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Abstract
Objective. Deep learning (DL) networks are increasingly attracting attention across various fields,
including electroencephalography (EEG) signal processing. These models provide comparable
performance to that of traditional techniques. At present, however, there is a lack of well-structured
and standardized datasets with specific benchmark limit the development of DL solutions for EEG
denoising. Approach. Here, we present EEGdenoiseNet, a benchmark EEG dataset that is suited for
training and testing DL-based denoising models, as well as for performance comparisons across
models. EEGdenoiseNet contains 4514 clean EEG segments, 3400 ocular artifact segments and
5598 muscular artifact segments, allowing users to synthesize contaminated EEG segments with the
ground-truth clean EEG.Main results.We used EEGdenoiseNet to evaluate denoising performance
of four classical networks (a fully-connected network, a simple and a complex convolution
network, and a recurrent neural network). Our results suggested that DL methods have great
potential for EEG denoising even under high noise contamination. Significance. Through
EEGdenoiseNet, we hope to accelerate the development of the emerging field of DL-based EEG
denoising. The dataset and code are available at https://github.com/ncclabsustech/EEGdenoiseNet.

1. Introduction

Electroencephalography (EEG) solutions permit
recording of changes in electrical potential on the
scalp, which are generated by neurons in the graymat-
ter. EEG is one of the most important direct and non-
invasive approaches for studying brain activity under
task and resting conditions. It has been widely used
in psychology, neurology and psychiatry research, as
well as for brain-computer interface [1–6].

EEG signals contain not only brain activity, but
also a variety of noise and artifacts, including ocu-
lar [7], myogenic artifacts [8, 9], and, in rare cases,
cardiac artifacts. Therefore, a basic step in using EEG
data to study neural activity is denoising or arti-
fact attenuation [10]. Ocular and myogenic artifacts
contaminate EEG signals in different ways. The

former is often visible as relatively large pulses in the
frontal region [11], while the latter frequently appears
in the temporal and occipital regions, and has a wide
frequency spectrum [9, 12].

Various traditional denoising techniques have
been developed to remove artifacts from EEG
data, such as regression-based methods, adaptive
filter-based methods and blind source separation
(BSS)-based methods. Among them, the regression-
based method first obtains the noise signal through
the noise template, and then subtracts the estim-
ated noise signal from the EEG data to eliminate
the artifacts [12–15]. On the contrary, methods
based on adaptive filters rely on dynamically estim-
ating filter coefficients based on the input EEG
signal itself, thereby filtering out noise [16, 17].
BSS-based methods decompose the EEG signal
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into multiple components [18–20], assign them to
neural and artifactual sources, and reconstruct a
clean signal by recombining the neural compon-
ents [9, 12, 21]. However, BSS-based methods can
only be used when a large number of electrodes are
available, which are not suitable for single-channel
denoising.

Deep learning (DL) have been increasingly
attracting attention in the past few years [22–25]. Due
to the increase in computing resources, the boosting
data size, and the availability of new network archi-
tectures and learning algorithms, the performance of
DL neural networks has made great breakthroughs,
and DL has been successfully applied to solve vari-
ous technical problems, such as image processing
[22, 23, 26, 27] and natural language processing
[24, 25, 28]. DL methods have begun to be intro-
duced into the field of EEG signal analysis [29], such
as EEG-based classification [30–32], EEG reconstruc-
tion [33, 34] and EEG signal generation [35, 36].
Recently, DL has also been applied to EEG denoising,
providing performance comparable to the traditional
denoising method [37–40].

Deep neural networks can learn the hidden state
of neural oscillations in EEG, thereby eliminating
fluctuations that are not from real neural activity but
from biological artifacts. The performance of deep
neural networks fundamentally depends on the size
of the training and test datasets; or in other words,
it requires big data [41–43]. A big dataset with the
gold standard clean EEG is essential for evaluating
newly developed supervised DL models. Some EEG
datasets have been collected while participants are
at rest [44, 45], during cognitive tasks [46–48], or
motor-related tasks [49–52]. However, none of them
are specifically developed for training end-to-end DL
models for EEG artifact removal. To the best of our
knowledge, there is no open EEG dataset suitable for
training DL models for EEG denoising. The lack of
ground-truth clean EEG data and benchmarks have
largely limited the development of DL methods for
EEG denoising.

