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ABSTRACT
The rhizosphere is a complex ecosystem consisting of microbes in the interface between growth medium and plant roots, which affects plant productivity and health. This is one of the few studies analysing bacterial communities present in the rhizosphere of hydroponically grown plants. Tomato grown under hydroponic conditions is prone to hairy root disease (HRD) that is caused by rhizogenic Agrobacterium biovar 1 strains. In this study, using high-throughput amplicon sequencing of partial ribosomal RNA (rRNA) genes, we aimed to characterize bacterial communities in rockwool samples obtained from healthy or HRD-infested tomato during an entire growing season. Alpha diversity of rockwool increased in direct relation with time and samples obtained from healthy greenhouses presented a significantly lower alpha diversity than those from HRD-infested greenhouses. Beta diversity showed that bacterial community composition changed throughout the growing season. Amplicon Sequence Variants (ASVs) identified as rhizogenic Agrobacterium bv. 1 were more prevalent in HRD-infected greenhouses. Conversely, ASVs identified as Paenibacillus, previously identified as biocontrol organisms of rhizogenic agrobacteria, were more prevalent in healthy greenhouses. Altogether, our study greatly contributes to the knowledge of bacterial communities in rockwool hydroponics.  
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Introduction 
	In temperate climate, tomato is increasingly produced in soilless or hydroponics systems, in which plants are grown on a substrate supplied with nutrient solution. The nutrient solution is mostly recirculated and disinfected before reuse (Lee et al. 2016; Savvas and Gruda 2018). Rockwool is the preferred substrate for hydroponics cultivation of tomatoes. It enables frequent irrigation since rockwool slabs drain freely, allowing for an optimum air/water ratio (Olle, Ngouajio and Siomos 2012). Initially, rockwool is virtually chemically inert and it is free of pests and diseases. However, extensive microbial colonization occurs when plants start to grow on the substrate. Moreover, open water recirculation systems, which are typical of hydroponic systems, are prone to microbial contamination and facilitate rapid spreading of potential pathogens throughout the irrigation system (Calvo-Bado et al. 2006; Lee et al. 2016). The last decade, hairy root disease (HRD) is causing increasing economic damage in several hydroponically grown crops worldwide, including tomato, eggplant, cucumber, and recently also bell pepper (Bosmans et al. 2017; Vargas et al. 2019; Weller, Stead and Young 2006). HRD is caused by rhizogenic Agrobacterium biovar 1 strains harbouring an Ri-plasmid (root-inducing plasmid). Infection results in excessive root formation, ultimately leading to a reduction in yield of up to 10% (Bosmans et al. 2017; Gelvin 1990). 
	Recently, plant-associated microorganisms, collectively called the plant microbiome, have received increased attention as they have been found to be key determinants in plant productivity and health (Brunel et al. 2020). Several studies have demonstrated a key role of plant-associated microorganisms in disease resistance and direct pathogen suppression (Hu et al. 2016; Kwak et al. 2018; Pascale et al. 2020; Santhanam et al. 2015). In general, the plant microbiome is the result of the interaction between plant-related factors (e.g. species, cultivar, age, health status) and environmental factors, including growth medium and irrigation solution, temperature, and pH (Brunel et al. 2020; Purahong et al. 2018). Although several studies have been conducted to characterize the rhizosphere microbiome of soil-grown crops, only few studies have focused on crops grown in hydroponic conditions (Calvo-Bado et al. 2006; Grunert et al. 2016; Sheridan et al. 2016). Current knowledge of bacterial communities in rockwool hydroponics is very limited. Moreover, it is not yet studied whether and how bacterial communities are affected by a disease such as HRD or whether particular bacterial populations in the community affect the risk of HRD incidence. 
