
Nonparametric multivariate control chart for

numerical and categorical variables

Jiayun Jin∗

Geert Loosveldt

Catholic University of Leuven, Leuven, Belgium

Abstract

Multivariate statistical process control (MSPC) was developed for the monitor-

ing of variables that are either all numerical or all categorical. In the present

paper, we describe a nonparametric control scheme that can be used to mon-

itor a mixture of numerical and categorical variables simultaneously. It inte-

grates Principal Component Analysis Mix (PCA Mix), a multivariate statistical

tool, with the conventional Hotelling T 2 chart. To estimate the control limit for

the PCA Mix based T 2 statistic, two nonparametric approaches – kernel den-

sity estimation (KDE) and bootstrap – are employed, because of the unknown

nature of the underlying distribution. The simulation results demonstrate that

with an appropriate number of principal components, both bootstrap and KDE

exhibit convincing performance in terms of generating the same, or nearly the

same, number of false alarms (ARL0) as expected, and being able to detect pro-

cess shifts efficiently (ARL1). Compared with bootstrap, KDE is shown to work

better with small sample sizes (n < 800) and to be slightly more sensitive to
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small shifts. However, the results also show the instability of the estimated non-

parametric control limit when highly imbalanced categorical variables are in-

cluded, which indicates the need for further research on this topic.

Keywords: PCA Mix; Hotelling T 2 chart; Kernel density estimation; Boot-

strap; Average run length



1 Introduction

Statistical Process Control (SPC) has been widely used for monitoring the per-

formance of a process, in order to assess the process stability and ensure the

product quality. Out of its available tools, the control chart is the most im-

portant and most widely used. Although initially applied in industrial fields,

the control chart has found uses in many non-industrial fields, such as pub-

lic health (see the review article by Thor et al. 2007), finance (e.g., Kovářık and

Sarga 2014; Bodnar and Schmid 2011; Bilson et al. 2010), and even surveys (Jin

and Loosveldt 2020; Jin et al. 2019; Sirkis et al. 2011). It calculates control lim-

its using statistical equations, and graphically presents the fluctuations of the

quality characteristic of a process. A process is defined as statistically “in con-

trol” if the fluctuations fall within the control limits, otherwise it is defined as

“out of control.”

Univariate control charts are used to monitor a process that is characterized

by a single variable related to quality. In cases where a process is characterized

by more than one variable, the multivariate statistical process control (MSPC)

scheme is necessary in order to allow the simultaneous monitoring of multi-

ple variables. Research into MSPC began with the pioneering work of Hotelling

(1947), who introduced the T 2 statistic, which measures the distance from an

observation to the multivariate mean of the sample. Based on this statistic, mul-

tivariate observations characterized by multiple variables can be plotted on a

single chart, now known as the Hotelling T 2 chart (T 2 chart). Many multivariate

control charts have subsequently emerged – making MSPC one of the fastest

growing areas of SPC – such as the multivariate cumulative sum (MCUSUM)

control chart (Crosier 1988), and the multivariate exponentially weighted mov-

ing average (MEWMA) control chart (Lowry et al. 1992). A recent review of mul-

tivariate nonparametric control charts with comparisons of their performance

with each other is given by Sofikitou and Koutras (2020).

The variables that most existing multivariate control charts are designed to
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monitor are either purely numerical or purely categorical. With regard to mon-

itoring numerical variables, recent developments of multivariate control charts

have been motivated by the need to deal with the characteristics inherent in

the numerical variables, such as non normality (Capizzi 2015), auto-correlation

(Khusna et al. 2018; Pirhooshyaran and Niaki 2015), and high dimensionality

(Gunaratne et al. 2017). When treating categorical variables, most of the papers

in relevant literature consider multivariate Poisson (Aslam et al. 2017; Aparisi et

al. 2014; Chiu and Kuo 2007) and binomial distributions (Chiu and Kuo 2010).

To date, however, there have been surprisingly few studies exploring the use

of “mixed” control charts for simultaneously monitoring a mixture of numeri-

cal and categorical variables (mixed variables), instead of treating them sepa-

rately (Bersimis et al. 2018). An exception is Ding et al. (2016), who proposed

a standardized-rank-based MEWMA control chart for monitoring mixed data,

based on the assumption that the attribute levels of a categorical variable is de-

termined by a latent continuous variable.

Another way to deal with the mixed data in MSPC framework is to use a mul-

tivariate tool, termed PCA Mix (Chavent et al. 2014), as a preprocessing tool to

transform the mixed data into a set of numerical principal component scores.

The T 2 statistic can then be calculated based on the obtained principal compo-

nent scores. One problem that arises is that unlike the scores based on stan-

dard principal component analysis (PCA), the scores based on PCA Mix do not

follow any known family of distribution (Ahsan et al. 2018). Among the lim-

ited research that has integrated the use of PCA Mix with the T 2 chart, Ah-

san et al. (2018, 2021) employed kernel density estimation (KDE) whereas Jin

and Loosveldt (2020) employed the bootstrap method to estimate a certain per-

centile (e.g., the 99th percentile) of the PCA Mix-based T 2 distribution to use as

the control limit of their control charts.

Nonparametric methods such as KDE and bootstrap enable us to avoid mak-

ing any assumptions about the underlying distribution of the PCA Mix-based
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T 2 statistic, but using these methods also means that the results (estimates of

control limits) can be influenced by the size of the sample that is used. In the

meantime, an obvious – yet unanswered – question is: which approach works

better, KDE or bootstrap?

