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Abstract 84 

 85 
Upon transition from health to cardiometabolic disease (CMD), patients are heavily medicated, leading 86 

to increasingly aberrant gut microbiome and serum metabolome and complicating quests for severity 87 

and prognostic biomarkers. Through integrated multi-omics analyses of 2,173 European residents (Met-88 

aCardis cohort), we show that the explanatory power of drugs for variability of both host and gut mi-89 

crobiome features exceeds that of disease. We quantify inferred effects of single and combinatorial 90 

medications as well as additive effects, shifting metabolome and microbiome towards a healthier state, 91 

such as synergistic reduction of serum atherogenic lipoproteins by statins combined with aspirin, or 92 

enrichment of intestinal Roseburia by diuretics combined with beta-blockers. Several antibiotics exhibit 93 

quantitative relationship between number of courses prescribed during recent five years and progression 94 

towards a microbiome state associated with CMD severity. We further report a relationship between 95 

cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, support-96 

ing direct drug effects. Taken together, our computational framework and resulting resources allow dis-97 

entangling drug from disease effects on host and microbiome features in heavily medicated subjects. 98 

Furthermore, the robust CMD signatures identified with our framework provide new hypotheses for 99 

drug-host-microbiome interactions in cardiometabolic disease. 100 

Main text 101 

Identifying and quantifying robust gut microbiota contributions to health and disease requires complex 102 

technical and statistical frameworks1,2 and remains challenging due to many covariates affecting both 103 

microbial composition3–5 and disease. Among covariates, therapeutic drugs4,8–10, such as broadly pre-104 

scribed proton pump inhibitors (PPI)6 and type 2 diabetes (T2D) drug metformin7, constitute prime ex-105 

amples. These drugs considerably impact the gut microbiota and modulate inflammation11. Furthermore, 106 

direct drug-microbial interactions have been demonstrated in vitro8. For several drugs in a mostly 107 

healthy population, their usage explained more variance in microbiota composition than other covariates 108 

tested, albeit with small individual effect sizes12. However, studies in healthy populations12,13 are inad-109 

equate for investigating the secondary impacts of drugs in the context of chronic diseases. To robustly 110 



 

   

disentangle drug-microbiome associations from host and disease factors, large sample sizes and high 111 

resolution of clinical phenotypes over a wide range of disease stages and medication are required for 112 

statistical power, while accounting for known variables affecting the gut microbiome. Finally, biological 113 

effects of drugs are often dose-dependent, yet dose relations have rarely been considered in microbiome 114 

studies.  115 

To overcome these limitations, we propose a general framework for separating disease from treatment 116 

associations in multi-omics cross-sectional studies and apply it to gut metagenomic, host clinical and 117 

metabolomic measurements of 2,173 European residents from the MetaCardis cohort (Methods, Ex-118 

tended Data Figure 1, Supplementary Table 1). MetaCardis constitutes a multi-centre (Denmark, France, 119 

and Germany) cross-sectional study, with participants ranging from healthy over metabolic syndrome 120 

(MetS), severe and morbid obesity, type 2 diabetes (T2D), to those with severe cardiometabolic disease 121 

(CMD), e.g. acute and chronic coronary artery disease (CAD), and heart failure (HF), both CAD-asso-122 

ciated and not. Considering current CMD- and other frequently prescribed medications, we investigated 123 

drug-host-microbiome associations for eight major therapeutic indications (antidiabetic, antihyperten-124 

sive, antidyslipidemic, antithrombotic, antiarrhythmic agents, gout medication, drugs treating acid-re-125 

flux-related disorders such as PPIs, and antibiotics spanning over 49 individual drug classes (Supple-126 

mentary Tables 2-4)). We further investigated known CMD risk factors (age, sex, body mass index 127 

(BMI), diet, smoking), while controlling for variability traceable to the study centres. The most com-128 

monly prescribed CMD drugs were statins (n = 772, 35.5%), beta-blockers (n = 656, 30.2%), metformin 129 

(n = 607, 27.9%), aspirin (n = 532, 24.5%), angiotensin converting enzyme (ACE) inhibitors (n = 470, 130 

