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Abstract

Existing estimates of the economic costs of air pollution do not account for
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in exposure to small particulate matter of 0.17µg/m3 – the average yearly
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1 Introduction

Knowing the economic costs of air pollution is important for rational abatement poli-

cies (Landrigan et al., 2018). Traditional assessments sum up foregone output due to

pollution-induced premature deaths (Cohen et al., 2017). This approach obscures costs

associated with less acute health or cognitive effects (Zivin and Neidell, 2018). A body

of evidence points out that bad air quality reduces supply and productivity of labor,

even in occupations demanding mainly cognitive effort (Zivin and Neidell, 2012; Hanna

and Oliva, 2015; Chang et al., 2016, 2019). These ‘hidden’ costs add up to economically

important drops in output. Analyzing European regions, Dechezleprêtre et al. (2019)

find that a 10% increase in air quality causes a 0.8% surge in GDP within the same

year. These findings imply that cleaner air is responsible for up to 15% of Europe’s GDP

growth between 2000 and 2015.

We study the effect of air pollution on aggregate inventive output. This effect does not

show up in GDP because inventions typically take several years to realize economic bene-

fits through product and process improvements (Scherer, 1965; Ravenscraft and Scherer,

1982). These lagged benefits may be large because innovation is a key driver of economic

growth (Aghion and Howitt, 1990; Romer, 1990). Therefore, the costs of air pollution

may be considerably understated when overlooking its effect on innovation.

We analyze a yearly panel of 1,288 European NUTS-3 regions between 2001 and 2012.

We measure inventive output as the total number of patents filed in the year following a

given level of exposure to air pollution. This one-year lag accounts for the fact that the

process of drafting and filing a patent takes 6-12 months. Our measure of air pollution

is the exposure to particulate matter with a diameter of 2.5 micrometers or less (PM2.5).

These small particles enter the bloodstream through the lungs and affect the functioning

of several organs (Underwood, 2017). PM2.5 is one of the primary pollutants considered

by the World Health Organization (WHO) and is commonly used as a measure of air

pollution.
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Our identification strategy relies on two weather phenomena that provide plausibly

exogenous variation in air pollution.1 Our first instrument measures a region’s exposure

to ‘thermal inversions’ during a given year. These inversions are caused by idiosyncratic

atmospheric conditions and ‘trap’ pollutants near the earth’s surface by reversing the

negative temperature-height relationship. Our second instrument measures the level of

natural ventilation that disperses pollutants. It is a function of wind speed and the

height of the ‘planetary boundary layer’. This layer determines the volume over which

turbulent air flows are able to diffuse pollutants. We include controls for wind speed,

precipitation, temperature, humidity and air pressure to account for the possibility that

weather conditions correlated to our instruments affect innovation, for instance, by their

impact on traffic conditions or mood.

We find that a 0.17µg/m2 decrease in PM2.5 concentration – the average yearly re-

duction in Europe over the period studied – leads to 1.7% more patented innovations.

This effect is driven almost exclusively by regions with above-median levels of air pollu-

tion, suggesting that up to certain levels of exposure, the effects on innovation are small

or non-existent. Increased air quality has a similar impact on total innovation for re-

gions with high and intermediate levels of urbanization.2 This finding suggests that the

potential benefits of reducing air pollution extend beyond highly urbanized regions.

Our baseline results measure the effect of air pollution on innovative output for the av-

erage region. One concern with aggregating these region-level estimates to economy-wide

costs is that they may result from reallocation of human capital rather than decreased

productivity. Indeed, if inventors migrate in response to air pollution, inventive output
1Other papers that use weather conditions to instrument air pollution include Hanna and Oliva (2015);

He et al. (2019); Dechezleprêtre et al. (2019).
2For regions with intermediate levels of air pollution, the marginal effect is larger, but because of a

lower patent intensity, the overall effect is similar.
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lost in one region may be partially recovered in another one. We rule out this mechanism

using address information3 across inventors’ subsequent patent applications to identify

migration between regions.4 We find no statistically or economically significant effect of

air pollution on inventor in- or out-migration.5

In a final set of analyses, we substantiate our claim that the effect on innovation is

indeed not captured by prior assessments. First, we find suggestive evidence that changes

in R&D expenditures do not drive our results. Because R&D spending is part of a region’s

GDP, the damages to innovation through this channel would be partially accounted for

by the estimates of Dechezleprêtre et al. (2019). While our data do not allow for a direct

test, we find suggestive evidence to rule out the R&D spending mechanism. We show

that our results hold when looking at scientific instead of inventive output. Because the

funding of science is unlikely to react to changes in air pollution within a year, we would

expect a considerably smaller effect on scientific output if R&D expenditures would drive

our main result. In addition, the quality of patents in response to air pollution is not

affected. When R&D spending would be materially affected, average invention quality

should go up because budget-constrained firms would arguably shut down less promising

projects first. Second, we find that mortality in general does not react to air pollution in

our set-up. If this would be the case, the traditional cost estimates that calculate costs

due to productive life-years lost due to pollution-induced mortality would partly account

for our main result.

While we do not disentangle the exact mechanisms behind our results, we see two

remaining candidates. First, the supply of innovative labor may decrease due to ab-

senteeism or a reduction in hours worked. This is consistent with prior work showing

that labor supply decreases in response to air pollution (Hanna and Oliva, 2015; Aragón

et al., 2017; Chang et al., 2019). Second, air pollution may reduce inventor productivity
3Inventors are obliged to disclose their address when applying for a patent
4We make use of the inventor name disambiguation algorithm developed in Morrison et al. (2017) to

circumvent the fact that inventors are not assigned a persistent identifier in the patent database.
5Prior work has established that location choices depend on air quality (Khanna et al., 2021; Heblich

et al., 2021). However, the variation to air pollution induced by our instrument is likely too small to
invoke a migration response.
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conditional on hours worked by harming cognitive function. This is consistent with a

recent stream of literature that finds considerable effects of air pollution on cognitively

demanding tasks (Stafford, 2015; Ebenstein et al., 2016; Archsmith et al., 2018; Künn

et al., 2019; Nauze et al., 2021).

A back-of-the-envelope calculation using existing estimates of the value of inventions

shows that the magnitude of the effect of air pollution on inventive output is large. The

average private value of a representative sample of European patents is estimated at 3

mln. euros (Gambardella et al., 2008). In addition, innovations induce spillovers valued

at twice the amount of their private returns (Bloom et al., 2013). Summing up these two

sources of value suggests that the yearly realized reduction in air pollution in Europe has

created a benefit of 21.3 bln. euros annually. As a consequence, our results suggest that

the GDP-effect from Dechezleprêtre et al. (2019) needs to be revised upwards by at least

10%. This is a lower-bound estimate for two reasons. First, the private returns estimated

by inventors are about 5 times lower as compared to stock-market-based estimates from

Kogan et al. (2017). Second, estimates in Bloom et al. (2013) take into account knowledge

spillovers and product market rivalry to estimate social returns. This assessment excludes

further societal benefits, which are hard to estimate but considered to be large (Jones

and Summers, 2020).

The remainder of the paper proceeds as follows. Section 2 outlines the empirical

strategy we employ to estimate the causal effect of air pollution on inventive output.

Section 3 describes the data and measures used. Section 4 discusses the results of our

preferred specification, documents several robustness checks, and explores heterogeneity

across regions. Section 5 provides the evidence to rule out mechanisms related to inventor

mobility, R&D expenditures and mortality. Section 6 concludes.
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2 Empirical strategy

2.1 Measures for air pollution and innovation

Air pollution. We proxy exposure to air pollution using the level of PM2.5 concentra-

tion6 in a region. PM2.5 is one of the priority pollutants under EU air quality regulations

(European Parliament and Council of the European Union, 2008) and the National Ambi-

ent Air Quality Standards (NAAQS) in the United States (US EPA (US Environmental

Protection Agency), 1997). Other common air pollutants such as nitrogen oxides and

ozone are not recorded at a scale suitable for our analyses. Therefore, we cannot disen-

tangle the effects of PM2.5 from those of other pollutants insofar these are correlated. We

view this as only a small caveat for three reasons. First, PM2.5 is considered the most

harmful pollutant to cognitive function and physical health and is seen as a reference

indicator to track air pollution globally (Power et al., 2016; WHO, 2016). Therefore, it

is unlikely that co-pollutants importantly confound the effect. Second, the correlation

between PM2.5 and other pollutants stems from the fact that they result from similar

industrial activities involving combustion. As such, regulations targeting PM2.5 reduce

co-pollutants as well, indicating that the main implications of this study hold even if

co-pollutants partially drive the effects. Third, being the most widely used measure, the

use of PM2.5 ensures comparability of our results with the largest possible number of

prior studies.

Innovation. To proxy innovation output, we use the yearly number of patent appli-

cations filed for in a region. The patent system is designed as a ‘deal’ between the public

and an innovator. In order to receive the exclusive right to use and sell the patented in-

vention in a jurisdiction, the innovator is required to disclose detailed information about

the invention to the public. This publication requirement has the objective to allow oth-

ers to build further upon the knowledge disclosed in the patent, increasing the efficiency

of knowledge generation. As a side effect, patent data provide a window on innovative

output for studies of technological change, innovation and economic growth (Griliches,
6PM2.5 refers to suspended particulates smaller than 2.5 µm in aerodynamic diameter.
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1990; Schmookler, 1966; Trajtenberg, 1990). In this study, we benefit from the fact that

most jurisdictions require inventors to state their address when applying for a patent.

Recent efforts to geo-locate these addresses allow us to assign patented inventions to

NUTS-3 regions (the European equivalent to US counties).