Based on the aforementioned considerations, in the current study we first

present a procedure that integrates PCA Mix and nonparametric methods – KDE

and bootstrap approaches – into the T 2 chart in order to simultaneously mon-

itor mixed variables. First, simulation studies are conducted to examine the

impact of the sample size on the variability of the estimated control limits for

the PCA Mix-based T 2 statistic. The aim is to provide the practitioner with some

guidance as to how large a sample size is reuqired in order to ensure an accept-

able level of variability of the estimated control limits when non-parametric

methods are used. Second, in other simulation studies, we compare the per-

formance of the two nonparametric control limits (based on KDE and on boot-

strap) with each other. To this end, we employ two indicators that have been

typically used to quantify performance of control charts – the in-control average

run length (ARL0) and out-of-control average run length (ARL1) – and conduct

two simulation studies to calculate each respectively.

Essentially, run length is the number of observations that need to be plotted

before the first out-of-control signal is detected by a control chart. ARL0 is the

expected run length when the process is actually in control. Any out-of-control

signal in this situation is therefore a false alarm. What ARL0 measures is the

“time" (in terms of in-control observations) a control chart takes before the first

false alarm is triggered. Ideally it reflects the false alarm rate that is specified

by a user when the control chart is constructed. By comparison, ARL1 counts

the average run length given that the process is out of control (e.g., a shift in

the process mean or process variance), and therefore evaluates how quickly the

control limit is expected to be able to detect a process shift. The calculations of

the two indicators are further detailed in Section 2.3.
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The remainder of the current paper is organized as follows. In Section 2,

we describe the PCA Mix-based T 2 chart, its control limit established based on

bootstrap and KDE approaches, and the complete charting procedure. Section

3 presents the results of the simulation studies, and the final section contains

our conclusions.

2 Methods

2.1 PCA Mix procedure

Suppose that we have a set of n in-control observations on k1 continuous vari-

ables and k2 categorical variables, comprising respectively a continuous dataset

X1(n× k1) and a categorical dataset X2(n× k2). The continuous X1 is standard-

ized to Z1 by scaling the variables to unit variance and centering them to zero

mean. To preprocess the categorical X2, we build an n × s indicator matrix G,

with s being the total number of response categories for all the categorical vari-

ables. The elements of G are 1s if the response belongs to the corresponding

category of the variable, and 0s otherwise. For example, taking the first categor-

ical variable, if the ith observation falls within the jth category of the variable,

Gi,j is 1, otherwise it is 0. G is then column-centered by subtracting the column

mean from each column vector to yield matrix Z2. The output of the prepro-

cessing is an n × (k1 + s) matrix Z, formed by merging the columns of Z1 and

Z2. The next step is to transform Z into components, by using the Generalized

Singular Value Decomposition (GSVD) technique.

The GSVD for Z involves assigning weights to the rows and columns of Z.

These weights are respectively expressed in two diagonal matrices, N and M, in

such a way that the rows of Z are weighted by 1
n

, the first k1 columns are weighted

by 1, and the last s columns are weighted by the inverse of the column average.

If the rank of Z is r, the GSVD of Z is then defined as:
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Z = UΛVT (1)

where Λ is the r×r diagonal matrix of the singular values of ZMZtN, U is the n×

r matrix containing the r eigenvectors of ZMZtN, and V is the (k1+s)×r matrix

of the r eigenvectors of ZMZtN. The component scores for the n observations

are computed as:

Y = ZMV (2)

where Y is of the size n × r. The first m (m 6 r) columns of Y are selected to

capture a sufficiently high proportion of the variance in the dataset. When m =

r (all principal components are selected), 100 percent of variance is retained.

2.2 Hotelling T 2 chart based on PCA Mix

Using the firstmprincipal component, the mean vector µ and covariance matrix

S of Y are respectively a zero vector and a diagonal matrix with entries λ1 > λ2 >

... > λm (the diagonal elements of Λ). For the individual observation vector xi,

the Hotelling T 2 statistic (T 2
i ) can be calculated by the following equation:

T 2
i = (yi − µ)TS−1(yi − µ)

=
m∑
a=1

yi,a
2

λa

(3)

The control limit of the T 2 chart can be calculated by using the techniques

that will be detailed in the following sections.

2.2.1 Kernel density estimation

Kernel Density Estimation (KDE) is a nonparametric density estimation method

that does not assume any specific shape for the density function. The idea is

to estimate the distribution of the PCA Mix based T 2 statistic using the KDE
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approach, and to determine the control limit as the 100(1−α)th percentile of the

estimated kernel distribution. Based on the obtained T 2
i values for i = 1, ..., n,

the kernel density of the T 2 statistic is:

f̂h(t) =
1

n

n∑
i=1

K[ (t− T
2
i )

ĥ
] (4)

where K is a kernel function and ĥ is an estimated smoothing parameter that

balances fit and smoothness. We adopt the mostly-commonly used function

– the standard normal density function – as K, and estimate ĥ using the two-

stage procedure proposed by Polansky and Baker (2000). The kernel distribu-

tion function of the T 2 statistic is then obtained as:

F̂h(t) =

∫ t

0

f̂h(T
2)dT 2 (5)

The control limit of T 2 based on KDE, denoted asCLkernel, satisfies the equa-

tion:

F̂h(CLkernel) = 1− α (6)

