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Abstract—The paper presents distributed algorithms for com-
bined acoustic echo cancellation (AEC) and noise reduction (NR)
in a wireless acoustic sensor and actuator network (WASAN)
where each node may have multiple microphones and multiple
loudspeakers, and where the desired signal is a speech signal. A
centralized integrated AEC and NR algorithm, i.e., multichannel
Wiener filter (MWF), is used as starting point where echo signals
are viewed as background noise signals and loudspeaker signals
are used as additional input signals to the algorithm. By including
prior knowledge (PK), namely that the loudspeaker signals
do not contain any desired signal component, an alternative
centralized cascade algorithm (PK-MWF) is obtained with an
AEC stage first followed by an MWF-based NR stage. Distributed
algorithms can then be obtained from the MWF and PK-
MWEF algorithm, i.e., the GEVD-DANSE and PK-GEVD-DANSE
algorithm, respectively. In the former, each node performs a
reduced dimensional integrated AEC and NR algorithm and
broadcasts only 1 fused signal (instead of all its signals) to the
other nodes. In the PK-GEVD-DANSE algorithm, each node
performs a reduced dimensional cascade AEC and NR algorithm
and broadcasts only 2 fused signals (instead of all its signals) to
the other nodes. The distributed algorithms achieve the same
performance as the corresponding centralized integrated (MWF)
and cascade (PK-MWF) algorithm. It is observed, however, that
the communication cost in the PK-GEVD-DANSE algorithm can
be reduced, where each node then broadcasts only 1 fused signal
(instead of 2 signals) to the other nodes, which finally results in
an algorithm with a low communication cost as well as a low
computational complexity in each node.

Index Terms—Distributed signal processing, wireless acoustic
sensor and actuator networks, acoustic echo cancellation, noise
reduction, multichannel Wiener filter

I. INTRODUCTION

ANY speech and audio signal processing applications,
such as teleconferencing/telepresence, in-car commu-
nication and ambient intelligence, suffer from acoustic echoes
and background noise which corrupt the desired audio signal.
Acoustic echo cancellation (AEC) and noise reduction (NR)
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techniques can be used to enhance the desired signal while
reducing undesired signal components [1]-[4].

Solutions to combined AEC and NR have been presented
in the literature, which fundamentally can be divided into
cascade and integrated approaches [3]-[8]. A cascade ap-
proach consists of an AEC stage and an NR stage which
can be combined in two ways, i.e., a multichannel AEC stage
followed by a multichannel NR stage, or a single-channel AEC
stage preceded by a multichannel NR stage. The order of the
stages has performance implications on the combined system.
The first combination requires an AEC that is robust against
noise in the microphone signals. In the second combination the
AEC stage receives a noise-reduced signal which may contain
a far-end signal component, therefore the AEC stage should be
able to track changes in the acoustic environment as well as in
the NR filters. Integrated approaches aim to solve the problem
by combining the AEC and NR tasks in a single optimization
process [5], [7], [9].

Recently, a multichannel Kalman-based Wiener filter for
speaker interference reduction was proposed in [10]. The filter
is based on a multichannel AEC stage followed by a NR stage
using a multichannel Wiener filter. The proposed method was
developed and implemented for a specific set-up with three
speakers. Combined AEC and NR was implemented using a
Kalman filter for a single-channel scenario in [11]. The use
of deep neural networks to solve combined AEC and NR
has also gained significant attention [12]-[14]. Although these
methods usually outperform model-based methods, their main
drawback is their dependency on training sets, which limits
their practical deployment in mobile devices [12].

Existing solutions are all based on centralized processing,
which is usually prohibitive in a wireless acoustic sensor
and actuator network (WASAN) in terms of complexity and
communication cost [15]. Distributed algorithms have been
developed to overcome this, such as, e.g., the distributed delay-
and-sum beamformer for NR based on randomized gossiping
presented in [16], which was extended to a distributed MVDR
beamformer based on message passing in [17]. Both algo-
rithms do not have a topology constraint and provide good
performance at the expense of a high communication cost
[16]. The distributed adaptive node-specific signal estimation
(DANSE) algorithm as developed in [18], performs distributed
NR, i.e., optimally enhances the desired signal component
in the local microphone signals of each node. It achieves
a performance as if all microphone signals in the network
were available to each and every node, while each node is
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still sharing only a fused version of its microphone signals
with the other nodes. A combination of a neural network
and beamforming was used in [19] for a real-time multi-
channel speech enhancement algorithm, where a spectral mask
estimation is performed via the deep neural network together
with spatial filtering. All these distributed algorithms only
consider NR.

In this paper, distributed algorithms for combined AEC
and NR are presented, where each node may have multiple
microphones and multiple loudspeakers, and where the desired
signal is a speech signal. In a WASAN with K nodes, node
k € K = {1,...,K} contains mj; microphones and I
loudspeakers. The loudspeakers play given (far-end) signals,
and generate echo signals in the microphones (also in other
nodes). Node k then has access to an np = my + P.lg
vector signal, where P — 1 will be defined as the order of the
interframe filtering in the AEC stage in Section II. The total
number of microphones and loudslg(eakers in the WASAN are
denoted, respectively, by M = >"," , my and L = Zszl Ik,
and similarly, N = Zlenk. Centralized, non-cooperative
and distributed algorithms can be used for combined AEC and
NR, where the following should be considered: A centralized
cascade algorithm has an AEC stage with PL AEC filter input
signals, and a NR stage with M channels. A non-cooperative
cascade algorithm for node & (i.e. node k£ working in isola-
tion) has an AEC stage with Pl; AEC filter input signals,
and a NR stage with my channels. A distributed algorithm
aims to reduce computational complexity by performing local
operations in each node and exchanging data with other nodes.

In [20] distributed combined AEC and NR was considered
in a WASAN. Essentially, a centralized integrated algorithm,
i.e., the multichannel Wiener filter (MWF), is first turned into
an alternative centralized cascade algorithm by introducing
prior knowledge (PK). In the MWF algorithm no distinction
is made between loudspeaker and microphone signals, which
means echo signals are viewed as additional background
noise signals and loudspeaker signals are used as additional
input signals to the algorithm. By including PK, namely that
the loudspeaker signals do not contain any desired signal
component, the MWF algorithm is turned into the PK-MWF
algorithm, leading to the alternative centralized cascade algo-
rithm, with an AEC stage first followed by an MWEF-based
NR stage. The resulting algorithm has a lower computational
complexity and allows to substitute alternative algorithms in
the AEC stage.