21.6%) and angiotensin II receptor blockers (ARB) (n = 470, 21.6%) reflecting European standards of 131 

care in CMD (Supplementary Table 3). Several drugs were taken in combination (Supplementary Table 132 

3). We therefore studied individual drug effects, as well as their synergistic and additive interactions in 133 

the context of available phenotypic, dietary, and demographic variables, molecular readouts including 134 

serum concentrations of lipoproteins, cytokines and metabolites, and taxonomic and functional profiles 135 

of the gut microbiome. 136 

To quantify the overall impact of medications, we performed multivariate regression of explained vari-137 

ance of host and microbiome data onto total influence of medications, clinical and environmental risk 138 



 

   

factors and disease status (Methods). All drugs together explain more variation in the microbiome com-139 

position than patient disease group does, or any other factor considered under a conservative estimate 140 

(Figure 1a). However, in line with previously reported high individual variability14, only 1.7 - 9% of 141 

variation between subjects is explainable by the factors included in the model, of which 1 - 2.5% are 142 

attributable to drug intake, which is comparable to disease status, diet and smoking combined (Figure 143 

1a, Supplementary Table 5). 144 

To quantify individual drug effects, we implemented a univariate statistical approach to disentangle 145 

drugs from disease associations with the gut microbiome and host features. We marked each association 146 

fully reducible to one or more non-disease covariates as confounded, considering all frequently pre-147 

scribed CMD drugs, singly and in combination. Thus, features distinguishing patient groups from 148 

healthy controls are divided into i) confidently deconfounded features of CMD, ii) ambiguously decon-149 

founded (where both treatment and disease strongly correlate), and iii) confounded (unambiguous drug 150 

associations) (Methods, Extended Data Figure 1). A major fraction of naïve associations (e.g. 45% for 151 

T2D) between drugs and microbiome or metabolome is attributable to drug intake (Figure 1b, Supple-152 

mentary Table 5). Nonetheless, we recover previously described metabolic disease signatures in micro-153 

biome and metabolome and show these cannot be reduced to treatment effects (Extended Data Figure 154 

2, Supplementary Results section 2.3). We thus conclude that, at least for CMD, a drug-conscious ap-155 

proach uncovers true disease associations and is crucial to circumvent highly inflated treatment-con-156 

founded false positives in biomarker discovery. 157 

Having quantified the impact of individual drugs, we then disentangled potential direct effects of the 158 

medication (where treatment association direction opposes the disease association) from potential se-159 

verity markers (concordant direction of the treatment and disease association). Of 28 cardiometabolic 160 

drugs taken by sufficiently many study participants (at least 10 individuals within at least one patient 161 

group), the strongest effects on serum metabolome were found for antidiabetic drugs, statins11, beta-162 

blockers, antithrombotic drugs and aspirin (Figure 1c). While drugs with the same indication (i.e. anti-163 

diabetic, antihypertensive) had concordant associations with host features, the impact on the gut micro-164 

biome was more diverse in effect size and direction between these drugs (Figure 1c, Supplementary 165 

Tables 6, 7). Our approach recaptured previously reported findings on the impact of antibiotics15, PPIs, 166 



 

   

statins11, beta-blockers16,17 and metformin (Extended Data Figure 3, Supplementary Table 6, 167 

Supplementary Results section 2.3). More importantly, we herein identified novel associations for these 168 

reported as well as for other highly prevalent drugs (Supplementary Results section 2.4). For example, 169 

we identified aspirin-associated changes in microbial species abundances, as well as shifts in serum 170 

lipidome and metabolome associated with improved cardiometabolic health (e.g., depletion of Rumino-171 

coccus gnavus, Clostridium glycyrrhizinilyticum and Parvimonas micra, reduction of plasma concen-172 

trations of inflammatory markers (CRP and IL6), decreased levels of pyruvate, glutamate and succinate 173 

at comparable significance to that of the aspirin levels detected in serum of medicated subjects; Figure 174 

1d2b, Supplementary Table 6, Supplementary Results section 2.4). In addition, γ-butyrobetaine, a re-175 

cently identified proatherogenic intermediate of microbial metabolism19, is lower in subjects taking as-176 

pirin, revealing a potential complex antiatherogenic effect of the drug beyond its known platelet-inhib-177 

itory functions20. For the known gut modulator metformin, we deduce novel antidiabetic effects possibly 178 

related to lowered glutamate levels21 (d = -0.17, FDR = 0.02), due to reduced microbial glutamate 179 

transport (d = -0.2, FDR = 0.006). Furthermore, we observe increased microbial vitamin B12 uptake (d 180 