2.2.2 Bootstrap

In addition to KDE, another distribution-free method that is based on the boot-

strap resampling technique (Efron and Tibshirani 1986) can be used to deter-

mine the control limit of the PCA Mix-based T 2 statistic. Given T 2
i with i =

1, ..., n for n in-control observations, the control limit based on the bootstrap

technique is obtained by performing the following steps:

a. Resample with replacement n values from T 2
1 , T

2
2 , ..., T

2
n forB times to gen-

erate T 2(j)
1 , T

2(j)
2 , ..., T

2(j)
n for j = 1, 2, ..., B.

b. For each bootstrap sample, we compute the bootstrap control limit as

CL
(j)
bootstrap = T

2(j)
100(1−α) (j = 1, ..., B), where T

2(j)
100(1−α) is the 100(1 − α)th

percentile of the jth bootstrap sample.
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c. The control limit is then estimated as the mean of CL(j)
bootstrap (j = 1, ..., B):

CLbootstrap =
1

B

B∑
j=1

CL
(j)
bootstrap (7)

The number of bootstrap samples B should ideally be sufficiently large, and

in the current study we set it to 1000. The choice of the number of bootstrap

samples B is crucial as it may affect the estimation of the bootstrap control

limit. Figure 1 illustrates the bootstrap control limits using different values of

the number of bootstrap samples. By using R package “SimMultiCorrDat”, we

consider a simplified scenario where simulated data are described by one nu-

merical variable (zero mean, unit variance, zero kurtosis, and skewness equal to

five) and one binary variable (success probability equals to 0.7). These two vari-

ables are correlated with the target correlation coefficient being 0.4. For each

value ofB from 100 to 2000 in incremental steps of 100, we calculate the control

limit 100 times. It can be seen from Figure 1 that as expected the variability of

the bootstrap control limits is relatively greater when a small number of boot-

strap samples are used and tends to decrease as the number of bootstrap sam-

ples increases. The value 1000 seems to be a reasonable choice for the number

of bootstrap samples, as when more samples are used the variability does not

decrease much but stabilizes.

Insert Figure 1 here

2.3 A procedure for applying PCA Mix-based T 2 chart in two

phases

In the previous sections, we introduced the PCA Mix procedure to transform

mixed data into numerical principal components, the T 2 chart based on the

obtained principal components, and two methods (KDE and bootstrap) to

calculate the control limit of the T 2 chart. We now present the complete
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procedure that integrates these tools in order to monitor mixed data. In line

with existing literature on using control charts (e.g., Woodall 2000; Ferrer 2007;

Montgomery 2009), the procedure is implemented in two phases. Phase I,

also known as the retrospective phase, aims to estimate the control chart

parameters for in-control data. Treating the parameters as known, the aim

of Phase II is subsequently to examine whether new observations from the

process fall outside the estimated control limit. Specifically, as illustrated in

Figure 2, the procedure is carried out as follows:

Insert Figure 2 here

Phase I: To estimate the control chart parameters

i Transform the n×(k1+k2) in-control dataset X (k1 numerical variables and

k2 categorical variables) into m principal component scores using Eq.(1)

and Eq.(2).

ii Compute the Hotelling T 2 values using Eq.(3).

iii Determine the control limit CLkernel using Eq.(4, 5 and 6), and CLbootstrap

using the procedure detailed in Section 2.2.2.

In Phase I, we obtain a PCA Mix model, the in-control parameters includ-

ing the mean vector (which is a zero vector) and covariance matrix S of the

derived principal components, and the control limits based on KDE and boot-

strap. These are saved to be used in Phase II monitoring.

Phase II: To monitor new observations

Let the new observation from the process on the (k1+k2) mixed variables be xnew.

iv Transform xnew to m principal component scores ynew using the parame-

ters of the obtained PCA Mix model.
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v Calculate the corresponding T 2
new statistic using the obtained covariance

matrix S as below:

T 2
new = yTnewS

−1ynew (8)

vi Compare T 2
new with each of the determined control limits CLkernel and

CLbootstrap.

If T 2
new exceeds the CLkernel or (and) CLbootstrap, xnew is considered to be an

out-of-control signal for the corresponding control limit; otherwise, it is con-

sidered to be in control for the corresponding control limit.

In the introduction, we detailed the two indicators for evaluating the perfor-

mance of control charts, which are the in-control average run length (ARL0)

and out-of-control average run length (ARL1). In order to calculate the run

length, Step iv, Step v, and Step vi of the procedure are repeated until the first

out-of-control signal is detected. The number of in-control observations before

this first signal, is recorded as the run length. When the new observation xnew

in Phase II is generated from the same distribution as Phase I sample X, the

process in Phase II is in control and accordingly the recorded run length is the

in-control run length; otherwise an out-of-control run length is obtained. The

complete procedure is repeated 10,000 times to obtain the average values of the

in-control run length (ARL0) and the out-of-control run length (ARL1).

3 Simulation study

3.1 Initial setup of the simulations

As nonparametric methods, neither KDE nor bootstrap makes any assumptions

about the distribution of the PCA Mix-based T 2. Instead, they purely rely on the

Phase I sample X (i.e., the historical in-control data). As a result, the estima-

tion of the control limit may be influenced by the characteristics of the Phase

I sample. One key characteristic is the sample size. Therefore, our first simu-
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lation study is conducted to evaluate the variability of the bootstrap and KDE

control limits when different sizes of Phase I sample are used. We then conduct

two more simulation studies to compare the performance of the two competing

methods, based on ARL0 and ARL1 respectively.

