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Highlights

 The paper presents multiband approach for bearing failure detection.
 The signal processing applies the demodulation based on Teager-Kaiser energy operator.
 Experimental investigation confirmed potential of the method for detection of bearing failures.

Abstract
Rolling element bearings are among the most important components of rotating machinery, being the 
interface between the stationary and the rotating parts. Bearing failures might cause accidents and 
unexpected machine breakdown. Therefore, there is an important need for novel condition monitoring 
techniques focusing towards early detection and accurate identification of emerging faults. The key aim of 
this paper is the proposal of the concept of Multiband Demodulation Analysis (MDA), performed using a 
bank of bandpass Gabor filters combined with the Teager-Kaiser Energy Separation Algorithm (ESA) for 
condition monitoring of rolling element bearings. The demodulation takes place in multiple frequency 
bands, following a multiband analysis scheme, in order to isolate the strongest modulation components in 
each band. Finally, a maximum average energy tracking process over the various frequency bands is used 
to yield short-time measurements of the multiband signal modulation energy and the demodulated instant 
amplitude and frequency. The method is applied, tested and evaluated on vibration signals, captured on two 
test rigs and its performance is compared with a state of the art diagnostic approaches, the Kurtogram and 
the empirical mode decomposition, achieving promising results.

Keywords: Condition Monitoring, Bearing diagnostics, Teager-Kaiser 
Energy Operator, Envelope Analysis, Multiband Analysis 

1 Introduction 

The ever emerging need for safe operation and high reliability of rotating machines enforces the constant 
development of signal processing and analysis techniques for condition monitoring. The research work aims 
at the extraction of diagnostic features/indicators which are strongly related to the component’s technical 
state. Rolling element bearings are among the most common and critical components of rotating machines. 
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A failure of a bearing can lead to sudden and unexpected machinery breakdown as well as to human 
casualties and environmental pollution. Therefore the main task of condition monitoring is to identify the 
actual degree of degradation as this knowledge allows to undertake suitable maintenance actions.
Although a plethora of methods of condition monitoring of bearings have been proposed during the last 
decade, the correct and accurate identification of the technical state is still a challenging task. In order to 
extract useful diagnostic features from time signals, it is required to overcome a number of challenges such 
as: poor Signal-to-Noise Ratio (SNR), interference of other diagnostic signals sources such as gears in 
gearboxes etc. Additionally, the state of fault development might cause that the diagnostic signal does not 
contain a clear fault pattern (Fig. 1). Therefore, novel condition monitoring techniques, based on the time 
domain, the frequency domain, the time-frequency domain and the cyclostationary domain are constantly 
proposed ( [1], [2], [3], [4], [5], [6], [7]) in an effort to achieve early and accurate fault detection and 
diagnosis. In industrial applications, diagnostics of bearings using vibration signals gained high popularity, 
mainly due to acceptable cost and high reliability of vibration sensors, ability to locate sensor close to source 
of signal. However, attempts to use acoustic signals are also known [8], [9]. The application scope of 
acoustic condition monitoring is strongly dependent on the level and character of background noise, 
sometimes causing this approach difficult to implement in plant practice. Another possible drawback of 
application of acoustic signals in condition monitoring is need of use of sophisticated software [10], [11], 
and/or hardware [12] tools for separation and identification of source. A main advantage of acoustic 
condition monitoring is ability to record signals in distance from the source what can be useful if access to 
machine is difficult or hazardous. Because data sets used for validation of presented method were recorded 
using acceleration sensors, the presented signal processing approach was implemented on vibration signals.
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Fig. 1. The time waveform and the corresponding envelope spectrum of a bearing signal with unclear 
outer race fault pattern obtained during laboratory tests (further described in section 3.1).

A wide variety of condition monitoring methods dedicated to rolling element bearings have been proposed, 
such as tools based on statistical parameters e.g. kurtosis, crest factor [13] or XSK [14]. Those parameters 
are usually obtained from the raw signal [15] or its envelope [16]. Another category consists of methods 
based on the frequency-domain. In this case, usually a spectrum is analyzed in order to detect the existence 
of the characteristic bearing fault frequencies. Among others, the most popular method is the envelope 
analysis. In the first step, the vibration signal is band-pass filtered usually around a resonance frequency of 
the bearing-housing system. An envelope of the filtered signal is obtained by a demodulation process. Most 
often, the demodulation is performed using the Hilbert transform. 



