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Abstract This paper scrutinizes in detail the synergy between physical and
virtual testing of the mechanical response of sheet metal. In this context, phys-
ical testing refers to the usage of physical samples onto which mechanical tests
are conducted, while virtual testing refers to multi-scale plasticity simulations
onto a model representation of the metallic microstructure derived from mi-
crostructural measurement.

An extensive experimental campaign was conducted to capture the plastic
material response of mild steel sheet in the first quadrant of the biaxial stress
space, i.e. for tensile stresses along the Rolling Direction (RD) and Transverse
Direction (TD). The experimental data was acquired using state-of-the-art
stress-controlled material tests enabling to probe the material up to large
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plastic strains in the first quadrant of stress space. Identical stress paths were
simulated using the Virtual Experimentation Framework (VEF) software suite
adopting the ALAMEL multi-scale plasticity model. The ALAMEL model
was calibrated solely on the basis of the initial crystallographic texture of the
material and a reference hardening curve obtained through a uniaxial tensile
test in the rolling direction. The predictive accuracy of the ALAMEL model to
reproduce the experimentally acquired material response has been thoroughly
assessed. To avoid any bias in the assessment due to extrapolation of the
material behavior, predictions were limited to the pre-necking regime of the
material. The predictions of the VEF show good agreement with the physical
test results.

Subsequently, the experimental and virtual test data were used to cali-
brate Hill's quadratic yield criterion and the Yld2000-2d yield function. The
calibration accuracy of these yield criteria is thoroughly assessed by compar-
ing theoretical predictions and experimental data. In addition, the calibrated
yield functions are used to simulate a hydraulic bulge test and the results are
compared with experimental observations. It is shown that the adopted vir-
tual material testing procedure has reached a sufficient level of maturity to
potentially serve as a viable alternative for physical material testing of steel
sheet.

Keywords Virtual material testing · Mechanical testing · Sheet metal ·
Anisotropic yield function

1 Introduction

Finite Element (FE) modelling is extensively used to cope with growing perfor-
mance demands (e.g. weight reduction) in the mechanical design of products
and structures. The application of complex sheet metal forming processes to
emerging alloys poses new manufacturing challenges which can be tackled with
the aid of FE techniques. Most commercially available FE codes use macro-
scopic anisotropic models to capture the plastic response of sheet metal. Large
simulation accuracy in sheet forming operation can be achieved by taking the
directionality of mechanical properties of sheet metal into account through
advanced phenomenological anisotropic yield functions. The flexibility of such
macroscopic models to accurately describe the plastic anisotropic response of
sheet metal comes at the expense of increased experimental effort. Indeed, the
complexity of the continuum model usually scales with the amount of unknown
model parameters, and, consequently, also with the effort (e.g experimental,
computational, etc.) to identify them. From an industrial point of view, these
continuum models are computationally efficient but their application is often
impeded by the associated experimental calibration effort. Moreover, industrial
practice generally aims at a minimum number of experiments, often leading
to limited prediction quality.

Obviously, the predictive accuracy of a material model also depends on the
quality of the experimental data used for calibration purposes. It makes sense,
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for example, to calibrate the model using carefully selected experimental data
resembling (e.g. in terms of stress state(s)) the sheet forming process that
needs to be simulated afterwards. In general, however, the identification of the
governing model parameters relies on standard procedures limited to uniaxial
and balanced biaxial tensile testing. Model parameters are often determined by
minimizing the discrepancy between experimental and theoretical flow stresses
and r -values through a cost function.

The most commonly adopted strategy to acquire the calibration data is to
subject the sheet metal to physical experiments. Conventionally, sheet metal is
subjected to stress-controlled testing (i.e. the stress state is precisely controlled
in the gauge section of the specimen) at a constant rate of deformation. Uni-
axial tensile experiments are easy to perform but it is well-known that biaxial
tension experiments significantly enhance the calibration accuracy of advanced
anisotropic yield functions [1]. Such experiments, however, entail a significant
experimental effort and require dedicated test machines enabling to control a
targeted stress path whilst maintaining a constant rate of deformation. Such
methods, e.g. [2,3], are state-of-the art and extremely important to carefully
verify concepts and theories [4]. Moreover, multi-axial stress-controlled exper-
iments can be used to validate alternative identification strategies such as the
Finite Element Model Updating (FEMU) method, Integrated Digital Image
Correlation (IDIC) and the Virtual Fields Method (VFM). The latter methods
can be employed to reduce the experimental work load to calibrate complex
plasticity models by extracting more information from a single, carefully de-
signed experiment. The FEMU method is straightforward in the sense that
it relies on the minimization of the discrepancy between an experimentally
measured and a numerically computed response (e.g. strain fields).

Multiple studies, e.g.[5–7], report on the identification of anisotropic yield
functions through FEMU and full-field measurements. IDIC [8] is essentially
based on global DIC [9,10] and has for example been used to identify Hill's
48 yield criterion [11]. The VFM [12] offers a computationally efficient pro-
cedure to identify material behavior from full field measurements. To do so,
the VFM framework relies on the minimization of the difference between the
virtual internal and the virtual external work. The nonlinear VFM has been
successfully applied [13,14] to identify constitutive parameters of anisotropic
yield loci. Although it has been demonstrated that FEMU, IDIC and VFM
have the potential to reduce the amount of experimental effort in calibrating
advanced continuum plasticity models, a number of issues require more re-
search. For example, a systematic procedure to design the optimal specimen
geometry [15] preferably as a function of a specific material state is required.
In addition, the influence of experimental errors in acquiring full-field data [16]
on the identified parameters needs to be investigated thoroughly. Finally, ver-
ification of alternative methods should be pursued by consistent comparison
with state-of-the-art stress-controlled sheet metal tests.