Here, we present the initial setup that is applied to all three simulations. We

generate n in-control observations that are described by six numerical variables

and two binary variables. For the numerical variables, in addition to the typical

assumption of multivariate normal distribution, we also consider a case when

they deviate from a multivariate normal distribution. The numerical variables

are therefore assumed to follow a multivariate skewed-normal distribution de-

noted by SN (µ,Σ, λ) (Azzalini 2005). Two different degrees of skewness (λ = 0

and 5) are considered, in order to observe their effects on the variability and

performance of the estimated control limits.

Further, to simulate the observations we use µ =

[
0 0 0 0 0 0

]
and the

following covariance matrix:

Σ =



1.00 −0.30 −0.01 0.11 0.121 −0.06

−0.30 1.00 −0.04 0.56 −0.12 −0.33

−0.01 −0.04 1.00 −0.02 −0.03 0.09

0.11 0.56 −0.02 1.00 −0.12 −0.35

0.12 −0.12 −0.03 −0.12 1.00 −0.29

−0.06 −0.33 0.09 −0.35 −0.29 1.00


This matrix is built based on the correlations among six numerical re-

sponse quality indicators for 1725 in-control interviews. These in-control

interviews were obtained based on real data collected during the eighth

round of the European Social Survey in an ongoing project of the authors.
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The variables are of unit variance, and are weakly to moderately correlated

with each other. For the simulations, the R package “sn” (Azzalini 2019,

https://cran.r-project.org/web/packages/sn/sn.pdf) is used to generate multi-

variate skewed-normal data.

The two categorical variables, following the authors’ results on the in-control

interviews, are generated based on two independent Bernoulli distributions

with the success probability pr1 = 0.7 and pr2 = 0.2 respectively. Once an

in-control dataset is generated, the next step is to transform the eight variables

into principal components by using the PCA Mix procedure. This analysis is

carried out by using the R package “PCAmixdata” (Chavent et al. 2014). The

number of principal components that are used for calculating the T 2 statistic

(m) is set to five and eight, in order to represent the cases of using only a few

(five) principal components and all (eight) principal components respectively.

To obtain the KDE control limits, package “kerdiest” (function “PBbw”) is

first used to estimate the bandwidth. Package “stats” (function “density”) and

“pracma” (function “trapz”) are then employed to estimate the kernel distri-

bution function of the PCA Mix based T 2 statistic and compute the 100(1 − α)

percentile respectively. Moreover, the R package “boot” is used to obtain the

bootstrap control limits.

The above introduced settings are used for all of the three simulation

studies. They are summarized and marked in bold in Table 1. The specific

settings for each study are also shown in the table. They are detailed in each of

the following sections.

Insert Table 1 here

It is notable that when the first five principal components (m = 5) are used

to compute the PCA Mix scores, on average around 78.5 percent of the total vari-

ability can be explained in the multivariate normal case (λ = 0) and around 81.5

percent in the multivariate skewed normal case (λ = 5). Detailed information is
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presented in Table A1 in Appendix A.

3.2 Simulation study 1: the variability of the estimates of con-

trol limits

3.2.1 Specific setup

In this section, we investigate the variability of the estimated control limits

based on bootstrap and KDE approaches using different sizes of Phase I

samples. Six numerical variables are assumed to follow SN (0,Σ, λ) with λ = 0

and 5, as previously mentioned. For the two Bernoulli variables – starting from

(pr1 = 0.7, pr2 = 0.2) – in this simulation we also consider two other possibilities

by varying one probability parameter each time to an extreme high (or low)

value, first to (pr1 = 0.9, pr2 = 0.2) and finally to (pr1 = 0.9, pr2 = 0.05). Together

with the two possibilities that we consider when selecting the principal compo-

nents (m = 5 and 8) and the two degrees of skewness of the numerical variables

(λ = 0 and 5), there are 12 scenarios in total (3× 2× 2) in this simulation study.

For each scenario, we increase the size of the Phase I sample from 100 to

5000 in incremental steps of 100. For each number of observations, the control

limits are calculated 100 times respectively using bootstrap and KDE.

3.2.2 Simulation results

The variability of the control limits, which are calculated 100 times for each

number of observations, in terms of standard deviation, are illustrated in Fig-

ure 3. The scatter plots of the various control limits are presented in Figure B1

and Figure B2 in Appendix B. In general, for both bootstrap and KDE methods,

across the 12 scenarios, the standard deviation of the control limits decreases –

although at a different pace – as the Phase I sample size increases. The decreas-

ing trend is more obvious when the sample size increases from 100 to 500, but

gradually levels off after the size reaches 1000. The KDE control limits, however,

12



tend to have slightly more variability than the bootstrap control limits, espe-

cially when the size of the Phase I sample is smaller than 500.

Compared with the skewness of the numerical variables (λ) and the number

of principal components (m), the success probabilities of the binary variables

(pr1 and pr2) have the most significant influence on the variability of the

estimated control limits. As the probability parameters become more extreme,

for example at (pr1 = 0.9, pr2 = 0.05), there is still a considerable amount of

variability in the estimates, even when the Phase I sample is as large as 5000.

This is more straightforward if we set a reasonably small arbitrary value, say 1,

as the target of the standard deviation of the control limits, and compare the

required sample sizes across the scenarios. As shown in Table 2, the skewness

(λ) and the number of principal components (m) do not have a clear impact

on the required smallest sample size. However, as the shapes of the Bernoulli

variables become more extreme, more Phase I observations are required in

order to guarantee a certain level of variability.