= 0.32, FDR=3.65e-6), potentially leading to vitamin B12 deficiency in the host, a known metformin 181 

side effect (Supplementary Results section 2.4, Supplementary Table 6). PPIs had the most associations 182 

with gut microbiome features (Figure 1c, Supplementary Table 7) including higher prevalence of pre-183 

sumably oral bacteria (Supplementary Table 6), supporting the hypothesized PPI-caused transfer of oral 184 

bacteria into the gut upon decreased stomach acidity17. Single nucleotide variation (SNV) analysis based 185 

on large reference cohorts (Supplementary Results section 2.4) revealed increased abundance of usually 186 

oral-based strains of Rothia, Haemophilus and Streptococcus species in the gut of subjects taking PPIs, 187 

implying that the patient’s own oral strains colonize the intestine as gastric acidity weakens22 (Figure 188 

1e).  189 

Beyond single drugs, the MetaCardis study population enables analysis of combinatorial (polyphar-190 

macy) effects, since 1,300 individuals were prescribed more than one drug (average daily intake of 3 191 

drugs with some receiving up to 13 distinct drugs per day) (Figure 2a, Supplementary Table 2). Most 192 

common drug combinations include aspirin and statins (437 subjects, 20.1%), beta-blockers and statins 193 

(413 subjects, 19%), beta-blockers and aspirin (337 subjects, 15.5%), and the triad of beta-blockers, 194 



 

   

aspirin and statins (298 subjects, 13.7%), the cornerstone treatment in CAD (Figure 2b, Supplementary 195 

Table 3). Polypharmacy in CMD mostly reflects concurrence of metabolic diseases, risk factors, or 196 

treatments preventing the recurrence of an atherosclerotic event, but also includes medications co-pre-197 

scribed to reduce side effects, such as PPIs with aspirin and clopidogrel to prevent gastric ulcers and 198 

bleeding. Multi-medicated patients often exhibit a more pronounced improvement in disease markers 199 

than those receiving either drug alone, consistent with synergistic interactions between drugs (Supple-200 

mentary Table 8). In the T2D group, the most pronounced synergistic effects on the microbiome features 201 

were observed for loop diuretics, especially in combination with aspirin, ACE-inhibitors and beta-block-202 

ers, whereas the most pronounced synergistic effects on host features were observed for statins (Figure 203 

2c). For example, (i) loop diuretics combined with aspirin, ACE-inhibitors or beta-blockers more 204 

strongly enrich microbiome-related health markers23 including Roseburia abundance (combination: d = 205 

0.46, d = 0.51, d = 0.36, correspondingly, single drugs: diuretics d = 0.27), (ii) calcium channel blockers 206 

taken with statins are associated with lower serum concentrations of atherogenic very low-density lipo-207 

proteins (vLDL) (combination: average d = -0.17, single drugs: statin average d = -0.14) (Figure 2d). 208 

(iii) Taken with metformin or aspirin, statins are associated with lower low, intermediate, and very low-209 

density lipoproteins levels in serum and total body fat mass, while increasing microbiome richness and 210 

abundance of Firmicutes and methanogenic bacteria otherwise depleted in the T2D group (Figure 2d, 211 

Supplementary Tables 8, 9). These shifts in the microbiome might mediate some of the synergistic drug 212 

effects on the host (Supplementary Results section 2.5, Figure 2e, Supplementary Table 10).  213 

Next, we investigated additive drug associations. The strongest of those we observed for antibiotics 214 

using five-year retrospective exposure (total number of courses). Antibiotics are not used to treat CMD, 215 

yet are frequently prescribed due to an increased prevalence of infections in this disease population24. 216 

Yet, epidemiological studies link antibiotics with an increased risk for obesity, T2D, metabolic and 217 

inflammatory diseases25. We observed that previous antibiotic exposure is significantly (i) associated 218 

with lower gut gene richness within the same subject groups (Figure 3a, Spearman rho = -0.25, P = 3.7e-219 