Three issues regarding patent data deserve attention here. First, not all inventions

are patented because, when it is easy to maintain secrecy, the innovator has an incentive

to minimize knowledge leaks to competitors. Hence, patents represent a lower bound of

innovation output. Second, patents do not provide information on inventive inputs. As

such, we cannot disentangle labor supply (hours worked) from labor productivity (output

conditional on hours worked). Third, we observe the timing of a patent filing, rather than

when inventive activity occurred. We assume the bulk of inventive activity takes place

during the calendar year preceding the patent filing. This lag is included to account for

the fact that preparing and filing for a patent takes an estimated 6-12 months (Scherer,

1965).7

2.2 Instrumental variables

Estimating the causal effect of air pollution on innovation is challenging because of several

unobserved confounders. For instance, technological opportunity or profits could affect

innovation while co-varying with economic activity, the main driver of pollution. Omit-

ting them would lead us to underestimate the damage done by air pollution. Reverse

causality problems could further attenuate this bias. Albeit less obvious, air pollution

might negatively affect innovation while inventive activity itself could contribute to air

pollution. Such a mechanism would further understate the costs of low air quality. We

address these endogeneity problems using two meteorological sources of variation.
7We conducted an interview with a patent attorney to confirm this is a reasonable assumption. Also

note that inventors are unlikely to postpone patent filing until much after the conclusion of the inventive
activity. Indeed, inventors have a strong interest to file for a patent close to the invention date (Griliches,
1990). The requirements for an invention to qualify for a patent are novelty and non-obviousness. Any
evidence that the invention was already known before and, thus, violating the novelty criterion is called
prior art. Consequently, the closer the filing and invention date, the smaller the pool of potential prior
art.
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Thermal inversions. Typically, temperature decreases with height in the lower part

of the atmosphere (the troposphere). Less dense warm air moves upwards and dilutes

pollutants vertically. Thermal inversions reverse this monotonic relationship. Warmer

air at higher altitudes hamper vertical dilution and traps pollutants at ground level (see

Figure 1) (Vallero, 2014). Following Dechezleprêtre et al. (2019) and Arceo et al. (2016),

we exploit this phenomenon to construct an instrumental variable for air pollution by

calculating the annual share of days with a thermal inversion in a region.

Ventilation capability. Our second instrument measures variation in natural ven-

tilation of pollutants. The atmospheric literature measures the dispersion speed of pollu-

tants using the ventilation coefficient (VC), i.e. the product of wind speed and boundary

layer height (Holzworth, 1967, 1972). Wind speed determines horizontal dispersion of

pollutants whereas boundary layer8 height determines the volume of air among which

pollutants can disperse in the atmosphere. On days with a high ventilation coefficient,

concentration of air pollutants is low because natural ventilation allows them to dilute

quickly. Figure 2 provides a schematic representation of the ventilation coefficient. To

construct our instrument, we first calculate the daily ventilation coefficient for each re-

gion. We then obtain the annual average length of spells of consecutive days with a

low ventilation coefficient – which we call Ventilation Capability. The logic behind this

approach is that spells of consecutive days with limited natural ventilation – rather than

the average number of days – drive pollution concentrations.9

8The planetary boundary layer is the lower part of the troposphere that experiences most turbulent
air flow (which is crucial for diluting pollution) because of its interaction with the surface of the earth.
The height of this layer varies based on the earth’s topography as well as meteorological conditions.

9To make this clear, consider two regions that are identical in terms of pollution generation, but face
a different daily ventilation coefficient distribution. In one region, low ventilation coefficient days are
followed by high ventilation coefficient days, while in the other region low ventilation coefficient days
are concentrated in time. Any one day’s pollution in the former region will affect humans living there
for one day only before ventilation disperses it, while in the latter region one day’s pollution will affect
humans for multiple days in a row before being dispersed. As a result, the average air pollution in the
latter region will be higher.
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Relevance assumption. Several atmospheric studies have documented a positive

correlation between thermal inversions and air pollution (Gramsch et al., 2014; Xu et al.,

2017). Similarly, the negative correlation between the ventilation coefficient and air

pollution is well-established (Hou et al., 2018; Genc et al., 2010). Our descriptive findings

(section 3.1) and first-stage results (section 4) show a strong correlation between both

instrumental variables and air pollution, justifying the relevance assumption of our IV

approach.

Exclusion restriction. Our instruments plausibly affect inventive output only

through their effect on air pollution. They provide a source of exogenous variation be-

cause they result from large-scale atmospheric dynamics unrelated to human activity

(Stull, 1988; Garratt, 1994). As argued in Dechezleprêtre et al. (2019), the relevant liter-

ature provides no evidence of pollution causing thermal inversions rather than vice versa.

None of the meteorological literature on the ventilation coefficient claims it is any way

human-induced. In addition, our instruments pass the common test for over-identifying

restrictions (Hansen, 1982). One potential concern might be that our instruments corre-

late to other weather conditions that affect innovation through for instance traffic con-

ditions or the mood of inventors. To mitigate this concern, we control for average wind

speed, precipitation, temperature, humidity and air pressure. Being exogenous them-

selves, they account for any correlation between innovation and weather conditions.10

2.3 Econometric Model

Our first-stage regression estimates the impact of our two instruments on PM2.5. Unlike

actual PM2.5 concentration, predicted PM2.5 concentration levels are exogenous to inno-

vation and can be used to estimate the causal impact of air pollution on innovation. The

first-stage regression has following specification:

Pit = α1TIit + α2V Cit + α3Popit + α4Xit + ωct + ηi + νit (1)
10In fact, our results show that these weather conditions have a marginal, if any, effect on innovation

output in our specification.
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Pit is the average population-weighted PM2.5 concentration for region i in year t.

Following Dechezleprêtre et al. (2019), we weight PM2.5 concentration for population

density in order to measure individuals’ exposure to air pollution, rather than air pollution

itself. The first instrumental variable TIit measures the annual share of days with thermal

inversions in region i. The second instrumental variable V Cit measures the average length

of consecutive days with a low ventilation coefficient in year t for region i. We define a low

ventilation coefficient as any daily average ventilation coefficient that is equal or below

the 20th percentile of the distribution of daily average ventilation coefficients in region i.

Popit is the total population for region i in year t.11 Xit is a vector of weather covariates

controlling for weather conditions on the ground in region i. It includes annual means for

wind speed, temperature, surface pressure, relative humidity and total precipitation. This

vector also includes the second-degree-polynomials of all weather variables to account for

a more flexible functional form. ωct are country-year fixed effects and ηi are regional fixed

effects. Last, νit is the error term (which we allow to be clustered at regional level) that

captures all unobserved determinants of pollution.

The second-stage regression estimates the causal impact of PM2.5 on inventive output

and has following specification:

Yit = β1P̂it + β2Popit + β3Xit + λct + αi + εit (2)

Yit represents output from inventive activity in year t and is measured by the number

of patent filings in the following year by inventors living in region i. P̂it is the predicted

PM2.5 concentration from the first-stage. λct are country-year fixed effects that account

for country-specific time-varying effects, for instance exposure to macroeconomic shocks

or changes in national regulations. αi are region-fixed effects that eliminate any time-
11We do not control for GDP because it directly affected by air pollution and may correlate to inno-

vation. Therefore, GDP would introduce endogenous selection bias (Pearl, 2009).
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invariant effects on pollution and innovation. As such, our specification relies on within-

region year-to-year variation in pollution caused by the instruments. Last, νit is the error

term for the second stage (allowed to be clustered at regional level) and captures all

unobserved determinants of innovation output.

3 Data & Measures

Patents. To measure inventive output, we rely on patent data from the EPO PATSTAT

database (Spring 2018 edition). We link patent filings to NUTS-3 regions in Europe using

the geolocation effort described in de Rassenfosse et al. (2019). This method retrieves ge-

ographic coordinates from inventor addresses using on-line geolocation services. Because

one invention is typically described in various patent documents at different times12, one

inventor may be linked to multiple addresses. The geolocation method assigns geograph-

ical coordinates to the inventor address that was disclosed at the earliest observed date.

When tracking inventor migration, we use data that allows to trace inventor addresses

over time (Morrison et al., 2017). This method assigns a stable inventor identifier across

multiple patent documents for patents filed at the European Patent Office (EPO), the

World Intellectual Property Office (WIPO), and the US Patent and Trademark Office

(USPTO). This dataset is appropriate to identify inventor relocation for two reasons.

First, it allows to track individual inventors across patent applications by employing a

name disambiguation algorithm. Second, it geolocates addresses from each publication

associated to the patented innovation, rather than the priority filing only, as is done in

de Rassenfosse et al. (2019). These features allow us to more precisely detect inventor
12The patent application process typically takes several years. After filing, examiners produce an

initial search report documenting the relevant prior art and assessing patent criteria such as novelty
and inventive step. In response to this search report, applicants are often required to modify the patent
patent application before it is granted. At each of these stages in the process, patent offices publish patent
documents that we observe in the database. In addition, innovators seeking protection across different
jurisdictions will file several patent applications at different patent offices. All the patent documents
related to an invention are grouped into so-called patent families by the PATSTAT database.
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relocation events because there are more documents from which we can infer an inventor’s

address. We use the number of times a patent was cited to infer patent quality. This

indicator is extracted from the PATSTAT database and counts the number of patented

inventions that cite the focal invention.13

Scientific publications. To estimate the effect of air pollution on scientific output,

we use data from the PubMed database maintained by the National Library of Medicine

(NLM) at the National Institutes of Health (NIH). It contains a comprehensive account

of scientific publications in biomedical and life sciences. To map publications to regions,

we use geocodes from author affiliations listed on the publication (Torvik, 2015). Our

measure counts the yearly number of first-author14 publications in a region. To ensure

that we include true scientific output, we only include publications from organizations

that Torvik (2015) classifies as ‘educational’, ‘hospital’, ‘educational-hospital’ and ‘orga-

nization’.

Pollution. We use gridded data on the annual average ground-level fine particulate

matter (PM2.5) concentrations from Hammer et al. (2020) and Van Donkelaar et al.

(2019). These data contain estimated pollution concentrations at a fine spatial resolution

of 0.01◦ × 0.01◦ by combining Aerosol Optical Depth (AOD) retrievals from satellites

with regional ground-level observations. We combine pollution data with gridded data

on the population of Europe from CIESIN (Columbia University, 2018) to obtain the

population-weighted PM2.5 concentration.15

Meteorological information. We obtain atmospheric data from the MERRA-2

dataset (Gelaro et al., 2017) to determine the presence of thermal inversions. This data

set contains daily mean temperature and relative humidity for 42 different pressure levels

at respective heights. This information allows us to calculate the temperature-height

relationship that defines thermal inversions. Following Dechezleprêtre et al. (2019), we
13It uses aforementioned patent family concept to identify an invention from the patent documents it

is related to. This approach avoids double-counting of citation linkages between patent documents that
represent the same invention.