The optimal filter band for envelope analysis, should be characterized by high Signal-to-Noise ratio. In such 
a band, the fault harmonics should be easily visible [16], [17]. In practice, the band is selected based on 
engineering experience or using tools such as the Fast Kurtogram (FK) [18]. FK selects the band with the 
maximum kurtosis level. Moreover Autogram [19] is also based on the maximum kurtosis but is obtained 
based on the unbiased autocorrelation of the squared envelope of the demodulated signals. The band of the 
autocorrelated squared envelope with the highest Kurtosis is selected as the optimal one for demodulation. 
Furthermore the last years a number of researchers is also focusing on the application of machine learning 
methods for fault detection and identification [20], [21].
In the classical envelope analysis approach, fault detection is performed analyzing only a single band. A 
novel approach assumes that additional information could be collected if the demodulation is realized in 
more than one bands simultaneously. This idea has been first applied in speech processing and very recently 
in bearing diagnostics under different concepts, e.g. the Combined Squared Envelope Spectrum (CSES) 
[19], the Combined Improved Envelope Spectrum (CIES) [22] etc. 
In this paper the concept of the Multiband Demodulation Analysis (MDA), based on the application of a 
bank of bandpass Gabor filters [23] and the application of the Teager-Kaiser Energy Separation Algorithm 
(ESA) [24], is proposed, tested and evaluated for fault detection of rolling element bearings. The 
demodulation takes place in multiple frequency bands, following a multiband analysis scheme [25], to 
isolate the strongest modulation components in each band. The method is firstly applied and evaluated on 
two sets of vibration signals from bearings with different faults working under different operation conditions 
and then is compared with the Kurtogram, which is considered as a state of the art technique, as well as 
single intrinsic mode function (IMF) extracted using empirical mode decomposition (EMD) algorithm.
The rest of the paper is organized as follows. First the proposed methodology, including the Teager-Kaiser 
Energy Operator and the Combined Teager-Kaiser Envelope, is presented in Section 2. Moreover the 
methodology is applied, tested and evaluated on two datasets (the first one is obtained from the Institute of 
Applied Mechanics of Poznan University of Technology and the second from the Department of Mechanical 
and Aerospace Engineering of Politecnico di Torino) and the results are presented and compared with the 
results obtained by the Fast Kurtogram in Section 3. The paper closes with the conclusion and a short 
discussion on the advantages and the drawbacks of the Combined Teager-Kaiser Envelope as well as with 
ideas for further development.

2 Description of the proposed methodology

In this paper a novel approach, which aims to enhance the diagnostic information by applying the Teager-
Kaiser Energy Operator (TKEO), is proposed in order to identify the most informative frequency bands of 
the analysed signal. The Combined Teager-Kaiser Envelope ( ), which will be presented in the next 𝐶𝑇𝐾𝐸𝑛𝑣
subsection, is a novel multiband approach where the raw signal is first divided into a number of bands in 
order to extract the bearing diagnostic information and then it is weighted summed up, creating the . 𝐶𝑇𝐾𝐸𝑛𝑣
The proposed approach uses the TKEO in order to obtain the instantaneous value of the energy of the 
considered signal and to perform the demodulation process. In the following subsections the signal 
processing and signal analysis concepts are analytically presented. 

2.1 Rolling element bearing fault characteristic frequencies

Most popular targeted approaches, dedicated to condition monitoring of rolling element bearings, use 
features estimated in the time or frequency domain. The latter approach is mainly based on the identification 
of the bearing fault characteristic frequencies: BPFO (1), BPFI (2), BSF (3) and FTF (4).
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where: 
 – the rotation speed [Hz],  – the number of rolling elements,  – the rolling element diameter [mm], 𝜔𝑟𝑜𝑡 𝑁 𝑑

 – the pitch diameter [mm],  – the contact angle [rad].𝐷𝑃 𝛽

The above equations (1-4) provide a nominal value and are not strict for real operation conditions due to 
e.g. variations of the contact angle and slip which may lead to a slightly different true fault frequencies. The 
variation of the contact angle might be caused by misalignment, thermal growth or other factors. An 
additional problem might be the unknown true rotation speed.

2.2 The Teager-Kaiser Energy Operator

The Teager-Kaiser Energy Operator (TKEO) is a differential operator presented by Kaiser in 1990 [24]. The 
properties of the operator have been discussed extensively in [26], [27] and [28]. The TKEO itself and the 
TKEO based measures have been already effectively applied to tasks including demodulation [29], [30] 
signal processing and diagnostics of gears and bearings [3], [31], [32], [33]. The energy operator also proved 
to be sensitive to impulses [34] which could be generated by faults. The authors decided to direct their 
attention to the application of the Teager-Kaiser Energy Operator mainly because changes in both amplitude 
and frequency of the analysed signal will be reflected in the estimated energy. The TKEO is sensitive to 
transient changes occurring in signals [35] resulting from emerging faults. Additionally, it is easy to 
implement and has demodulation capabilities [36] suitable for signals with short duration. Limiting the 
signals to the frequency band of interest improves the quality of the energy estimation using the TKEO. 
The TKEO of a time domain signal can be defined as (5):

(5)𝛹(𝑥(𝑡)) = 𝑥2(𝑡) ― 𝑥(𝑡)𝑥(𝑡)
while for discrete signals (1) can be re-written as (6):

(6)𝛹𝑑(𝑥𝑛) = 𝑥𝑛
2 ― 𝑥𝑛 ― 1𝑥𝑛 + 1

For a harmonic signal , the instantaneous value of the Teager-Kaiser energy  𝑥(𝑡) = 𝐴𝑐𝑜𝑠 (𝜔𝑡) 𝐸𝑇𝐾(𝑡)
depends on the instantaneous value of the squared amplitude and the squared frequency (7) of the 
signal [24].

(7)𝐸𝑇𝐾(𝑡) = 𝛹(𝑥(𝑡)) = 𝐴2𝜔2

The signal demodulation process based on the TKEO has been discussed in [37] and is given by (8) and (9). 
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For discrete signals, several demodulation algorithms exist [38], however the most common one is the 
DESA-2 algorithm presented in [37]. This algorithm is using the approximation of the first derivative with 
a symmetric 2 samples difference (10), (11).
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where:  is a signal of the instantaneous frequency consisting of discrete samples and  is the envelope Ω𝑛 𝐸𝑛𝑣
signal in the discrete-time domain.



The approach discussed in the next subsection uses the TKEO in two ways: on one hand to calculate the 
energy of a signal and on the other hand to perform demodulation in order to obtain its envelope. 