Another possibility to reduce the experimental work load associated with
the calibration of anisotropic yield functions is to resort to so-called virtual
material testing. Virtual testing refers to multi-scale plasticity simulations
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onto a model representation of the metallic microstructure derived from mi-
crostructural measurement. A virtual laboratory [17,18] is then used to con-
duct stress-driven crystal plasticity (CP) simulations substituting the physical
stress-controlled experiments. Several authors embarked on the calibration of
macroscopic anisotropic yield functions for sheet metal using data generated by
crystal plasticity models [4,19–24,17,25,26,18]. Barlat et al.[4] used a Visco-
Plastic Self-Consistent (VPSC) model to generate data characterizing the out-
of-plane properties of an aluminium alloy sheet sample. Conventional testing
data obtained from tensile tests, a hydraulic bulge test and a disk compression
test supplemented with the virtual test data were used to calibrate Yld2004-
18p. Plunkett et al. [19] combined experimental data with virtual data (gen-
erated using a VPSC model) to calibrate a macroscopic yield function capable
of capturing differential hardening. Grytten et al. [20] scrutinized the capabil-
ity of calibrating Yld2004-18p based on mixed experimental-virtual and fully
virtual data. The FC Taylor model was used to generate the virtual data and
the authors concluded that a more advanced CP model is required to arrive at
a sufficiently accurate calibration procedure. Hammami et al. [27] showed that
the Multisite model provides an accurate anisotropy prediction for Ti6Al4V
under tensile stress states. The authors concluded that the Multisite model can
be used to limit the experimental effort associated with the calibration of ad-
vanced anisotropic yield functions such as CPB06. Zhang et al. [26] concluded
that the predictive accuracy of the FC Taylor, VPSC and ALAMEL models
is insufficient to capture the anisotropic response of AA3103 sheet, and, as a
consequence, deemed inadequate to calibrate Yld2004-18p. Gawad et al.[17]
employed the ALAMEL model to fully calibrate the BBC2008 yield func-
tion to capture the plastic anisotropy of an industrial-grade aluminum alloy
AA6016. The authors showed through cup drawing simulations that BBC2008
calibrated using virtual data can yield more accurate results than using con-
ventional mechanical testing. Yamanaka et al.[25] employed the CPFE method
to calibrate Yld2000-2d for 5182 aluminum alloy sheet. The authors concluded
that virtual testing yields an equivalent calibration accuracy compared to the
physical testing. Zhang et al.[18] presented a framework for a virtual test lab
to calibrate phenomenological anisotropic yield functions. The methodology
was applied to an AA3104 alumium alloy and the authors showed that the
virtual laboratory can substitute physical, uniaxial tensile tests. It is clear
from these studies that virtual material testing is a promising approach for
efficient calibration of advanced anisotropic yield functions.

The key point is that CP models enable to acquire virtual test data for spe-
cific stress states provided that the crystallographic texture and, in some cases,
statistical information about grain morphology, is available. Stress states which
are difficult to probe experimentally can be substituted by their virtual coun-
terpart. The latter approach will potentially gain importance since improved
anisotropic yield functions will likely require more complicated experiments.
Embarking on full virtual calibration requires a profound experimental vali-
dation of the adopted CP model. In essence, the CP model must be able to
reproduce the material response during stress-controlled physical testing.
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In this study, the focus is on the synergy between physical and virtual test-
ing of sheet metal using the ALAMEL model. To guarantee a high-resolution
assessment of the CP predictions, the research efforts are confined to the first
quadrant of stress space which is probed by 9 proportional stress paths. Ad-
ditionally, to avoid any uncertainty with respect to extrapolation of material
behavior [28], the assessment is solely based on experimental data in the pre-
necking region. First, the experimental stress-strain response is directly com-
pared with the response obtained through the ALAMEL model. The exper-
imentally observed and virtually predicted plastic anisotropy are thoroughly
assessed. Next, both experimental and virtual data are used to calibrate Hill's
48 yield criterion and the Yld2000-2d yield function. The calibration accuracy
is assessed by comparing theoretical predictions of the anisotropic yield func-
tions with the physically acquired data. Finally, the experimentally and the
virtually calibrated yield functions are embedded in FE models to simulate a
hydraulic bulge test, followed by detailed experimental validations.

2 Material Testing

2.1 Physical Testing

An industrial cold-rolled steel sheet (deep-drawing quality and designated
SPCE in Japanese Industry Standard, JIS) was chosen as test material in
this study. The steel sheet has a nominal thickness of 1.2 mm and its chemical
composition (mass%) can be found in table 1. All material tests reported in
this section comply with the following characteristics:

1. the Rolling Direction (RD) and the Transverse Direction (TD) are aligned
with the x and y axis, respectively.

2. the reference plastic strain rate was kept constant to approximately 5x10−4

s−1.
3. the equivalent plastic strain in the experiment is limited to the maximum

uniform strain measured in a tensile test in the RD, see Table 2.
4. 2 tests for each type of experiment.