	The main goal of this study was to describe differences in bacterial community composition present in the rockwool (including root tissue) of healthy and HRD-infested tomato greenhouses. Additionally, we aimed to identify specific bacteria associated with either healthy or infested greenhouses, with a specific focus on potential biocontrol organisms like Paenibacillus, since strains belonging to this genus have shown biocontrol potential for HRD management (Bosmans et al. 2017; Vargas et al. 2021). A total of 12 commercial hydroponic tomato greenhouses were sampled, of which four were infested with HRD. Bacterial communities were examined by deep sequencing of partial 16S ribosomal RNA (rRNA) gene amplicons throughout a complete growing season, from February through November and at different locations in each greenhouse.   



Materials and methods
Sampling 
A total of 12 commercial tomato (Solanum lycopersicum L.) hydroponic greenhouses located in Flanders (Belgium) were investigated in this study, with most of the rootstocks used in the sampled greenhouses being Maxifort and DRO141TX (Table S1). Rockwool samples, including root material, were taken at three locations in each greenhouse, corresponding to start, middle and end of the irrigation system. At each location, samples were taken in duplicate at 5-10 cm from the stem and 5-10 cm deep, using a cork borer (0.6 cm diameter, 10 cm deep). Sampling was done at five time points throughout the growing season from February through November 2018. Specifically, samples were taken in February (4-5 weeks after placing ~60-day old seedlings on the rockwool substrate; sampling time 1), May (sampling time 2), July (sampling time 3), August (sampling time 4), and November (sampling time 5). , For each of the five sampling times conducted, HRD incidence was assessed by visually inspecting 720 plants (homogenously spread throughout the greenhouse) for excessive root formation. HRD infestation was confirmed using a specific qPCR targeting DNA from rhizogenic agrobacteria, as described previously (Bosmans et al. 2016). At time point 1, no symptoms were observed yet in any of the greenhouses nor any Agrobacterium was detected in the samples. In total, 180  samples were obtained by the end of the experiment.
DNA extraction
Genomic DNA of all collected samples was extracted following Grunert et al. (2016). Briefly, 250 mg rockwool, including tomato roots, was mixed with 1 ml lysis buffer (100 mM Tris pH 8, 100 mM Na2-EDTA pH 8, 100 mM NaCl, 1% polyvinylpyrrolidone PVP40, 2% sodium dodecyl sulfate) and 300 mg of both 0.2 and 2.0 mm glass beads in 2 ml tubes. Samples were disrupted using a bead-beater (Precellys 24 homogenizer, Berlin Instruments, Montigny-le-Bretonneux, France) for 2 cycles at 5.3 m/s and then centrifuged at 14,600 x g for 10 min. The supernatant was recovered and mixed with 800 µl phenol:chloroform:isoamyl alcohol (25:24:1, v/v;  pH 8). Samples were then centrifuged at 14,600 × g for 5 min and the aqueous phase was mixed with 700 µl 24:1 chloroform-isoamyl alcohol. After centrifugation at 14,600 ×g for 5 min, the aqueous phase was collected, mixed with 35 µl 3 M sodium acetate and 700 µl 100% ethanol, and incubated at -20 °C overnight. Samples were afterwards centrifuged at 14,600 × g for 20 min, the supernatant was discarded, 500 µl 70% ethanol was added, and the centrifugation step was repeated. Subsequently, the supernatant was discarded and the tubes containing the DNA pellet were air-dried for 10-15 min. Finally, the DNA pellet was dissolved in 50 µl 1X TE  buffer (10 mM Tris, 1 mM EDTA, pH=8). 