2.3 The Gabor filter

A vibration signal, recorded on an operating bearing, is band-pass filtered by a set of Gabor filters (13). 
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where:  is the frequency response of a Gabor filter,  is the centre frequency,  is the filter’s root 𝐻(𝜔) 𝜔𝑐 𝛼
mean square (RMS) bandwidth. 
The Gabor filter was chosen due to its good time and frequency resolutions [39]. Each filter is defined by 
its centre frequency  and a -3dB filter width. The centre frequencies of all filters, with same filters’ width, 𝜔𝑐
allow the complete set of filters to cover the entire frequency range of the analysed signal (6) (Fig. 2). As 
described in section 3, the filter width was chosen for each validation case separately to cover at least the 
two first harmonics of  with sidebands.𝐵𝑃𝐹𝐼

 f [Hz]

A

-3dB

Fig. 2. Scheme of Gabor filters covering the entire signal band.

2.4 The Combined Teager-Kaiser Envelope

The scheme (Fig. 3) presents the concept of the proposed signal processing leading to the Combined Teager-
Kaiser Envelope .𝐶𝑇𝐾𝐸𝑛𝑣
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Fig. 3. The flowchart of the proposed methodology for the extraction 
of the Combined Teager-Kaiser Envelope

The number of the frequency bands analysed in this approach depends on the selected -3dB filter width. It 
must be remembered that this parameter defines the number of the harmonics of the fault frequencies 
observed in the envelope spectrum. As a result of the filtration process, a set of  bandpass filtered time 𝑁
domain signals is obtained. Next, the DESA-2 algorithm is used to perform demodulation of the filtered 
signals resulting in a number of envelopes (11). The envelopes are normalized with respect to the noise 
components (14), to supress the influence of the bands which may contain weak fault characteristic peaks 
compared to the surrounding noise components.



 (14)𝐸𝑛𝑣𝑖 =  
𝐸𝑛𝑣𝑖

1
2𝛼(𝑋 ― 𝑋𝑓𝑎𝑖𝑙𝑢𝑟𝑒)

where:  is the filter’s rms bandwidth,  is the spectrum of the filtered signal,  is the spectrum 𝛼 𝑋 𝑋𝑓𝑎𝑖𝑙𝑢𝑟𝑒
containing the fault characteristic components.
In the framework of the procedure, the Teager-Kaiser energy operator is also used to calculate the overall 
energy  of the -th filtered signal, as a sum of the instantaneous values of the signal’s TK energy. This 𝐸𝑖 𝑖
overall energy is used as a weighting factor in the Combined Teager-Kaiser Envelope (15).
The proposed multiband approach uses information from different frequency bands of the signal in order to 
obtain the Combined Teager-Kaiser Envelope ( ) (15) as a sum of all the weighted noise normalized 𝐶𝑇𝐾𝐸𝑛𝑣
envelopes.

  (15)𝐶𝑇𝐾𝐸𝑛𝑣 = ∑𝑁
𝑖 = 1

𝐸𝑖

𝐸𝐸𝑛𝑣𝑖

where:  is the Combined Teager-Kaiser Envelope,  is the Teager-Kaiser energy of the signal 𝐶𝑇𝐾𝐸𝑛𝑣 𝐸𝑖
filtered by the -th Gabor filter,  is the number of the Gabor filters,  in the envelope of the signal 𝑖 𝑁 𝐸𝑛𝑣𝑖
filtered by the -th Gabor filter (11).𝑖
Due to the fact that in the classical approach the initial choice of the single band might not be optimal making 
more difficult the fault diagnosis, the presented  takes also into account information from other 𝐶𝑇𝐾𝐸𝑛𝑣
frequency bands. Due to the weighting, based on the contribution of each band into the signal’s overall 
energy, the influence of the bands containing mainly low amplitude noise is supressed.
To investigate the applicability of the Combined Teager-Kaiser Envelope its spectrum will be compared 
with the envelope spectrum from the optimal band selected by the Fast Kurtogram, where the kurtosis is 
maximised as well as with spectrum of most-fault informative IMF obtained by EMD [40]. The application 
of the TKEO and the Gabor filters allows to take advantage of both tools: the estimated energy of the signal 
carries information on a fault regardless it is manifested as amplitude or frequency variations and good 
time/frequency resolution trade off allows for the extraction of good quality information from both domains. 

2.5 The Noise Contribution Ratio indicator 

In order to evaluate the effectiveness of the proposed methodology , Fast Kurtogram [18] and EMD 𝐶𝑇𝐾𝐸𝑛𝑣
[41] were chosen as the reference methods. Kurtogram is a map presenting the distribution of spectral 
kurtosis in frequency bands of the analysed signal. Kurtosis indicates the peakiness of the signal and it is 
used often for bearing fault detection. The Kurtogram is a state of the art method used in condition 
monitoring of rolling element bearings. The EMD decomposes analysed signal  into set of intrinsic 𝑥(𝑡)
mode functions  and a residual  (16): 𝑖𝑚𝑓𝑖(𝑡) 𝑟(𝑡)

   (16)𝑥(𝑡) = ∑𝑁
𝑖 = 1𝑖𝑚𝑓𝑖(𝑡) + 𝑟(𝑡)