In this study, we present a publicly available struc-
tured dataset, named EEGdenoiseNet, which is par-
ticularly suitable for deep network-based EEG arti-
facts attenuation (section 2). Specifically, the dataset
contains 4514 clean EEG segments as ground truth,
and 3400 pure electrooculography (EOG) segments
and 5598 pure electromyography (EMG) segments as
ocular artifacts andmyogenic artifacts respectively. In
addition, we also implement four deep neural net-
works as benchmarks (section 3), including a fully-
connected neural network (FCNN), a simple convo-
lution neural network (CNN), a complex CNN, and
a recurrent neural network (RNN). We train the DL
models in a supervised end-to-end fashion, and the
denosing performance are presented as benchmarks
(section 4).

2. EEGdenoiseNet dataset

2.1. Data acquisition and preprocessing
Our main goal is to construct a dataset suitable for
EEG denoising research based on DL networks. In
this regard, we downloaded EEG, EOG and EMG
data from several publicly available data repositories
which were published in previous studies (see table 1)
[53–60]. These studies have been ethically approved
by their respective local ethical committees, and fol-
lowed the Helsinki Declaration of 1975, revised in
2000.

To generate clean EEG, pure EOG and pure EMG,
we firstly preprocessed the data. Then segmented
them into 2 s segments. Afterwards, we re-scaled the
segments to the same variance. Finally, each segment
was visually checked by an expert to ensure they are
clean and usable. We set the length of segments to
2 s according to the previous knowledge of EEG sig-
nals. On the one hand, a 2 s segment is long enough
to recover the temporal and spectral characteristics of
EEG, as well as EOG and EMG. On the other hand, it
is difficult to obtain artifact-free EEG segments longer
than 2 s due to the random eye blinks or movements.
The segments in each category have been uploaded
to a publicly available repository (https://github.com/
ncclabsustech/EEGdenoiseNet).

Specifically, for the EEG segments (figure 1(a))
[53], the dataset included 52 participants who per-
formed both real and imaginary left and right hand
movement task, with 64 channel EEG recorded simul-
taneously at 512Hz sampling frequency. For both real
and imagined movement task, a participant repeated
2 s baseline and 3 s movement with 4.1–4.8 s random
interval for 20 min. The data was band-pass filtered
between 1 and 80Hz, notched at powerline frequency,
and then re-sampled to 256 Hz. To obtain the clean
EEG as ground truth, the 64-channel EEG signals
were processed by ICLabel, a toolbox to remove EEG
artifacts with independent component composition
(ICA) [9]. Then the pure EEG signals were segmented
into one-dimensional segments of 2 s. It is worth not-
ing that, in order to ensure the universality of this data
set, we did not construct clean EEG signals with a spe-
cific number of channels due to the diversity of EEG
caps, but constructed a dataset with single-channel
EEG signal.

For the ocular artifact segments (figure 1(b)),
multiple open-access EEG datasets with additional
EOG channels are used [54–58,60]. The horizontal
and vertical raw EOG signals of the datasets are band-
pass filtered between 0.3 and 10 Hz, and then re-
sampled to 256 Hz. Finally, the EOG signals are seg-
mented into one-dimensional segments of 2 s.

For the myogenic artifact segments (figure 1(c)),
a facial EMG dataset is used [59]. We choose facial
EMG because they are the main sources of myogenic
artifacts. The raw EMG signal is band-pass filtered
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Table 1. Summary of the data collections used in our dataset.

Dataset Signal type # of subjects Mean age± SD Dataset website

Hohyun et al (2017) [53] EEG 52 26± 3.86 http://gigadb.org/dataset/100295
Kangoga et al (2016) [54] EOG 20 22.75± 1.45 http://u4ag2kanosr1.blogspot.jp/
Naeem et al [56] EOG 8 23.8± 2.5 www.bbci.de/competition/iv/
Schlögl et al (2007) [57, 58] EOG 10 Age between

17 and 31
www.bbci.de/competition/iv/

Rantanen et al (2015) [59] EMG 15 40.7± 9.6 https://etsin.fairdata.fi/dataset/0f24bf09-
c5d1-422e-8df5-eb44219f5dec

Figure 1. The pipeline for obtaining clean EEG, EOG and EMG. (A) To obtain the clean EEG, pure EOG and pure EMG
segments, we firstly preprocess the raw data. The data preprocessing include filtering, ICA-based artifacts removal, resampling,
standardization, and visual checked by an expert. (B) 4514 pure EEG segments, 3400 pure EOG segments and 5598 pure EMG
segments are obtained. EEGdenoiseNet dataset include two data formats: .mat files and .npy files. (C) The semi-synthetic data is
generated by mixing a pure EEG segment and an EOG/EMG segment.

between 1 and 120 Hz and notched at the powerline
frequency, and then resampled to 512 Hz. We res-
ample the EMG to 512 Hz instead of 256 Hz, because
the EMG signal is concentrated in the high frequency
range, so a higher sampling rate is required (accord-
ing to the Nyquist sampling theorem). In the end, we
extract one-dimensional 2 s EMG segments.