Both the MWF and PK-MWF algorithm can be turned into
a distributed algorithm, namely the generalized eigenvalue
decomposition (GEVD)-based DANSE (GEVD-DANSE) [18]
and the PK-GEVD-DANSE [21]. In the GEVD-DANSE al-
gorithm, each node in the network performs a reduced di-
mensional (dimension ng + K — 1) integrated AEC and NR
algorithm and broadcasts only 1 fused signal (instead of ny
signals) to the other nodes, and yet each node achieves the
same performance as the centralized integrated algorithm, i.e.,
as if all loudspeaker and microphone signals were broadcast in
the network. In the PK-GEVD-DANSE algorithm, each node
in the network performs a reduced dimensional (dimension
ng+2(K —1)) cascade AEC and NR algorithm and broadcasts

only 2 fused signals (instead of ny signals) to the other nodes,
and yet each node again achieves the same performance as the
centralized cascade algorithm.

The PK-GEVD-DANSE algorithm performs AEC and NR
in each node based on sharing not only fused microphone
and loudspeaker signals between the nodes, which act as
desired signal references, but also fused loudspeaker signals,
which act as noise references. In this paper, however, it will
be shown that in an AEC context (unlike in the general
PK-GEVD-DANSE context) there is no need for sharing
noise references between the nodes, reducing the communi-
cation cost in the PK-GEVD-DANSE algorithm. Each node
then effectively performs a reduced dimensional (dimension
ny + K — 1) cascade AEC and NR algorithm and broadcasts
only 1 fused signal (instead of 2 signals) to the other nodes. It
will be shown that, this PK-GEVD-DANSE algorithm again
achieves a performance as if all signals were available to
each and every node. Implementations of the PK-GEVD-
DANSE algorithm are presented using the normalized least
mean squares (NLMS) algorithm and QR decomposition based
recursive least squares (QRD-RLS) algorithm in the AEC
stage. Furthermore, monitoring of the loudspeaker activity by
means of a voice activity detector (VAD) is proposed.

The paper is organized as follows. The data model is
presented in Section II. The formulations for the centralized
integrated and cascade algorithm are provided in Sections III
and IV. The distributed integrated and cascade algorithm are
described in Sections V and VI. Section VII describes the
NLMS- and QRD-RLS-based algorithm in the AEC stage of
the PK-GEVD-DANSE algorithm. Simulations are shown in
Section VIII, and finally Section IX concludes the paper.

II. PROBLEM FORMULATION AND NOTATION

Consider a fully connected WASAN with K nodes (see
Fig. 1), where node ¥ € K = {1,...,K} contains my
microphones and [;, loudspeakers, and hence has access to
the short-time Fourier transform (STFT) domain ny x 1 signal
Xk (K, 1)
uy(k,1)
index, [ the frame index (for brevity x and [ will be omitted
in the following, except for a few cases where [ has to be
included explicitly) and, n;, = my+ Plj. Vector uy contains Iy,
local loudspeaker signals sampled at the current and previous
P — 1 frames, i.e.,

vector yi(k,l) = { , where « is the frequency bin

ul(l)
uy (1 —:P +1)

u, (1)

LUL (l - P+ 1)_

Vector x;, contains my, local microphone signals sampled only
at the current frame and is modeled as

X = Sk +ni = ags + ng. 2)
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Here, s is the desired speech source signal (also known as the
dry signal), aj, contains the acoustic transfer functions from the
desired speech source position to the local microphones, sy, is
the desired speech component and ny is the noise component
in the microphone signals of node k, modeled as

n; = Grrug + Z quuq + by, 3)
q#k

where Gy, is an my, x Plj, matrix representing the local echo
paths from the local loudspeakers to the local microphones,
Gq 18 an my x Pl, matrix representing the echo paths from
the loudspeakers in node ¢ to the microphones in node k and
finally u, contains the loudspeaker signals from node q. The
background noise is assumed to be stationary with correlation

matrix ~
Rp,b, = E{bybi’} 4)

where (-)# denotes the conjugate transpose operator and E{-}
is the expected value operator. The following vectors are also
defined,

5, = [s 01w ]” 5)
i, = [nff uff]” ©)
ar = [af Orxpr,]” )
by = [bf 01xpr,]” @®)

where 01« p;, is a Pl;-dimensional all-zero vector, and so that
Yi = Sk + N = ags + ng. 9)

The N-dimensional vectors (N = 2521 ng), ¥, S, n,aand b
are the stacked versions of yy, S, Ny, a; and by, respectively,
such that the signal vector y can be characterized as follows

(10)

Assuming that the desired speech source signal and back-
ground noise are uncorrelated, and uncorrelated with the
loudspeaker signals, correlation matrices can be defined as
follows

Ryy = E{yyH} = E{SSH} + E{nnH} = Rss + Rnn

y=s+n=—as+n.

(11)
Res = ag,a” (12)
Ron = GO,GH + Ry (13)
Ryp = E{bb"} (14)

= blOdeiag{Rblbl y 07 RbeQ, 0, ey Rbkbk y 0}

where ¢, is the power spectral density (PSD) of the desired
speech source signal, ®,, = E{uu’’} a PL x PL matrix rep-
resenting the PSD of the loudspeaker signals (L = Zszl lr)
with the PL-dimensional vector u the stacked version of uy
and

G, = [GE, IPlkxPlk]H; (15)

Grq = [GF] OquxPlk]H ; (16)
Gu Gix

G=| : : (17)
Gx1 Grx
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Fig. 1: Two example scenarios for a WASAN with a single
target speaker and a single noise source: a). Three nodes
each with 3 microphones and 1 or 2 loudspeakers. b). Two
nodes each with 2 microphones. One node with a stereo
loudspeaker signal.