PCR amplification and Illumina MiSeq amplicon sequencing 
A total of 180 DNA extracts were subjected to PCR amplification in duplicate (n = 360) and subsequently sent for sequencing using the Illumina MiSeq platform at the Center for Medical Genetics of the University of Antwerp. A 10-bacterial strain even mix genomic material mock community was included as positive control to verify the robustness of our analysis including PCR amplification, sequencing, and bioinformatic analysis (MSA-3001 ATCC, Manassas, VA, USA). Briefly, for all DNA samples, including the mock community and negative DNA extraction control (unused rockwool), the bacterial V4 region of the 16S rRNA gene was amplified in duplicate using sample-specific barcode-labelled versions of primer set 515F-806R following Kozich et al. (2013) (Table S2). PCR amplification was conducted in a 40 µl volume containing 1x Titanium Taq PCR buffer, 150 µM of each dNTP, 0.5 µM of each primer, 1x Titanium Taq DNA polymerase (Clontech, Saint-Germain-en-Laye, France) and 2 µl DNA (5 ng µl-1), using the following thermal profile: initial denaturation at 94 °C for 2 min, followed by 30 cycles of denaturation at 94 °C for 45 s, annealing at 59 °C for 45 s and elongation at 72 °C for 45 s, and a final elongation step at 72 °C for 10 min. Additionally, a negative PCR control in which DNA template was replaced by DNA-free water was included. PCR amplicons were subsequently purified using Agencourt AMPure XP magnetic beads (Beckman Coulter Genomics GmbH, South Plainfield, UK) following manufacturer’s instructions. Concentration of the purified PCR products was measured using a Qubit High Sensitivity Fluorometer kit (Invitrogen, Carlsbad, CA, USA) and subsequently combined at equimolar concentrations into two amplicon libraries representing 121 samples each and one library representing 122 samples. Next, each library was subject to ethanol precipitation and run on a 1.5% agarose gel. Target DNA fragments (~440 bp) were excised from gel, purified with QIAquick gel extraction kit (Qiagen, Venlo, Netherlands), and the DNA concentration was measured again and diluted to 2 nM. Subsequently, the libraries were sequenced using an Illumina MiSeq sequencer with v2 500 cycle reagent kit (Illumina, San Diego, CA, USA). 
Sequences were received as de-multiplexed FASTQ files and processed using QIIME2 version 8 (Bolyen et al. 2019; Estaki et al. 2020). Technical PCR replicates were kept separately during  denoising. Reads were processed using the denoised-paired method from the DADA2 (Divisive Amplicon Denoising Algorithm 2) plugin in QIIME2 with default settings (truncated length of 250 bp, maximum expected error of 2 for both forward and reverse reads, minimum overlap of 12 bp for merging reads, an independent pooling method, and consensus method for individual chimera detection).  Next, remaining sequences were classified into amplicon sequence variants (ASVs), enabling the resolution of closely related taxa (Callahan, McMurdie and Holmes 2017; Nearing et al. 2018). Taxonomic classification of ASVs was conducted using the q2-feature-classifier plugin within QIIME2 and applying the 515F/806R trained Naïve Bayes classifier based on the SILVA138 99% OTU database and a confidence level of 0.7 based on bootstrapping (Bokulich et al. 2018; Quast et al. 2012; Yilmaz et al. 2014). Regarding taxonomic assignment, it is worth mentioning that ASVs identified as Allorhizobium, Neorhizobium, Pararhizobium, and Rhizobium were grouped as “Rhizobium complex”. Further, the identity of the most important ASVs was verified with a BLAST search against type materials in GenBank, while ASVs corresponding to Rhizobium complex were subjected to a BLAST search against an in-house dataset of 21 16S rRNA gene sequences of rhizogenic Agrobacterium bv. 1 strains (GenBank accessions MZ298106-MZ298126). Analysis of the mock community demonstrated that all expected taxa were found and no single contaminant had passed the quality filtering and decontamination steps (data not shown). Furthermore, both the DNA extraction and PCR negative controls were clean  indicating that the experimental conditions were met to achieve robust data. Afterwards, the reads of the two technical replicates were merged using the “group” command from the feature-table plugin and stating the parameter --p-mode as “sum”, which combines samples within a specified group and sums the ASVs frequencies of the specified samples. Out of the 180 samples obtained after merging, 178 samples were kept after quality filtering, yielding a total of 6,650,015 high-quality reads with an average of 37,359 (range between 4,343 and 204,517) reads per sample, and a total of 7,636 ASV (Table S3). 139 samples were obtained from greenhouses not showing any HRD symptoms (further referred to as “healthy greenhouse samples” (HGSs)), whereas 39 samples were obtained from HRD-infested greenhouses (further referred to as “infested greenhouse samples) (IGSs). The sequences obtained in this study were deposited in the Sequence Read Archive (SRA) at NCBI under Bioproject PRJNA734858. 