14In the biomedical literature, ghost, gift or honor authorships are not an exception. Using first authors
only mitigates this concern by picking up the main contributor to a project (Yang et al., 2017).

15Population estimates are available every 5 years starting in 2000 and ending in 2020. We always use
the closest population estimated to calculate annual weighted PM2.5 concentration in year t.
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identify the occurrence of a thermal inversion when the temperature is higher at the

second-to-lowest level of the atmosphere than at the lowest level. To circumvent the

problem that the spatial resolution (0.5◦ × 0.625◦) of these data is too coarse to cover

smaller NUTS-3 regions, we interpolate these data to a finer resolution (0.01◦ × 0.01◦)16.

The thermal inversions instrument is calculated as the annual share of days with a thermal

inversion for each region.

Further atmospheric and climate data for the period 2001-2018 come from the family of

ERA5 datasets provided by the European Centre for Medium-Range Weather Forecasts.17

Specifically, we make use of the ERA5 data (Hersbach et al., 2020) and the ERA5-Land

data (Muñoz-Sabater, 2019) to calculate the ventilation coefficient and additional weather

control variables. We use ERA5 hourly data on the boundary layer height to calculate

daily means for each NUTS-3 region.18 We calculate daily means for temperature, wind

speed, surface pressure and precipitation using ERA-5-Land hourly data.19. Ventilation

Capability (VC) is calculated as the annual average number of consecutive days in which

the ventilation coefficient is equal or below the 20th percentile of the distribution of

ventilation coefficients within a NUTS-3 region.20

Geographic indicators. We collect geographic indicators for NUTS-3 regions from

Eurostat21. We use yearly data on population22, regional classifications23 and mortality24.
16For temperature we use a simple bi-linear interpolation technique because temperature varies be-

tween geographic locations rather continuously. As relative humidity is spatially discontinuous, we apply
nearest-neighbor interpolation technique.

17An overview of all ERA5 datasets can be found on
https://confluence.ecmwf.int/display/CKB/The+family+of+ERA5+datasets.

18Again, we use bi-linear interpolation to increase spatial resolution from 0.25◦×0.25◦ to 0.05◦×0.05◦
19These data are provided at a spatial resolution of 0.1◦ × 0.1◦, which is sufficient to cover smaller

NUTS-3 regions.
20We calculate the ventilation coefficient as the product of daily mean wind speed and daily mean

boundary layer height.
21Eurostat databasse are accessable on https://ec.europa.eu/eurostat/data/database.
22We use the "demo_r_pjanaggr3" dataset.
23We use the classification of metropolitan regions which can be found on

https://ec.europa.eu/eurostat/web/rural-development/background.
24We use the "demo_r_deaths" dataset.
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3.1 Descriptive findings

We restrict the sample period to 2001-2012 to avoid truncation bias due to a drop-off in

patent counts during recent years of the database. As a patent application only enters

our data set at the time the first patent document is published, time series towards the

end of the database show a negative trend. This does not necessarily reflect an actual

drop in the number of patent application, but rather the lag by which patent applications

are observed. To avoid truncation bias due the fact publication lags could correlate to

unobserved determinants of innovation, we restrict our sample to the period 2001 until

2012, well before any truncation starts.

Figure 3 shows the annual average number of patent filings by inventors of a NUTS-3

region for the sample period.25 Western Germany, southern-UK, northern-France and

the Nordic countries have highest patent output, while Eastern European countries and

Spain show lower patenting activity. The spatial distribution maps well to measures of

R&D intensity and R&D growth reported in the Research and Innovation Performance

report published by the European Commission (2020), lending support to our measure

of patent filings as an indicator for inventive output.

Figure 5 (blue line) documents a decreasing trend in PM2.5 concentration over time.

On average, PM2.5 concentration falls by 0.17µg/m3 each year. A similar trend appears

for nearly all air pollutants in Europe (Koolen and Rothenberg, 2019), indicating a steady

improvement of Europe’s air quality. Nevertheless, PM2.5 concentration varies across EU

Member states. Figure 4 shows the annual average PM2.5 concentration of NUTS-3

regions in the sample period. Eastern European regions, together with northern Italy,

experience higher pollution levels than the rest of Europe. The spatial distribution in

PM2.5 concentration is in accordance to PM2.5 measures from local stations published in

the Air quality in Europe report by the European Environment Agency (2020). While

informative to validate our measure, the region-fixed effects in our specification purge all

cross-sectional variation in innovation and pollution.
25In case multiple regions are assigned to one patent because different inventors on the patent live in

different regions, we assign the patents to both regions.
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Figure 5 shows the yearly variation in PM2.5 concentration and the two instrumental

variables, thermal inversion and ventilation capability. Trend lines of the instrumental

variables show a remarkably strong correlation to PM2.5 concentration, providing non-

parametric evidence for the strength of our instruments.

3.2 Summary statistics

Our sample includes observations for 1288 NUTS-3 regions within 30 countries for the

period 2001 - 2012.26 We trim our measure of PM2.5 concentration at 1% at each side

of the distribution to remove outliers indicating unrealistically high or low levels of pol-

lution.27 We drop NUTS-3 regions with only a limited number of patent filings.28 We

do this because we believe patent counts to be a poor indicator of inventive activity for

regions with zero or only a handful of patents per year. Therefore, including these regions

would plausibly introduce measurement error. Figure 6 shows NUTS-3 regions that are

dropped from the baseline analyses, most of which are in the Balkan area. Our baseline

result is robust to keeping these regions in the sample.

Table 1 shows summary statistics for the sample data. On average, we observe 109

patent filings per year within a NUTS-3 region. This distribution is left-skewed with

a median of only 41 filed patents. Hence, we use the natural logarithm of the number

of patents (plus one) in subsequent analyses. The annual average population-weighted

PM2.5 concentration per NUTS-3 region amounts to 13.62µg/m3.
26The longest period spanned by our data set is 2001-2018, but we drop years after 2012 due to

truncation in the data on patent filings (section 3.1).
27No outliers were detected for the other variables in our models.
28The baseline specification drops regions below the 5th percentile in terms of total number of patent

filings. Keeping these regions in only slightly decreases the coefficients of interest. Increasing the thresh-
old to the 10th or 15th percentile increases the coefficients, possibly due the fact that innovation intensity
correlates to pollution levels.
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4 Main Results

4.1 Baseline

Table 2 presents the baseline results. The instrumental variables strongly predict air

pollution. In line with our expectations, both instruments cause an increase in PM2.5

concentration. Reassuringly, including both instruments together barely changes their

coefficients. Table 3 shows summary statistics of the predicted PM2.5 concentrations

resulting from our 1st-stage regressions. It examines variation in predicted PM2.5 values

induced only by the instruments29. The last row shows that the standard deviation of

fitted PM2.5 concentrations is 0.39µg/m3 in our preferred specification (third regression

in table 2). It ranges between 12.83µg/m3 and 15.52µg/m3. Figure 7 plots the standard

deviation of these fitted PM2.5 concentrations across NUTS-3 regions. Nearly all NUTS-3

regions show similarly strong instrument-induced variation.

The first column of Table 2 shows OLS estimates of a model identical to equation 2

where we replace fitted pollution levels to observed ones. The next four columns show the

second- and first-stage results by instrumenting PM2.5 concentration with thermal inver-

sions or ventilation capability respectively. Finally, the last two columns show the second-

and first-stage results by instrumenting PM2.5 concentration with both instrumental vari-

ables. In line with expectations, OLS estimates are smaller than estimates obtained with

the IV regressions, suggesting that omitted variables and reverse causality lead to under-

estimation of the harmful effects of air pollution (section 2). Both instrumental variables

lead to similar results (second and fourth column). In our preferred specification (second

to last column), an increase in the PM2.5 concentration with 1µg/m2 causes a reduction

in the number of patent filings per NUTS-3 region of 10%. This implies an elasticity

at the sample mean of 1.36. Our reference increase corresponding to the year-to-year

average decrease in pollution in Europe of 0.17µg/m2 (see section 3.1) lies within the

variation induced by our instruments mentioned above, and has caused a 1.7% change in

inventive output.
29We fix control variables at their mean
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The common IV regression test statistics confirm the validity of the assumptions

underlying our analyses. First, the Kleibergen-Paap F statistics are high for all IV re-

gressions and above critical values for weak instruments formulated in Stock and Yogo

(2002).30 Second, with a p-value of above 5%, the Hansen test supports the exogeneity

assumption of our instruments.

4.2 Count Model

In a first robustness check, we apply a count data model rather than a linear model to

our data. As the number of patent applications only has non-negative values and its

distribution has a relatively large mass on low values, count models could improve the

specification of the error term distribution. Count data models with multiple fixed effects

that also correct for endogenous regressors have been only recently established (Lin and

Wooldridge, 2019). Specifically, we use a poisson fixed-effects model which is robust for

under- and overdispersion (Wooldridge, 1999). Hence, we assume that the annual number

of patent applications per NUTS-3 region follows a poisson distribution. Furthermore, we

use a control function approach to account for endogeneity of the PM2.5 concentration in

the non-linear fixed-effects model.31 The control function approach predicts residuals from

the first-stage regression. Next, predicted residuals together with endogenous PM2.5 levels

can be consistently estimated in the poisson-fixed-effects regression. This follows the idea

that predicted residuals from the first-stage regression will control for endogeneity.32 The

first-stage regression used to predict residuals are identical to equation 1. Resulting

poisson fixed-effects regression can be written as:

Yit = ξ1Pit + ξ2v̂it + ξ3Popit + ξ4Xit + λct + αi + εit (3)
30F-statistics for the three IV-regressions are all above the 10% Stock and Yogo (2002) critical values.
31This is important since the regular two-stage least squares estimator might not be consistent in

combination with a non-linear second-stage regression.
32A simple endogenous model can be written as y1 = β1y2 + β3z1 + u1 where y2 is the endogenous

explanatory variable and z1 a vector of exogenous regressors. The linear projection of y2 on the exogenous
regessors is y2 = α1z1 + v2 and can be the first-stage in a 2SLS approach. Endogeneity of y2 arises only
if u1 is correlated with v2 which can be formalized as u1 = ρ1v2 + e1. Hence, predicting residuals from
first stage v2 = y2 − α1z2 and plugging them in the first stage y1 = β3z1 + β1y2 + ρ1v̂2 + error controls
for endogeneity.
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Pit is the actual PM2.5 concentration in year t in NUTS-3 region i. v̂it are predicted

residuals obtained from the first-stage regression and account for the endogeneity of Pit.