Given that loudspeaker signals are generally non-stationary,
e.g., speech and/or music signals, @, (1) # Py (') for I #1'.
It is first assumed that &, (1) = @, (I’), VI, so that the noise n
is stationary, as required in the MWF algorithm in Section III.
However this assumption will be revisited in Section III-A.

III. CENTRALIZED INTEGRATED AEC AND NR (MWF)

The node-specific combined AEC and NR task for node
k is to estimate the desired signal dj, defined here as the
speech component in the first local microphone, i.e, di =
[10]s, = ef's, where 0 is an all-zero vector with matching
dimensions and efk is a vector that selects the desired speech
component in s. The minimization of the mean squared error
(MSE) between the desired signal and the filtered microphone

and loudspeaker signals defines an optimal filter for node k,

Wi = arg min E{‘dk—wkHy|2}. (18)
Wik

The node-specific signal estimate is then obtained as dy =

wHy. The solution to this is the well-known MWF [22], [23],

given by

V_Vk = R;;Rydk = R;;I_{ysedk = R;;Rssedk (19)

where Ryq, = E{ydH} and Rys = E{ys’}. The final
expression in (19) is obtained based on the assumption that
s and n are uncorrelated (Section II).

In practice, by using a voice activity detector (VAD), Ryy
and Ry, are first estimated during speech-plus-noise periods
where the desired speech signal, loudspeaker signals and
background noise are active, and noise-only periods where
there is no activity of the desired speech signal and the other
signals are active, respectively [24], i.e.,

if VAD(I) = 1: Ryy (1) = BRyy (I — 1) + (1 — B)y(Dy™ (1)
Rnn

if VAD(I) = 0: Run(l) = BRun(l — 1) + (1 — B)y()y* (1)
(20)



DISTRIBUTED COMBINED ACOUSTIC ECHO CANCELLATION AND NOISE REDUCTION IN WASAN, 2020 4

where Ryy (1), Ran(l), y(I) represent Ryy, Run and y at
frame [, respectively. The forgetting factor 0 < 8 < 1 can
be chosen depending on the variation of the statistics of the
signals, i.e., if the statistics change slowly then 3 should be
chosen close to 1 to obtain long-term estimates that mainly
capture the spatial coherence between the microphone signals.
For the time being, it is assumed that the loudspeaker signals
and background noise are stationary (Section II), so that their
contribution in R vy and Rnn is the same. The following
criterion will then be used to estimate Rgs [21], [22],

Rss = argmin HR;;/2 (Ryy —Run — ) R_H/QH
rank(Rgs)=1
Rae -0
(21

where ||-|| p denotes the Frobenius norm. Spatial pre-whitening
is applied by pre- and post-multiplying by f{;é/ % and Ryp / 2,
respectively. The solution to (21) is based on a generalized
eigenvalue decomposition (GEVD) of the (/N x N) matrix
pencil {Ryy, Run} [22], [25]

(22)

where ﬁ]yy and 5)nn are diagonal matrices and Q is an
invertible matrix. The speech correlation matrix estimate Rgg
is then [22]

Rss = Qdiag{6,, — 65,,0,...,0}Q" (23)
where &, and &, are the first diagonal element of 3, and
3, respectively, corresponding to the largest ratio &y, /6, .
Using (23) and Ry, (cfr. (22)) in (19), the MWF estimate Wy,

can be expressed as

v“vkQHdiag{lgm,O,...,O}QHedk. (24)
Y1

The node-specific signal estimate is then obtained as di, =
v“ka y. In this integrated algorithm, the MWF estimate depends
on the loudspeaker signal statistics without exploiting the prior
knowledge that there is no desired speech component in these
loudspeaker signals. As a consequence, the combined AEC
and NR fundamentally consists of a single NR stage in which
acoustic echo is treated similarly to background noise.

A. Non-stationarity of loudspeaker signals and MWF assump-
tions

As mentioned in Section II, the loudspeaker signals are
generally non-stationary, i.e., ®,(l) # ®u(l’) for I #£ I'. As
a consequence their contribution in the speech-plus-noise and
noise-only correlation matrices, f{yy and f{nn, respectively,
may be different. This violates the basic stationarity assump-
tion in the MWF algorithm described above. However, it is ob-
served that this non-stationarity does not change significantly
the GEVD of the matrix pencil {Ryy,Run} because of the
specific structure of Ryy and Rpn corresponding to the fact
that the loudspeaker signals do not contain any desired speech

and background noise component. In particular, this will lead
to the following structure in Q E yy and $on in (22)

D=1 4a Qz...4m

Q {lel NXPL‘ 2 } (25)
(6, O o |

. 0 3,1 0

Yyy = PLyxyPL R (26)
0 0 B,
L M—1xM-1]
(6,, © 0

. 0 Zon 0

San= | pLxPL 27
0 0 S
L M—1xM-—1]

where (q;...Qn) are column vectors uniquely defined by
the desired speech component and background noise (M =
Zlemk), hence containing zeros in the positions corre-
sponding to the loudspeaker signals, and Q, contains PL
columns which are uniquely defined by the loudspeaker signals
and echo paths. The non-stationarity of the loudspeaker signals
does not modify (§1...04am), Gyy.0n,» ﬁ]yyg and XAJMQ. It
also does not modify the column space spanned by Ql. As a
result, the first column of QH in (24) is not modified, as well
as all other relevant quantities in (24). Therefore, the MWF
estimate in (24) is also not modified. Note that it is assumed
here that the GEVLs corresponding to Q, are smaller than the
GEVL corresponding to §;, i.e. to the desired speech signal,
so the latter continues to be the largest GEVL. For the unlikely
scenario that a GEVL corresponding to Q, becomes the largest
GEVL, q; may be monitored (based on its zeros structure) and
tracked, so that the correct GEVL is still chosen.