Data analysis 
[bookmark: _Hlk58153695]Diversity analysis was conducted with QIIME2 plugin core-metrics-phylogenetic with default settings and visualized with either ggstatsplot (Patil 2021) or Emperor (Vazquez-Baeza et al. 2013) using the metadata available in Table S2. Data were rarefied to a sequencing depth of 5 000 reads per sample, yielding a total of 177 effective samples, to account for differences in sequence numbers between samples for calculating alpha and beta diversity. This threshold was chosen according to the rarefaction curves obtained (created with MicrobiomeAnalyst package), which tended to approach saturation at this sequencing depth (Fig. S1). For every sample, alpha diversity was determined using the Shannon index and number of distinct ASVs (Observed ASVs). Differences among treatments were evaluated by Kruskal-Wallis pairwise comparison with p-value adjustment using Benjamini-Hochberg correction. Interquartile range (IQR) is expressed in parenthesis next to median values for Shannon indexes. Beta diversity was determined by conducting a Principal Coordinate Analysis (PCoA) using unweighted UNIFRAC distances and significance was evaluated by permutational multivariate ANOVA (PERMANOVA) with 999 permutations, specifying the following parameters: unweighted UNIFRAC distances as distance matrix, Table S2 as metadata, either sampling site, greenhouse, sampling time, or health status as metadata column, PERMANOVA as method, and pairwise comparisons as TRUE. Obtained p-values were corrected by applying the false discovery rate (FDR) method to obtain q-values in a posteriori testing (Buttigieg and Ramette 2014). Additionally, a canonical analysis of principal components (CAP) was conducted with the phyloseq package on R (McMurdie and Holmes 2013), using the unweighted UNIFRAC distances, determining the formula parameter as “~ Health_status”. Differentially abundant ASVs between samples from healthy and HRD-infested greenhouses were identified with the module of biomarker discovery from MicrobiomeAnalyst, using Linear Discriminant Analysis – LDA effect size (LEfSe) with the rarefied ASV table and applying total sum scaling (TSS) (Dhariwal et al. 2017; Segata et al. 2011), and QIIME2 plugin DEICODE using the original, unrarefied ASV table (Martino et al. 2019). Biomarker discovery using LEfSe was conducted using an FDR-adjusted p-value cut-off of 0.05 and a log 2 LDA score threshold. Briefly, LEfSe first detects features with significant differential abundance in the class of interest by applying non-parametric factorial Kruskal-Wallis (KW) sum-rank test and then applies LDA to estimate the effect size of each differentially abundant feature. QIIME2 plugin DEICODE was used with default settings to generate a Robust Aitchison PCA and link specific ASVs to beta-diversity ordination. Differences in clustering were tested with PERMANOVA with 999 permutations. DEICODE takes into consideration the compositional nature of the data analyzed. Additionally, a network analysis coupled with correlation values was conducted using SparCC, which is a technique for inferring correlations from compositional data by estimating linear Pearson correlations between log-transformed read counts (Friedman and Alm 2012). ASVs were collapsed at genus level and separated into two groups based on health status (i.e. HGSs and IGSs). The network was constructed after conducting 100 permutations and considering a p-value threshold of 0.05 and a correlation threshold of 0.3.