Standard tensile tests (JIS 13 B-type) were conducted to determine the
work hardening properties, the maximum uniform strain εmax and the r-values
under 0◦, 45◦, and 90◦ with respect to the rolling direction (RD). The values
can be found in Table 2. The experimental true stress-plastic strain curves up
to εmax are shown in Figures 1 (a),(d) and (g). Swift’s hardening law was used
to realize the excellent fit for the RD (see Figure 1(a)).

The characterization was confined to the first quadrant of stress space
and the material was subjected to 7 linear stress paths (true stress ratios
σx : σy=4:1,2:1,4:3,1:1,3:4, 1:2 and 1:4) using two types of biaxial tensile tests,
i.e. a biaxial tensile test and a tube expansion test. The experimental campaign
is schematically shown in Fig.2 and more details can be found in [29]. The
cruciform specimen proposed by Kuwabara et al. [2] was used to measure the
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Table 1: Chemical composition test material.

Designation C Mn P S

SPCE ≤ 0.08 ≤ 0.45 ≤ 0.03 ≤ 0.03

Table 2: Swift’s hardening law
(
σ = K(ε0 +εpleq)

n
)

fitted in a strain range from

εpleq = 0.002 up to the maximum uniform strain εmax . The reported r -values
are the measured values at an engineering strain εeng=0.10 using gauge marks.

Tensile direction σ0.2 (MPa) K (MPa) ε0 n r εmax

RD (x) 153 564 0.0059 0.275 1.85 0.248
45◦ 161 558 0.0072 0.272 1.93 0.254
90◦ (y) 162 549 0.0080 0.272 2.82 0.259

plastic material response in the moderately low strain range (i.e. εp0 < 5%)
according to [30]. The arms of the cruciform were parallel to the RD and TD
of the as-received material and the normal strain components (εx, εy) were
measured using uniaxial strain gauges (YFLA-2, Tokyo Sokki Kenkyujo Co.)
at the optimal positions [31,32]. The slits in the arms of the cruciform specimen
were obtained by laser cutting. More details concerning the biaxial testing
apparatus and the testing method can be found in [2] and [30], respectively.

The Multiaxial Tube Expansion Test (MTET)[33,3] was used to probe plas-
tic deformations equivalent to the maximum uniform strain εmax determined
through a uniaxial tensile test in the RD. Two types of tubular specimens
were used, type I and type II, respectively. Type I had the RD oriented along
the axial direction of the tube and was used for testing under the conditions
for which σx ≥ σy. Type II had the RD in the circumferential direction and
was used for stress states satisfying σx ≤ σy. More details on the MTET, the
testing machine and the feedback circuit for controlling the true stress paths
can be found in [3]. The experimental true stress-plastic strain curves obtained
through the biaxial tensile experiments are shown in Fig.3.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1: Uniaxial stress-strain curves. (a) 0o, (b) 15o, (c) 30o, (d) 45o, (e) 60o,
(f) 75o
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(g)

Fig. 1: (Cont'd) Uniaxial stress-strain curves. (g) 90o
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Fig. 2: Physical testing in the first quadrant of stress space: 9 linear stress
paths.
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2.2 Virtual Testing

The procedure for virtual testing of the yield locus is based on the ALAMEL
multi-scale model and is briefly outlined here. More details can be found in
[34] (the original publication of the ALAMEL model) and [17] (procedure
to employ the ALAMEL model for yield locus calibration). The multi-scale
ALAMEL model makes use of a statistical representation of the microstruc-
ture whereby interaction between grains is accounted for. The microstructure
is composed of a large number of independent microstructural units called
clusters. A cluster consists of two neighbouring grains (crystals) of equal size.
They are separated by a common, flat grain boundary with specific orienta-
tion. Upon imposing a plastic deformation on an ALAMEL cluster, particular
slip systems in both constituting grains are activated in such a way that the
plastic work that is associated with slip activation, is minimized for the cluster
as a whole. The deformation inside each grain can hereby differ from the im-
posed deformation due to a simple shear deformation along the grain boundary
(relaxation). As the relaxations are required to be opposite in both grains of
the cluster, the average deformation inside the cluster equals the imposed de-
formation. It can be proven for this model that local stress equilibrium across
the grain boundary is guaranteed under all conditions [34]. The anisotropic
behavior of the aggregate of clusters follows from averaging the stress state in
all grains, which is readily derived from the set of active slip systems and their
associated Critical Resolved Shear Stresses (CRSS) that trigger plastic slip on
those slip systems. The selection of grain orientations is derived from (crys-
tallographic) texture measurement. For the material at hand, the texture was
obtained by XRD pole figure measurements on samples at 3 different depths,
namely at 0%, 25% and 50% of the sheet thickness. The texture gradient
across the thickness was found to be weak. The pole figures at mid-thickness
are presented in Figure 4(a). The Figure 4(b) shows the resulting Orientation
Distribution Functions (ODF) calculated from the weighted average of mea-
surements across the thickness (weighting factors of 0.25, 0.5 and 0.25 for the
0%, 25% and 50% samples, respectively).