IV. CENTRALIZED CASCADE AEC AND NR (PK-MWF)

Exploiting the prior knowledge that Rs has a specific zero
structure (cfr. definition of s and S;), the criterion in (21) can
be redefined as

Rss = argmin HR 1/2 (Ryy —Rupn — ) R_H/QH
rank(Rss)=1
B R B=0
Rss20
(28)
where B is an N x PL block diagonal matrix
B, 0 ... 0
0 Bx ... O
B=|. . . (29)
0 0 Bx
with the k*" diagonal block By, equal to
Bk _ |:O'mk><Plk:| ) (30)
Ip;,

where Ip;, is a Pl x Plj identity matrix. In the combined
AEC and NR context B is a selection matrix that selects the
loudspeaker signals. In [21] it is shown that the inclusion of
the constraint BPYR¢,B = 0 leads to the reduced dimensional
(M x M) matrix pencil {R*}, R4} with GEVD

Yy’
Rred Qredzred(Qred) (31)
Rred Qred Ered (Qred)
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where Ri¢! = CA R, C, Rigd = CHRp,C, yod = Clly,
and w1th C an N X M matrix obtained from the linearly-
constrained minimum variance (LCMV) beamformer opti-
mization criterion

C= argmin Htrace{CHflnnC}H (32)
s.t. HHC:IJM
where H is a N x M block diagonal matrix
H, 0 ... 0
0 Hy... 0
H=| . . ) (33)
0 0 ...Hg
with the k*" diagonal block equal to
L,
H, = [ i ] ; (34)
OPlk Xmy

such that HPH =1,, and BFH = 0. Hence C can be
defined based on a generalized sidelobe canceller (GSC)
implementation as [21], [26]

C =H - BF
F = (B”R,,B) 'BfR,,H

(35)
(36)

where the filter F operates on the loudspeaker signals
(Bfy) and effectively serves as an AEC filter cancelling
the echo components in the so-called fixed beamformer
outputs corresponding to H, i.e., the microphone signals
(HMy). The inclusion of the prior knowledge thus leads to
a cascade algorithm where AEC is performed first and then
NR. The AEC filter ' can also be implemented adaptively
via an NLMS or QRD-RLS algorithm as will be explained in
Section VII.

_The prior knowledge speech correlation matrix estimate
Rss, i.e., the solution to (28), is then given as [21], [22],

Res = HQ™diag{4,, — 61,,0,...,0}(QHFHT (37)
where ¢, and &,,, are the first diagonal element of E“?d nd
2;63, respectively, corresponding to the largest ratio 7y, / On,;-
Using this expression and the reduced dimensional Rred (cfr.
(31)), the PK-MWF estimate Wy, can finally be expressed as
[21]

Ony
— M,
Y1

— C(Qred)—Hdiag {1 70} (Qred)HHHedk

(38)
The non-stationarity of the loudspeaker signals in this case
does not affect the NR stage, as the joint-diagonalization is
performed on the reduced dimensional (M x M) matrix pencil
{Ris!, R4}, therefore Qred will only have M columns
defined by the desired speech components and background
noise, and the echo signals are effectively removed by the

AEC stage.

V. DISTRIBUTED INTEGRATED AEC AND NR
(GEVD-DANSE)

The integrated AEC and NR algorithm of Section III can be
implemented in a distributed fashion by means of the GEVD-
DANSE algorithm [18] where each node instead of broadcast-
ing nj microphone and loudspeaker signals, broadcasts only
1 fused signal to the other nodes. Each node performs local
operations, corresponding to a reduced dimensional version
(dimension ny + (K — 1) in node k) of the MWF-based
integrated AEC and NR algorithm of Section III (dimension
N), based on ny local microphone and loudspeaker signals
and (K — 1) fused signals received from the other nodes. The
fused signal broadcast by node k is

2k = DL Yk (39)

where Py, is an ng-dimensional fusion vector. Then each node
has access to a signal vector ¥ = [yi sz] , where the
subscript _, refers to the concatenation of the fused signals of
nodes other than k, so that z_, = [2} ... z}_; 25,1 ... 2|7
where * represents the complex conjugate. The local filter Wy,
is defined as

v?/k:QkHdiag{l—Zm,O,...,
Y

1

i

0} QLo (40)

with the GEVD of the (nj, + K — 1) x
pencil {Ry,y,,Ra.a, } given as

(ng + K — 1) matrix

Ry50 = QiZy,5, Q1 (41
Ri,a, = Qa6 QF
where Rykyk is an estimate of R}'k}’k E{yeyiy, Ra, a,

is an estimate of Rﬁkﬁk = E{nknk } and 1 corresponds to
Y in noise-only periods. The fusion vector is finally defined
as

42)

pr = I, O]Wy.

In each time frame the nodes broadcast fused signals (39)
using their current fusion vectors. One node then updates its
fusion vector by means of (40)-(42). When the nodes update
sequentially in a round-robin fashion (e.g. one node updates
per time frame) the local signal estimates dk = wk ¥V have
been shown to converge in each node to the centralized signal
estimates obtained with (24) [18]. It has also been shown
that when the nodes update simultaneously a relaxation factor
(arg) is needed to avoid limit cycles. With this each filter is
updated as a convex combination of its previous and newly
computed version in (40) [18], [27].

VI. DISTRIBUTED CASCADE AEC AND NR
(PK-GEVD-DANSE)

The cascade AEC and NR algorithm of Section IV can be
implemented in a distributed fashion by means of the PK-
GEVD-DANSE algorithm [21] where each node broadcasts
2 fused signals, i.e., a desired signal reference and a noise
reference. In the context of combined AEC and NR, the second
fused signal will be a fused loudspeaker signal. Each node
then performs local operations, effectively corresponding to a
reduced dimensional version (dimension nj+2(K —1) in node
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k) of the PK-MWF-based cascade AEC and NR algorithm of
Section IV (dimension V), based on nj local microphone and
loudspeaker signals and 2(K — 1) fused signals received from
the other nodes. The first fused signal broadcast by node % is
given by (39) with the nj-dimensional fusion vector pj to be
redefined. The second fused signal broadcast by node k is

<H <H
2 =X By = A wy, (43)

where S\k is a Plj-dimensional fusion vector. Then each
node has access to a signal vector ¥, = [y} z, glfk]H
where z_j is defined as in Section V and z_,
[z} ... Z5_ 12541 - 2], A modification must be intro-
duced in H, and By, to account for the extra signals broadcast
from the other nodes, hence