The EMD is a popular tool used for fault diagnosis [41], [42], [43] however it also can be applied for 
denoising and detrending of signals [44], [45], [46]. Based on method described in [47], which applied 
Pearson correlation coefficient of each IMF and the empirically determined local mean of the original signal, 
IMF’s of analysed vibration signal were divided in to three classes: “noise-only” IMF’s, “signal-only” IMF’s 
and “trend-only” IMF’s (Fig. 4). The IMF’s with low indices and low value of correlation coefficient 
contained mostly noise while IMF’s with high indices and low value of correlation coefficient contain trend 
components. Classification of IMF’s to particular groups depends from defined threshold. The main goal 
was to extract such IMF which would contain signatures associated with bearing faults. The experimental 
analysis revealed, that for further described test cases, most informative was “signal-only” IMF with lowest 
index, therefore spectrum of such IMF was chosen for comparison with the spectrum of Combined Teager-
Kaiser Envelope. Due to the fact that test-rigs, described in following sections, did not contain additional 
power transmission components such as gearboxes, maximum number of calculated IMF was 10. Increasing 
number of calculated IMFs did not improved the readability of spectral fault patterns.
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Fig. 4. Exemplary assigning of IMF to various parts of signal for one of considered test cases. 

To quantify the contribution of the noise components in the spectrum, for all approaches, the Noise 
Contribution Ratio indicator  (17) is used. For the frequency range of interest, labelled as , 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣 𝑓𝑟𝑒𝑞𝑠
the  compares the total sum of amplitudes of the normalized envelope spectra  of the most 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣 𝐹𝑛𝑜𝑟𝑚
informative part of the signal obtained using both: the reference method, i.e. Kurtogram and EMD,  and 𝑥𝑟𝑒𝑓
the Combined Teager-Kaiser Enveope  respectively. The frequency ranges of interest, used for 𝐶𝑇𝐾𝐸𝑛𝑣
comparison of  and the reference methods, were set independently for each fault type under 𝐶𝑇𝐾𝐸𝑛𝑣
consideration based on subjective decision. It was decided to look at the region around the fault frequencies 
(BPFI, BPFO, BSF) but excluding potential modulation peaks. The reason to limit the region of comparison 
in such way was caused by the need to mitigate the method dependent influence of the variable heights of 
side-peaks. For example, for the inner race fault the frequency range of interest was defined as: 𝑓𝑟𝑒𝑞𝑠 = (

, i.e. covering the band around the carrier frequency excluding the modulation 𝐵𝑃𝐹𝐼 ―  𝜔𝑟𝑜𝑡, 𝐵𝑃𝐹𝐼 +  𝜔𝑟𝑜𝑡)
peaks. A similar concept was used for the rolling element fault, where . 𝑓𝑟𝑒𝑞𝑠 = (𝐵𝑆𝐹 ―  𝐹𝑇𝐹, 𝐵𝑆𝐹 +  𝐹𝑇𝐹)
On the other hand, as the outer race fault characteristic frequency is not accompanied by modulation peaks, 
for this type of fault the comparison frequency range was 𝑓𝑟𝑒𝑞𝑠 = (𝐵𝑃𝐹𝑂 ―  0.9 𝐵𝑃𝐹𝑂,𝐵𝑃𝐹𝑂 + 1.1

. The  values higher than 1 indicate that the spectrum of the  contains lower  𝐵𝑃𝐹𝑂) 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣 𝐶𝑇𝐾𝐸𝑛𝑣
contribution of noise components comparing to the spectrum of the band chosen using Kurtogram or 
spectrum of chosen IMF. 

(17)𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣 =
∑

(𝑓𝑟𝑒𝑞𝑠)|𝐹𝑛𝑜𝑟𝑚(𝑥𝑟𝑒𝑓)|
∑

(𝑓𝑟𝑒𝑞𝑠)|𝐹𝑛𝑜𝑟𝑚(𝐶𝑇𝐾𝐸𝑛𝑣)|

3 The Combined Teager-Kaiser Envelope for condition monitoring

The Combined Teager-Kaiser Envelope for condition monitoring of rolling element bearings is applied, 
tested and evaluated using two data sets: the first one contains signals for different faults of bearings 
operating under constant speed and load; the second one contains data from bearings with faulty roller and 
operating under variable speed and load conditions. The performed tests aim to identify the advantages and 



the disadvantages of the proposed method as well as to compare the obtained results with the ones acquired 
using the Fast Kurtogram and EMD.  

3.1 Validation Case 1 – Dataset of Poznan University of Technology – Steady 
operating conditions

The data set consists of vibration signals recorded for variable faults of bearings working under the same 
operational conditions.

3.1.1 Case 1 dataset description

The measurements were performed on a test stand of the Institute of Applied Mechanics of Poznan 
University of Technology in Poland (Fig. 5) [3]. The test bearing is a tapered roller bearing CBK-171. The 
data set consists of vibration signals from 9 bearings in different technical state (Table 1). The technical 
states are considered as artificially introduced faults, located on the rolling element, the inner or the outer 
race. The faults were created either by electroerosion or by sandblasting. The faults differ in size and mean 
depth. Photos of the selected faults indicated by the defect code are presented in Figure 6. The yellow arrows 
and the red lines indicate the location and the size of the presented faults. It should be highlighted that at the 
photo of the undamaged bearing two shadows are visible.