For all three categories, the segments are stand-
ardized by subtracting their mean and dividing by
their standard deviation, and then visually inspec-
ted by an expert. We obtain a total of 4514 EEG seg-
ments, 3400 ocular artifact segments, and 5598 myo-
genic artifact segments. The segments of each cat-
egory are respectively saved asMatlabmatrix files and
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Figure 2. Examples of segments in EEGdenoiseNet dataset. (a) An EEG segment. (b) A vertical EOG (vEOG) segment.
(c) A horizontal EOG (hEOG) segment. (d) An EMG segment. (Upper) The time course. (Bottom) The PSD.

Python numpy matrix files in the public data repos-
itory. Figure 2 shows an example of the clean EEG,
horizontal EOG, vertical EOG and EMG.

2.2. Data usage
The contaminated signals can be generated by lin-
early mixing the pure EEG segments with EOG or
EMGartifact segments, according to equation (1) (see
figure 1(c)):

y= x+λ · n, (1)

where y denotes the mixed one-dimensional signal
of EEG and artifacts; x denotes the clean EEG signal
as the ground truth; n denotes (ocular or myogenic)
artifacts; λ is a hyperparameter to control the signal-
to-noise ratio (SNR) in the contaminated EEG signal
y. Specifically, the SNR of the contaminated segment

can be adjusted by changing the parameter λ accord-
ing to equation (2):

SNR= 10 log
RMS(x)

RMS(λ · n)
, (2)

in which the root mean squared (RMS) value is
defined as equation (3):

RMS(g) =

√√√√ 1

N

N∑
i=1

g2i , (3)

where N denotes the number of temporal samples
in the segment g, and g i denotes the ith sample of a
segment g. Notably, lower λ represents higher SNR,
as less EOG or EMG artifacts are added in the EEG
signal. In return, lower SNR means higher noise
level. According to previous studies, the SNR of EEG
contaminated by ocular artifacts is usually ranging
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Figure 3. The framework of EEGdenoiseNet. The semi-synthetic data includes ground truth EEG segment and contaminated
segment. The one-dimensional contaminated segment is fed into neural networks. The networks are trained in a supervised,
end-to-end manner. The output of neural networks are the cleaned EEG signal. The performance of networks are quantified with
multiple metrics as benchmarks. This process was performed separately for ocular artifact removal and myogenic artifact removal.

from−7 to 2 dB [61], while the SNR of EEG contam-
inated bymyogenic artifacts are between−7 and 4 dB
[62, 63].

In this way, we obtain a pair of EEG data (x,y). To
train the end-to-end DL methods for EEG denoising,
the clean EEG x can be regarded as the ground truth,
and the contaminated EEG y can be used as the
inputs.

3. Benchmarking deep learning
algorithms

The second goal of this study is to provide a set
of benchmark algorithms (figure 3). We train four
standard deep-learning neural networks, then valid-
ate the networks. The evaluation metrics can be used
as benchmarks for the EEGdenoising algorithms. The
neural networks are not trained to classify three types
of segments. Instead, we train the benchmarking net-
works to remove ocular artifacts and myogenic arti-
facts separately and directly in temporal field.

3.1. Generating semi-synthetic data
The semi-synthetic ocular artifact contaminated sig-
nals are from 3400 EEG segments and 3400 ocular
artifact segments, with 80% for generating the train-
ing set, 10% for generating the validation set, and
10% for generating the test set [64]. Each set were
generated by randomly linearlymixing EEG segments
and ocular artifact segments according to section 2.2,
with SNR raging from ten different SNR levels (−7,
−6, −5, −4, −3, −2, −1, 0, 1, 2 dB). This proced-
ure expanded the data size of each set to ten times.
The EEG segments are treated as ground truth, and
the correspondingmixed segments are treated as con-
taminated EEG.