L., 0
H _ OPlk Xmp
k IK—l )
0
Ok —1)x(K-1)
OmkxPlk 0
B, = |—1ru (44)
0 Ok —1)x(K-1)

Ik 1

where Hy is an (ng + 2(K — 1)) x (mp + K — 1) matrix
and By, is an (ny +2(K — 1)) x (Pl + K — 1) matrix. Then
equations (35) and (36) become respectively

Ci =H; — BFy (45)

Fk = (BkHRﬁkﬁkBk)_lBkHRﬁkﬁkI:Ik (46)
where Ry, g, is an estimate of Ry,y, = E{7:¥1'}. Ra,n,
is an estimate of Ry, a, = E{ﬁkﬁkH} and 1 corresponds to
¥ in noise-only periods. The fusion vectors are defined as in
(42) and as [21]

X’C = [IPlk 0](BkHRﬁkﬁkBk)_1]§£RS’kS’kwk 47)

where the local filter w;, is defined as

& a Aredy — . &nl Are ~

Wi = C(Qp) Hdlag{l 6_,o,...,o}< )il ey,
" 48)

with the GEVD of the reduced dimensional (my + K — 1) X

. N red N red :
(my + K — 1) pencil {RFS, , RES;, | given as
Sred _ Aredsared Ared\H
Ryly, = QriXys, (Q°) (49)
Hred _ Aredsired Ared\H
Rﬁkﬂk - Qk Eﬁkﬁk( k )
Sred  _ (MHT A fred  _ AHT 2
where R;e&yk = C;'Ry,5,.Ck, Ry, = CY Rigysn Cr and

y?d = Cf Y. In each time frame the nodes broadcast
fused signals (39) and (43) using their current fusion vectors.
One node then updates its fusion vectors by means of (44)-
(49). When the nodes update sequentially in a round-robin
fashion (e.g. one node updates per time frame) the local signal
estimates cfk. = v‘ka ¥V have been shown to converge in each
node to the centralized signal estimates obtained with (38)
[21].

In an AEC context (unlike the general PK-GEVD-DANSE
context), the above algorithm and its communication cost can

be reduced as follows. First, the loudspeaker signals (Bf V&)
do not contain any desired speech component, hence

which in (47) leads to X ~ 0. In (50) the "~ is replaced
by an equality if estimated correlation matrices are replaced
by true statistical quantities. The ”="" in (50) is obtained by
substituting (45), (46) and (48). Therefore the extra fused
signal z; does not need to be communicated to the other nodes.
Therefore, H}, and By are reduced to

(D

with Hj, an (ny + K — 1) x (my + K — 1) matrix and By, an
(nr + K — 1) x Pl matrix. The vector ¥, is then reduced to

o= M |

This effectively leads to a distributed cascade algorithm where
each node k shares only 1 fused signal with the other nodes.
Each node performs local operations corresponding to a re-
duced dimensional version (dimension n; + K — 1 in node
k) of the PK-MWF-based cascade AEC and NR algorithm of
Section IV.

(52)

¢

VII. PRACTICAL CONSIDERATIONS

Up until now it has been assumed that the loudspeaker
signals are stationary and so always active, which allows to
estimate the speech correlation matrix R based on (21) or
(28). In practice this assumption is not a valid one when the
loudspeakers play back speech or music signals. Therefore the
VAD should be able to detect the activity of the desired speech
signal in the presence of loudspeaker signals which may also
contain speech signals, and other background noise signals.
A cascade approach then allows to consider two aspects in
the AEC stage. Firstly, different adaptive filtering algorithms
can be used such as NLMS, RLS, etc., to estimate the AEC
filters. Secondly, the activity of the loudspeaker signals can
be monitored and then used to control the adaptive filters.
This section describes adaptive implementations of the PK-
GEVD-DANSE algorithm described in Section VI. An NLMS
or QRD-RLS algorithm is used to update Fj in the AEC
stage. Then the procedure to deal with the loudspeaker activity
detection is also presented.

A. NLMS-based PK-GEVD-DANSE

A first adaptive implementation of the PK-GEVD-DANSE
algorithm (Section VI) can be obtained using the NLMS
algorithm as [28]

Fi(l) = Fr(l — 1) + pug(l) ((ﬁk — By Fi(l - 1))H S’k(l))

(53)
HFE
= - 54
M S () +o o
Dy, (1) = u (1) (55)

H
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where @, (1) is an estimate of the PSD of the local loud-
speaker signals, J is a regularization term and pp is the step
size. The filter F'; (1) is updated whenever the desired speech
signal is not active and the loudspeaker signals are active (i.e.,
no double-talk).

B. QRD-RLS-based PK-GEVD-DANSE

Alternatively ;. can be computed using a QRD-RLS algo-
rithm. It is assumed that

By, (1)
By, (1—1)H
uo | @) 56
Lf ><Pl;v .
(BI§u(l — Ly +1))7
admits a QR-decomposition (QRD)
R
U, =Qk[5} (57)
LfXPlk

where 9y, is an orthogonal matrix, such that Qf Q=1 R,
is an upper triangular matrix and L; > Pl;. The microphone
signals are expressed as

(58)

(HY5(— Ly + )M
and based on this, the following optimization criterion can be

defined

Fj = argmin [|Y};, — UpFy|[3
Fy

= argFmin HQkH(Yk - Uka)Hz
k

-5

where the rows of Zj correspond to the first Pl rows of
QY. The star * represents entries to the matrix that are
not of interest, however it has been shown that these can be
used to compute least squares residuals [28]. The solution to
(59) is given by

2

= arg min
Fy

(59)

2

F. =R 2 (60)

which can be computed by backsubstitution. A QRD-updating
can be used in frame [ if R, is available from frame [ — 1,
by means of the following recursions

Ri(l) Zi() _ VVR;Q(Z -1 fZZk(l -1
[ 0o } =" {(Bﬁik(l))’{ @y m)r) ©Y
Fi(l) = Re(1) ™" 2k (0). (62)

where ~ is a forgetting factor and G is an orthogonal
transformation. The matrix on the right hand side of (61) is
retriangularized via a series of complex Givens rotations [29].
The new quantities are then used to obtain f‘k(l) (cfr. (60)).