Fig. 5. The test rig of Poznan University of Technology



Table 1: Bearings description [3]

Defect 
code

Bearing 
code Faulty element Damage type Defect size Defect 

width [mm]
Defect 
depth [μm]

UD N02 undamaged   –   –   –   –

IR(EL) N00 inner race Electroerosion local 0,5 Na

RE(EL) N19 rolling element Electroerosion local 1 Na

OR(EL) N14 outer race Electroerosion local 2 approx. 85

OR(EW) N17 outer race Electroerosion wide 11 approx. 50

OR(EF) N03 outer race Electroerosion extensive whole race approx. 50

OR(SL) N12 outer race Sandblasting local 3 approx. 12

OR(SW) N01 outer race Sandblasting wide 11 approx. 12

OR(SF) N16 outer race Sandblasting extensive whole race approx. 13

The tests were performed under constant operational conditions: axial bearing load FA = 55 [N]; radial 
(vertical) gravitational load applied by a mass m equal to 1545 [g]; FV = 15,16 [N]; 
rotating speed 1450 [rpm]. The test stand was equipped with a tachometer, which allowed to control the 
rotation speed. In the presented study, the vertical vibrations recorded on the top of the bearing housing are 
used. The signals were recorded with sampling frequency equal to 97660 [Hz]. The frequency range of the 
analysed signals was covered by 55 Gabor filters with a bandwidth equal to 900 Hz.

Fig. 6. Selected faults of the tested bearings.



3.1.2 Application of the  to Case 1 data𝑪𝑻𝑲𝑬𝒏𝒗

The nominal rotation speed , for all tested CBK-171 bearings, was 24.16 rotations per second. The 𝜔𝑟𝑜𝑡
nominal fault frequencies are presented in table 2.

Table 2: Nominal fault frequencies for the CBK-171 bearing

Rotation 
speed  𝜔𝑟𝑜𝑡

(Hz)
FTF (Hz) BSF (Hz) 2x BSF (Hz) BPFO (Hz) BPFI (Hz)

24.16 10.13 70.61 141.22 172.24 238.59

The vibration signals from each measurement, described in Table 1, are analysed using the presented 
approach. For each measurement, the actual rotation speed was determined based on the tachometer signal 
and it was approximately 2% higher from the nominal value, ranging from 24.54 to 24.63 Hz among the 
measurements. The following subsections discuss, for some selected faults, the results obtained with the 
Combined Teager-Kaiser Envelope and the reference methods.

3.1.3 Bearing IR(EL)

First the Combined Teager-Kaiser Envelope spectrum and the envelope spectrum based on the Kurtogram 
are estimated for a bearing, with an inner race fault caused by electroerosion, and are presented in Figure 7. 
The Kurtogram identified the most informative band located around the center frequency  𝑓𝑐 = 42726,25
[Hz] with a bandwidth  [Hz]. Figure 8 presents comparison between spectrum of IMF 𝑏𝑤 = 12207,5
extracted using EMD method and the spectrum of the 𝐶𝑇𝐾𝐸𝑛𝑣.

The presented spectra are normalized with respect to the peak in the frequency of interest, i.e. the BPFI in 
this case. It can be seen that the Combined Teager-Kaiser Envelope presents a lower level of noise 
components and therefore a number of frequency components in the  have lower amplitudes 𝐶𝑇𝐾𝐸𝑛𝑣
compared to the envelope spectrum obtained using the reference methods. In the considered case, the 
frequency range of interest was . For the bearing IR(EL) the 𝑓𝑟𝑒𝑞𝑠 = (𝐵𝑃𝐹𝐼 ―  𝜔𝑟𝑜𝑡, 𝐵𝑃𝐹𝐼 +  𝜔𝑟𝑜𝑡)

 is equal to 1.23 in case of Kurtogram and 1.07 while comparing with IMF. This indicates that 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣
spectrum of the extracted intrinsic mode was less noisy than the spectrum obtained using Kutogram method. 
The  for the considered measurement with the indicated calculated characteristic fault frequencies 𝐶𝑇𝐾𝐸𝑛𝑣
is presented in Figure 9. The classical inner race fault pattern (a carrier and modulation peaks) is well 
indicated by the star symbols. 
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Fig. 7. Bearing IR(EL) - comparison of the normalized  (green) and the normalized envelope 𝐶𝑇𝐾𝐸𝑛𝑣
spectrum obtained from the Kurtogram (black).
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Fig. 8. Bearing IR(EL) - comparison of the normalized  (green) and the normalized envelope 𝐶𝑇𝐾𝐸𝑛𝑣
spectrum obtained from the IMF (black).
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Fig. 9. Bearing IR(EL) - the  and the inner race fault frequency pattern indicated 𝐶𝑇𝐾𝐸𝑛𝑣
by the star symbol.

3.1.4 Bearing OR(EW)

The fault of the outer race causes the existence of peaks at the BPFO frequency and its higher harmonics. 
For the considered case of wide width of electroerosion fault, the normalized spectrum, with respect to 
BPFO, obtained with the Combined Teager-Kaiser Envelope contains lower noise components (Figure 10 
and 11) and the fault frequencies of interest are enhanced. The  indicator (17) was calculated for 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣

the frequency band ranging from  to  and was equal to 1.18 𝐵𝑃𝐹𝑂 ―  0.9 𝐵𝑃𝐹𝑂 𝐵𝑃𝐹𝑂 +  1.1 𝐵𝑃𝐹𝑂
comparing with results obtained using Kurtogram and 1.03 for IMF. The Kurtogram identified the most 
informative band to be the same as in IR(EL) case 
(  [Hz],  [Hz]). 𝑓𝑐 = 42726,25 𝑏𝑤 = 12207,5
The  for the OR(EW) bearing is presented in Figure 12. The circles indicate the calculated first 3 𝐶𝑇𝐾𝐸𝑛𝑣
harmonics of the outer race fault frequency which are well visible in the spectrum. The applied approach 
allowed to highlight the characteristic fault components, allowing for the correct fault identification.
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Fig. 10. Bearing OR(EW) – comparison of the normalized  (green) and the normalized envelope 𝐶𝑇𝐾𝐸𝑛𝑣
spectrum obtained from the kurtogram (black).
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Fig. 11. Bearing OR(EW) – comparison of the normalized  (green) and the normalized envelope 𝐶𝑇𝐾𝐸𝑛𝑣
spectrum obtained from the IMF (black).
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Fig. 12. Bearing OR(EW) - the  and the outer race fault frequency pattern indicated 𝐶𝑇𝐾𝐸𝑛𝑣
by the circle symbol.

Similar results have been obtained for the majority of the investigated measurements from this test case, 
leading to a general reduction of the contribution of the noise components with an amplification of the fault 
characteristic frequencies.

3.1.5 Bearing OR(SF)

In the considered set of data, the vibration signals recorded for outer race faults covering the complete 
circumference, i.e. OR(SF) and OR(EF), were analyzed with the presented  approach but reveal no 𝐶𝑇𝐾𝐸𝑛𝑣
classical pattern (Fig. 13). The severity of the fault excited a wide range of fault characteristic frequencies. 
Both the Combined Teager-Kaiser Envelope and the Kurtogram (  [Hz],  𝑓𝑐 = 44760,83 𝑏𝑤 = 8138,33
[Hz]) give similar results with slightly lower noise in the second approach (  equal to 0.98). Also 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣
for comparison with IFM, in spectrum of the Combined Teager-Kaiser Envelope contribution of noise was 
higher (  equal to 0.95). 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣
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Fig. 13. Bearing OR(SF) - the  and the outer race fault frequency pattern indicated 𝐶𝑇𝐾𝐸𝑛𝑣
by the circle symbol.

3.2 Validation Case 2 – Dataset of Politecnico di Torino – Variable operating 
conditions

The second data set has been provided by the Department of Mechanical and Aerospace Engineering of 
Politecnico di Torino [48]. The set contains vibration signals recorded on a high-speed bearing operating 
under variable speed and load conditions. The validation process is performed using the radial vibration 
signals, captured on the housing of the faulty bearing.

3.2.1 Case 2 dataset description

The test stand of the Department of Mechanical and Aerospace Engineering is presented at Fig. 14. It 
consists of three bearings mounted on one shaft. The tested high-speed bearing is indicated as B1. The test 
stand is equipped with a high-speed spindle motor and a precision sledge applying radial load on the 
supporting bearing. The test stand has no tachometer or other speed sensor; as a result the real speed of the 
shaft is not measured and must be identified e.g. from the spectrum. The identified speed of the shaft during 
the measurements is lower than the nominal and the deviation increases with the amount of load applied on 
the bearing. The load is applied in the radial direction and its value is measured by a static load cell. 
Although, the test stand is equipped with two triaxial accelerometers, for the validation of , only the 𝐶𝑇𝐾𝐸𝑛𝑣
radial vibrations from sensor A1 are used. The data set contains signals, recorded with sampling frequency 
equal to 51200 Hz, from an undamaged bearing and bearings with artificially introduced defects. The faults 
were located on a roller and were created using a drilling process with diameter  equal to 450; 250 and 𝜙𝑓𝑎𝑖𝑙
150 µm. The bearings were tested under nominal speeds of: 100, 200, 300, 400 and 500 revolutions per 
second and under 4 radial load conditions: no load, 1000 N, 1400 N, 1800 N. Because not all speed / load 
combinations were measured, the data set contains in total 51 combinations of fault size and operation 
conditions.



Fig. 14. The test stand of the Department of Mechanical and Aerospace Engineering: general view (up), 
the localization of the accelerometers A1 and A2 (bottom left), the shaft with 

the bearings (bottom right) [48].

The section below discusses in detail the results obtained for the 250 µm defect subset. Table 3 presents the 
fault characteristic frequencies for the considered case. For each rotation speed , different values of the 𝜔𝑟𝑜𝑡
Gabor filter width were chosen. This caused the application of various numbers of filters to cover the 
frequency range of the analyzed signals (Table 3).

Table 3: Nominal fault frequencies for the bearing B1 for fault  𝜙𝑓𝑎𝑖𝑙 = 250 µm

Rotation
speed  [Hz]𝜔𝑟𝑜𝑡

(filter width / 
number of filters)

FTF [Hz] BSF [Hz] 2xBSF [Hz] BPFO [Hz] BPFI [Hz]

100
(1347.5 [Hz] / 19)

38.9 213.9 427.8 388.9 611.1

200 77.8 427.8 855.6 777.8 1222.2



(2844.5 [Hz] / 9)

300
(4266.7 [Hz] / 6)

116.7 641.6 1283.3 1166.7 1833.3

400
(6400 [Hz] / 4)

155.6 855.5 1711.1 1555.6 2444.4

500
(8533.5 [Hz] / 3)