Other specifications are identical to equation 2 with the important difference that they

allow the outcome measure to follow a poisson distribution.

Table 14 shows the results for the poisson fixed-effects regressions for a sample in-

cluding all NUTS-3 regions. The first column shows results without control function

approach. The second column shows results for the control function approach by simply

adding the first-stage residuals (equation 1) to the poisson fixed-effects regression. We

use 500 bootstrap replications to obtain the standard errors, where we re-sample NUTS-

3 regions. The coefficient of the PM2.5 variable is −0.07, indicating that an increase

in the PM2.5 concentration by 1µg/m2 causes the number of patent filings to drop by

7%. This effect is only slightly smaller than that obtained with the linear regression

model. This result leads us to conclude that our results are robust for using a count

model specification.

4.3 Accounting for spatial and serial correlation

Tobler (1970) formulates the first law of geography as: “Everything is related to every-

thing else, but near things are more related than distant things". Applied to our setting

this means that observations for one NUTS-3 region are possibly statistically related to

observations from neighboring NUTS-3 regions, raising concerns about spatial autocorre-

lation. In addition, pollution, weather, and economic data are likely to be correlated over

time. To address these concerns, we estimate models that allow standard errors to be

spatially and serially correlated (Conley, 1999, 2010). Conley’s procedure requires a cut-

off for spatial and serial correlation. We estimate two models with different assumptions

on the cutoff points allowing for more robust inference.
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Table 15 column 1 shows baseline results with SEs clustered at NUTS-3 level. Column

2 shows results with Conley’s SEs assuming a spatial correlation range of 500 kilometers33

and a serial correlation range of 5 years. Similarly, column 2 shows results with Conley’s

SE assuming a spatial correlation range of 1000 kilometers and a serial correlation range

of 10 years. Standard errors are slightly larger than baseline results when accounting

for spatial and serial correlation but results remain significant when accounting for these

different degrees of spatial and serial correlation.

4.4 Further robustness checks

We conduct several robustness tests to further examine the validity of our results. First,

we alter the threshold for the definition of a low ventilation coefficient used to calculate

the ventilation capability. Specifically, we define a low ventilation coefficient as any

daily average ventilation coefficient that is equal or below the 10th, 15th, 20th and 25th

percentile of the distribution of daily average ventilation coefficients within a NUTS-3

region. Table 16 shows results for the different ventilation capability measures. Overall,

results are robust for altering the threshold for a low ventilation coefficient.

Second, we decrease and increase the threshold for excluding NUTS-3 regions with

a low number of patent filings. Specifically, we estimate results without dropping any

NUTS-3 region and dropping NUTS-3 regions equal or below the 5th, 10th and 15th

percentile of the distribution for total number of patent filings. Results are robust for

excluding NUTS-3 regions based on different thresholds of a low number of patent filings.

Third, we alter the sample period by excluding more recent years. Table 18 presents

the results for the different sample periods. Results are robust for restricting the sample

period up to the interval 2001-2008.

Fourth, we verify whether the main results are robust for excluding weather covariates.

Table 20 shows results for the IV-regression on individual weather covariates. Overall,

results are similar regardless of whether we include weather controls or not.
33Distances between NUTS-3 regions are determined by their center points.
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Fifth, table 19 presents results for regressing weather controls on the annual number of

patent filings per NUTS-3 region. None of the weather control variables are significantly

correlated with the number of patent filings. This suggests that weather does not impact

inventive activity in our specification. Hence, the two weather phenomena which we use

as instrumental variables are unlikely to impact the inventive activity other than through

an increase in air pollution.

4.5 Heterogeneity Regions

The effects of additional air pollution are not necessarily the same for all regions. Un-

derstanding this potential heterogeneity across regions can help informing policy makers

about where abatement efforts are best targeted. We first examine effect heterogeneity

between high- and low-pollution NUTS-3 regions in order to examine non-linearity of

the effects of air pollution – i.e. whether an increase in air pollution is more harmful

to innovation where levels of air pollution are higher. To this end, we split our sample

based on the median of region-level mean PM2.5 concentration. The first, respectively

last, two columns of Table 4 show the results of the second- and first-stage regressions for

the sub-sample of regions with low, respectively, high levels of pollution. In less polluted

regions, the coefficient of interest is small and insignificant. In contrast, negative effects

of PM2.5 concentration on the number of patent filings are large and highly significant for

more polluted regions. For these regions, a 1µg/m2 increase in the PM2.5 concentration

reduces the annual number of patent filings by 15%. This finding suggests that harmful

effects of pollution are concentrated in regions with relatively high levels of pollution.

Next, we investigate whether observed negative effects vary with the level of urban-

ization in a region. This is relevant to policy because effectiveness and costs of abatement

programs may vary by level of urbanization. For instance, stimulating electrical driving is

more likely to reduce pollution in urban areas, whereas limiting industry emissions might
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affect less urbanized areas. To understand how the effects of air pollution vary by level

of urbanization, we split the sample into regions that are (1) predominantly rural, (2)

intermediate and (3) predominantly urban – based on Eurostat’s ‘Rural Development’

indicators34.

Table 5 shows the results for this split sample. The three pairs of columns show the

results of the second- and first-stage regressions for the sub-sample of predominantly ru-

ral, intermediate and predominantly urban NUTS-3 regions respectively. We do not find

a significant effect of air pollution on innovation in predominantly rural areas. Interest-

ingly, negative effects of PM2.5 concentration on innovation are strongest for intermediate

NUTS-3 regions with an elasticity of 2.36 at the mean PM2.5 concentration. In the sub-

sample of urban NUTS-3 regions the marginal effects of air pollution are in line with

those in the overall sample, with an elasticity at the mean of 1.29. Importantly, ur-

ban and intermediate NUTS-3 regions show similar PM2.5 levels (see Figure 8). Hence,

the heterogeneity by pollution level is unlikely to explain the difference in these esti-

mates. While the marginal effects starkly differ between urban and intermediate regions,

this does not translate in important differences in absolute terms. Because of a higher

innovation-intensity in urban regions, a 1% increase in the PM2.5 level causes a reduction

in the absolute number of patent filings similar to that of intermediate regions (4.8 for

urban versus 4.1 for intermediate). A potential explanation for the observed difference

in the elasticities might be differences in socio-demographic characteristics of the pop-

ulation in urban and intermediate areas. For instance, people living in urban areas are

more highly educated, have higher incomes and are younger (Eurostat, 2017). These

factors may affect how prone individuals are to the negative health effects, but also the

quality of healthcare they receive. The fact that rural areas are barely affected might be

due to lower levels of inventive activity (making it unlikely that patents pick up a lot of

variation) or the lower overall levels of pollution in such regions.
34For more information, refer to https://ec.europa.eu/eurostat/web/rural-development/methodology.
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5 Mechanisms

In order to aggregate our region-level estimates to economy-wide costs that are not cap-

tured in previous estimates, we rule out a number of mechanisms that prohibit us from

doing so. First, we examine the extent to which inventor mobility between regions can

explain the results. This is important to reliably aggregate our estimates across regions.

Indeed, if air pollution causes inventors to relocate to other regions, at least a portion of

the human capital loss in one region is recovered by human capital gain in another one. If

this mechanism is important, aggregating our estimates would lead to an overestimation

of the economic costs induced by innovation.

Second, we investigate to which extent shocks to R&D funding – a crucial input to the

invention process – drive our results. While this mechanism does not preclude us from

aggregating the effects across regions, it affects our claim that effects on inventive output

are not captured in estimates of the effect of air pollution on short-term economic activity

(Dechezleprêtre et al., 2019). Indeed, reductions in R&D spending are likely to show up

in measures of GDP. We do not observe R&D expenditures for enough firms and regions

to directly test this mechanism. However, we provide two pieces of evidence that suggest

this mechanism does not explain our results. First, we examine the effect of air pollution

on scientific output as measured by PubMed articles produced in a region. We view this as

an adequate test because funding cycles in science are too long to immediately respond

to air pollution. As such, finding that the effects on science are similar suggests that

shocks to funding of R&D are unlikely to explain a large portion of our effect. Second,

we study the effect of air pollution on quality-weighted patent counts. If shocks to R&D

funding are important in explaining our effect, we would expect that the average quality

of inventions increases in response to variation in air pollution. Indeed, if air pollution

affects R&D budgets (for instance, because air pollution may increase the expectation

of costly regulation), this should reflect either in less R&D projects being started up or

in existing R&D projects to be discontinued. Given that a reduction in new projects

21



is not likely to show up in our results because the duration of inventive process, R&D

budgets should mainly affect ongoing projects in our setting. If managers face budget

constraints, it is likely that they discontinue less promising projects first. This would

lead to an increase in average quality of the observed patented inventions.

Finally, we examine effects of air pollution on total mortality in our sample. Such

increases in mortality would be picked up by previous estimates of the economic costs

of air pollution as assessed by losses in productive life years (Landrigan et al., 2018).

Finding that these losses are minimal in our specification, reassures us that the effects

we find on inventive output are not captured in the mortality-based assessments.

5.1 Inventor Mobility

To identify relocation events and their timing, we chronologically order all inventors’

addresses stated on their patents and mark switches between NUTS-3 regions. The

relocation year of an inventor can be easily determined when such a switch happens within

the same year or within two consecutive years. In this case we assume the relocation year

corresponds to the year preceding the filing date of the latest patent stating the inventor’s

new address.35 When a switch co-occurs with a gap in time of multiple years, we use the

median as relocation year.36 To exclude unreasonable movement patterns, we conduct the

data-cleaning process proposed by Zacchia (2018) (see appendix F). Using these relocation

events, we construct our measure of inventor relocation by counting the yearly number

of inventor movements out of and into NUTS-3 regions for the sample period 2001-2012.