The myogenic artifacts contaminated signals
come from 4514 EEG segments and 5598 myogenic
artifact segments. To match the sampling frequency
of EEG segments with myogenic artifact segments,
we upsample the EEG segments to 512 Hz. To match
the number of EEG segments with myogenic artifact
segments, we randomly reuse some EEG segments.
We mix the EEG segments and the myogenic arti-
fact segments as equation (1) to generate the training
data, test data, and validation data. Likewise, the EEG
segments are treated as ground truth, and the corres-
ponding mixed segments are treated as contaminated
EEG.

3.2. Network architectures
3.2.1. Fully-connected neural network
A fully-connected network with four hidden layers
using ReLu as activation function is provided as a
benchmarking algorithm (figure 4(a)). The number
of neurons in each layer is equal to the number of
temporal samples of the input signal (i.e. 512 for ocu-
lar artifact reduction, and 1024 for myogenic arti-
fact reduction). Dropout regularization [65] is used
to reduce overfitting. The contaminated EEG is fed in
from the first layer of the neural network, and then
the denoised EEG is output from the last layer.

3.2.2. Simple convolution neural network
A simple convolution network is implemented
(figure 4(b)). The simple CNN consists of four 1D-
convolution layers with small 1 × 3 kernels, 1 stride,
and 64 featuremaps (k3n64s1). Each 1D-convolution
layer is followed by a batch-normalization layer [66]
and a ReLu activation function. To reconstruct the
signal, the last convolutional layer is followed by a
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Figure 4. The structures of the four DL-based methods for benchmarking. (a) FCNN; (b) simple CNN; (c) complex CNN;
(d) RNN. For each of the networks, the input is the contaminated segments (1 × 512 for ocular artifact removal, and 1 × 1024
for myogenic artifact removal), and the output is the cleaned segments (1 × 512 for ocular artifact removal, and 1 × 1024 for
myogenic artifact removal). The networks are trained to learn the genuine neural activities from contaminated signal segments
according to contaminated segments and ground truth segments. The contaminated EEG was fed in from the first layer of the
neural network, and then the denoised EEG was output from the last layer.

flatten layer and a dense layer with 512 or 1024 neur-
ons as outputs (the same as the input).

3.2.3. Complex convolution neural network
An one-dimensional residual convolutional neural
network (1D-ResCNN), adapted from [38], is imple-
mented (figure 4(c)). Compared with simple CNN,
the 1D-ResCNN has a more complex structure, so it
is called complex CNN. The main difference between
them is that a ResNet with skip-layer connections
is added into the complex CNN to avoid gradient
explosion so that we can train a deeper network to
obtain better feature extraction capabilities [23]. To
extractmulti-scale features, we repeatedly stack resid-
ual blocks, using 1× 3, 1× 5, 1× 7 multi-scale con-
volutional kernels twice and arranging three sets of
residual blocks branches in parallel [27, 67].

3.2.4. Recurrent neural network
A long short-term memory (LSTM) network
(figure 4(d)), adapted from [68], is regard as the
benchmark of RNNs. LSTM can learn long-term
dependencies, which may help distinguish the long-
term features in noise and EEG signals. Each EEG
sample is sequentially input to LSTM cells, and the
output is obtained from the state of each cell through
a fully-connected network. This RNNmodel is initial-
ised to have one hidden state, and the output network
is a three-layer fully-connected network with ReLu
activation function, dropout regularization, and 512
or 1024 neurons per layer.

3.3. Learning process
In order to facilitate the learning procedure, we
normalized the input contaminated EEG segment
and the ground-truth EEG segment by dividing the
standard deviation of contaminated EEG segment
according to equation (4):

x̂=
x

σy
, ŷ=

y

σy
, (4)

where σy is the standard deviation of the contamin-
ated EEG signal segment y. The standard deviation of
each noise segment is saved, so that the magnitude of
the denoised EEG segment can be restored by mul-
tiplying the network output by the corresponding
standard deviation value.

The networks are trained in an end-to-end man-
ner, which means that we input the normalized con-
taminated EEG segment into the neural networks and
then directly output the denoised EEG segment. To
this end, the goal of a denoising network is to learn
a nonlinear function f that maps the contaminated
EEG ŷ to the denoised EEG x̃:

x̃= f(ŷ,θ), (5)

where ŷ ∈ R1×T denotes the contaminated EEG seg-
ment, x̃ ∈ R1×T as the output of neural network (the
denoised EEG segment), and the vector θ contains all
parameters to be learned.

