Qimin SHI

PhD student in Additive Manufacturing

KU Leuven, Department of Biomedical Sciences, Belgium

Email: qimin.shi@kuleuven.be

Homepage: https://www.kuleuven.be/wieiswie/en/person/00125493 Google Scholar: https://scholar.google.com.hk/citations?user=xl7Qd9AAA AAJ&hl=zh-CN&oi=ao

KU LEUVEN

In-situ formation of particle reinforced AI matrix composites by laser melting + remelting strategy in laser powder bed fusion of $Fe_2O_3/AISi12$ powder mixture

Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

KU Leuven, Department of Biomedical Sciences, Belgium KU Leuven, Department of Mechanical Engineering, Belgium Uni. of Southampton, Faculty of Engineering and Physical Sciences, UK

International Conference on Additive Manufacturing Materials for Production | Barcelona, Spain, 16 Dec. 2021

Outline

- Introduction
- Materials and methods
- Results and discussion

Densification | Top surface & cross section morphology Microstructure & Phase | Microstructural evolution with phase analysis Mechanical performance | Tensile property

Conclusions

Introduction | LPBF

 LPBF is a metal additive manufacturing technology that uses <u>a bed of powder</u> with <u>laser heat source</u> to create metal parts in a <u>layer-by-layer manner</u>

Introduction | Advantages

In-situ formation of particle reinforced Aluminium matrix composites (PRAMCs) by LPBF of Fe₂O₃/AISi12 powder mixture is a promising strategy to strengthen AI-based alloys

(1) 'In-situ' mechanism creates stronger interfacial bonding & better distribution of fine reinforcements, compared to the 'ex-situ' mechanism

In-situ

Uniform distribution of fine Al₂O₃ and FeAl₂O₄ particles in LPBF-fabricated parts from Fe₂O₃/Al powder mixture [Adv. Eng. Mater. 21(2019) 1801244] **Ex-situ**

TiC aggregations in LPBF-fabricated TiC/Al composites [Mater. Des. 82(2015) 46-55]

Introduction | Advantages

(2) Fe₂O₃/AlSi12 powder mixture is easy to prepare, compared to precursor powders

Direct mechanical mixing to prepare Fe₂O₃/AlSi12 powder mixture

3D shaker-mixer

Multiple procedures to prepare precursor powders

e.g., Preparation of graphene oxide coated AISi10Mg powder to prepare:

Step 1, <u>mechanical stirring and</u> <u>ultrasonication of AISi10Mg</u> in water in an ice-water bath for 1h;

Step 2, <u>adding graphene oxide</u> drop-bydrop into the AlSi10Mg suspension under <u>mechanical stirring;</u>

Step 3, <u>filtration and vacuum drying</u> at 298 K for 24h.

[Mater. Charact. 170(2020) 110678]

Introduction | Advantages

(3) In-situ Fe₂O₃/AI reaction is easy to initiate at 960 °C

Differential thermal analysis of mixed Fe₂O₃/Al samples [Scripta Mater. 41(1999) 541-548]

Introduction | Challenge

- By-product O₂ reacts with AI, forming AI₂O₃ film that restricts the metal liquid's spreading and impact the densification
- **Objective**: densify the LPBF parts from the Fe₂O₃/AlSi12 powder mixture

Without laser remelting: Top surface of LPBF parts from the Fe₂O₃/AlSi12 powder mixture

Without laser remelting: Cross section of LPBF parts from the Fe₂O₃/AlSi12 powder mixture

Materials and methods | Powder preparation

 Homogeneous 5wt%Fe₂O₃/AlSi12 powder mixture was obtained by mechanical mixing for 10 hours

AlSi12 | Gas-atomized, spherical | Particle size < 45 μm | Average size = 25 μm

Powder mixture

Fine Fe_2O_3 is well assembled on the surface of AISi12

KU LEUVEN

| Spherical | Average size = 200 nm | Purity = 99.8%

Fe₂O

Materials and methods | Laser scan process

 A consecutive high-energy melting scan and low-energy remelting scan was used in the LPBF process

Materials and methods | Laser parameters

Melting process optimization

Variable E_{melting} : 20, 25, 30, 35 J/mm² Fixed $E_{\text{remelting}}$: 4.17 J/mm²

Remelting process optimization

Fixed E_{melting} : 35 J/mm² Variable $E_{\text{remelting}}$: 2.92, 4.17, 4.29, 5.00 J/mm²

Comparison group

Same laser melting parameters but no remelting

	<i>P</i> (W)	v (mm/s)	<i>h</i> (μm)	<i>t</i> (µm)
Melting	100-175	100	50	30
Remelting	250	600	50	/
	<i>P</i> (W)	v (mm/s)	<i>h</i> (um)	<i>t</i> (um)
Melting	P (W) 175	v (mm/s) 100	<i>h</i> (μm) 50	t (μm) 30