It is seen from Figure 4(b) that the distribution of crystal orientations is
concentrated in the so-called γ−fiber (a perfect gamma-fiber consists of all ori-
entations with a {111} crystal direction normal to the sheet plane), which ap-
pears horizontally in this section of Euler space (orientation space). This kind
of γ−fibered texture is typical for cold rolled and recrystallized steel sheet. The
detailed characteristics of the texture, such as its sharpness, are determined
by the exact thermo-mechanical processing conditions and alloying content.
These texture characteristics are responsible for the precise anisotropic plastic
behavior, see e.g. [35]. In the present work, the virtual microstructure for the
multi-scale ALAMEL simulations consists of a set of 5000 orientations (grains)
that have been statistically sampled from the average ODF [36]. These grains
have been placed at random in a set of 2500 clusters (2 grains per cluster). A
grain boundary orientation is assigned at random to each cluster in order to
statistically represent a microstructure with an equiaxed grain shape on aver-
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age, since this is the typical grain morphology in fully recrystallized condition
as is the material under investigation. For ferritic steel material such as this
one, 24 potential slip systems are considered for each grain, having <111>
slip directions, with {110} or {112} slip planes. All slip systems within a grain
are assumed to have equal Critical Resolved Shear Stress (CRSS) at any state
of deformation. The hardening behavior is defined at the microscopic level by
prescribing the CRSS for any given grain as a function of the accumulated
slip of that grain. The experimental stress-strain data along RD was used to
calibrate the microscopic hardening law. A two-stage Voce-type law with 5
independent parameters was adopted of which the details can be found in
Appendix 7.

2.3 Results and discussion

Since the VEF enables to simulate any arbitrary stress state, it is possible
to directly assess its predictive accuracy by comparison with physical exper-
iments. Figure 1 shows the experimentally acquired uniaxial stress-strain re-
sponse along with the VEF simulation results. It can be inferred from Figures
1(d) and (g) that the VEF predictions for 45 degree and 90 degree tensile
tests accurately reproduce the experimentally measured behaviour. Compar-
ison with additional tensile experiments up to a nominal strain of 0.10 (see
Figs.1(b),(c) and (f)) confirm the accuracy of the VEF in predicting the vari-
ation of plastic behavior with the direction.In addition, Figure 5 shows the
comparison between experimentally measured r -values as a function of the
tensile direction with respect to the RD. The experimental values were mea-
sured using a gauge mark at an nominal strain of 0.1. The measured values
shown in Table 2 can be compared with those predicted by the VEF in Table
3. It can be seen from Fig. 5 that the VEF enables to predict the trend of the
experimental r -value profile. The evolution of the r -values r0, r45 and r90 as a
function of the longitudinal plastic strain is shown in Fig.6. The r -values were
calculated as a plastic strain ratio:

rα =
εpw

−εpl − ε
p
w

(1)

with εpw and εpl the plastic strain in the width and longitudinal direction,
respectively. Both strain components were measured with DIC to calculate
the evolution of the r -values according to Eq.(1). Likewise, the virtual data
generated by the VEF are used to predict the r -value evolution. For the sake
of completeness, the r -values manually measured using gauge marks (see table
2) are also shown. It can be inferred that the experimental r -values r45 and
r90 tend to saturate as opposed to the VEF predictions which monotonically
increase.

Fig.3 shows that the VEF quite accurately reproduces the physical biaxial
experiments. The onset of yielding under biaxial tension, however, is often not
precisely captured by the VEF as this model does not account for gradual
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activation of slip systems within each grain, which occurs in reality upon be-
ginning of plastic deformation. The concept of the contour of plastic work in
stress space [37,38] was adopted to assess the work hardening behavior un-
der biaxial tension. After a certain amount of deformation such contours do
not represent the actual yield loci. Indeed, the contours of plastic work are a
collection of stress points associated with a specified amount of plastic work.
The stress-strain curve obtained from a uniaxial tension test along the RD
(Figure 1(a)) was used as a reference datum for work hardening. As such, this
curve was used to determine the uniaxial true stress σ0 and the plastic work
per unit volume W p corresponding to particular values of the reference plastic
strain εp0,exp. The uniaxial true stress σ90 and the biaxial true stress compo-
nents (σx, σy) obtained from the biaxial tensile tests were then determined
at the same plastic work W p. The stress points (σ0,0), (0,σ90) and (σx, σy)
corresponding to a certain value of εp0 can be plotted in the principal stress
space resulting in a contour of plastic work.

The contours of plastic work were determined for different levels of εp0,exp
up to εp0,exp = 0.24 as shown in Figure 7(a) along with the work contours
predicted by the VEF. In general, the absolute stress levels of the predicted
work contours are in good agreement with the measured work contours. The
initial yielding under biaxial tension, however, is poorly predicted by the VEF.
The latter can potentially be attributed to (i) the strong differential hardening
[37,38] during initial plastic deformation which cannot be captured by the
ALAMEL model and (ii) the transition from elastic to plastic deformation
which is not considered by the ALAMEL model.