Insert Figure 3 here

Insert Table 2 here

3.3 Simulation study 2: Comparisons of in-control average run

length

3.3.1 Specific setup

In this section, we compare the performance of the control limits calculated

based on the bootstrap and KDE approaches using the in-control average run

length (ARL0). As noted in the introduction, ARL0 represents the mean num-

ber of observations before the occurrence of the first false alarm (from the be-

ginning of monitoring in Phase II) when the process is in control. Ideally, ARL0

takes the value of 1
α

, where α is the pre-specified false alarm rate. However, in
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real-life situations ARL0 may always deviate from this theoretical value. The

control limit that produces an actualARL0 value close to the desiredARL0 value

is considered as having the better performance.

In line with the initial setup, six numerical variables and two categorical vari-

ables are generated from SN (0,Σ, λ), with λ = 0 and 5, and Bernoulli distribu-

tions with (pr1 = 0.7, pr2 = 0.2), respectively. Five and eight principal com-

ponents are selected to construct the T 2 statistic, and to compute the control

limits. Thus, four scenarios altogether are considered in this simulation study.

For each of the four scenarios, new observations are generated (from the

same distributions used to generate the Phase I observations), and are moni-

tored by the control limits determined by bootstrap and KDE. For each control

limit, we record the run length when the first out-of-control signal is produced.

The above procedure is repeated 10,000 times to calculate ARL0. In this study,

the false alarm rate α is set to 0.01, which corresponds to a desired ARL0 value

of 100. Instead of specifying the number of Phase I observations n beforehand –

for example 1000, which is a typical choice in literature (e.g., Ahsan et al. 2018;

Phaladiganon et al. 2011) – we consider a series of sample sizes ranging from 50

to 2000 (i.e., 50, 80, 100, 200, 300, 500, 800, 1000, 1500, 2000). The comparisons

of the ARL0 are made for each number of Phase I observations being used.

3.3.2 Simulation results

The actual ARL0 values for the control limits using different numbers of Phase

I observations are illustrated in Figure 4.

Insert Figure 4 here

The desired ARL0 of 100 is represented by the red horizontal lines in Figure

4. The actualARL0 values determined by bootstrap and KDE are shown respec-

tively by the solid lines with circle symbols and dashed lines with triangle sym-

bols. Their values are presented in Table C1 in Appendix C. Based on the relative
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positions of the two curves to the horizontal red lines, we can see that across the

four scenarios, the actual ARL0 values first move towards the desired ARL0 as

the Phase I sample size increases, but then gradually stabilize to a certain extent

(close to or at 100).

Specifically, in the multivariate normal case (λ = 0), when five out of the

eight principal components are selected (m = 5), the actual ARL0 values ob-

tained by KDE are already close to the desired value when the Phase I sample

size ranges around 150 (ARL0 = 102.82 when n = 150 and ARL0 = 98.96 when

n = 200). Bootstrap only yields a performance approximately equal to KDE

when the sample size increases to 800. However, when the full set of principal

components are selected (m = 8), both KDE and bootstrap control limits tend

to generate more false alarms. This is shown by the fact that the obtained values

of ARL0 are all smaller than the desired value of 100.

To summarize, in both the multivariate normal case (λ = 0) and the skewed-

normal case (λ = 5), the best “strategy” depends on the Phase I sample size:

when it is smaller than around 800, the KDE control limit based on five princi-

pal components provides the best performance; when the Phase I sample size

becomes equal to or larger than 800, the bootstrap control limit based on five

principal components has an equal or even better performance than the KDE

control limit based on five principal components (especially when the Phase I

sample size is larger than 1500).

3.4 Simulation study 3: Comparisons of out-of-control average

run length

3.4.1 Specific setup

In the previous section, we compared the performance of the two competing

methods using the in-control ARL (ARL0). The value of ARL0 measures the

false alarm rate, as the process in Phase II – from which the new observations
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are generated – is actually in control. In this section, we impose shifts to the

process means in Phase II, so that the process turns into an out-of-control state

in Phase II. The performance of the competing methods can then be evaluated

by counting how many observations each method takes to give the first out-of-

control signal, which is termed as the out-of-controlARL (ARL1). As we want to

detect the process shifts as quickly as possible, the control limit that produces a

smaller value for ARL1 is considered better.

Again, we generate Phase I observations in the same manner as described in

the initial setup: six numerical variables from SN (0,Σ, λ), where λ = 0 and 5,

and two Bernoulli variables with (pr1 = 0.7, pr2 = 0.2). The number of principal

components retained is still considered as five and eight, to construct the T 2

statistic and determine the control limits based on bootstrap and KDE. In this

study, the number of Phase I observations is fixed at 1000.

In Phase II, new observations are generated after adding a shift – 0.1 unit

of standard deviations each time – to the process mean values µ, pr1 and pr2.