A complete description of the NLMS-based and QRD-
RLS-based PK-GEVD-DANSE algorithm using simultaneous

updating is shown as Algorithm 1 and 2, respectively. The
fusion vectors in line 12 and 13 in Algorithm 1 and 2
respectively, can be updated once every D frames, using the
previous and current values, and a relaxation factor as in [27].

Algorithm 1: NLMS based PK-GEVD-DANSE
1 Construct ﬂk and Bk based on my, I and K (cfr.

(SD);
2 Randomly initialize fusion vector py Vk € KC;
3 Each node k € K performs the following

simultaneously;
4 for[=1,2,3,...do
5 Collect observations y (1)
6 Compute zj (1) (cfr. (39)) and broadcast to other
nodes;

7 Construct ¥ (1) based on z_(1);
8 Update Rykyk or f{nknk similar to (20) based on

VAD;

9 Compute ®,,, (1) and update F (1), following (55)

and (53), respectively;

10 Update its local LCMV beamformer C, using (45)

and estimate Ri°% and RS,

11 Update Wy, using (48) by means of the GEVD of
{R§’e:1§'k ’ er:ﬁ:iﬁk }; )

12 Compute fusion vector Py following (42);

13 Compute estimated node-specific desired signal

di (1) = Wi 35,(0);

C. Loudspeaker activity detection

The loudspeaker signals activity at each node directly affects
the adaptation and convergence of the adaptive filters in the
AEC stage. For this, a VAD to monitor the activity of the local
loudspeaker signals is required to control the updating of the
noise-only correlation matrix and therefore the adaptation of
. Using two binary VADs, i.e., VAD, for the desired speech
signal and VAD, for the local loudspeaker signals, brings
four possible combined outcomes for which the operations are
defined in the following sections.

1) VAD, = 1 and VAD,, = 0: The desired speech signal is
active and the local loudspeaker signals are inactive. Update
speech-plus-noise correlation matrix. Do not update F).. This
stage allows to collect information about the desired speech
signal in the correlation matrix.

2) VADs = 0 and VAD,, = 1: The desired speech signal is
inactive and the local loudspeaker signals are active. Update
noise-only correlation matrix and update ... This is similar to
what a standard AEC filter does, where the information about
the loudspeaker signals is used to update the AEC filters when
the desired speech signal is not active.

3) VAD, = 0 and VAD, = 0: Both the desired speech
signal and local loudspeaker signals are inactive. Update noise-
only correlation matrix and do not update F\.. This updates
the background noise component in the noise-only correlation
matrix, and given the absence of loudspeaker signals activity,
no adaptation is performed of the AEC filters.
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Algorithm 2: QRD-RLS based PK-GEVD-DANSE

1 Construct I:Ik and Bk based on my, [ and K (cfr.
(51));

2 Randomly initialize fusion vector py Vk € KC;

3 Initialize the matrices Ry = 10~%Ip;, and
Zi = 0p x (my+K-1)5

4 Each node k € K performs the following

simultaneously;
sfor!=1,2,3,...do
6 Collect observations yy({);
7 Compute 2 (1) (cfr. (39)) and broadcast to other
nodes;

8 Construct ¥4 (1) based on z_j(1);
9 Update lstg,kg,k or Ry, 5, similar to (20) based on
VAD;

10 | Update Ry(l) and Z,(I) based on (61) and
compute F'; (1) according to (62);

1 Update its local LCMV beamformer Ck using (45)

and estimate R;e%,k and Rﬁfﬁnk
12 Update W, using (48) by means of the GEVD of
P red pred 1.
{RS’ekS’k ’ Rﬁekﬁk }’
13 Compute fusion vector Py following (42);
14 Compute estimated node-specific desired signal

(1) = Wl 5i(1);

4) VAD;, = 1 and VAD, = 1: Both the desired speech
signal and local loudspeaker signals are active (double-talk).
Update speech-plus-noise correlation matrix and do not update
;.. The effects of double-talk in the filter adaptation have been
well documented in the literature, where it is shown that the
filter adaptation can suffer from this, and even diverge.

VIII. SIMULATIONS
A. Simulation scenario

In order to assess the performance of the proposed algo-
rithms under different situations, the scenarios shown in Fig. 1
are considered. The simulations aim at representing situations
that may occur in real life, such as more than two nodes in
the WASAN, stereo echo cancellation, long echo paths and
reverberation times, double-talk and highly correlated signals
being reproduced in two or more nodes. The simulations
are grouped in batch processing, per-frame processing and
adaptive processing simulations.

B. Batch-processing

This section outlines the batch simulations carried out using
the MWF and PK-MWEF algorithm presented in Sections III
and IV respectively and the iterative GEVD-DANSE and PK-
GEVD-DANSE algorithm described in Sections V and VI,
respectively. First, a comparison of these algorithms using the
normalized mean squared error (NMSE) metric is shown in
Fig. 2 for a WASAN consisting of 4 nodes, with {6,3,8,3}
microphones and {1,3,2,3} loudspeakers respectively. For
comparison, the NMSE that each node would achieve working

in isolation using the PK-MWF algorithm is also shown.
The desired, loudspeaker and noise signals were uncorrelated
white noise signals. The loudspeaker and noise signals were
continuously active while the desired signal had an ON/OFF
behaviour. The NMSE was computed in the discrete time
domain as

r .
NMSE = 101log,, (; > W) dB  (63)

t=1

where T is the sample duration of the signal and t the
discrete time index. In frames where the desired signal dy(t)
was zero, the power from previous frames was used for the
normalization. It is observed in Fig. 2 that including the PK in
both the centralized and distributed implementations reduces
the NMSE in the estimation of the desired signal. In all nodes
the distributed implementation outperforms each node working
in isolation. This scenario deals with a large number of
microphone and loudspeaker signals, and the activity patterns
of the latter may not be very realistic. The scenario depicted

sMWF - DANSE  ----- PK-MWF
-PK-DANSE Isolated node
Node 1 Node 2
A P P e ibaimelancalonns
14 " —6 i
2| 81 1
2 16 f - 10} .
7 : —12p i
_ | = | DA A A mAes A dede h dnde ks A ke kol
18 PRSeep amten g e g gotrd e —14 beescvsos PR AR
| | | | | |
5 10 15 20 5 10 15 20
Iteration Iteration
Node 3 Node 4
A Y R =6 T ]
m —18 | g —8 |
o
%J —19t 4 —10p n
) i N i
................. —14 Bvevenreveares
721 Il Il Il | | |
5 10 15 20 5 10 15 20
Iteration Iteration