To verify whether the decisions made in terms of selecting the relocation event year drive

the results, we re-estimate our regressions using a sample with only relocation events

that can be precisely determined. To account for the fact that relocation of more prolific

inventors have a relatively large impact on a region’s innovation output, we construct an

additional measure in which we weight each relocation event by the number of patents

respective inventors filed within five years before the relocation year.
35We take the preceding year to account for the 6-12 months lag between invention and patent appli-

cation.
36Decimal numbers are rounded up assuming the relocation year is closer to the patent filed under the

new address.
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It is important to mention that we are only able to observe migration of inventors that

file patents before and after a relocation event. Migration before the first filed patent and

after the last patent filing as well as multiple moves between two filings cannot be traced.

As such, we have data for a sub-sample of relocating inventors. This raises the concern

of selection bias because more prolific inventors may be more likely to be (able to afford)

moving in response to pollution. While we cannot fully address this issue, the potential

bias induced would be conservative because it would lead us to overestimate the number

of moves in response to air pollution.

Overall 1,295,300 inventors who filed patents between 1944 and 2013 state addresses

in NUTS-3 regions. Only 5.38% of those inventors file patents in two different regions,

suggesting that relocation is a rare event. Figure 9 shows relocation events of inventors

between NUTS-3 regions for the sample period 2001-2012. Similarly, figure 10 shows

relocation events of inventors between NUTS-3 regions and regions outside Europe. Un-

surprisingly, most relocation events occur for regions with a high number of patent filings

and R&D investments (section 3.1) that are plausibly attractive to inventors.

We apply the regression model described in section 2.3 to estimate the impact of

air pollution on the annual number of inventor relocations. Table 7 shows the results

for out-migrating inventors. The first column shows results for the OLS estimation by

simply regressing the total number of moves away from a region by inventors on PM2.5

concentration without using instrumental variables. The second and third columns show

the second- and first-stage results by instrumenting PM2.5 with thermal inversion and

ventilation capability. The fourth column shows OLS results for the patent-weighted

measure of the number of in-migrating inventors. The last two columns show results for

the same outcome variable when instrumenting for PM2.5 concentration. OLS estimates

are negative and significant indicating that increased PM2.5 concentration reduces the

likelihood of inventors migrating out of NUTS-3 regions. However, these results are

likely to be driven by unobserved factors driving both pollution and migration, i.e. more

innovative regions attract more inventors but are also more polluted. The IV regressions

do not show statistically or economically significant results. To verify that the estimated
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coefficients cannot explain our baseline results, consider the upper bound of the 95%

confidence interval around the coefficient – 0.12. Taking this as the true effect would

imply that inventor migration in response to a 1µg/m2 increase in PM2.5 would increase

with 12%. Seeing that the baseline migration rate is about 2 inventors per year, this

implies an outflow of inventors with about one fifth of an inventor. With about 0.8

patents per year per migrating inventor, this results in a reduction of 0.16 patents due

to migration. The same increase in air pollution reduces the average number of patents

in a region by about 11. As such, it becomes clear that, even for this very conservative

calculation, migration could only marginally account for our baseline result. Furthermore,

table 8 presents the same regressions for the restricted sample of relocation events where

the relocation year is well defined. Again, IV estimates show small but insignificant

coefficients. In conclusion, we do not find evidence that air pollution causes inventors to

migrate. Table 9 shows the results for in-migrating inventors and has the same structure

as the table for out-migrating inventors. Again, IV results for the total number and

the weighted number of in-migrating inventors show small and insignificant coefficients.

Again, results are robust to the restricted sample of relocation events where relocation

year is well defined.

Taken together, we do not find evidence that negative effects of air pollution on

innovation pick up inventor migration patterns between regions. These patterns are

consistent with the idea that variation in air pollution induced by atmospheric conditions

are too idiosyncratic and small to cause inventors to move into or out of a region because

of them. In addition, it might be the case that air pollution affects migration of inventors,

but rather within the narrow scope of a NUTS-3 region. Especially since migration costs

increase with distance and inventors might have a strong interest to preserve local ties.
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5.2 R&D expenditures

Scientific output. Table 11 shows the results of estimating the effect of PM2.5 concen-

tration on the annual number of published journal articles listed in PubMed. In line with

the baseline result, the OLS estimate (column 1) is smaller than the estimate obtained

by the IV regression. Coefficients from the IV regressions are statistically significant and

imply that an increase in the PM2.5 concentration with 1µg/m2 causes a reduction in

the number of published journal articles per NUTS-3 region of 9%. This negative effect

is very similar to negative effects of PM2.5 concentration on the number of patent ap-

plications. Hence, air pollution affects scientific output about as strongly as inventive

output.

Patent quality. To investigate whether air pollution affects the quality of observed

inventions, we re-estimate our baseline specification after weighting patent counts for the

total number of forward citations patents receive, a common proxy for the quality or

technological importance of patents (Trajtenberg, 1990; Hall et al., 2001). We use two

different measures for the number of forward citations. First, we count the number of

forward citations patents received within a 5-year window. Second, we normalize the

total number of forward citations by the average number of citations patents receive with

the same filing year and technical field. For both measures we aggregate the number of

forward citations for all patents filed within a NUTS-3 region. The first two columns of

table 12 show the second- and first-stage regression results for the 5-year window forward

citations measure. The last two columns show the results when using the normalized

forward citations measure. Weighting for patent quality makes the negative effect of air

pollution slightly stronger, but the coefficient is within the error of margin of our baseline

specification. An increase in the PM2.5 concentration by 1µg/m2 causes patent counts

normalized the number of forward citations to drop by 13%, as compared to our baseline

estimate of 10% (see section 4). Unreported regressions that use the average number

of forward citations as an outcome measures show no statistically significant effect of

air pollution. In sum, we find no clear evidence that the quality of inventive projects

increases upon increased pollution exposure.
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5.3 Mortality

Last, we investigate whether the reduction in inventive output can be explained by an

increase in mortality induced by air pollution. For this purpose, we apply the regression

model described in section 2.3 and estimate immediate effects of air pollution on the

annual number of deaths and annual death rate per NUTS-3 region. As we do not have

reliable estimates of the number of inventor deaths, we conduct this analysis using total

deaths per NUTS-3 region obtained from Eurostat. Prior research shows that inventors

have high incomes, higher education and high-income parental backgrounds (Bell et al.,

2019; Aghion et al., 2017). These socioeconomic factors are negatively correlated with

mortality (Torssander and Erikson, 2009). As such, the death rate of the entire population

is likely to be higher than the death rate of inventors. Therefore, using the total death

rate is likely to overstate the importance of mortality in reducing innovation labor supply.

Table 13 presents results for the impact of PM2.5 concentration on the natural loga-

rithm of total number of deaths per NUTS-3 region. OLS estimates show negative and

significant coefficients indicating positive effects of air pollution on mortality. However,

these estimates are likely to be the results of unobserved factors driving both pollution and

mortality, i.e. more innovative regions have higher economic activity and wealth, which

likely reduce mortality. Instead, both IV regressions for the total number of deaths and

the death rate show small and insignificant coefficients. We do not find evidence that

baseline results on the reduction in innovation caused by pollution can be explained by

increased mortality. Plausibly, the variation in air pollution induced by the instrumental

variables is too small to considerably increase mortality.
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6 Discussion

Recent estimates of the effect of air pollution on economic activity suggest that pollution

abatement can considerably contribute to growth. This study underscores that reducing

air pollution could be even more beneficial than implied by these estimates because it

may positively affect innovation. To examine the importance of this channel, we estimate

the causal effect of air pollution on innovation using two weather phenomena as sources

of exogenous variation.

We find a large negative effect of air pollution on innovation. The estimates suggest

that a decrease in pollution of 0.17µg/m3 – the yearly average decrease in Europe –

on average leads to 1.7% more patented innovations. At the mean pollution level, this

implies an elasticity of 1.36. We find no evidence for a concurrent decline in average patent

quality, so we can interpret our coefficients as effects on total innovative output. We also

find that the negative effect of air pollution is concentrated in regions that are more

polluted, suggesting that there is a non-linear relationship between pollution levels and

innovation. In NUTS-3 regions above and below the median pollution level, respectively,

the elasticities are 2.51 and 0.58. The elasticity for predominantly urban areas is 1.29

and that of areas with intermediate levels of urbanization is 2.36, while both types have

similar pollution levels. In absolute levels, however, this difference amounts to about the

same number of additional patents (4.8 for the average urban region, 4.1 for the average

intermediate region) because urban areas have higher innovation intensity. In addition,

we do not find evidence that inventor migration patterns may explain our results. As

such, the negative effects of pollution on innovation in one region are unlikely to be made

up for by more innovation in a different region through movement of human capital.

Given the absence of such spillover effects, we believe that our results can be aggregated

to the national and international level. Finally, we find suggestive evidence that shocks

to R&D budgets or increased mortality induced by air pollution are unlikely to explain

the results. This suggests that the economic costs implied by reduced innovation output

are not captured in previous assessments based on reduced human capital and short-term

economic output (Landrigan et al., 2018; Dechezleprêtre et al., 2019).
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Our study contributes to previous work on the economic effects of air pollution by

highlighting an additional channel through which pollution may harm economic activity.

Endogenous growth theory has put innovation at the center stage in explaining economic

progress (Romer, 1990; Aghion and Howitt, 1990). As innovation is unlikely to translate

into firms’ short-term productivity increases through improved processes or product qual-

ity within (maximum) one year, the observed effect on innovation is largely overlooked

by previous assessments. As such, our findings highlight an additional channel through

which pollution abatement creates economic value.