Specifically, as the variance of each numerical variable is 1, and the variance of

the two Bernoulli variables are 0.21 (pr1 × (1 − pr1) = 0.7 × (1 − 0.7)) and 0.16

(pr2 × (1− pr2) = 0.2× (1− 0.2)) respectively, the shift added each time for each

numerical variable is δµ = 1× 0.1, and for the Bernoulli variables, δpr1 =
√
0.21×

0.1 and δpr2 =
√
0.16× 0.1. The process mean values µ, pr1 and pr2 are shifted to

µ+ δµ, pr1− δpr1 , pr2+ δpr2 in Phase II. The direction of the shift in each Bernoulli

variable is determined by the size of the probability parameter with respect to

0.5: when the parameter is larger than 0.5 – as in the case of δpr1 (pr1 = 0.7) – the

direction of the shift is negative (a shift to smaller values); otherwise – as in the

case of δpr2 (pr2 = 0.2) – it is positive (a shift to larger values). The objective is to

leave more space for the process mean to shift. New observations are generated

until each control limit has the corresponding run length recorded. With the

false alarm rate(α) remaining as 0.01, the simulations are repeated 10,000 times

to calculate ARL1.
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3.4.2 Simulation results

In Figure 5, theARL1 values determined by the bootstrap and KDE methods are

respectively shown by solid curves with circle symbols and dashed curves with

triangle symbols. It should be remembered that here the number of Phase I ob-

servations is fixed at 1000. Examining the overall pattern of the curves across the

four scenarios shows that the value ofARL1 decreases as the shift to the process

mean increases, suggesting that as the deviation from the in-control values of

the process mean becomes larger, both methods require less time to trigger a

signal. Meanwhile, for the same amount of shift and skewness, ARL1 decreases

when the number of principal components increases. This means that for both

methods, the ability of the control limits to detect shifts in the process is en-

hanced by increasing the number of principal components. This observation

is more clearly indicated in Table D1 in Appendix D, where the values of ARL1

generated by bootstrap and KDE under four combinations of skewness (λ) and

the number of principal components (m) are displayed. For example, when

λ = 0 and δµ = 0.3, the ARL1 generated by the bootstrap and KDE approaches

using five principal components are 57.73, and 56.70, respectively, but using

eight principal components, they are 30.87, and 30.63 respectively. It is notable

thatARL1 is recorded as zero when the first new observation is immediately de-

tected as an out-of-control signal after shifts are imposed to the process means

in Phase II.

The above observation (the enhanced ability of the control limits to de-

tect shifts by increasing the number of principal components) seems to be

contradictory with the results found in Section 3.3.2, where the control limits

based on a larger number of principal components tend to generate more false

alarms. However, the information provided is actually consistent. That is, we

observe that with a larger number of principal components, the average run

length tends to be smaller, in both in-control case (ARL0) and out-of-control

case (ARL1). In the in-control case, smaller average run length means more
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false alarms, whereas in the out-of-control case, this means an enhanced ability

of detecting shifts. Our explanation is that, too many principal components

will inflate the importance of noise and accordingly results in the problem

of overfitting the PCA Mix model to recognize noise in the in-control data.

Therefore we recommend an appropriate number of principal components

instead of too small or too large.

To conclude, in both a normal (λ = 0) and skewed normal (λ = 5) case,

with the full set of principal components selected, both KDE and bootstrap

are quite sensitive with regard to detecting process shifts. For example, when

λ = 0 and the process mean is shifted by one standard deviation (δµ = 1.0),

the ARL1 values obtained by the KDE and bootstrap methods are relatively

small, both being only 0.97. This means that a process shift with a magnitude

of one standard deviation is expected to be detected after around only one

observation. The KDE control limits exhibit a very slightly better performance

than the bootstrap control limits in detecting relatively small process shifts

(δµ ≤ 0.8). As the process shifts become larger, the bootstrap control limits are

shown to perform equally as well as the KDE control limits.

Insert Figure 5 here

4 Conclusions

To be able to monitor a process that is described by both numerical and categor-

ical variables, we present a procedure integrating a multivariate statistical tool,

PCA Mix (Chavent et al. 2014), with the traditional Hotelling T 2 chart. As the

underlying distribution of the PCA Mix-based T 2 is unknown, two nonparamet-

ric methods – bootstrap and kernel density estimation (KDE) – are employed to

estimate the percentile of the distribution and to establish the control limits.

We focus on the case of six numerical variables following a multivariate
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(skewed) normal distribution and two binary variables following Bernoulli

distributions. Three simulation studies are conducted based on various com-

binations of different levels of study parameters, including Phase I sample size

(n), the skewness of the numerical variables (λ), the success probabilities of the

Bernoulli variables (pr1, pr2), and the number of selected principal components

(m). Although nonparametric methods such as bootstrap and KDE do not

involve assumptions about the underlying distribution of the PCA Mix-based

T 2, the size of the Phase I sample used can affect the estimation of the control

limits. Therefore, we first investigate the impact of the Phase I sample size on

the control limits estimated using bootstrap and KDE approaches. In order

to obtain insights into which method(s) works well in which situations, the

second and third study respectively compare the performance of the two

non-parametric control limits in terms of the in-control average run length

(ARL0) and the out-of-control average run length (ARL1).

Our simulation results indicate that first, the nonparametric estimates of the

control limits are highly unstable when the categorical variables are extremely

imbalanced (i.e., the vast majority of samples take one of the categories of the

variable). Including an imbalanced Bernoulli variable, such as with the success

probability pr = 0.05, the estimates of the control limits do not seem to con-

verge, even when a Phase I sample as large as 5000 is used. To ensure an accept-

able level of variability, for example smaller than one standard deviation, the

suggested minimum sample sizes in Phase I range from 300 (pr1 = 0.7, pr2 = 0.2)

to 1100 (pr1 = 0.9, pr2 = 0.2). Meanwhile, with a Phase I sample size smaller

than 500, the KDE control limits show more variability than the bootstrap con-

trol limits. Second, to generate the same (or nearly the same) number of false

alarms as expected, it is ideal to use the KDE control limits based on five princi-

pal components when the Phase I sample size is relatively small (n < 800), and

to use the bootstrap control limits based on five principal components when the

Phase I sample size is relatively large (n ≥ 800). This conclusion holds for both a
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normal and a skewed normal case. Third, based on eight principal components,

both the bootstrap and KDE methods are highly efficient in terms of detecting

shifts in the process mean. Additionally, KDE seems to be slightly more sen-

sitive with regard to detecting small shifts (δµ ≤ 0.8). This conclusion is also

supported in both a normal and a skewed normal case.