5) and, (ii) correlated with total abundance of antimicrobial resistance genes (AMR) in the gut (controls: 220 

Spearman rho = 0.30, P = 9e-7; T2D subjects: Spearman rho = 0.20, P = 2e-5) (Figure 3b). These find-221 

ings imply cumulative, additive shifts upon repeated antibiotic exposure towards a more resistant but 222 



 

   

less diverse microbiota, which is a hallmark of microbiome signature in obesity, insulin resistance and 223 

low-grade inflammation26. The same properties distinguish antibiotics-naïve CMD patients from healthy 224 

controls confirming a genuine impact of repeated antibiotic exposures (antibiotics-naïve healthy vs T2D 225 

richness P = 2e-16; AMR gene abundance P = 2e-2). Using principal component analysis (PCA, Sup-226 

plementary Table 11), we show that the first PC of microbiome composition, explaining 45% of varia-227 

tion and correlating with gene richness, is associated both with an additive effect of antibiotics and 228 

metabolic impairment following antibiotics exposure (antibiotic effect: controls: Spearman rho = 0.27, 229 

P = 1.7e-5; T2D subjects: Spearman rho = 0.16, P = 7e-4; antibiotics-naïve vs antibiotics treated healthy 230 

(P = 1e-3) and T2D subjects (P = 1e-3)) (Figure 3c). This suggests a link between changes in microbiome 231 

richness and structure and the epidemiological findings described above. Multivariate breakdown of 232 

these shifts reveals reduced abundance of Prevotella copri and Faecalibacterium prausnitzii, and an 233 

increase in Bacteroides vulgatus and Bacteroides dorei, abundant genera constituting hallmarks of en-234 

terotypes27,28. Further, while controlling for disease and medication intake, we show that shifts in gut 235 

microbial metabolic functions link additive effects of specific antibiotics groups to CMD susceptibility 236 

(Supplementary Results section 2.6, Extended Data Figures 4-6, Supplementary Table 12). 237 

Alongside recurrent drug exposure, the detailed medication tracking in MetaCardis allows to investigate 238 

the effect of dosage on the host and microbiota. For the 20 drugs with sufficient dosage information, we 239 

distinguished between dosage-confirmed effects, i.e., features significantly associated both with drug 240 

intake (yes/no) and with its dosage; and dosage-unique effects, where dosage analysis revealed associ-241 

ations not captured by other analyses. The drugs with the most features confirmed by dosage analysis 242 

were metformin, sulfonylurea, insulin, PPI, gout medications, and statins, whereas the most dosage-243 

unique associations were reported for metformin and statins (Figure 3d, Supplementary Table 13). Thus, 244 

statin dosage was more strongly negatively associated with atherogenic vLDL levels in serum, high-245 

lighting the intended dose-dependent lipid lowering effects of this drug class, but also revealed a strong 246 

positive association with health-promoting Roseburia species in the gut11. Metformin dosage was neg-247 

atively associated with cytokine levels (SDF1 and MIF)29,30, consistent with previous reports of its anti-248 

inflammatory effects. Furthermore, metformin dosage was negatively associated with many Firmicutes 249 

and positively with Bacteroides (Supplementary Table 13), reflecting a shift between Bact1 and Bact2 250 



 

   

enterotypes in patients taking higher dosages of metformin, which was also associated with disease, 251 

proposing Bact2 enterotype as a severity marker in T2D11 (Figure 3e, f, Supplementary Table 14). For 252 

statins, dosage analysis strengthens the reported observation of statins shifting the microbiome towards 253 

a heathier state away from Bact2 enterotype11. Moreover, dosage analysis uniquely identified Bact2 and 254 