However, translating these findings into exact estimates of economic value is a non-

obvious exercise. Next to increased profits by firms, innovations create several types of

spillovers (Hall et al., 2010; Jones and Summers, 2020). On the one hand, estimating

the contribution of innovation to firms’ profits is hard because it is hard to disentangle

how much each innovation contributes to lower costs or higher prices. On the other

hand, taking into account a host of indirect effects of innovations on welfare is extremely

challenging. That being said, the overarching consensus is that the value created by

innovation is large, and that the portion of this value captured by the innovator is small

(Nordhaus, 2004; Hall et al., 2005; Kogan et al., 2017; Jones and Summers, 2020). One

approach to estimate the total economic value implied by our estimates is to combine

inventors’ estimates of the private value of their (European) patents (3 million euros

on average) (Gambardella et al., 2008) with the ratio of spillovers to private returns as

estimated in Bloom et al. (2013). This implies an average total value of about 9 million

euros for each patented invention. Extrapolating this, leads to a back-of-the-envelop

calculation of the expected effect of reducing pollution. In the average region, this would

imply that decreasing pollution by 0.17µg/m3 leads to a 16.5 million increase in economic

value each year. Multiplying this by the number of regions leads to an estimated yearly

value of 21.3 billion euros. Relative to the yearly GDP in Europe, this is about 0.014%,

which is 10% of the estimates in Dechezleprêtre et al. (2019).
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In addition to adding to the evidence on the costs of air pollution, our findings could

help increasing efficiency of abatement policies. For instance, if a country’s innovation

is clustered in a region with a certain polluting industrial sector, abatement programs

targeting this sector may be much more effective than targeting other, equally pollut-

ing sectors in less innovation-intensive areas. The heterogeneity in effects uncovered

also informs policy makers. Particularly, our finding that the lion’s share of the effect

comes from highly polluted areas, suggests that targeting low-pollution areas may not be

cost-effective (unless the cost of abatement programs across regions vastly differ). This

is especially true seeing that highly polluted areas are also areas with high innovation

intensity (they have 3.28 times more patents). Similarly, the heterogeneity by level of

urbanization can also inform policy makers by highlighting that both highly urban and

intermediate regions are important targets for abatement policies. Indeed, if the costs of

the policy are similar, decreasing pollution with the same amount will result in roughly

the same benefit in terms of innovation output.

While we see our findings as relevant to inform cost-benefit analyses leading to abate-

ment strategies, it is important to stress two limitations of our study. First, we are not

able to affirm the importance of different potential mechanisms behind our results. Air

pollution may reduce inventive productivity by reducing the hours worked, or by reduc-

ing output conditional on hours worked. Because different mechanisms have different

implications for abatement policy, it is important to disentangle them in future work.

Second, our estimates may be overly conservative. Not all innovative activity is captured

in patents. Many innovations are kept secret and do not show up in patent records. In

addition, our back-of-the-envelope calculation did not account for the economic value of

scientific output and obscures further spillover margins of innovation identified in the lit-

erature, which are hard to measure. With these drawbacks in mind, we hope this paper is

a useful contribution to the cost-benefit analyses underlying rational abatement policies.
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Appendices

A Descriptive statistics
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Figure 3: Annual average number of patent filings per NUTS-3 region

Figure 4: Annual average PM2.5 level per NUTS-3 region
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B Summary statistics

Table 1: Summary statistics

N Mean Std. Dev. 10th 50th 90th
Nb. patent filings 15540 109.68 224.96 3 41 261
Nb. 5-year fw. cites 15540 183.93 397.88 2 58 448
Nb. fw. cites normalized 15540 39.81 80.63 0.45 13.79 97.60
Population (in thd) 13706 384.39 436.57 94.33 269.63 734.27
Pop-weighted PM 2.5 15218 13.75 4.83 8.41 12.99 20.61
Nb. thermal inversions 15300 54.88 32.83 13 52 101
Share thermal inversions 15300 0.15 0.09 0.04 0.14 0.28
Ventilation Coefficient (m2/s) 15156 1649.30 803.33 598 1620 2662
Avg consecutive days with low VC 15156 0.00 0.0003 0.0008 0.0010 0.0015
Surface pressure (Pa) 15156 97979.40 3463.07 93817 98981 101093
Relative humidty (%) 15300 0.74 0.06 0.64 0.74 0.81
Temperature (K) 15156 283.05 2.66 280 283 286
Wind speed (m/s) 15156 2.49 0.94 1.23 2.47 3.62
Precipitation (m) 15156 0.13 0.04 0.09 0.12 0.18
N 15540

Summary statistics of 1288 NUTS-regions for 30 countries observed over the period 2001 - 2012. Our
data includes all EU member states (+ United Kingdom) and EFTA countries. Iceland and Cyprus
are not included because both countries are outside the geographical boundaries of our dataset.

Figure 6: Dropped NUTS-3 regions with total number of patent filings equal or below
the 5th percentile
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C Main Results

Table 2: PM2.5 on the number of patent applications

OLS IV with TI IV with VC IV with TI & VC

Dep. Variable: Log(Patents) Log(Patents) PM2.5 Log(Patents) PM2.5 Log(Patents) PM2.5
PM2.5 -0.0053 -0.092* -0.11** -0.10***

(0.0037) (0.047) (0.050) (0.036)

Share Inversions 3.72*** 3.66***
(0.52) (0.51)

Share low V C 260.4*** 255.6***
(39.3) (39.5)

NUTS-3 FE YES YES YES YES
Country-Year FE YES YES YES YES
Controls YES YES YES YES
KP F-stat. 52.1 43.9 44.9
Hansen J stat. P-Val 0.78
N 12924 12924 12924 12924 12924 12924 12924

This table presents the results of regressing PM2.5 concentration on the annual number of patent applications per NUTS-3
region. The first column shows the results for the OLS regression without using IVs. The second and third column show the
second- and first-stage results by using thermal inversions as IV. The fourth and fifth column show the second- and first-stage
results by using ventilation capability as IV. The last two columns show the second- and first-stage results by using both IV’s.
Share of Inversions measures the number of days in which thermal inversions occur normalized by the total number of days
per year. Share of low V C measures the annual average length of consecutive days with a low ventilation coefficient normalized
by the total number of days per year. We define a low ventilation coefficient as any daily average ventilation coefficient that is
equal or below the 20th percentile of the distribution of daily average ventilation coefficients within a NUTS-3 region. Standard
errors are reported in parentheses and clustered at the NUTS-3 level.
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 3: Summary for the predicted PM2.5 concentrations for the regressions shown in
table 2

N Mean Std. Dev. Min 50th Max
Predicted PM2.5 with TI 12924 13.75 0.33 13.20 13.71 15.04
Predicted PM2.5 with VC 12924 13.75 0.09 13.57 13.73 14.98
Predicted PM2.5 with both IV’s 12924 13.75 0.34 13.07 13.72 15.51

Predicted PM2.5 with TI refers to the predicted PM2.5 concentration of regressing PM2.5

on Thermal Inversions (Table 2 third column) by setting controls to mean.
Predicted PM2.5 with VC refers to predicted PM2.5 concentration of regressing PM2.5

on Ventilation Capability (Table 2 fifth column) by setting controls to mean.
Predicted PM2.5 with both IVs refers to predicted PM2.5 concentration of regressing
PM2.5 on Thermal Inversions and Ventilation Capability (Table 2 seventh column) by setting
controls to mean.
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Figure 7: Variation in predicted PM2.5 concentration by NUTS-3 region
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Table 4: Split sample based on regions median PM2.5 concentration

Low PM 2.5 below Median High PM 2.5 above Median

Dep. Variable: Log(Patents) PM2.5 Log(Patents) PM2.5
PM2.5 -0.049 -0.15**

(0.049) (0.067)

Share Inversions 3.17*** 3.89***
(0.52) (0.94)

Share low V C 225.7*** 210.0***
(44.9) (63.4)

Mean # Patents 89.19 130.81
Mean PM 2.5 10.49 17.05
NUTS-3 FE YES YES
Country-Year FE YES YES
KP F-stat. 32.1 14.0
Hansen J stat. P-Val 0.59 0.94
N 6605 6605 6307 6307

This table presents the results for the split sample into high- and low-polluted NUTS-3
regions. The first two columns show the second- and first-stage results for the sub-sample
of low polluted NUTS-3 regions with a mean PM2.5 concentration below the median of all
regions. The last two columns show the second- and first-stage results for the sub-sample
of high polluted NUTS-3 regions with a mean PM2.5 concentration above the median of
all regions. Share of Inversions measures the number of days in which thermal inversions
occur normalized by the total number of days per year. Share of low V C measures the
annual average length of consecutive days with a low ventilation coefficient normalized by
the total number of days per year. We define a low ventilation coefficient as any daily
average ventilation coefficient that is equal or below the 20th percentile of the distribution
of daily average ventilation coefficients within a NUTS-3 region. Standard errors are
reported in parentheses and clustered at the NUTS-3 level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5: Split sample based on Urban-Rural classification

Predominantly Urban Intermediate Predominantly Rural

Dep. Variable: Log(Patents) PM2.5 Log(Patents) PM2.5 Log(Patents) PM2.5
PM2.5 -0.092** -0.17*** -0.0033

(0.043) (0.062) (0.094)

Share Inversions 5.43*** 2.66*** 3.91***
(1.08) (0.80) (0.76)

Share low V C 303.7*** 238.2*** 148.7**
(83.3) (57.4) (67.9)

Mean # Patents 208.26 96.59 40.84
Mean PM 2.5 14.14 14.15 13.06
NUTS-3 FE YES YES YES
Year FE YES YES YES
KP F-stat. 18.9 13.7 16.2
Hansen J stat. P-Val 0.60 0.56 0.25
N 3370 3370 5746 5746 3704 3704

This table presents the results for the split sample into predominantly rural, intermediate and predomi-
nantly urban areas. The first two columns show the second- and first-stage results for the sub-sample of
NUTS-3 regions classified as predominantly urban areas. The third and fourth column show the second-
and first-stage results for the sub-sample of NUTS-3 regions classified as intermediate areas. The last two
columns show the second- and first-stage results for the sub-sample of NUTS-3 regions classified as rural areas.
Share of Inversions measures the number of days in which thermal inversions occur normalized by the total
number of days per year. Share of low V C measures the annual average length of consecutive days with a low
ventilation coefficient normalized by the total number of days per year. We define a low ventilation coefficient
as any daily average ventilation coefficient that is equal or below the 20th percentile of the distribution of
daily average ventilation coefficients within a NUTS-3 region. Standard errors are reported in parentheses and
clustered at the NUTS-3 level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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D Mechanisms

Table 6: Supplementary summary statistics

N Mean Std. Dev. 10th 50th 90th
Nb. migrating inventors 16380 1.92 5.50 0 0 5
Nb. (patents) migrating inventors 16380 7.66 29.76 0 0 19
Nb. immigrating inventors 16380 2.07 5.70 0 0 5
Nb. (patents) immigrating inventors 16380 8.13 29.90 0 0 20
Nb. of publications 16380 151.70 433.72 0 9 431
Nb. of deaths 14296 3696.36 3787.99 936 2695 7210
Death rate (%) 13898 1.04 0.20 0.81 1.02 1.29
N 16380

Summary statistics of 1365 NUTS-regions for 30 countries observed over the period 2001 - 2012.
Our data includes all EU member states (+ United Kingdom) and EFTA countries. Iceland and
Cyprus are not included because both countries are outside the geographical boundaries of our
dataset. In contrast to the sample of our baseline results (table 1), we do not drop NUTS-3
regions equal or below the 5th percentile of the distribution for total number of patent filings.