We use the mean squared error (MSE) as loss
function LMSE( f) (see equation (6)). The learning
process is implemented with gradient descent tomin-
imize the error between the denoised segment and the
ground-truth clean segment:

LMSE =
1

N

N∑
i=1

∣∣∣∣∣∣x̃i − x̂i
∣∣∣∣∣∣2
2
, (6)

where N denotes the number of temporal samples
of segment; x̃i denotes ith sample of the output of
the neural network; x̂i denotes the ith sample of the
ground truth x.

For ocular artifact removal, we train the FCNN
with 60 epochs, RNN with 100 epochs, while the
simple CNN and complex CNN models are trained
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over 40 epochs. For myogenic artifact removal, we
train the FCNN and RNN with 60 epochs, while the
simple CNN and complex CNN models are trained
over 10 epochs. The Adam algorithm is applied to
optimize the loss function, and the parameter were
set to α= 5× 10−5, β1 = 0.5, β2 = 0.9. To increase
the statistical power, the four networks are trained,
validated and tested independently for 10 times with
randomly generated datasets via EEGdenoiseNET.

The time cost of training the network also needs
to be considered. It takes about 30 min to train the
FCNN and the simple CNN, approximately 1 h to
train the complex CNN, and approximately 8 h to
train RNN. It should be noted that the time cost
largely depends on the software implementation and
hardware platform. In our study, the networks were
implemented in Python 3.7 with Tensorflow 2.2 lib-
rary, running on a computer with two NVIDIA
Tesla V100 GPUs. The codes for the benchmarking
algorithms are publicly available online at Github
[69]. The detailed information for network architec-
ture is in the supplementarymaterial (available online
at stacks.iop.org/JNE/18/056057/mmedia).

3.4. Performance evaluation as benchmarks
There are several metrics are used to qualitatively
evaluate the performance of networks, including the
network convergence, the relative root mean squared
error (RRMSE), and the correlation coefficient.

The network convergence is the first index to eval-
uate the performance of networks, which can provide
rich information about the learning procedure and
generalization ability. The convergence curve of both
training and validating processes are obtained by
calculating the averaged loss (in equation (6)) with
respect to the number of epochs.

We then quantitatively examine the performance
of the networks by applying three objective measures
to the denoised data [62], including RRMSE in the
temporal domain (RRMSEtemporal, see equation (7)),
RRMSE in the spectral domain (RRMSEspectral, see
equation (8)) and the correlation coefficient (CC see
equation (9)):

RRMSEtemporal =
RMS( f(y)− x)

RMS(x)
, (7)

RRMSEspectral =
RMS(PSD( f(y))− PSD(x))

RMS(PSD(x))
, (8)

where the function PSD() denotes to the power spec-
tral density of an input segment. The frequency range
of PSD is 0–120 Hz. The fft-length equal to the length
of the input segment:

CC=
Cov( f(y),x)√
Var( f(y))Var(x)

. (9)

To compare the DL methods with the tradi-
tional methods, we implement two traditional EEG

denoising methods: (a) empirical mode decomposi-
tion (EMD) and (b) filtering. In the EMD method,
the artifactual intrinsicmode functions are defined by
the distance metric used in clustering [70]. In the fil-
tering method, the ocular and myogenic artifacts are
removed using a high-pass filter (12 Hz) and a band-
pass filter (12–40 Hz), respectively. These two tra-
ditional methods are tested 10 times with randomly
generated datasets. The corresponding codes are
available online at https://github.com/ncclabsustech/
Single-Channel-EEG-Denoise.

4. Results

To give a qualitative overview of the denoising res-
ults, we display some sample fragments in the test
in the time domain and frequency domain for ocu-
lar artifact removal (see figure 5) and for myogenic
artifact removal (see figure 6). For each network
and artifact type, we show two examples: one of the
best results (left column) and one of the worst res-
ult (right column). Generally, both in ocular and
myogenic artifact removal, the artefacts are greatly
attenuated, and the noise-free EEG samples are well-
reconstructed. The frequency domain diagram shows
that the artifacts in the low frequency bands are well
detected and attenuated, but the high frequency is
affected by residual noise.

The quantitatively results are examined. We first
present the convergence of the four networks. The
training and validation loss of the networks can show
a quantitative overview of the training and validat-
ing process. For all the four networks and two arti-
fact types, the training loss is consistently lower than
the validation loss as expected. For the ocular arti-
fact removal (see figure 7(a)), the training and valid-
ation loss decrease with the increase of epochs. Spe-
cifically, the loss of simple CNN and complex CNN
drop notably fast and eventually diminish after 20
epochs. The FCNN loss and the RNN loss, however,
starting from a relatively high level, remain at a sig-
nificant level after 20 epochs. For the myogenic arti-
fact removal (see figure 7(b)), the training loss of
four networks decreased with respect to the number
of epochs, similar to the ocular artifact removal. The
loss of simple CNN and complex CNNdecrease faster
during training, but increased during validation. This
phenomenon indicates that the two convolutional
networks seemnot learn the true characteristics of the
EMG signal, which means that CNNs suffer from an
overfitting problem when removing myogenic arti-
facts.