Prev enterotypes as severity markers for beta-blocker usage in individuals with severe and morbid obe-255 

sity (Figure 3e, f, Supplementary Table 14). 256 

With stringent analytical approaches, we show that not only medication intake, but also dosage, drug 257 

combinations and previous exposure to antibiotics should be captured in human studies to disentangle 258 

the drug-host-microbiome interactions in complex diseases. For several drugs, our results identify mi-259 

crobiome shifts associated with medication intake, which might mediate the improvement in clinical 260 

markers. Since the nature of our study allows to identify associative and not necessarily causative ef-261 

fects, experimental validation using established animal models (e.g. multimodal effect of low-dose as-262 

pirin or synergistic effects of statin and aspirin or metformin in high-fat fed LDL-receptor–deficient 263 

mice) is required to confirm these findings, since controlled clinical trials can be challenging in a pop-264 

ulation with multimorbidity. Disentangling medication effects on the gut microbiome and serum metab-265 

olome, as illustrated here, is the first step towards understanding the systemic effects of drugs at the 266 

molecular level. To improve treatment in the context of genetic and microbiome variability, drug-aware 267 

molecular markers need to be identified along the transition from health to chronic diseases. Subse-268 

quently, the gut modulation potential of drugs could be harnessed to reverse this progression in a per-269 

sonalized manner.  270 



 

   

Figure legends 271 

Figure 1. General and specific associations between CMD drugs, host and microbiome.  272 

a. Stacked bar charts show variance explained (R squared) by variable group and feature type.  273 

b. Violin plot representing confounder analysis of features differentialy abundant between T2D and 274 

control subjects; density along vertical axis represents distribution of effect size, total features per cate-275 

gory listed. “Naïve associations” (yellow, two-sided MWU FDR < 0.1) are either confounded or am-276 

biguously/confidently deconfounded (blue, purple and red violins; post-hoc test for covariates). Green 277 

violins show breakdown of significant drug confounders by drug category.  278 

c. Hierarchical clustering of host (top) and microbiome (bottom) features associated with each drug in 279 

at least one patient group. Features separate into potential drug effects (discordant with disease associ-280 

ations) and severity markers (concordant with disease associations).  281 

d. Scatterplot (top) shows effect sizes (Cliff's delta) of confidently deconfounded associations between 282 

aspirin usage and serum metabolome, host phenotype and microbiome features, versus effect size of 283 

disease when comparing patients and healthy controls within each clinical group. A subset of features 284 

is highlighted for interpretation (bottom). 285 

e. Cuneiform plot shows change in abundance of bacterial species in the gut in subjects taking/not taking 286 

PPIs (controlling for other drugs and demographic factors) in each clinical group separately, and for all 287 

subjects pooled together. Rows marked “SNV” show whether oral strain single nucleotide markers are 288 

significantly (two-sided MWU FDR < 0.1) enriched over gut strain markers in subjects taking PPIs, 289 

controlling for abundance of each species. Marker direction, color and size denote the sign and value of 290 

Cliff’s delta standardized effect size; opaque markers are significantly altered (two-sided MWU FDR < 291 

0.1; passing all confounder checks). Bacteria are shown if their abundance is significantly altered under 292 

PPI consumption, and there are SNPs distinguishing oral from gut strains in HMP samples. (See Sup-293 

plementary Tables 5-7).  294 



 

   

Figure 2. Combinatorial impacts of CMD drugs. 295 

a. Number of CMD patients receiving each drug (horizontal axis) singly or in combination with a spec-296 

ified number (stacked bars) of other drugs.  297 

b. The thirty most common drug combinations represented as a graph. Node size is proportional to the 298 

number of combinations per drug; drug pairs are represented by solid lines; drug triplets are represented 299 

by distinct dotted/dashed lines. Edge width is proportional to the number of users per combination; edge 300 

colour corresponds to number of significant drug associations. 301 

c. Heatmap shows number of features (separated into host (bottom, green) and microbiome (top, brown)) 302 

affected by each drug combination more strongly than by single drugs among T2D patients. Diagonal 303 

values show number of features affected by each drug alone among T2D patients. Shown are associa-304 

tions that were deconfounded, discordant with the disease effect and significant (two-sided MWU FDR 305 

< 0.1).   306 

d. Effect size (Cliff’s delta) and direction of disease associations (T2D, red), drug combinations (black) 307 

and single drugs (other colours) among T2D patients for the combination of statin and metformin, aspi-308 

rin or calcium antagonist. Each line on the horizontal axis corresponds to one association between a 309 

feature and a drug combination. 310 

e. Drug-feature graph showing potential mediation between host and microbiome features. Solid lines 311 

represent drug effects on the feature, colour represents direction of the effect. Dashed lines between 312 

features indicate potential mediation (general mediation model one-sided P < 0.1), colour represents the 313 

sign of Pearson’s correlation coefficient (P < 0.1). (See Supplementary Tables 8, 10). 314 