194.4 1069.5 2138.9 1944.4 3055.6

3.2.2 Positive case example, bearing B1, , speed 400 Hz, load 1400 N𝝓𝒇𝒂𝒊𝒍 = 𝟐𝟓𝟎 µ𝐦

Similarly, to the first validation case, the proposed approach improved the visibility of the fault components 
and allowed for the identification of the fault frequencies. With respect to the noise, the  enhanced 𝐶𝑇𝐾𝐸𝑛𝑣
readability of the spectrum peaks of the fault characteristic frequencies in 31 out of 51 validation cases, 
compared to the result obtained using the Kurtogram. However, comparing with results obtained using EMD 
method, the  method gave better results in 46 cases from 51. The Fig. 15 and 16 present an examples 𝐶𝑇𝐾𝐸𝑛𝑣
of the improvement achieved using the Combined Teager-Kaiser envelope comparing to Kurtogram and 
EMD reference methods. The example was obtained for a rotation speed of 400 Hz and a load of 1400 N. 
The first and the second harmonic of the BSF modulated by the FTF, creating the classical fault pattern, can 
be easy identified in the  spectrum (Fig. 17). The  indicator (17), calculated for a 𝐶𝑇𝐾𝐸𝑛𝑣 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣

frequency band, excluding the modulation peaks, i.e. , was equal to 1.08 (for (𝐵𝑆𝐹 ―  𝐹𝑇𝐹, 𝐵𝑆𝐹 +  𝐹𝑇𝐹)
Kurtogram) and 3.15 (for EMD), revealing the noise suppressing capabilities of the Combined Teager-
Kaiser Envelope.
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Fig. 15. Bearing B1, m, speed 400 Hz, load 1400 N – comparison of the normalized  𝜙𝑓𝑎𝑖𝑙 = 250 𝜇 𝐶𝑇𝐾𝐸𝑛𝑣
(green) and the normalized envelope spectrum obtained from the Kurtogram (black).
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Fig. 16. Bearing B1, m, speed 400 Hz, load 1400 N – comparison of the normalized  𝜙𝑓𝑎𝑖𝑙 = 250 𝜇 𝐶𝑇𝐾𝐸𝑛𝑣
(green) and the normalized envelope spectrum obtained from the IMF (black).
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Figure 17. Bearing B1, m, speed 400 Hz, load 1400 N –  with indicated fault 𝜙𝑓𝑎𝑖𝑙 = 250 𝜇 𝐶𝑇𝐾𝐸𝑛𝑣
characteristic components.

3.2.3 Negative case, bearing B1, , speed 300 Hz, load 1400 N𝝓𝒇𝒂𝒊𝒍 = 𝟐𝟓𝟎 µ𝐦

For the majority of the cases the  spectrum allowed obtaining better SNR comparing with the results 𝐶𝑇𝐾𝐸𝑛𝑣
obtained by the Kurtogram. However, for few operation conditions, such like rotation speed 300 Hz and 
load 1400 N or rotation speed 400 Hz and load 1000 N, the Kurtogram contained weaker noise. In this study, 



those cases are considered as negative validation cases, because the  indicator, calculated for the 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣

frequency band centred around the first BSF, , has value less than 1. (𝐵𝑆𝐹 ―  𝐹𝑇𝐹, 𝐵𝑆𝐹 +  𝐹𝑇𝐹)
The Fig. 18 presents a comparison of the  spectrum and the spectrum of the Kurtogram for the first 𝐶𝑇𝐾𝐸𝑛𝑣
case mentioned above. The  indicator (17), calculated for the frequency band of interest, was 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣

equal to 0.72. The Kurtogram identified the optimal band as one defined by  [Hz] and 𝑓𝑐 = 14400
 [Hz]. The spectrum of the Combined Teager-Kaiser Envelop contains higher noise components 𝑏𝑤 = 3200

in the region of comparison.. However, for this case  gave better comparing to selected IMF (𝐶𝑇𝐾𝐸𝑛𝑣
.𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣 = 1.02)
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Fig. 18. Bearing B1, m, speed 300 Hz, load 1400 N – comparison of the normalized  𝜙𝑓𝑎𝑖𝑙 = 250 𝜇 𝐶𝑇𝐾𝐸𝑛𝑣
(green) and the normalized envelope spectrum obtained from the Kurtogram (black).
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Figure 19. Bearing B1, m, speed 300 Hz, load 1400 N –  with indicated fault 𝜙𝑓𝑎𝑖𝑙 = 250 𝜇 𝐶𝑇𝐾𝐸𝑛𝑣
characteristic components.

The result obtained for a rotation speed 400 Hz and a load of 1000 N is presented in Fig. 20. Also in this 
case the quality of the obtained spectrum is similar to the one obtained from the Kurtogram’s most 
informative band  [Hz] and  [Hz]. The  indicator, calculated for a 𝑓𝑐 = 19200 𝑏𝑤 = 12800 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣

frequency band centred around the first BSF, , was equal to 0.91, indicating that (𝐵𝑆𝐹 ―  𝐹𝑇𝐹, 𝐵𝑆𝐹 +  𝐹𝑇𝐹)
the contribution of the noise components is higher for the . Nevertheless, the set of the spectral 𝐶𝑇𝐾𝐸𝑛𝑣
components indicating the fault is well visible in  allowing for fault identification. Also for this case 𝐶𝑇𝐾𝐸𝑛𝑣
the IMF’s noise contribution ratio slightly was grater then 1.
Analysis of other negative validation cases, i.e. the ones for which the , revealed the existence 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣 < 1
of strong noise in all bands taken into account while calculating the  as a source of the problem. No 𝐶𝑇𝐾𝐸𝑛𝑣
such case was identified for which both reference methods would have smaller contribution of noise.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
frequency [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

am
pl

itu
de

 o
f C

TK
En

v

CTKEnv
rotation speed
FTF
BSF
BPFO
BPFI



Fig. 16. Bearing B1, m, speed 400 Hz, load 1000 N –  with indicated fault 𝜙𝑓𝑎𝑖𝑙 = 250 𝜇 𝐶𝑇𝐾𝐸𝑛𝑣
characteristic components.