We see a trade-off in determining the number of principal components that

should be retained. Using too many principal components tends to generate

more false alarms, but using too few principal components may result in not

detecting shifts in the process quickly enough. In this regard, an appropriate

number of principal components instead of too small or too large is recom-

mended. Moreover, the decision concerning the number of retained principal

components should also be based on the particular application, taking into ac-

count the costs of a false alarm and the costs of missing a true alarm.

In addition to their performance (in terms ofARL0 andARL1), there are cer-

tainly other factors that influence the choice between bootstrap or KDE when

monitoring mixed variables. Using KDE involves correctly selecting the scale

of smoothing (namely the bandwidth parameter) and a kernel function. It also

takes effort to perform the numerical integration when calculating the area un-

der the estimated density curve. By contrast, bootstrap resampling is more con-

venient from this perspective, as no parameter specifying process is required.

The disadvantage of bootstrap lies in the fact that although it should ideally

be sufficiently large (with 1000 being typical), finding the optimal number of

bootstrap samples is not straightforward. A minor concern associated with a

sufficiently large number of bootstrap samples is the required computational

capacity and time. Based on an AMD Ryzen 9 3950X CPU, we applied KDE and

bootstrap to a set of 1000 generated T 2 values to calculate the KDE control limits

and bootstrap control limits respectively for a 10,000 times. The average com-

putation time of KDE is 0.0834 (with a range between 0.0622 and 0.1764), and for

bootstrap with the number of bootstrap samples being 1000, the average com-
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putation time is 0.1282 (with a range between 0.1119 and 0.2339). In this regard,

KDE seems to offer superior computational efficiency than bootstrap.

In general, for monitoring a mixture of numerical and categorical vari-

ables, the PCA Mix-based T 2 chart with nonparametric bootstrap and KDE

approaches shows convincing performance in terms of ARL0 and ARL1,

although caution should be taken with regard to the instability of the estimated

control limits when highly imbalanced categorical variables are included.

Future research would benefit from exploring other techniques to deal with the

imbalanced categorical variables in a multivariate statistical process control

framework. On a wider level, the encouraging results of the PCA Mix-based

control charts on monitoring mixed data stimulus for future research to

compare them with other existing schemes, such as the control charts based

on local outlier factor method (Ning and Tsung 2012) and the ones based on

standardized rank (Ding et al. 2016).
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Figure 1: Bootstrap control limits (calculated 100 times) with different number
of bootstrap samples.
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Figure 2: The PCA Mix based Hotelling T 2 chart in Phase I and Phase II
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Table 1: Parameters and values used for each simulation study

Parameter Simulation 1 Simulation 2 Simulation 3

Phase I

sample size (n)
100 to 5000 by 100

a series ranging

from 50 to 2000
1000

Distribution properties

skewness of

numerical variables (λ)
0; 5 0; 5 0; 5

success probabilities of

categorical variables

(pr1, pr2)

(0.7,0.2) ;

(0.9, 0.2);

(0.9, 0.05)

(0.7,0.2) (0.7,0.2)

number of

principal components (m)
5; 8 5; 8 5; 8
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Table 2: The required sample size to guarantee a smaller-than-1 standard devi-
ation.

pr1 = 0.7

pr2 = 0.2

pr1 = 0.9

pr2 = 0.2

pr1 = 0.9

pr2 = 0.05

Bootstrap KDE Bootstrap KDE Bootstrap KDE

λ = 0
m = 5 300 300 1000 1100 >5000 >5000

m = 8 500 500 1100 1100 5000 >5000

λ = 5
m = 5 300 500 800 800 5000 >5000

m = 8 700 700 1000 1000 >5000 >5000
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(a) Number of principal components (m) = 5

(b) Number of principal components (m) = 8

Figure 3: The standard deviation of control limits (calculated 100 times)
with different numbers of Phase I observations.
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Figure 4: ARL0 from control limits established by using bootstrap and KDE ap-
proaches from 10,000 replications
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Figure 5: ARL1 from control limits established from 10,000 replications by using
the bootstrap and KDE approaches (Phase I sample size n = 1000)
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Table A1: The average percentage of variability explained by the first five princi-
pal components from 10,000 replications (n = 1000)

skewness of numerical

variables

(λ)

success probabilities of

categorical variables

(pr1, pr2)

percentage of

variability

0 (0.7,0.2) 78.512

5 (0.7,0.2) 81.485

0 (0.9,0.2) 78.514

5 (0.9,0.2) 81.478

0 (0.9,0.05) 78.511

5 (0.9,0.05) 81.482
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(a) pr1 = 0.7, pr2 = 0.2, m = 5

(b) pr1 = 0.9, pr2 = 0.2, m = 5

(c) pr1 = 0.9, pr2 = 0.05, m = 5

Figure B1: Control limits established by the bootstrap and KDE methods with
different numbers of observations (control limits are calculated 100 times for
each number of observation)
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(a) pr1 = 0.7, pr2 = 0.2, m = 8