 315 
Figure 3. Additive and dose-dependent drug associations with host and microbiome.  316 

Scatterplots show microbiome features (a. Gene richness; b. Total abundance of antibiotic resistance 317 

genes; c. The first principal component of gut species composition) significantly associated with the 318 

number of antibiotics courses in the last 5 years in control and T2D subjects separately (with lines and 319 

gray area representing 95% CI for linear regression). Boxplots (box showing median and quartiles, 320 

whiskers 1.5 interquartile range, dots outliers) show the comparisons in antibiotics-naïve and antibiotics-321 

exposed controls and T2D subjects, respectively, with pairwise significances (two-sided MWU tests, 322 

FDR-adjusted). 323 



 

   

d. Heatmaps show host and microbiome features confirmed by dosage analysis (replicable in a post-hoc 324 

test at Spearman P < 0.05 excluding wholly unmedicated subjects) (left), or which can be demonstrated 325 

only when considering dosage of the medication (right). Features are separated by potential drug effects 326 

(discordant with the disease effect) or severity markers (concordant with the disease effect). 327 

e. Scatterplot shows relationship between drug intake (taking/not taking) effect size (Cliff’s delta) and 328 

drug dosage (continuous) effect size (Spearman’s rho) on enterotype distribution within each patient 329 

group. Features significantly affected in either analysis (two-sided, MWU FDR < 0.1) are shown in 330 

green (potential drug effects) or purple (potential severity markers). Black circles and text highlight 331 

enterotype-drug-patient group associations that are depicted in panel f.  Bact1, 2, Bacteroides 1, 2, Prev, 332 

Prevotella, Rum, Ruminococcus.  333 

f. Coloured areas represent the stacked enterotype prevalence along the drug dosage axis, with lines 334 

calculated as a fraction of enterotypes in patient subgroups for which drug dosage fall within the corre-335 

sponding value range. Each dot represents a patient taking specific drug dose and classified into one of 336 

the four enterotypes. Random noise was added to the dot coordinates for better visualization. (See Sup-337 

plementary Tables 11-14). 338 

Extended Data Figures 339 

ED Figure 1. A post-hoc testing approach for deconfounding univariate biomarker analysis for 340 

multiple medications and risk factors. The schematic highlights our covariate control approach. All 341 

significant associations between putative drivers (e.g., disease D) and covariates (C1...Cn) to each meas-342 

ured feature (Y1...Ym) are taken. The outcome of the test is denoted with ai for a positive outcome 343 

(“yes”) and āi for a negative outcome (“no”). A significant predictor is called “confounded” and is fil-344 

tered out in a post-hoc test if there is at least one covariate (e.g., drug treatment or combination) such 345 

that the predictor does not add significant predictive capacity beyond the covariate (“confounded”). If 346 

no such covariate itself passes the same test (i.e., covariates cannot in turn be shown to have predictive 347 

capacity beyond tested predictor), the predictor is considered ambiguous (“ambiguously decon-348 



 

   

founded”). Otherwise, the predictor is considered “confidently deconfounded” (we note that “confi-349 

dently deconfounded” is defined as no confounders were found among all covariates measured in our 350 

study).  351 

 352 

ED Figure 2. Previously reported metabolic disease associations are replicated in the MetaCardis 353 

cohort under drug deconfounding, highlighting systemic inflammation, short-chain fatty acid and 354 

branched-chain amino acid mechanisms underlying insulin resistance. Cuneiform plot marker hues 355 

and direction show sign of effect size (Cliff’s delta), intensity and size show amplitude of effect size, 356 

comparing metabolic diseased proband subsets (horizontal axis) with healthy control subject in the Met-357 

aCardis population for different microbiome, metabolome and host features (vertical axis). Bold and 358 

opaque markers show significant associations (two-sided MWU FDR < 0.1) not reducible to any signif-359 

icant drug or demographic confounder. Full associations are found in Supplementary Table 9; here a 360 

preselected subset is displayed reflecting previously reported risk and protective factors, validated in 361 