4 Discussion and conclusions

In this paper the Combined Teager-Kaiser Envelope dedicated to the analysis of bearing vibration signals 
has been proposed. In the framework of the presented research work:

1. A novel signal processing method has been developed allowing for the enhancement of bearing 
fault characteristic frequencies.

2. The proposed  has been validated using two data sets containing signals of various faults 𝐶𝑇𝐾𝐸𝑛𝑣
and operation conditions.

3. The methodology achieves promising results and in the frames of this work has been compared with 
the state of the art methods, the Fast Kurtogram and EMD.

The application of the Teager-Kaiser Energy Operator for signal processing allows to perform a 
demodulation process as well as to calculate its overall energy. Presented in the paper the Combined Teager-
Kaiser Envelope exploits both approaches. The envelopes obtained from bandpass filtered signals contribute 
to the Combined Teager-Kaiser Envelope with regard to the ratio of the bandpass signals energy to the 
energy of the raw signal. In this paper the method is compared with results obtained using the Kurtogram 
and obtained from selected IMF. The evaluation of the methods is performed using the  indicator, 𝑁𝐶𝑅𝐶𝑇𝐾𝐸𝑛𝑣
which has been described in the paper. This parameter allows for the comparison of the contribution of noise 
components in the analysed band in relation to the frequency of interest. 
The  reveals high potential for enhancing the bearing fault frequencies and for suppressing noise 𝐶𝑇𝐾𝐸𝑛𝑣
components, allowing for the easier identification of the characteristic fault frequencies. The method is 
based on combining the diagnostic information from different frequency bands. The validation process 
performed on two data sets allow for the verification of the proposed approach but also for the identification 
of shortcomings. 
In the case of the first data set, the  approach allowed for enhancing the frequency components 𝐶𝑇𝐾𝐸𝑛𝑣
testifying about the existence of the fault. The method allowed for the correct identification of the local and 
shallow damage of the outer race generated by sandblasting. Such fault usually results in a very weak 
disturbance of the signal. Similar results were obtained for other measurements from the data set. However, 
the  gave unclear results, in the cases where the fault covered the complete perimeter of the outer 𝐶𝑇𝐾𝐸𝑛𝑣
race, i.e. OR(SF) and OR(EF). Due to the severity of the fault, strong frequency components characteristic 
for other types of faults are visible in the , as well as strong noise contaminates all bands of filtration. 𝐶𝑇𝐾𝐸𝑛𝑣
This data set allowed for the validation of the method for various types of faults. 
The method was also tested using another data set containing vibration signals from a high-speed bearing 
operating under variable speed and load. The publication discussed the measurements recorded for 
artificially generated faults with a diameter of 250 µm. The performed tests demonstrate the ability to 
enhance the diagnostically useful information for different speeds and load conditions. The faults introduced 
by drilling do not reflect perfectly faults arising during normal wear and the sharp edges could increase the 
measurement noise. Additionally, for 60,8% of the analysed cases, the results obtained by the Combined 
Teager-Kaiser Envelope contained lower noise components comparing to the ones based on the Kurtogram. 
For lest then 10% of considered cases, the IMFs’spectrums contained less noise then presented method. The 

 proved its capabilities to suppress the noise influence and to highlight the fault characteristic 𝐶𝑇𝐾𝐸𝑛𝑣
patterns. 
The main findings of the conducted research can be summarized as:

 The use of the diagnostic information obtained from several bands of signal allows for the 
enhancement of the diagnostic information; such approach allowed for the development of the 
Combined Teager-Kaiser Envelope;



 Comparing to the Kurtogram and EMD methods, in the majority of cases, the Combined Teager-
Kaiser Envelope allowed for suppressing noise components giving opportunity for easier 
identification of fault frequencies;

 The method is suitable for analysis of various types of bearing faults and can be applied for 
processing of signals recorded in various operational conditions.

The main shortcomings identified during the presented research are: the method requires the user to define 
the width of the Gabor filter which can influence the ability to grasp the given types of faults; the  𝐶𝑇𝐾𝐸𝑛𝑣
method, in the present state, requires further development directed towards computation performance 
improvement. At present the used algorithm is approximately 2 times slower than the computationally 
optimized Fast Kurtogram algorithm. Although, it proved to be faster than applied EMD approach. 

The presented results were obtained using data sets which contained one sample for each considered fault. 
Although the length of each signal was sufficient to artificially divide it into a set of diagnostic samples, the 
differentiation of data within a set would be neglectable and would not introduce any useful information 
regarding the method’s performance. A new measurement campaign is planed aiming to record diagnostic 
signals from bigger set of bearings operating in variable operational conditions. This will allow to create an 
informative diagnostic data set and perform detail tests of the performance of the .  𝐶𝑇𝐾𝐸𝑛𝑣

Although the Combined Teager-Kaiser Envelope proved its usability further improvement should be 
undertaken. The main direction of the future work will be the development of a fault indicator based on the 

 and the attempt to perform automatic condition identification based on the energetic contribution 𝐶𝑇𝐾𝐸𝑛𝑣
of the given fault patterns in the Combined Teager-Kaiser Envelope.
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