is insufficiently appreciated 
how alternative parameter settings impact the final representation, at either token 
or type level. A typical approach involves relying on previous work and overview 
papers such as Kiela and Clark’s (2014) study (see also Baroni et al. 2014). Such 
overview studies explore a large parameter space, i.e. a variety of choices regarding 
multiple parameter settings for the models, and compare their performance in terms 
of accuracy in relation to a benchmark. 
However, this method does not tell us how the models agree with each other, 
i.e. whether their disagreement with the benchmark pertains to the same cases 
(Heylen et al. 2015:161). Moreover, it considers the manual annotation as a 
categorical ground truth to aim for, when we know that discrete categories such as 
these are abstractions (Glynn 2014) and can be restrictive, covering one of multiple 
possible dimensions of meaning. The approach followed here, instead, uses manual 
annotation as a heuristic but does not consider neither the dictionary-based 
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definitions nor the models’ output as a unique, ultimate description of 
semasiological structure. 

3. Methods 
In order to examine how these VSMs deal with meaning granularity, a set of 7 
polysemous homonyms in Dutch was selected. Homonyms are semantically more 
different from each other than senses within a homonym; therefore, based on the 
Distributional Hypothesis, we would expect that the models would more easily 
discriminate the former than the latter. 
For the purposes of this article we will focus on hoop ‘hope, heap’ and stof 
‘substance/fabric/topic, dust’, which were annotated with the tags shown in Tables 
2 and 3 respectively. 

Table 2: Sense tags for hoop their frequencies in the annotated sample. 

Tag Definition Dutch example Translation Freq. 

hoop_1 1.1 unordered 
mass 

een hoop rommel, 
gooi maar op de 
hoop 

a pile of junk, 
you may drop 
it on the pile 

17 

hoop_2 1.2 great quantity 
een hoop mensen, 
een hele hoop 
geld 

a bunch of 
people, a lot of 
money 

59 

hoop_3 

2 positive 
expectation, trust 
in something 
positive 

hoop koesteren, 
de hoop 
uitspreken dat... 

to have hope, 
express the 
hope that... 

236 

 

Table 3: Sense tags for stof their frequencies in the annotated sample. 

Tag Definition Dutch example Translation Freq. 

stof_1 
1.1 matter, 
substance of a 
certain kind 

giftige stoffen poisonous 
substances 145 
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Tag Definition Dutch example Translation Freq. 

stof_2 1.2 fabrics wollen en 
katoenen stoffen 

woolen and 
cotton fabrics 54 

stof_3 
1.3 topic about 
which people talk, 
write, think, etc. 

stof voor een 
roman, stof tot 
onenigheid 

material for a 
novel, topic of 
disagreement 

37 

stof_4 

2.1 mass of very 
small dry particles 
of various origin, 
floating in the air 

een wolk stof, stof 
afnemen 

a cloud of dust, 
to dust 39 

stof_6 2.3 idiomatic uses 
of "dust" 

stof doen 
opwaaien stir up dust 38 

Nonconsecutive numbers in the sense tags correspond to not attested senses 
from our original selection. 

 
For each of the lemmas we extracted 240-320 tokens and built 212 models by 
combining different parameter settings, including, non-exhaustively: window size 
and part-of-speech filter for bag-of-words models, templates based on dependency 
information, and PPMI weighting. The frequency information for the vectors and 
the concordances come from a 520MW corpus of contemporary (1999-2004) 
Dutch and Flemish newspapers (see De Pascale 2019:30), with PPMI values based 
on a symmetric window of 4 slots to each side of the target. We considered all 
lemmas with a minimum relative frequency of 1 in 2 million3, excluding 
punctuation. At all levels, targets and context words were defined by a combination 
of stem and part-of-speech: hoop/noun refers to the noun ‘hope, heap’, while 
hoop/verb would refer to the verb ‘to hope’, and these are taken to be different 
items. We compared vectors by using the cosine distance but then applied a log 
transformation over the ranks to enhance the weight of the smallest distances, 

 
3 This threshold seemed reasonable given the size of the corpus, but it was a practical choice more than 
a principled one. Whether the results would be better with a higher threshold is an empirical question 
that was not addressed. 
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i.e. the largest similarities. We also applied a range of visualization techniques, but 
for this article we’ll show the t-SNE representations with perplexity 30 (Krijthe 
2015, Maaten & Hinton 2008). The goal of this technique is to project the distances 
between items, originally based on hundreds or thousands of dimensions, to 2 
dimensions that we can interpret on the screen. Naturally, this results in loss of 
information (Wattenberg et al. 2016), but it also makes it possible to find patterns 
in the relative distances that we cannot access otherwise. 
Finally, we applied partitioning around medoids4 to select eight representative 
models that can give us an idea of the variation among them. They were visualized 
with an interactive Javascript tool5 that, among other things, allows the user to 
select portions of the plots and identify which context words characterize the 
selected tokens across the different models (Montes & Wielfaert 2021). 