The former (i) can be investigated in more detail by analysing the normal-
ized work contours shown in Figure 7(b). By normalizing the work contours
shown in Figure 7(a) using σ0 associated with a specific value of εp0,exp, it
can be appreciated that in the majority of the monitored stress states the
contours of plastic work expand in the range 0 < εp0,exp ≤ 0.03. This partic-
ular phenomenon is referred to as differential hardening. It can be observed
that the shape of the experimental work contours remain almost identical for
0.03< εp0,exp <0.24 meaning that isotropic hardening is valid in this partic-
ular strain range. Figure 7(b) shows that the VEF captures a significantly
weaker differential hardening than experimentally observed. The evolution of
the shape of the work contours in a particular stress state can also be visual-
ized by plotting the distance l from the origin to the normalized stress point,
as a function of the reference plastic strain:

l =

√
(
σx
σ0

)2 + (
σy
σ0

)2 + (
σxy
σ0

)2 (2)

where the stress components are defined with respect to the orthogonal ma-
terial axes of which the x-axis is aligned with RD. As opposed to the biaxial
tensile tests and the uniaxial tensile test in the RD and TD, the uniaxial ten-
sile tensile tests oriented at an angle with respect to the RD involve a non-zero
σxy. Figure 8 shows the evolution of the distance l for biaxial tension (a) and

uniaxial tension (b) as a function of the reference plastic strain εpl0 associated
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Table 3: Predicted r -values at an engineering strain εeng=0.10 using the VEF.

r0 r45 r90

2.19 2.45 2.85

with consecutive work contours. It must be noted that Figures 8 (a) and (b)
have a different scale. Nevertheless, it can be inferred that the general trend
predicted by the VEF is in close agreement with the experimentally acquired
data. Indeed, the VEF correctly predicts expansion ( dl

dεp0
> 0) and shrinkage

( dl
dεp0

< 0) of the work contours, except for the stress ratio σx : σx = 1 : 2. The

strong change of l during the initial deformation, however, cannot be captured
by the VEF. A similar observation for another steel grade is reported in [35].
Finally, figure 9 compares the experimentally measured direction of plastic
strain rates β with the predicted ones by VEF as a function of the reference
plastic strain εp0. Figure 9(a) shows the direction of plastic strain rate β for
the biaxial stress paths where β is defined as (see Figure 13(d) for a schematic
representation):

β = tan−1
ε̇y
ε̇x

(3)

Figure 9(b) shows β for the uniaxial tensile testing under various angles
with the RD where β is defined as:

β = tan−1
ε̇w
ε̇l

(4)

with ε̇w and ε̇l the width and longitudinal strain rate, respectively. Eq.(3) and
Eq.(4), however, are equivalent for a uniaxial tensile test in the RD. It can be
inferred from Figure 9 that the β-values are almost constant and accurately
predicted by the VEF.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: Biaxial stress-strain curves.(a) σx : σy=4:1 (b) 2:1 (c) 4:3 (d)3:4 (e)
1:1,x and (f) 1:1,y
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(g) (h)

Fig. 3: (Cont'd) Biaxial stress-strain curves.(g) σx : σy=1:2 (h) 1:4

(a)
(b)

Fig. 4: (a) The (001), (101) and (111) pole figures at sheet mid-thickness.(b)
The φ2=45◦-section of the Orientation Distribution Function (average across
sheet thickness).
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Fig. 5: Experimental and predicted r -value (at engineering strain εeng=0.10)as
a function of the tensile direction.
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(a) (b)

(c)

Fig. 6: Evolution of the r -value as a function of longitudinal plastic strain.(a)
r0 (b) r45 and (c) r90.
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3 Calibration of anisotropic yield functions

In this section three selected plane stress yield functions (the von Mises cri-
terion [39], Hill's 48 [40] and the Yld2000-2d [41,42] yield loci) are calibrated
using physical and virtual test data. An overview of the parameters required
to calibrate the selected yield criteria can be found in table 4. Swift's strain
hardening law was used to describe the reference strain hardening curve mea-
sured through a tensile test in the RD of the test material, see Figure 1(a)
and the parameters in Table 2. The latter curve completely determines the
von Mises yield criterion. Figure 11 (a) shows a selected number of work con-
tours along with the calibrated von Mises yield criterion. It can be inferred
that initial yielding can be accurately described by the von Mises yield locus.
At a reference plastic strain of about 3%, however, the von Mises yield cri-
terion fails to precisely describe the plastic material response in the vicinity
of quasi-balanced biaxial tension. The plane stress version of Hill's 48 yield
criterion was calibrated by using the r -values and the reference strain hard-
ening curve. The experimental (Table 2) and virtual (Table 3) r -values were
used to calibrate Hill's 48 criterion. The calibrated yield loci are shown in Fig.
11(b). The r-based version of the Hill's yield criterion obviously cannot accu-
rately describe yielding in the first quadrant of stress space. However, it must
be noted that the yield loci calibrated using experimental (Exp) and virtual
(VEF) r -values are very similar as can be seen from Fig. 11(b).

The material parameters αi (i=1-8) of the Yld2000-2d yield function were
calibrated using the parameters indicated in Table 5 while the exponent M was
identified by minimizing the root mean square error δl between the normalized
work contour and the Yld2000-2d yield locus:

δl =

√
ΣN
i (l

′
i(ϕi)

2 − li(ϕi)2)

N
(5)

with ϕi the loading angle of the i -th stress point from the x -axis in the
principal stress space, li the distance between the origin of the principal stress
space and the i-th stress point, l

′

i the distance between the origin of the prin-
cipal stress space and the theoretical yield locus along the loading direction
ϕi and N (=9) the total number of stress paths. The latter is schematically
represented in Figure 10.

Calibration can be done for several levels of reference plastic strain εp0 to
account for differential hardening as proposed by Kuwabara et al.[1]. It can
be inferred from Fig.8, however, that the shape of the yield locus remains
constant as from εp0=3%. Beyond that value, the plastic work contours are
homothetic and isotropic hardening is valid. Consequently, the yield function
can be calibrated at an arbitrary reference plastic strain in the range 0.03<
εp0 ≤0.24. It has been shown that for such a constitutive material behavior the
effect of considering differential hardening in a hydraulic bulge test simulation
can be safely ignored [43].