We present the quantitative benchmarks
(RRMSEtemporal, RRMSEspectral and CC) from the four
networks and the two traditional methods at multiple
SNR levels (see figure 8). Generally, for both ocu-
lar and myogenic artifact removal, the performance
decreases with the decrease of SNR level. The tra-
ditional methods showed higher RRMSE and lower
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Figure 5. Some exemplary segments of the performance in temporal domain (upper) and spectral domain (bottom) for ocular
artifact removal. (a) FCNN. (b) Simple CNN. (c) Complex CNN. (d) RNN. (Left) The examples with the best denoising
performance; (right) the examples with the worst denoising performance. The orange, green and blue line are the ground-true
EEG, the noisy EEG and the cleaned EEG by EEGdenoiseNet, respectively.
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Figure 6. Some exemplary segments showing the performance in temporal (upper) and spectral (bottom) domains for myogenic
artifact removal. (a) FCNN. (b) Simple CNN. (c) Complex CNN. (d) RNN. (Left) The examples with the best denoising
performance; (right) the examples with the worst denoising performance. The orange, green and blue lines are the ground-true
EEG, the noisy EEG and the cleaned EEG by EEGdenoiseNet, respectively.
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Figure 7. The MSE loss as a function of the number of epochs: (a) ocular artifact removal; (b) myogenic artifact removal. The red
line is the learning curve for the training set and the blue line for the validation set.

CC compared with the four DL networks. The differ-
ence of performance is larger at the large noise level
(low SNR), while the difference reduces at low noise
level (large SNR, e.g. SNR> 0). Among the DL meth-
ods, RNN has the lowest RRMSE and the highest CC
for ocular artifact removal (see figure 8(a)), and the
complex CNN has the lowest RRMSE and the highest
CC in myogenic artifact removal.

To further comprehensively compare bench-
marks, we separately plot the benchmarks at multiple
SNR levels in boxplot (see figure 9), and conduct
ANOVA analyses. For the ocular artifact removal
(see figure 9(a)), DL-based methods have signific-
antly better denoising performance compared to
two traditional methods, in terms of RRMSEtemporal,
RRMSEspectral andCC (p< 0.001 for each of threemet-
rics). Similarly, the DL-based methods outperform
traditional methods for myogenic artifact removal
(p< 0.001 for each of three metrics) (see figure 9(b)).
In the time domain,RRMSEtemporal of RNN is signific-
antly higher than FCNN, simple CNN, and complex
CNN (p= 0.007, p< 0.001, and p< 0.001, respect-
ively); FCNN has significantly higher RRMSEtemporal

than the complex CNN (p= 0.020). At the frequency
domain, RNN has significantly higher RRMSEspectral

than the FCNN and the complex CNN (p= 0.020 and
p= 0.006, respectively). CC of the complex CNN is
significantly higher than RNN and FCNN (p< 0.001,
and p= 0.011, respectively). The same effect is shown
on simple CNN and RNN (p= 0.004).

We finally evaluate the performance of the differ-
ent methods for different frequency bands, by calcu-
lating the average power ratio of each frequency band
(delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz), and gamma (30–80 Hz) bands) to
whole band (1–80 Hz) for ocular artifact removal
and myogenic artifact removal (see tables 2 and 3).
For the ocular artifact removal (see table 2), the mix
of ocular artifacts increased the power ratio of delta
and theta bands, while reduced the ratio of the other
bands. The simple CNN showed the closest delta,
theta and beta power ratio compared to those of the
ground truth, the same effect observed on the com-
plex CNN for theta band, on the EMD for alpha band,
on the RNN for gamma band, and on the FCNN for
theta and gamma band. In myogenic artifact removal
(see table 3), the add of myogenic artifact increased
gamma power ratio and decreased other power ratios.
The FCNN showed the closest ratio in beta bands
compared to those of the ground truth, the same

10



J. Neural Eng. 18 (2021) 056057 H Zhang et al

Figure 8. Performance of four deep-learning networks at different SNR levels: (a) ocular artifact removal; (b) myogenic artifact
removal. The cold colored lines represent deep learning methods, while the warm colored lines represent traditional methods.
The denoising performance increases as the SNR increases.

effect on the EMD for alpha band, on the complex
CNN for theta and gamma bands, on the RNN for
delta and alpha bands.