MetaCardis. 1H NMR features are shown with retention time in parentheses, functional modules with 362 

GMM or KEGG identifier in parenthesis, analogous for metagenomic species and mOTUs.  363 

 364 

ED Figure 3. Previously reported drug-microbiome associations are replicated in the MetaCardis 365 

cohort for metformin and PPI. Bar plots show the magnitude and direction of effect size (Cliff’s delta) 366 

of metformin treatment (left) and PPI treatment (right) on microbiome features. These effects are com-367 

pared to the previously published data from two independent patient cohorts. Only features with direct 368 

match on the taxonomic level were included in the comparison10. Full list of associations is provided in 369 

Supplementary Table 6. 370 

 371 

ED Figure 4. Breakdown of antibiotics association into individual features, selected features 372 

shown. Left cuneiform plot (markers show Spearman correlation direction by shape and color, scope 373 

by size and color, significance (two-sided MWU FDR < 0.1, deconfounded for other drug and demo-374 

graphic features) by edge opacity) shows association between each feature and total number of antibi-375 

otics courses in CMD groups as well as in healthy controls. Right cuneiform shows whether the same 376 



 

   

features are significantly different (two-sided MWU FDR < 0.1) between healthy controls and CMD 377 

subjects following drug deconfounding (markers show Cliff’s delta effect size), requiring significant 378 

and deconfounded correlation with number of antibiotic courses demonstrable in at least one proband 379 

group and at least one group showing significant and deconfounded alteration compared to healthy con-380 

trols. Core features include increased carriage of possible disease-associated Ruminococcus gnavus and 381 

various Clostridia species, alongside decreased carriage of commensals such as Faecalibacterium spe-382 

cies. Full list of associations is provided in Supplementary Table 12. 383 

 384 

ED Figure 5. Taxonomic changes are validated in a recent intervention cohort. For bacterial species 385 

where an effect on abundance of total antibiotics courses in MetaCardis could be demonstrated (signif-386 

icant at Spearman FDR < 0.1 and deconfounded), where effect of antibiotic intervention could also be 387 

tested in a recent antibiotic intervention study31, effect sizes are shown here (MetaCardis correlation on 388 

vertical axis, intervention log-transformed fold change on horizontal axis). Separate markers are shown 389 

for each MetaCardis patient group within which antibiotic effect can be demonstrated. Bold markers 390 

achieve significance (FDR < 0.1) in the intervention study as well. For the majority of taxa overlapping 391 

between studies, direction of changes matches, consistent with a causal impact of antibiotics on the 392 

microbiota in MetaCardis. 393 

 394 

ED Figure 6. Enterotype likelihood is altered by antibiotics. Cuneiform shows normalized regression 395 

coefficients of logistic models for each 4-class enterotype as a function of antibiotics courses in last 5 396 

years, separately for controls and metabolic disease patient groups. All significant (two-sided Wald FDR 397 

< 0.1) models show depletion of Ruminococcus and Prevotella enterotypes, and enrichment for Bac-398 

teroidetes enterotypes; in the case of metabolic disease patients, this is strongest for the low cell count 399 

Bacteroidetes 2 enterotype.  400 

 401 

ED Figure 7. Illustration of flow cytometry gating strategy. A fixed gating/staining approach was ap-402 

plied32. Both blank and sample solutions were stained with SYBR Green I.  403 



 

   

a. FL1-A/FL3-A acquisition plot of a blank sample (0.85% w/v physiological solution) with gate bound-404 

aries indicated. A threshold value of 2000 was applied on the FL1 channel.  405 

b. Secondary gating was performed on the FSC-A/SSC-A channels to further discriminate between de-406 

bris/background and microbial events.  407 

c, d./ FL1-A/FL3-A count acquisition of a faecal sample with secondary gating on FSC-A/SSC-A chan-408 

nels based on blank analyses. Total counts were defined as events registered in the FL1-A/FL3-A gating 409 

area excluding debris/background events observed in the FSC-A/SSC-A R1 gate. The flow rate was set 410 

at 14 microliters per minute and the acquisition rate did not exceed 10,000 events per second. Each panel 411 

reflects the events registered during a 30 seconds acquisition period. Cell counts were determined in 412 

duplicate starting from a single biological sample. 413 

 414 
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