In this study, the Yld2000-2d yield function is calibrated at a reference plas-
tic strain of εp0=0.24 using experimental (Exp) and virtual (VEF) data shown
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Fig. 10: Schematic illustration for calculating δl.

in Figure 7. The resulting yield loci and the identified anisotropic parameters
can be found in Fig.11(c) and Table 5, respectively.

It can be observed that both calibrated yield loci correspond accurately
with the experimental data beyond a reference plastic strain of 3%. More
important in the context of this paper is the observation that both calibrations
lead to almost identical yield loci.

The calibrated yield functions can be used to theoretically predict the r -
value profile and the results are shown in Figure 12. The von Mises criterion
cannot reproduce the directional variation of the plastic behavior while Hill's
48 criterion and the Yld2000-2d function yield very similar predictions. The
best agreement is found when experimental data is used to calibrate the se-
lected anisotropic yield functions, which is reasonable considering that the
experimental r -values were used in the calibration with experimental data but
not in the calibration with virtual data (VEF).

Finally, Figure 13 compares the direction of plastic strain rates β measured
at different levels of εp0 with those calculated by the selected yield functions.
It can be seen that even the isotropic von Mises criterion quite accurately
predicts the direction of the plastic strain rate. Hill's 48 criterion seems to be
less accurate in predicting the direction of plastic strain rate. It can be inferred
that Yld2000-2d outperforms all other yield criteria in predicting β and that
the results are independent of the calibration data (experimental or virtual).
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Table 4: Material parameters used to calibrate the selected yield functions.

Material Parameter von Mises Hill's 48 Yld2000-2d

σ0 X X X
σ45 X
σ90 X
σb X
r0 X X
r45 X X
r90 X X
rb X

Table 5: Calibrated Yld2000-2d parameters at a reference plastic strain
εp0=0.24.

α1 α2 α3 α4 α5 α6 α7 α8 M

Calibration Data
Exp 0.9394 1.1841 0.8872 0.8765 0.9333 0.8020 1.0462 1.0227 5.90
VEF 0.9950 1.1232 0.8785 0.8672 0.9119 0.7867 1.0678 0.9599 5.83
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(a) (b)

(c)

Fig. 11: Calibrated yield functions and experimental work contours at selected
values of εp0. (a) von Mises (b) Hill'48 (c) Yld2000-2d
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Fig. 13: Theoretical prediction of β as a function of the loading angle ϕ.(a) von
Mises (b) Hill'48 (c) Yld2000-2d and (d) Schematic illustration for calculating
β as a function of ϕ.
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4 Hydraulic bulge test

In section 2 it was shown that, for the test material under investigation, plas-
ticity experiments in the first quadrant of stress space can be accurately re-
produced by the VEF. In section 3, the virtual test data was successfully used
to calibrate the selected yield functions. In this section, hydraulic bulge tests
and FE simulations are performed to evaluate the application of the calibrated
yield functions.

4.1 Experimental

The hydraulic bulge test consists of clamping a circular blank and exposing
it to a hydraulic pressure. The stress state generated in the bulged specimen
ranges from quasi-balanced biaxial tension at the apex to plane strain close
to the clamping region. As such, the bulge test enables to probe the test
material in a portion of the first quadrant of stress space. Figure 14 shows
the experimental set up and a schematic drawing of the forming tools used for
hydraulic bulge forming. The diameter of the blank holder opening was 150
mm and the die profile radius was 8 mm. The material flow-in was prevented
by a triangular draw bead. No lubricant was used at the interface between
the blank and die surface. The hydraulic cylinder was coupled with a Zwick
elektromechanical servo testing actuator enabling to control the flow rate of the
hydraulic fluid forming the bulge. The latter is required to keep the thickness
strain rate ε̇z at the apex constant [44]. In this study, the velocity of the
hydraulic cylinder was controlled in such a way that the equivalent plastic
strain rate was kept constant to approximately 10−4 s−1. The latter value is
consistent with the material tests presented in section 2. The required velocity
profile was investigated by conducting a reference experiment with a constant
flow rate. This result was linearly scaled to obtain the velocity profile. The
thickness strain |εz| at the apex of the bulged specimen was measured using
stereo DIC assuming volume constancy and ignoring elastic deformation:

|εz| = | − ε1 − ε2| (6)

with ε1 and ε2 the principal strains. Figure 15 shows the instantaneous

strain rate |dεz|dt at the apex during bulge testing up to maximum uniform
strain. It can be inferred that the adopted velocity profile enables to keep the
strain rate close to 10−4 s−1. The pressure was measured by converting the
load cell reading mounted on the Zwick actuator. The load cell reading was
synchronized with the DIC system taking pictures at 1 Hz. The optimal DIC
settings can be found in table 6. Two Manta (Allied Vision) cameras were used
along with Kowa lenses with a focal length of f=25 mm. MatchID 3D [45] was
used to post-process the images.
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(a)

(b)

Fig. 14: (a)Experimental set up of the hydraulic bulge test (b) and schematic
drawing.

Fig. 15: Thickness strain rate at the apex as a function of the thickness strain.