4. Results 
Both nouns, hoop and stof, are homonymous and polysemous. If semantic 
similarity can be operationalized as distributional similarity and granularity of 
meaning can be mapped to relative distances in the modelled space, we would 
expect a clear distinction between tokens of different homonyms, and a less clear 
distinction between tokens belonging to different senses of the same homonym. In 
the visualization, this would be translated as distinct areas for each homonym and 
probably more overlap between the senses of one homonym. However, this is 
surprisingly hard to achieve: the different degrees of granularity don’t seem to have 
a mapping to the visual representation of the models. 

4.1. Plotting the “best” models 
Figure 1 shows two medoids (i.e. representative models) for each of the lemmas. 
The top row shows the “best” medoid of each lemma if we consider manual 
annotation as a benchmark, i.e. the model that best separates the tokens of different 
senses. However, the parameter settings that work best for one lemma do not 
perform well for the other: in the second row we show the result of this switch. In 
other words, panels (a) and (b) show the best models for hoop and stof respectively, 
panel (c) shows the effect of applying the parameters from (b) to hoop, and panel 
(d) the effect of applying the parameters from (a) to stof. 
The parameters that result in these models are in fact very different, although their 
second-order configuration is equivalent: the dimensions of the type-level vectors 
representing the context words of the target are the union of the first-order context 

 
4 Run with the pam() function of the {cluster} R package (Maechler et al. 2019). 
5 For other visualization techniques, the full range of models and other lemmas the reader may explore 
https://qlvl.github.io/NephoVis/. 
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words collected throughout the corresponding sample. As a result, the 
dimensionality of the token-level vectors is already quite low: 833 for (a), 483 for 
(b), 352 for (c), and 849 for (d)6. 
For panels (a) and (d) we have a dependency-based model that takes the context 
words linked up to three steps away from the target in the dependency path, and 
weights the contribution of each item on that distance. This is illustrated by the 
superscripts in examples (4) and (5). 

 

 
6 The fact that the number of dimensions in each model is different is irrelevant in this comparison: the 
parameter setting simply requires that the dimensions of the type-level vectors are the same features 
identified in the context of the tokens. In practice, the result is not very different from selecting the 5000 
most frequent lemmas as dimensions instead. 
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Figure 1: (a) Best model of hoop; (b) Best model of stof; (c) Model of hoop with 
best parameters of stof; (d) Model of stof with best parameters of hoop. 

In (4), the determiner een ‘a’ and the modified noun onzin ‘nonsense’ are directly 
linked to the target hoop as dependent and head respectively, so they are taken by 
the model and receive the highest weight. The first occurrence of the verb is is the 
head of its subject onzin ‘nonsense’, hence two steps away of the target: it is 
included and receives a slightly lower weight. The particle er, which is tagged as a 
modifier of is, and the second instance of is, as head of the subordinate clause, are 
three steps away from the target, and therefore obtain a low weight. The rest of the 
context is ignored by this model. Example (5) offers a much more complex picture, 
particularly because the link between the target hoop ‘hope’ and the core of the 
sentence, the verb uitspreken ‘to express’ (split in sprak and its particle uit), is short 
and opens the path to many other elements in the sentence. 
 
(4) Er3 is2 een1 hoop onzin1, talent is3 niet iedereen gegeven. 
There is a lot of nonsense, talent is not given to everyone. 
(Algemeen Dagblad, 27/10/2001) 
 
(5) De3 trainer2 van3 FC Utrecht sprak1 verder2 de1 hoop uit2 dat1 hij3 binnenkort 

weer eens mag2 investeren3 van de clubleiding. 
The trainer of FC Utrecht also expressed the hope that the club management would 
allow him to invest again soon. 
(NRC Handelsblad, 24/05/2004) 
 
A key point for this lemma is that hoop ‘hope’ is a mass noun, and therefore often 
occurs with the definite determiner de (40% of the cases), whereas hoop ‘heap’ 
tends to occur with een (64 out of 76 occurrences). This correlation is hard to 
extract with a bag-of-words model, which would either filter out function words 
such as the determiners, or include all determiners regardless of their relationship 
to the target, thus drowning this pattern in noise. 
In contrast, the parameter settings that result in the plots in panels (b) and (c) 
capture the nouns, verbs, adjectives and adverbs within 5 slots to each side of the 
target, as long as they are within the limits of the sentence and their PPMI with the 
target lemma is larger than 0. In the case of (6), for example, the model selects 
discussie ‘discussion’ and oplevert ‘yields’. Words that might follow after the 
period and those before film ‘movie’ are excluded by this model. Within the 
window span of 5 words to each side, die ‘that’, na ‘after’, veel ‘much’ and tot ‘to’ 
are excluded because of the part-of-speech filter. Finally, the nouns film ‘movie’ 



Modelling meaning granularity of nouns with vector space models 
 

 

11 

and afloop ‘conclusion’, which survive the window size and part-of-speech filters, 
are excluded by the association strength filter. 
 