(b) pr1 = 0.9, pr2 = 0.2, m = 8

(c) pr1 = 0.9, pr2 = 0.05, m = 8

Figure B2: Control limits established by the bootstrap and KDE methods with
different numbers of observations (control limits are calculated 100 times for
each number of observation)
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Table C1: The ARL0 for the control limits established by using bootstrap and
KDE methods under various combinations of skewness parameter(λ), number
of principal components (m), and Phase I sample size (n)

λ = 0 λ = 5

m = 5 m = 8 m = 5 m = 8

n Bootstrap KDE Bootstrap KDE Bootstrap KDE Bootstrap KDE

50 29.87 73.90 7.72 13.71 27.87 70.22 8.10 14.65

(11.88) (13.54) (15.87) (17.81) (11.90) (13.58) (16.15) (18.17)

80 47.62 113.83 17.58 34.27 44.98 109.25 19.04 38.90

(12.72) (14.14) (17.09) (18.70) (12.70) (14.11) (17.48) (19.27)

100 56.65 88.75 23.76 34.50 54.23 81.40 25.62 36.08

(13.07) (13.90) (17.53) (18.61) (13.03) (13.86) (18.00) (19.08)

150 74.14 102.82 37.30 50.06 68.91 97.91 40.01 53.50

(13.57) (14.16) (18.19) (18.92) (13.51) (14.09) (18.77) (19.51)

200 80.93 98.96 47.42 58.63 75.72 92.42 49.99 59.67

(13.75) (14.13) (18.49) (19.01) (13.68) (14.06) (19.10) (19.60)

300 89.52 99.87 59.46 67.65 84.97 96.56 62.41 68.97

(13.99) (14.21) (18.80) (19.12) (13.90) (14.11) (19.45) (19.74)

400 92.68 99.87 68.15 74.33 87.96 94.65 70.88 75.48

(14.12) (14.26) (18.97) (19.17) (13.98) (14.11) (19.63) (19.81)

500 96.09 99.80 72.54 75.99 93.01 96.58 75.43 78.42

(14.19) (14.27) (19.07) (19.20) (14.03) (14.11) (19.74) (19.85)

600 95.87 98.41 77.44 79.99 92.13 94.66 77.47 79.66

(14.24) (14.28) (19.14) (19.22) (14.06) (14.10) (19.82) (19.88)

800 99.11 98.78 80.79 80.90 92.85 93.10 83.91 83.77

(14.28) (14.27) (19.23) (19.24) (14.10) (14.09) (19.90) (19.89)

1000 101.02 99.24 84.24 83.28 94.68 92.86 85.73 84.49

(14.33) (14.30) (19.29) (19.26) (14.12) (14.08) (19.97) (19.91)

1500 102.14 97.93 88.93 86.26 95.59 91.95 91.80 88.38

(14.37) (14.28) (19.35) (19.27) (14.14) (14.05) (20.05) (19.94)

2000 101.40 95.99 92.18 88.58 96.46 92.43 91.54 87.37

(14.39) (14.28) (19.40) (19.29) (14.16) (14.05) (20.09) (19.95)

Note: α = 0.01. The estimated control limits are presented in parenthesis.
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Table D1: The ARL1 for the control limits established by using bootstrap and
KDE methods under various combinations of skewness parameter(λ), number
of principal components (m), and shifts in the process mean (δµ, δpr1 , δpr2) (Phase
I sample size n = 1000)

λ = 0 λ = 5

shift m = 5 m = 8 m = 5 m = 8

δµ δpr1 δpr2 Bootstrap KDE Bootstrap KDE Bootstrap KDE Bootstrap KDE

0 0 0 101.02 99.24 84.24 83.28 94.68 92.86 85.73 84.49

0.1 0.0458 0.04 85.92 84.55 70.52 69.65 83.11 81.40 50.90 50.04

0.2 0.0917 0.08 71.52 70.16 47.43 46.89 73.87 72.22 26.87 26.49

0.3 0.1375 0.12 57.73 56.70 30.87 30.63 65.14 63.83 14.21 14.10

0.4 0.1833 0.16 47.70 46.78 18.42 18.29 57.43 56.48 7.39 7.32

0.5 0.2291 0.20 37.09 36.51 11.23 11.16 49.86 48.91 3.88 3.83

0.6 0.2750 0.24 30.18 29.59 6.80 6.78 46.72 45.99 2.12 2.09

0.7 0.3208 0.28 24.29 23.97 4.16 4.13 41.71 40.84 1.10 1.09

0.8 0.3666 0.32 18.62 18.24 2.51 2.49 38.24 37.61 0.51 0.50

0.9 0.4124 0.36 15.33 15.12 1.57 1.57 34.51 33.82 0.21 0.21

1.0 0.4583 0.40 12.33 12.17 0.97 0.97 30.96 30.47 0.05 0.05

1.1 0.5041 0.44 10.00 9.87 0.61 0.61 30.19 29.68 0.01 0.01

1.2 0.5499 0.48 8.76 8.66 0.37 0.37 26.76 26.23 0.00 0.00

1.3 0.5957 0.52 7.32 7.21 0.21 0.21 24.29 23.83 0.00 0.00

1.4 0.6416 0.56 6.28 6.20 0.12 0.12 23.54 23.26 0.00 0.00

1.5 0.6874 0.60 5.32 5.24 0.06 0.06 22.10 21.73 0.00 0.00

control limit 14.33 14.30 19.29 19.26 14.12 14.08 19.97 19.91

Note: α = 0.01.
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