5. Discussion

In this study, we have provided an EEG benchmark
dataset, EEGdenoiseNet, for training and testing end-
to-end DL models. To obtain the ground-truth clean
EEG data, the raw EEG data is denoised by ICLa-
bel [9] and then manually inspected for a double
check. Although there are other publicly available

EEG datasets, they are not specifically developed for
EEG denoising. Instead, they are mainly focused on
the resting state study [44, 45], psychological study
[46–48], or motor imaginary or motor tasks [49–52].
A previous study has offered a semi-simulated data-
set for EOG artifact removal, but EMG signals are
not included [71]. Effective use of these datasets for
DL-based denoising requires extensive EEG back-
ground knowledge, including properties of EEG and
artifacts, data format conversion, and signal pro-
cessing. In contrast, the segments in our dataset
have been pre-processed, so users can immediately

11



J. Neural Eng. 18 (2021) 056057 H Zhang et al

Figure 9. Performance of four DL networks (FCNN, simple CNN, complex CNN, RNN) and two traditional methods (EMD and
filter): (a) ocular artifact removal, (b) myogenic artifact removal. Deep learning models robustly outperform EMD and filtering
for EEG denosing.

Table 2. Power ratios of different frequency bands before and after ocular artifact removal.

Denoising method Delta Theta Alpha Beta Gamma

EMD 0.025 0.042 0.096 0.585 0.252
Filter 0.000 0.000 0.000 0.405 0.595
FCNN 0.129 0.127 0.085 0.500 0.159
Simple CNN 0.131 0.127 0.085 0.492 0.165
Complex CNN 0.128 0.127 0.085 0.493 0.166
RNN 0.124 0.122 0.088 0.506 0.159
Ground truth 0.143 0.141 0.093 0.467 0.157
Contaminated signal 0.514 0.216 0.070 0.151 0.049

‘Ground truth’ refers to the clean EEG segments.

‘Contaminated signal’ refers to the mixed EEG signal generated by equation (1).

The highlighted numbers are closest to the value of ground truth.

Abbreviation: EMD, empirical mode decomposition; FCNN, fully-connected neural network; CNN, convolutional

neural network; RNN, recurrent neural network.
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Table 3. Power ratios of different frequency bands before and after myogenic artifact removal.

Denoising method Delta Theta Alpha Beta Gamma

EMD 0.227 0.162 0.093 0.330 0.188
Filter 0.000 0.000 0.000 0.312 0.687
FCNN 0.147 0.144 0.092 0.481 0.135
Simple CNN 0.119 0.138 0.096 0.506 0.142
Complex CNN 0.123 0.139 0.097 0.492 0.149
RNN 0.139 0.138 0.093 0.482 0.147
Ground truth 0.142 0.140 0.093 0.464 0.160
Contaminated signal 0.200 0.141 0.077 0.300 0.281

generate a large set of semi-synthetic noisy EEG seg-
ments with ground truth for their DL-based denois-
ing models without being distracted by detailed elec-
trophysiological knowledge. With this advantage, our
well-structured dataset would greatly promote the
development of DL-based EEG denoising.

Another major challenge to compare the per-
formance of different denoising algorithms is the lack
of specific benchmarks. The use of standard bench-
marks greatly simplify the comparisons of perform-
ance across multiple DL models. To fill this gap, we
provided a set of benchmark algorithms along with a
standardized EEG dataset. We chose four well-known
and relatively basic networks, i.e. a FCNN, a simple
CNN, and a RNN for benchmarking. Performance of
these DL models in providing artifact-corrected EEG
data has been measured using several standard met-
rics, such as RRMSE, PSD and CC. Furthermore, we
define the network convergence, expressed by loss as
a function of epoch number, as a qualitative part of
the benchmarks. We expect our work to contribute to
the DL-based EEG denoising field, in particular for
we standardizes evaluation metrics of performance.