Laser energy surface density (J/mm²) $E_{melting} = P/v \cdot h$ $E_{remelting} = P/v \cdot h$

P, laser power; *v*, laser scan speed;*h*, hatch space; *t*, powder laser thickness

Materials and methods | Outcomes

• Big improvement of sample quality was achieved by laser melting + remelting

Only laser melting process

Laser melting + remelting process

Tensile pieces by laser melting + remelting process

Densification | Top surface morphology

• Laser melting + remelting smoothened the top surface

 E_{melting} of 35 J/mm² $E_{\text{remelting}}$ of 4.17 J/mm²

E_{melting} of 35 J/mm² E_{remelting} of 5.00 J/mm²

KU LEUVEN

Melting process

optimization

Densification | Side surface morphology

Laser melting + remelting densified the sample by forming horizontally layered lacksquaresolidified structure

E_{melting} of 35 J/mm² Eremelting of 4.17 J/mm²

optimization

 $E_{\rm melting}$ of 35 J/mm² E_{remelting} of 5.00 J/mm²

KU LEUVEN

Melting process

optimization

Densification | Relative density

• Laser melting + remelting improved the relative density to 98.2 ± 0.55 %

Densification | Mechanism behind densification

• Laser remelting smoothened the top surface and closed gaps layer by layer

Densification | Mechanism behind densification

Repeated laser melting + remelting produced fine horizontally layered solidified structure

Microstructure & Phase | Microstructural evolution

• Laser melting + remelting did not coarsen the microstructure

138±2.5 HV

No remelting!

Melting process optimization

Remelting process optimization

KU LEUVEN

136±2.2 HV

energy density

aser

16 Dec. 2021 KU Leuven, Biomedical Sciences

Microstructure & Phase | Precipitate distribution

 EDS maps confirm the distribution of precipitate-related elements (AI, Si, Fe and O) across the whole material

Microstructure & Phase | Phase evaluation

• Laser melting + remelting produced multiple precipitate phases

Microstructure & Phase | Phase evaluation

 In-situ Fe₂O₃/AI reaction includes multiple steps, providing enough possibilities of forming precipitates [1,2]

Microstructure & Phase | Phase evaluation

• Rapid cooling process of LPBF froze intermediate metastable precipitates

Mechanical performance | Tensile properties

• In-situ PRAMCs by LPBF have **comparable/ superior mechanical performance** to LPBF-fabricated AI-based composite counterparts/ cast AISi12.

[2] Mater. Sci. Eng. A 590, 153-160.

Mechanical performance | Strengthening mechanism

 Multiple contributions strengthened the in-situ PRAMCs made from the Fe₂O₃/AISi12 powder mixture by LPBF

Conclusions

- The consecutive laser melting + remelting scan strategy can prepare dense
 PRAMCs from Fe₂O₃/AlSi12 powder mixture.
- The PRAMCs made from Fe₂O₃/AISi12 powder mixture by LPBF achieve good mechanical properties.
- Laser melting + remelting could be practical to process other powder mixtures with severe porosity/ oxide-film formation potential

For further details

 Qimin Shi, et al., In-situ formation of particle reinforced Aluminium matrix composites by laser powder bed fusion of Fe₂O₃/AlSi12 powder mixture using laser melting/remelting strategy, *Journal of Materials Processing Technology* 299 (2022) 117357.

Thank you for your attention

KU LEUVE

Qimin Shi*, Yi Sun, Constantinus Politis, Shoufeng Yang

*Corresponding email: qimin.shi@kuleuven.be <u>https://www.kuleuven.be/wieiswie/en/person/00125493</u> KU Leuven, Department of Biomedical Sciences, Belgium KU Leuven, Department of Mechanical Engineering, Belgium University of Southampton, Faculty of Engineering and Physical Sciences, UK

Material characterization

- **OM**: Optical Microscope (Keyence VHX6000 microscope, Japan)
- Etching: Keller's reagent (95 mL H₂O, 2.5 mL HNO₃, 1.5 mL HCl and 1 mL HF for 60s)
- **XRD**: Seifert 3003 T/T X-Ray diffractometer, at 40 kV and 40 mA, step-scan type with a step width of 0.02° and exposure time of 1 s for each step, $2\theta = 20-100^{\circ}$
- SEM: Scanning Electron Microscope (Philips XL30 FEG, Eindhoven, Netherlands)
- EDS: Energy Dispersive Spectrometer (EDS; EDAX Inc., USA)
- Hardness: FV-700 microhardness tester, load of 500 g during 15 s
- **Tensile**: Instron 4467 testing facility, tensile rate of 0.2 mm/min