(6) Dit is een perfect voorbeeld van een film die na afloop veel stof tot discussie 

oplevert. 
This is a perfect example of a film that afterwards leaves a lot [of stuff] to discuss. 
(Algemeen Dagblad, 11/12/2003) 
 
For each lemma we have 8 representative models covering the variation across the 
212 generated models. The models shown in Figure 1(a) and 1(b) are, for each of 
these lemmas, the representatives that best match the sense annotation, but we can 
quite confidently assume that the rest of the models they represent are also better 
matches than models in other clusters. The “best” hoop medoid represents 23 
models selecting context words based on the length of the dependency path (up to 
3 slots away, with or without weight) but not weighting them with PPMI. In 
contrast, the “best” stof medoid represents 30 models sharing the following 
characteristics: 
• Bag-of-words model with window larger than 3 and part-of-speech filter. 
• Second order dimensions are also filtered by part-of-speech (nouns, 

adjectives and verbs). 
• The tokens are not weighted by PPMI, unless the first order window is 5-5. 

4.2. Granularity of meaning 
The expectation of a visual representation of granularity of meaning is fulfilled for 
hoop in Figure 1(a): there is a greater distinction between the homonyms than 
between the senses of the polysemous homonym. In contrast, even the best model 
of stof presents a structure that does not match the hierarchy of homonymy and 
polysemy. First, we tend to find an isolated group of tokens corresponding to the 
idiomatic usages of ‘dust’ (stof_6, as shown in (7)), far from the tokens of the same 
homonym (literal uses of ‘dust’). 
 
(7) Het debuut van regisseur Nabil Ayouch deed in zijn thuisland veel stof 

opwaaien. 
Director Nabil Ayouch’s debut stirred up a lot of dust in his homeland. 
(Volkskrant, 06/01/2000) 
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Second, the most frequent sense, stof_1 ‘substance’, exhibits internal groups 
characterized by the co-occurrence of very frequent collocates, such as gevaarlijk 
‘dangerous’ and schadelijk ‘damaging’, as shown in (8). 
 
(8) Vooral bij westenwind vrezen de bewoners lawaai, stank en schadelijke 

stoffen. 
Especially with the western wind, the inhabitants fear noise, stench and damaging 
substances. 
(NRC Handelsblad, 10/09/2001) 
 
Third, stof_2 ‘fabric’ and stof_4 ‘dust’ stick together in many representative models 
although they are senses of different homonyms. This can be explained by the fact 
that both senses tend to co-occur with quite concrete context words, such as names 
for materials and colors, while the ‘substance’ sense shown in (8) occurs in more 
chemical-related contexts and the ‘topic’ sense illustrated in (6) co-occurs with the 
semantic domain of communication instead. In other words, this is not necessarily 
a failure of the models nor an inherent inadequacy of the lexicographical model, 
but rather a mismatch between the two perspectives, between distributional 
structure and semantic structure. 

5. Conclusion 
The goal of the research illustrated in this paper was to understand the relationship 
between parameter settings and output of VSMs in order to guide lexicographical 
applications. However, the results shown here suggest that there is no set of 
parameters that works best across the board. This is made clear by the comparison 
between the models that best match the sense annotation of two lemmas exhibiting 
both homonymy and polysemy and by switching the corresponding parameter 
settings: settings that succeed in one lemma fail in the other. Instead, the output is 
crucially sensitive to the particular distributional behavior of each lemma. On the 
one hand, the collocational patterns identified by the models do not necessarily 
correspond to the phenomenon we want to model. In the case of stof, specific 
collocates characterize different senses to a certain degree, but do not discriminate 
between homonyms that well. On the other hand, even if there are semantically 
distinctive patterns to be found, they are not identified by the same parameter 
settings: a syntactically informed model is required to identify determiners as a 
discriminating features of the hoop homonyms, while the same information proves 
less useful in regard to stof. 
We make no claims regarding the psychological validity of either VSMs or manual 
disambiguation. Rather than championing one or the other, we suggest a combined 
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approach that enriches lexicographical description with output from VSMs instead 
of replacing it. In addition, we would discourage a selection of parameters based 
on overviews that measure accuracy across multiple words based on benchmarks 
that might not match the interest of the lexicographer to begin with. Instead, we 
would recommend the exploration of several representative models understood as 
multiple representations of distributional structure that need not match the 
lexicographer’s initial semantic categories. 
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