4.2 Numerical

Abaqus/Standard [46] was used to simulate the hydraulic bulge test. Figure
16 shows the 3D FE model of which only one quarter was modelled given (i)
the axial symmetry of the process and (ii) the orthotropic plastic anisotropy of
the material. The FE model contains quadrilateral shell elements with reduced
integration (S4R). The draw bead in this model was simplified by assuming
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Table 6: DIC parameters in the bulge test

DIC implementation Specification

Matching criteria ZNSSD
Interpolation Bicubic Interpolation
Transformation Affine
Subset 21 pixels
Step 10 pixels
Spatial resolution 21 pixels = 1.74 mm
In-plane displacement resolution 5.49 · 10−4 mm
Out-of-plane displacement resolution 4.32 · 10−3 mm

Strain Smoothing Quadratic Quadrilateral (Q8)
Strain window size 15 Datum points
Strain resolution 7.26 · 10−5

that the nodal displacements at the draw bead position are zero. The blank
holder force required for forming the draw bead was ignored in this model
while a Coulomb friction coefficient of 0.3 is used between the sheet and the
blank holder. Uniform pressure was applied in the FE model to represent the
hydraulic fluid. The validation of the assumptions with respect to the boundary
conditions (i.e. the draw bead and the blank holder force) were investigated
with an axisymmetric FE model shown in Fig.16(b). The latter model takes
the draw bead mechanics prior to bulging into account. An axisymmetric FE
model, however, is confined to an isotropic material model. As such, both FE
models shown in Fig.16 assuming a von Mises material are used to scrutinize
the effect of simplifying the boundary conditions. The axisymmetric FE model
contained 12 solid elements (CAX4R) through the thickness of the sheet.

The thickness strain at the apex as function of the pressure of the hydraulic
fluid (|εz|-P) curves predicted by both FE models can be found in figure 17. It
can be inferred that the difference between the 3D shell model (3D) and the
axisymmetric FE model (2D) is marginal and within the experimental scatter
of the experiments shown in Fig.18. The 2D simulation reveals that the blank
is slightly pre-strained after forming the draw bead with a blank holder force
of FBH=300 kN. However, it can be concluded that the draw bead mechanics
can be safely ignored in the 3D FE model. Both FE models, however, assumed
a friction coefficient of 0.3. To scrutinize the effect of the frictional condition,
an additional 3D simulation was performed assuming a friction coefficient of
0.1. The result (referred to as 3D + friction 0 .1 ) is shown in Figure 17 and it
can be concluded that the frictional condition is of minor importance in the
hydraulic bulge test.

This basically means that the |εz|-P curve is independent of the boundary
conditions and the frictional behavior during bulging. Moreover, it has been
verified that the |εz|-P curve is insensitive to the adopted mesh provided that
a mesh convergence study is performed. In other words, the |εz|-P curve lends
itself to assess the accuracy of the continuum plasticity model adopted in the
FE model. Indeed, the evaluation of the plasticity model in the first quadrant
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Fig. 16: Numerical modelling hydraulic bulge test. (a) 3D FE model (b) 2D
FE model.

of stress space is not hampered by uncertainties with respect to frictional
conditions, boundary conditions and technological aspects of the FE model.

4.3 Results and discussion

Figure 18 shows the experimentally acquired |εz|-P curve along with the simu-
lations using the strain hardening behavior and anisotropic yield functions cal-
ibrated in section 2.1 and 3, respectively. It can be inferred that the von Mises
criterion largely underestimates the pressure to form the bulge while Hill's 48
criterion overestimates the pressure. The Yld2000-2d yield function shows the
best agreement with the experiment. More important in view of the goal of
this paper, is that the virtually calibrated yield functions (referred to as VEF)
yield an equivalent simulation accuracy as those calibrated using experimental
data. The calibration procedure adopted for the Yld2000-2d functions yields
almost identical results. Finally, Fig. 19 shows the measured thickness strain
along the meridian line (RD) for a bulged specimen formed with a pressure of
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Fig. 17: Validation of simplified boundary conditions in a hydraulic bulge test
simulation.

P=6.4 MPa. The bulged specimen was carefully sectioned and the thickness
along the meridian line was measured using a digital measurement gauge with
a resolution of 0.001 mm. As opposed to the von Mises criterion, the Hill's 48
yield criterion underestimates the strain levels. The Yld2000-2d yield function
most accurately captures the strain distribution. The experimentally and vir-
tually calibrated Yld2000-2d yield functions are in very close agreement. The
thickness reduction at the apex is slightly underestimated while the difference
reduces when approaching a radial distance of 70 mm. The latter can be qual-
itatively explained by analysing the shape of the work contours, see Fig.11(c).
It can be observed that the calibrated Yld2000-2d function is inaccurate at
initial yielding under biaxial tension. The difference in the first 3% of reference
plastic strain is significant in the vicinity of quasi-balanced biaxial tension. In-
deed, in this region the flow stress is overestimated which could potentially
explain the underestimation of the thickness reduction at the apex. However,
Figure 11 (c) shows that the difference under plane strain conditions between
the experimental work contour and Yld2000-2d rapidly vanishes, hence the
accurate prediction of the strain distribution close to the clamping region.
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Fig. 18: Simulation bulge test: thickness strain versus inner pressure.