Figure 9: Inventors relocating between NUTS-3 regions for the sample period 2001-2012.
Weight of line indicate relocation frequency.
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Figure 10: Inventors relocating between NUTS-3 and regions outside Europe for the
sample period 2001-2012. Weight of line indicate relocation frequency.

Table 7: Migrating inventors and air pollution

OLS IV OLS IV

Dep. Variable: Log(Migr. Inv.) Log(Migr. Inv.) PM2.5 Log(Migr. Inv. Patents) Log(Migr. Inv. Patents) PM2.5
PM2.5 -0.011*** 0.031 -0.017** 0.027

(0.0039) (0.046) (0.0069) (0.084)

Share Inversions 3.78*** 3.78***
(0.50) (0.50)

Share low V C 227.2*** 227.2***
(40.3) (40.3)

NUTS-3 FE YES YES YES YES
Country-Year FE YES YES YES YES
Controls YES YES YES YES
KP F-stat. 42.5 42.5
Hansen J stat. P-Val 0.25 0.27
N 13671 13671 13671 13671 13671 13671

This table presents the results of regressing PM2.5 concentration on the total number (Log(Migr. Inv.)) and patent weighted number of migrating
inventors (Log(Migr. Inv. Patents)) out of NUTS-3 regions. Log(Migr. Inv. Patents) weights the number of migrating inventors by the number
of patents inventors filed within 5 year before the relocation. The first column shows results for the OLS estimation by simply regressing the total
number of migrating inventors on PM2.5 concentration. The second and third columns show the second- and first-stage results by instrumenting
PM2.5 with thermal inversion and ventilation capability. The fourth column shows the OLS results for the patent weighted measure of the number
of migrating inventors. The last two columns show results for same outcome variable by instrumenting PM2.5 concentration. Share of Inversions
measures the number of days in which thermal inversions occur normalized by the total number of days per year. Share of low V C measures the
annual average length of consecutive days with a low ventilation coefficient normalized by the total number of days per year. We define a low
ventilation coefficient as any daily average ventilation coefficient that is equal or below the 20th percentile of the distribution of daily average
ventilation coefficients within a NUTS-3 region. Standard errors are reported in parentheses and clustered at the NUTS-3 level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 8: Migrating inventors and air pollution for a restricted sample where the relocation
year of an inventor can be well defined

OLS IV OLS IV

Dep. Variable: Log(Migr. Inv.) Log(Migr. Inv.) PM2.5t−1 Log(Migr. Inv. Patents) Log(Migr. Inv. Patents) PM2.5
PM2.5 -0.011*** -0.0015 -0.020*** 0.027

(0.0034) (0.042) (0.0068) (0.084)

Share Inversions 3.78*** 3.78***
(0.50) (0.50)

Share low V C 227.2*** 227.2***
(40.3) (40.3)

NUTS-3 FE YES YES YES YES
Country-Year FE YES YES YES YES
Controls YES YES YES YES
KP F-stat. 42.5 42.5
Hansen J stat. P-Val 0.27 0.27
N 13671 13671 13671 13671 13671 13671

This table presents the results of regressing PM2.5 concentration on the total number (Log(Migr. Inv.)) and patent weighted number of migrating
inventors (Log(Migr. Inv. Patents)) out of NUTS-3 regions for a restricted sample where the relocation year of an inventor can be well defined.
Log(Migr. Inv. Patents) weights the number of migrating inventors by the number of patents inventors filed within 5 year before the relocation.
The first column shows results for the OLS estimation by simply regressing the total number of migrating inventors on PM2.5 concentration. The
second and third columns show the second- and first-stage results by instrumenting PM2.5 with thermal inversion and ventilation capability. The
fourth column shows the OLS results for the patent weighted measure of the number of migrating inventors. The last two columns show results for
same outcome variable by instrumenting PM2.5 concentration. Share of Inversions measures the number of days in which thermal inversions occur
normalized by the total number of days per year. Share of low V C measures the annual average length of consecutive days with a low ventilation
coefficient normalized by the total number of days per year. We define a low ventilation coefficient as any daily average ventilation coefficient that is
equal or below the 20th percentile of the distribution of daily average ventilation coefficients within a NUTS-3 region. Standard errors are reported
in parentheses and clustered at the NUTS-3 level.
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 9: Immigrating inventors and air pollution

OLS IV OLS IV

Dep. Variable: Log(Immigr. Inv.) Log(Immigr. Inv.) PM2.5 Log(Immigr. Inv. Patents) Log(Immigr. Inv. Patents) PM2.5
PM2.5 -0.0059 -0.010 -0.0055 -0.056

(0.0039) (0.043) (0.0068) (0.079)

Share Inversions 3.78*** 3.78***
(0.50) (0.50)

Share low V C 227.2*** 227.2***
(40.3) (40.3)

NUTS-3 FE YES YES YES YES
Country-Year FE YES YES YES YES
Controls YES YES YES YES
KP F-stat. 42.5 42.5
Hansen J stat. P-Val 0.56 0.85
N 13671 13671 13671 13671 13671 13671

This table presents the results of regressing PM2.5 concentration on the total number (Log(Immigr. Inv.)) and patent weighted number of immigrating
inventors (Log(Immigr. Inv. Patents)) to NUTS-3 regions. Log(Immigr. Inv. Patents) weights the number of immigrating inventors by the number of
patents inventors filed within 5 year before the relocation. The first column shows results for the OLS estimation by simply regressing the total number of
immigrating inventors on PM2.5 concentration. The second and third columns show the second- and first-stage results by instrumenting PM2.5 with thermal
inversion and ventilation capability. The fourth column shows the OLS results for the patent weighted measure of the number of immigrating inventors. The
last two columns show results for same outcome variable by instrumenting PM2.5 concentration. Share of Inversions measures the number of days in which
thermal inversions occur normalized by the total number of days per year. Share of low V C measures the annual average length of consecutive days with a
low ventilation coefficient normalized by the total number of days per year. We define a low ventilation coefficient as any daily average ventilation coefficient
that is equal or below the 20th percentile of the distribution of daily average ventilation coefficients within a NUTS-3 region. Standard errors are reported
in parentheses and clustered at the NUTS-3 level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 10: Immigrating inventors and air pollution for a restricted sample where the
relocation year of an inventor can be well defined

OLS IV OLS IV

Dep. Variable: Log(Immigr. Inv.) Log(Immigr. Inv.) PM2.5t−1 Log(Immigr. Inv. Patents) Log(Immigr. Inv. Patents) PM2.5
PM2.5 -0.0078** -0.028 -0.010 -0.056

(0.0036) (0.041) (0.0069) (0.079)

Share Inversions 3.78*** 3.78***
(0.50) (0.50)

Share low V C 227.2*** 227.2***
(40.3) (40.3)

NUTS-3 FE YES YES YES YES
Country-Year FE YES YES YES YES
Controls YES YES YES YES
KP F-stat. 42.5 42.5
Hansen J stat. P-Val 0.64 0.85
N 13671 13671 13671 13671 13671 13671

This table presents the results of regressing PM2.5 concentration on the total number (Log(Immigr. Inv.)) and patent weighted number of immigrating inventors
(Log(Immigr. Inv. Patents)) to NUTS-3 regions for a restricted sample where the relocation year of an inventor can be well defined. Log(Immigr. Inv. Patents)
weights the number of immigrating inventors by the number of patents inventors filed within 5 year before the relocation. The first column shows results for the
OLS estimation by simply regressing the total number of immigrating inventors on PM2.5 concentration. The second and third columns show the second- and
first-stage results by instrumenting PM2.5 with thermal inversion and ventilation capability. The fourth column shows the OLS results for the patent weighted
measure of the number of immigrating inventors. The last two columns show results for same outcome variable by instrumenting PM2.5 concentration.
Share of Inversions measures the number of days in which thermal inversions occur normalized by the total number of days per year. Share of low V C
measures the annual average length of consecutive days with a low ventilation coefficient normalized by the total number of days per year. We define a low
ventilation coefficient as any daily average ventilation coefficient that is equal or below the 20th percentile of the distribution of daily average ventilation
coefficients within a NUTS-3 region. Standard errors are reported in parentheses and clustered at the NUTS-3 level.
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 11: PubMed publications and air pollution

OLS IV

Dep. Variable: Log(PubMed) Log(PubMed) PM2.5
PM2.5 -0.0023 -0.086**

(0.0041) (0.042)

Share Inversions 3.78***
(0.50)

Share low V C 227.2***
(40.3)

NUTS-3 FE YES YES
Country-Year FE YES YES
Controls YES YES
KP F-stat. 42.5
Hansen J stat. P-Val 0.26
N 13671 13671 13671

This table presents the results of regressing PM2.5 concentration on the number
of journal articles listed in PubMed (Log(PubMed)). The first column shows
results for the OLS estimation without using IVs. The second and third columns
show the second- and first-stage results by instrumenting PM2.5 with thermal
inversion and ventilation capability. Share of Inversions measures the number
of days in which thermal inversions occur normalized by the total number of days
per year. Share of low V C measures the annual average length of consecutive
days with a low ventilation coefficient normalized by the total number of days
per year. We define a low ventilation coefficient as any daily average ventilation
coefficient that is equal or below the 20th percentile of the distribution of daily
average ventilation coefficients within a NUTS-3 region. Standard errors are
reported in parentheses and clustered at the NUTS-3 level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 12: Patent citations and air pollution

5-year fw. cites Fw. cites normalized

Dep. Variable: Log(Patents) PM2.5 Log(Patents) PM2.5
PM2.5 -0.12* -0.13***

(0.062) (0.042)

Share Inversions 3.66*** 3.66***
(0.51) (0.51)