Our benchmarks of four DL networks and two
traditional methods have demonstrated the feasib-
ility of using DL-based methods to attenuate arti-
facts from EEG signals. Our comparisons of the four
networks (i.e. FCNN, simple CNN, complex CNN,
RNN) with two traditional methods (i.e. EMD and
filter) suggest that DL-basedmethods outperform the
traditional method, and the supervised end-to-end
DL has great potential to remove artifacts in EEG sig-
nals. Specifically, for the ocular artifacts, the range of
CC values in our four networks are at equivalent level
of the CC values reported in a previous study, which
used a regression-based method and an offline ICA-
based method [72]. A consistent result has been also
reported by a DL-based ocular artifact removal study
[37]. However, these studies have not offered bench-
marks for comparing with other methods [73–76].
For themyogenic artifacts, comparableRRMSEtemporal

values have been reported in previous literature, such
as an ICA-based method [63] and a canonical correl-
ation analysis-based method [77].

The performance of the neural networks depends
on the data quality and frequency characteristics of
artifacts. The neural networks provide better results

for high SNR signals than low SNR signals (figure 8).
Moreover, the high-frequency artifacts, such as EMG
artifacts, are more difficult for neural networks to
deal with (figures 8 and 9). This phenomenon may
be explained by the F-principle of neural network
[78]. The F-principle proves that DL networks often
learn low-frequency information in the early stages of
training, and then learn high-frequency information
as training iterations increase.

One advantage of DL for EEG artifact removal is
its flexibility and generalizability. Although the DL-
based denoising methods require a large amount of
ground-truth EEG data in the training stage, once
the model is trained, it can be easily applied to new
data, such as multi-channel EEG data or task-related
EEG data, regardless of the corresponding reference
channels for artifact removal. Another advantage lies
in the handling of complex (e.g. nonlinear and non-
stationary) artifact mixtures. Due to the hierarchical
structure of deep neural networks, DL models can
directly learn the true nature of neural activities from
training data in the hidden space, and then generate
the cleaned EEG data according to the new contamin-
ated EEG input, whereas traditional methods usually
linearly attenuate artifacts. Therefore, methods based
on DL are expected to provide better performance
than traditional methods in noise removal.

Several limitations should also be mentioned.
First of all, an important potential problem is the
size of the dataset and the type of data. Although
we provided thousands of segments of EEG, ocu-
lar and myogenic artifacts in EEGdenoiseNet, it is
possible that more complex neural networks might
require larger amounts of data for training and test-
ing. Another drawback is the diversity of the EEG type
and artifact type. EEG datamay be collected in resting
state or in different task conditions; furthermore, arti-
facts in EEG recordings are not only limited to ocular
and myogenic. For example, removing motion arti-
facts is important for EEG mobile applications. To
address these drawbacks, better tools for extracting
signal segments [79] and criteria for reviewing and
approving additional EEG data submissions to EEG-
denoiseNet would be needed in future works. Such an
evolving dataset will contribute to improve the gen-
eralibility of the DL-based EEG denoising networks
to diverse brain states. Third, we only focused on the
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denosing of 2 s long EEG segments in this study. It
is worth noting that some EEG tasks might be longer
than 2 s, not tomention the case of resting EEG. In the
future, EEGdenoiseNet needs to be extended to adapt
to the denoising of continuous EEG. The continuous
artifact removal problem can be solved by defining
pseudo-segments in continuous EEG recordings, and
extracting the hidden relationships between consec-
utive segments, such that the previous segment can
be used in the training stage as input to constrain
the denoising process of the current segment. Forth,
here we only focus on single-channel EEG denois-
ing, and the DL model learns the temporal inform-
ation of EEG signals and EOG/EMG artifacts. To use
supervised models to learn spatial features, a bench-
mark data set with multi-channel EEG data must be
provided in future. Fifth, the four neural networks
in this study serve as benchmarking algorithms for
EEGdenoiseNET dataset. Their generalization abil-
ity to other kinds of signals are not tested yet. This
will be an important future work. Finally, we did
not explore unsupervised DL models in this study.
When there is no gold standard for clean EEG sig-
nals and artifacts, unsupervised DL may be of great
importance.

6. Conclusion

In this study, we provided a dataset containing thou-
sands of clean EEG, ocular artifacts and muscular
artifact segments, which is suited for benchmark-
ing DL-based EEG denoising methods. The data-
set is well-structured and publicly available online
in different formats. In addition, we included a set
of benchmark tools to facilitate the evaluation of
newly developed DL-based EEG denoising models.
Our benchmarking results suggested that DL meth-
ods have great potential to remove both ocular and
myogenic artifacts from EEG data, even at high noise
levels. Our study may accelerate the development of
DL-based EEG denoising field.
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