Fig. 19: Simulation bulge test: strain distribution.
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5 Conclusions

The following conclusions are valid for a cold-rolled low carbon steel of deep
drawing quality with a nominal thickness of 1.2 mm. Additionally, it must be
noted that solely the first quadrant of stress space was probed and that the
analysis was confined to the pre-necking regime of the material. Under these
conditions, it is shown that the VEF has reached a sufficient level of maturity
to potentially serve as a viable alternative when physical testing is impeded.
Furthermore, the following can be stated:

1. The majority of the virtual data generated by the ALAMEL model is
in good agreement with the physical stress-controlled tests. A somewhat
weaker initial differential hardening, however, is predicted by the ALAMEL
model.

2. Similar theoretical predictions of the material response (e.g. r -values and
the direction of plastic strain rate) were obtained with either an experi-
mental or a virtual calibration of both Hill's 48 and Yld-20002d anisotropic
yield functions.

3. Equivalent FE simulation accuracy of a hydraulic bulge test was obtained
using the experimentally and virtually calibrated Yld2000-2d yield func-
tion.
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Table A.1: Two-stage Voce hardening parameters for the material under in-
vestigation.

Independent parameters τ0 [MPa] τIIIsat [MPa] τIVsat [MPa] θ0 [MPa] θT [MPa]
57.4 135.8 165.0 381.7 105.6

Dependent parameters τT [MPa] γT [\]
114.1 0.264

A The two-stage Voce hardening law

The classical Voce hardening law assumes that the hardening rate θ = dτ
dγ

decreases linearly

as a function of τ . The currently adopted two-stage Voce law is more generic, assuming
two subsequent hardening stages, denoted stages III and IV, each with a different linearly
decreasing hardening rate. In τ − θ-diagram, the two-stage hardening behavior shows 2
linear parts, connected to each other at a so-called transition point. The two-stage Voce law
is given by:

τ =


τIIIsat − (τIIIsat − τ0) exp

(
−θ0

τIIIsat −τ0
γ

)
for γ ≤ γT

τIVsat − (τIVsat − τT ) exp

(
−θT

τIVsat−τT
(γ − γT )

)
for γ ≥ γT

(7)

It has 5 independent parameters, the physical meaning of which is as follows:

1. τ0 is the initial flow stress (i.e. of the stage III),
2. τIIIsat is the saturation flow stress associated to stage III,
3. τIVsat is the saturation flow stress associated to stage IV,
4. θ0 is the initial hardening rate (i.e. of the stage III), and
5. θT is the hardening rate of the transition point between stages III and IV.

These parameters are subject to the constraints 0 < τ0 < τIIIsat ≤ τIVsat and 0 < θT < θ0.
The one-stage Voce variant is retrieved by imposing τIIIsat = τIVsat and setting θT to an
arbitrary value within constraint boundaries. The two-stage Voce hardening law Further-
more, γT and τT are two derived (dependent) Voce parameters that denote the accumulated
slip and the flow stress at the transition point, respectively. For the current material un-
der investigation, Figure A-1 shows the quality of fit of the two-stage Voce law, while the
corresponding Voce parameters are listed in Table A.1.

B Anisotropic yield functions

B.1 Hill 1948

Under plane stress conditions Hill's 48 yield criterion is given as

Fσ2
22 +Gσ2

11 +H(σ11 − σ22)2 + 2Nσ2
12 = σ̄2 (8)

with σij the Cauchy stress components with respect to the orthotropic axes. The anisotropic
parameters F ,G,H and N can be determined using the Lankford ratios rα along three
different tensile directions: 

r0 = H
G

= H
1−H

r45 = 2N−F−G
2(G+F )

= 2N−F+H−1
2(1−H+F )

r90 = H
F

(9)
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Fig. A.1: Two-stage Voce strain hardening: fitting result.

B.2 Yld2000-2d

The Yld2000-2d yield function [41] is defined as

| X
′
1 −X

′
2 |M + | 2X

′′
2 +X

′′
1 |M + | 2X

′′
1 +X

′′
2 |M= 2σ̄M (10)

with σ̄ the equivalent stress. The principal values X
′
i and X

′′
i of the second order tensors

X
′

and X
′′

are given as

X
′
i =

1

2

(
X

′
xx +X

′
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√
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xx −X
′
yy)2 + 4X′

xy
2
)

(11)

and

X
′′
i =

1

2

(
X

′′
xx +X

′′
yy ±

√
(X′′

xx −X
′′
yy)2 + 4X′′

xy
2
)

(12)

The second order tensors X
′

and X
′′

are the result of a linear transformation of the
Cauchy stress σ:X

′
11

X
′
22

X
′
12

 =

L
′
11 L

′
12 0

L
′
21 L

′
22 0

0 0 L
′
66


σ11σ22
σ12

 ,
X

′′
11

X
′′
22

X
′′
12

 =

L
′′
11 L

′′
12 0

L
′′
21 L

′′
22 0

0 0 L
′′
66


σ11σ22
σ12

 ,

L

′
11

L
′
12

L
′
21

L
′
22

L
′
66

 =


2
3

0 0

− 1
3

0 0

0 − 1
3

0

0 2
3

0
0 0 1


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L
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L
′′
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L
′′
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 =
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9


−2 2 8 −2 0
1 −4 −4 4 0
4 −4 −4 1 0
−2 8 2 −2 0
0 0 0 0 9



α3

α4

α5

α6

α7

α8

 ,
with σij and αi (i=1-8) the Cauchy stress components with respect to the orthotropic axes
and the anisotropic parameters, respectively.