Share low V C 255.6*** 255.6***
(39.5) (39.5)

NUTS-3 FE YES YES
Country-Year FE YES YES
Controls YES YES
KP F-stat. 44.9 44.9
Hansen J stat. P-Val 0.77 0.87
N 12924 12924 12924 12924

This table presents the results of regressing PM2.5 concentration on the total number of
forward citation for patents filed within a NUTS-3 region. The first two columns show the
the second- and first-stage results by measuring forward citations patents received within a
5-year window. The last two columns show the the second- and first-stage results by mea-
suring the total number of forward citations normalized by the number of citations patents
received with the same filing year and technical field. Share of Inversions measures the
number of days in which thermal inversions occur normalized by the total number of days
per year. Share of low V C measures the annual average length of consecutive days with
a low ventilation coefficient normalized by the total number of days per year. We define a
low ventilation coefficient as any daily average ventilation coefficient that is equal or below
the 20th percentile of the distribution of daily average ventilation coefficients within a
NUTS-3 region. Standard errors are reported in parentheses and clustered at the NUTS-3
level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 13: Total deaths and air pollution

OLS IV OLS IV

Dep. Variable: Log(Deaths) Log(Deaths) PM2.5 Death Rate Death Rate PM2.5
PM2.5 -0.0011*** 0.0027 -0.0012*** 0.0028

(0.00036) (0.0038) (0.00038) (0.0040)

Share Inversions 3.43*** 3.43***
(0.50) (0.50)

Share low V C 241.0*** 241.0***
(40.7) (40.7)

NUTS-3 FE YES YES YES YES
Country-Year FE YES YES YES YES
Controls YES YES YES YES
KP F-stat. 38.6 38.6
Hansen J stat. P-Val 0.24 0.30
N 13230 13230 13230 13230 13230 13230

This table presents the results of regressing PM2.5 concentration on the total number of death (Log(Deaths))
and the death rate (DeathRate)) per NUTS-3 region. Death rate does not include population as control. The
first and fourth columns show results for the OLS estimation without using IVs. The second and third (fifth
and sixth) columns show the second- and first-stage results by instrumenting PM2.5 with thermal inversion and
ventilation capability. Share of Inversions measures the number of days in which thermal inversions occur
normalized by the total number of days per year. Share of low V C measures the annual average length of
consecutive days with a low ventilation coefficient normalized by the total number of days per year. We define a
low ventilation coefficient as any daily average ventilation coefficient that is equal or below the 20th percentile of
the distribution of daily average ventilation coefficients within a NUTS-3 region. Standard errors are reported
in parentheses and clustered at the NUTS-3 level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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E Robustness

Table 14: Poisson fixed effects regression

Poisson Poisson CF

Dep. Variable: Nb. Patents Nb. Patents
PM2.5 -0.0077** -0.071***

(0.0036) (0.027)

v̂ 0.064**
(0.027)

NUTS-3 FE YES YES
Country-Year FE YES YES
Log likelihood -56582.7
Pseudo R2 0.96
Replications 500
Clusters 1196 1365
N 13599 16380

This table presents the results for the poisson fixed
effects regression. Estimates are obtained for a sam-
ple including all NUTS-3 regions. The first column
shows the results for poisson fixed effects regression
without accounting for endogeneity of PM2.5. The
second column shows the poisson fixed effects results
using control function approach by including first-
stage residuals v̂. We do not include surface pressure
as control variable since it is collinear with the fixed
effects in the poisson regression. However, further ro-
bustness test show that surface pressure do not have
a significant impact on first stage-results and, thus,
should not matter for the final results. The standard
errors reported in parentheses and are fully robust.
For the poisson regression with the control function
approach, standard errors are obtained by bootstrap-
ping the 1356 NUTS-3 regions using 500 bootstrap
replications.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 15: Accounting for spatial and serial correlation

Clustered SE SE − Assumption 1 SE − Assumption 2

Dep. Variable: Log(Patents) Log(Patents) Log(Patents)
PM2.5 -0.087** -0.087** -0.087**

(0.036) (0.044) (0.042)
NUTS-3 FE YES YES YES
Country-Year FE YES YES YES
Controls YES YES YES
N 13671 13671 13671

Estimations conducted for a conservative sample including all NUTS-3 regions. Column 1
shows second-stage baseline results with SE clustered at NUTS-3 in accordance with results
in table 17. Column 2 and 3 show second-stage results with spatial heteroskedasticity and
autocorrelation consistent SE in line with Conley (1999, 2010). Assumption 1 (2) assumes
a spatial correlation range of 500 (1000) kilometers and a serial correlation range of 5 (10)
years. Conley standard errors are computed using the Stata code provided by (Foreman,
2020).
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 16: Different thresholds for a low VC

Low V C ≤ p10 Low V C ≤ p15 Low V C ≤ p20 Low V C ≤ p25

Dep. Variable: Log(Patents) PM2.5 Log(Patents) PM2.5 Log(Patents) PM2.5 Log(Patents) PM2.5
PM2.5 -0.10** -0.088** -0.10*** -0.054*

(0.047) (0.043) (0.036) (0.028)

Share Inversions 3.70*** 3.67*** 3.66*** 3.70***
(0.52) (0.51) (0.51) (0.51)

Share p10 ≥ V C 90.6
(82.0)

Share p15 ≥ V C 181.1***
(53.4)

Share p20 ≥ V C 255.6***
(39.5)

Share p25 ≥ V C 279.7***
(31.5)

NUTS-3 FE YES YES YES YES
Country-Year FE YES YES YES YES
Controls YES YES YES YES
KP F-stat. 26.5 31.5 44.9 63.3
Hansen J stat. P-Val 0.15 0.81 0.78 0.27
N 12924 12924 12924 12924 12924 12924 12924 12924

Standard errors are reported in parentheses and clustered at the NUTS-3 level.
SE clustered at NUTS-3
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 17: Different thresholds for dropping low patenting NUTS-3 regions

No trimming Trim NUTS-3 at 5% Trim NUTS-3 at 10% Trim NUTS-3 at 15%

Dep. Variable: Log(Patents) PM2.5 Log(Patents) PM2.5 Log(Patents) PM2.5 Log(Patents) PM2.5
PM2.5 -0.087** -0.099*** -0.14*** -0.14***

(0.036) (0.036) (0.037) (0.036)

Share Inversions 3.78*** 3.65*** 3.27*** 3.24***
(0.50) (0.51) (0.50) (0.52)

Share low V C 227.2*** 253.7*** 258.6*** 259.5***
(40.3) (39.5) (40.6) (41.8)

NUTS-3 FE YES YES YES YES
Country-Year FE YES YES YES YES
Controls YES YES YES YES
KP F-stat. 42.5 44.9 39.0 37.1
Hansen J stat. P-Val 0.50 0.82 0.70 0.96
N 13671 13671 12984 12984 12267 12267 11699 11699

SE clustered at NUTS-3
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 18: Different sample periods

Dep. Variable: Log(Patents) Log(Patents) Log(Patents) Log(Patents) Log(Patents)
PM2.5 -0.10*** -0.097*** -0.16*** -0.16*** -0.14***

(0.036) (0.034) (0.055) (0.047) (0.046)
Period 2001-2012 2001-2011 2001-2010 2001-2009 2001-2008
NUTS-3 FE YES YES YES YES YES
Country-Year FE YES YES YES YES YES
KP F-stat. 44.9 46.5 18.3 23.0 24.9
Hansen J stat. P-Val 0.78 0.65 0.21 0.79 0.51
N 12924 11778 10659 9565 8475

SE clustered at NUTS-3
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 19: Patenting and weather controls

Dep. Variable: Log(Patents) Log(Patents) Log(Patents) Log(Patents) Log(Patents) Log(Patents)
Log(Pop) 0.15 0.29 0.16 0.16 0.16 0.25

(0.27) (0.25) (0.27) (0.27) (0.27) (0.26)

Surface Pressure -0.00020 -0.000044
(0.00080) (0.00100)

Surface Pressure2 4.0e-10 -5.9e-10
(4.0e-09) (5.2e-09)

Relative humidity 0.27 0.031
(3.20) (3.31)

Relative humidity2 0.027 0.23
(2.26) (2.34)

Temperature 0.018 -0.19
(0.91) (1.13)

Temperature2 0.0000082 0.00040
(0.0016) (0.0020)

Precipitation 35.3 50.1
(63.8) (70.2)

Precipitation2 -2336.3 -6023.3
(17437.3) (18345.3)

Wind speed -0.0022 -0.035
(0.10) (0.11)

Wind speed2 -0.014 -0.015
(0.014) (0.014)

NUTS-3 FE YES YES YES YES YES YES
Country-Year FE YES YES YES YES YES YES
F-stat. 0.42 0.68 0.64 0.49 1.45 1.15
R-sq 0.96 0.96 0.96 0.96 0.96 0.96
N 13270 13399 13270 13270 13270 13152

SE clustered at NUTS-3
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 20: Patenting and air pollution with individual weather controls
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F Data cleaning inventor relocation

Morrison et al. (2017) provides a disambiguation of patent inventors. We assigning NUTS-

3 regions to corresponding goecodes of inventor addresses. Following, we trace relocation

of inventors based on changes in NUTS-3 codes of patents inventors’ filed in chronological

order. Any address outside NUTS-3 regions are treated equally as "outside Europe"

because we are not interested in movements between regions outside Europe. In some

cases the history of filed patents stating the addresses for the individual inventor does not

provide a clear relocation pattern. Specifically, the history of patents for an individual

inventor shows frequent alternation between two or more NUTS-3 region within a short

period. Such pattern are unlikely to reflect true relocations of inventors. One reason might

be that inventors alternate between office and residence addresses for the patents they had

filed. This issue is described in detail by Zacchia (2018) using the same dataset to trace

the relocation of inventors. We follow his procedure to clean the data for unreasonable

relocation patterns by assigning inventors to NUTS-3 regions in the following way:

1. We split the patent history of each inventor into temporal intervals, which are

delimited by the years when a different NUTS-3 occurs for the first time

2. To each of these intervals we assign a unique NUTS-3 region by choosing the one

that is observed most frequently

3. Ties are resolved conservatively in favor of the city that occurred earlier in the

inventor’s patent history
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