Fig. 2: NMSE for the MWF, GEVD-DANSE, PK-MWF and
PK-GEVD-DANSE algorithms at each node for a WASAN
with 4 nodes, with {6, 3, 8,3} microphones signals and
{1, 3,2,3} loudspeakers, respectively.

in Fig. la is now analyzed with no interframe filtering, i.e.,
P = 1. The performance of the algorithm was measured in
terms of the echo return loss enhancement (ERLE), the signal-
to-noise ratio (SNR) and the NMSE. The simulations were set
up as follows. Firstly, the microphone and loudspeaker signals
were simulated at each node using room impulse responses
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of 500 samples long simulated with the randomized image
method described in [30] and a sampling frequency of 16 kHz.
The reflection coefficient of all surfaces in the room was
set to 0.15 (for a reverberation time 7Tz = 0.11s), and the
random displacement of the image sources to 0.13m. The
inter-microphone distance of the arrays was set to 20 cm for
all the nodes. The microphone signals were created such that
the signal-to-echo-and-noise ratio at microphone 1 in node 2
was —5 dB. Then, the corresponding vector y for each node
was transformed to the STFT domain using a square-root Hann
window of 512 samples using 50 % overlap. The correlation
matrices in (22), (31) and {Ry,y,,Ra.n,} in Section VI
were computed by selecting the time frames where the desired
speech signal was active and not active, respectively, based
on an ideal VAD. An ideal VAD was used to isolate the
influence of VAD errors. In practice VAD information may be
shared among the nodes [31], using a speaker-selective VAD
[32] and/or estimating the speech presence probability in a
distributed fashion [33]. All nodes in Fig. 1a had a loudspeaker
reproducing a speech signal, which were simultaneously active
only when the desired speech signal was not active. The
second loudspeaker in node 3 was reproducing a music signal
which was continuously active. The desired speech signal was
produced by a speaker located in the centre of the room. A
continuously active localized noise source was also included,
producing babble noise.

PK-GEVD-DANSE was run with simultaneous node up-
dating with a relaxation factor a,s = 0.9, to guarantee
convergence as suggested in [24]. The ERLE was computed
with non-overlapping windows of 1024 samples. The average
ERLE (over the time frames) and SNR are shown in Fig. 3.
Both metrics were computed for the first microphone in
each node. The SNR was computed by filtering the noise
component at each microphone signal with the filter obtained
for each implementation. The ERLE and SNR when each node
works in isolation (ISO) are also shown. PK-GEVD-DANSE
is abbreviated to PK-DANSE in the legends for brevity. The
NMSE for the three algorithms at the first microphone of each
node is shown in Fig. 4.

It can be seen in all nodes that including the PK reduces the
error in the estimation of the desired speech signal. In node 3
PK-GEVD-DANSE and PK-MWF outperform MWF in terms
of ERLE and SNR. Notice that node 3 is the furthest away
from the desired speech source location, it is very close to
the noise source location and has two different loudspeaker
signals. PK-GEVD-DANSE performs better, in all nodes, in
terms of ERLE and SNR than a node working in isolation.
The scenario depicted in Fig. 1b was simulated with echo paths
of 4096 samples long and a Tgg = 1.1s. The use of previous
frames is investigated for P = 2, 4, 8 and 16 in the same
scenario. Fig. 5 shows the NMSE for PK-GEVD-DANSE with
different values of P and the PK-MWE, with frame size of
512 samples. It is observed that for all P, except P = 64,
PK-GEVD-DANSE outperforms PK-MWF (P = 1) at node
2, whereas in node 1 this happens for P > 2. In node 2, for
P > 16 the NMSE was not reduced further, which could be
related to the presence of the babble noise and the increasing
number of filter coefficients to be estimated. Figure 6 shows

ERLE [ ISO I MWF I PK-MWF [ PK-DANSE
SNR MWF @22 PK-MWF [ PK-DANSE

ERLE/SNR dB

Node

Fig. 3: Average ERLE and SNR computed at the first
microphone of each node in Fig. 1a. The ERLE and SNR
when the nodes work in isolation (ISO) are also shown.

0 Node 1 2 3

/M MWF —— ——

o —5 PK-MWE == =imim

E} PK-DANSE o .

S ISETTTTY PPN SRS SO S

Z —10 = v ebesenan . T _‘_‘_‘_'_.‘_‘_-:

B e B R E—

0 10 20 30 40 50

Iteration

Fig. 4: NMSE at each of the nodes in Fig. 1a.

the NMSE for PK-GEVD-DANSE with different values of P
and the PK-MWF, with frame size of 1024 samples. A similar
behaviour is observed where the best result is obtained with
a filter which effectively has the same number of taps (i.e.
1024 x g) as the simulated echo path i.e. 4096.

——P=1 —=—P=2
—— P =16

P=4 —P=38

P =32——P =64--- PK-MWF

Node 1

Node 2

NMSE dB

|

10 20 30 10 20
Iteration

Fig. 5: NMSE for PK-GEVD-DANSE at each node in
Fig. 1b with P =1,2,4,8,16 and a frame size of 512
samples.

Iteration

C. Per-frame processing

A per-frame processing approach is now used for PK-
GEVD-DANSE, where the correlation matrices are updated
based on (20), and its NMSE is shown in Fig. 7 and compared

30
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——P=1 —=—P=2
—— P =16

P=4 —P=38

P =32——P =64--- PK-MWF

’AP:8—P:64——— PK-MWF‘

Node 1

Node 1 Node 2

NMSE dB

Iteration

Iteration

Fig. 6: NMSE for PK-GEVD-DANSE at each node in
Fig. 1b with P =1,2,4,8,16 and a frame size of 1024
samples.

to batch results for MWF and PK-MWE. The high NMSE
values before frame 50 are due to the initial updating of the
correlation matrices. The closed-form expression for Fj was
used and regularization was applied before inverting the matrix
in (46). The forgetting factor for the correlation matrices was
chosen such that data from 6s ago is weighted with a factor
of 0.1, based on the following expression

5 exp <ln((;1)>
6%/

where Fj is the sampling frequency and R the frame size. A
per-frame approach is also used for P > 1 and it is compared
to the batch solution with the same frame size in Fig. 8.

(64)

—— MWF - - - PK MWF PK- DANSE ‘

T T
m —20
S
m —30 NVW% M\ it W\\M \WA.
2] ' : ]
E —40 |- \A,\/M W E

_50 - [ [ I I I
50 100 150 200 250

Frame index

Fig. 7: NMSE at node 2 in Fig. 1b. Frame size of 4096
samples.

D. Adaptive processing

The adaptive simulations presented in this section show
the results for the algorithms described in Sections VII-A
and VII-B. The results are shown in terms of the NMSE
for each frame index. The NMSE for the NLMS-based PK-
MWF and PK-GEVD-DANSE are shown in Fig. 9 and 10,
respectively. The scenario used is shown in Fig. 1b. The first
frames are used to update the speech-plus-noise and noise-only
correlation matrices. The PK-GEVD-DANSE takes a longer
time to reduce the NMSE initially (around frame index 50)

NMSE dB

fh ‘

VA d el

AT DT
V \\\ N

| | |
50 100 150 200

Frame index

NMSE dB

| | | |
50 100 150 200 250

Frame index

Fig. 8: NMSE for PK-GEVD-DANSE at each of the nodes
in Fig. 1b with P = 8,64 and a frame size of 512 samples.
The PK-MWF batch solution is shown as reference with
same frame size

but after that it reaches lower values than the centralized
implementation. It should be noted that the fusion vectors
are computed and modified more often than in a batch-
implementation which leads to some incorrect entries in the
correlation matrices. However once they reach a stable point
(around frame index 175), the algorithm performs similarly to
the centralized algorithm.

The QRD-based PK-MWF and PK-GEVD-DANSE are
shown in Fig. 11 and 12 using the scenario in Fig. 1b. The
upper triangular matrix was initialized with a soft-constrained
initialization factor as 0I, where I is an identity matrix with
matching dimensions, according to the implementation. The
scenario is time-invariant, i.e., the impulse responses do not
change with time, hence the forgetting factor was set to 1 for
the PK-MWF. For PK-GEVD-DANSE, the forgetting factor
was set to 0.97 due to the fact that the fusion vector in each
node is updated over time. Similar results to the NLMS-based
PK-MWF are observed for the QRD-based PK-MWEFE. The
results for the QRD-based PK-GEVD-DANSE algorithm are
more stable than for the NLMS-based PK-GEVD-DANSE.
The NMSE values are more consistent and slightly lower
in the desired speech signal parts than for the NLMS-based
PK-GEVD-DANSE. It should be noted that the tuning of the
NLMS-based algorithms can take some time, which is not the
case with the QRD-based algorithms, where only the forgetting
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factor and initialization of the upper triangular matrix (6I) are
needed.

—— Node 1--- Node 2
—10 T T

—20
-30
—40

750 | | |
a0 100 150

Frame index

Fig. 9: NMSE at node 1 and 2 using the NLMS-based
PK-MWF in scenario depicted in Fig. 1b using a step size
pr = 0.02, § = 0.0154 (the sum of the power of the
loudspeaker signals) and a frame size of 4096 samples.

NMSE dB

| |
200 250

—— Node 1--- Node 2

—10 T T
8 20
B 30
2 40

—50 ‘

| | | |
50 100 150 200 250

Frame index

Fig. 10: NMSE at node 1 and 2 using the NLMS-based
PK-GEVD-DANSE in scenario depicted in Fig. 1b using a
step size pp = 0.002, § = 0.0154 and a frame size of 4096

samples.

—— Node 1--- Node 2
—10 T T

NMSE dB

—50 | | |
50 100 150

Frame index
Fig. 11: NMSE at node 1 and 2 using the QRD-based

PK-MWF in scenario depicted in Fig. 1b with forgetting
factor v = 1.

| |
200 250

To keep a low algorithmic delay, the frame size was reduced
to 512 to estimate the 4096 samples long echo paths in the
scenario in Fig. 1b and P = 8. The resulting NMSE for
both adaptive implementations is shown in Fig. 13. A similar
NMSE to that obtained with the respective PK-MWF using a
frame size of 4096 is observed.

IX. CONCLUSION

It has been shown that the GEVD-DANSE algorithm from
[18] can be adopted for distributed integrated AEC and NR,
and that the PK-GEVD-DANSE algorithm from [21] can be
adopted for distributed cascade AEC and NR in a WASAN. In

—— Node 1--- Node 2
—10 T T

NMSE dB

750 | | |
50 100 150

Frame index
Fig. 12: NMSE at node 1 and 2 using the QRD-based

PK-GEVD-DANSE in scenario depicted in Fig. 1b with
forgetting factor v = 0.97.

| |
200 250

—— NLMS-PK-DANSE P =8
—— QRD-PK-DANSE P =8

Node 1
—10 T T

NMSE dB

-50 ‘
50 100 150

Frame index

| |
200 250

Node 2
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NMSE dB
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Fig. 13: NMSE for the NLMS-based and QRD-based
PK-GEVD-DANSE algorithms at each of the nodes in
Fig. 1b with P = 8 and a frame size of 512 samples. For the
NLMS-based algorithm the step size up = 0.001, 6 = 1072,
For the QRD-based algorithm vy = 0.996.

addition, the communication cost of the PK-GEVD-DANSE
algorithm has been reduced resulting in each node in the
network broadcasting only 1 fused signal (instead of 2 signals)
to the other nodes. The performance of the algorithms has been
verified in terms of AEC quantified with the ERLE, as well as
in terms of NR quantified with the SNR. As in most cascaded
approaches, it has been shown that the AEC stage can be
implemented using an NLMS- or QRD-RLS-based algorithm.
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