Results 
Alpha and beta diversity in rockwool samples
First, it was investigated whether the alpha diversity is uniformly distributed within an individual greenhouse. Overall, no significant difference in alpha diversity measured with the Shannon index was observed in samples obtained at different sites in the greenhouse (H = 0.48, p-value = 0.79) (Fig. S2). The Shannon indices of the samples displayed median values (IQRs indicated in parentheses) of 6.17 (1.11), 6.07 (1.37), and 6.13 (1.69) for the start, middle and end of the irrigation system, respectively. In addition, no significant differences in the Shannon index were observed in samples from different greenhouses (H = 7.92, p-value = 0.72, Table S4) when considering all sampling time points together (Fig. 1A).  Similarly, at the beginning of the growing season (time point 1), most greenhouses displayed similar diversity levels with a median Shannon index of 5.07 (1.79). However, significant differences were detected among greenhouses (H = 21.85, p-value = 0.026), with greenhouses 1 and 10 presenting significantly lower Shannon index values in comparison to greenhouse 5 (p-value = 0.033) (Fig. S3). This pattern was partially replicated when considering Observed ASVs, wherein greenhouse 5 presented a significantly higher diversity than greenhouse 1 (p-value = 0.014). Overall, a significant increase in Shannon index was observed throughout the growing season (H = 106.50, p-value <0.001), starting with median values of 5.07 (1.79) and 5.38 (1.11) at time points 1 and 2, and finishing with median values of 6.77-6.85 (0.80) at time points 4 and 5 (Fig. 1B). Sampling time seemed to be the variable with the largest effect since it presented the largest value for the test statistics. Finally, the Shannon index of IGSs was significantly higher than that of HGSs, showing median values of 6.69 (0.98) and 5.97 (1.42), respectively (H = 7.40, p-value < 0.001) (Fig. 1C). When looked at the observed richness, similar trends were observed (Fig. S4).
Beta diversity of samples seemed to be complex since the main two PCoA axes could only explain 20.5% of the variation present in the data set. When zooming in on beta diversity, again no significant differences were observed among the three different sampling sites in the greenhouses (pseudo-F = 0.787, p-value = 0.951) (Fig. S5A). In contrast, beta diversity in different greenhouses displayed significant differences (pseudo-F =2.096, p-value = 0.001), although no apparent clustering patterns can be observed (Fig. S5B). When comparing the greenhouses in a pair-wise manner, the beta diversity of most greenhouses were significantly different from each other (p-values < 0.001, Table S5). Beta diversity from samples taken at different time points throughout the growing season also differed significantly (pseudo-F = 9.129, p-value = 0.001), with the beta diversity of each time point being significantly different from all other time points when compared in a pair-wise manner (p-value = 0.001, Table S4) (Fig. 2).  Sampling time could be placed along the axis accounting for the major variation (15.1%), suggesting that it is the most explanatory variable for the dataset. This idea is supported by the fact that the test statistics for sampling time is the highest among all the groupings tested. Finally, beta diversity from HGSs and IGSs also differed significantly (pseudo-F =3.124, p-value = 0.001). Nevertheless, a considerable overlap between HGSs and IGSs can be observed (Fig. S5C). When conducting a canonical analysis of principal components (CAP) and specifying the constrained axis to be the one representing health status, a clearer distinction between HGSs and IGSs is observed (Fig. S6).

Relative abundance of bacterial genera in rockwool samples
At phylum level, the bacterial community of the samples displayed a decreasing relative abundance of Proteobacteria, Firmicutes, and Bacteriodota in function of time, which accounted for 90% of the total relative abundance for sampling time 1 and decreased to 70% by sampling time 5. Conversely, Actinobacteria, Planctomycetota, Verrucomicrobiota, Acidobacteriota, Patescibacteria, and Gemmatimonadota phyla displayed an increasing relative abundance, accounting for 9% for time point 1 and increasing to 27% by time point 5 (data not shown). After assigning ASVs to a specific genus, a few highly abundant genera can be distinguished per sampling time (Fig. 3A). Paenibacillus was found to be the most prevalent genus, with a relative abundance of ~50% at time point 1, decreasing down to ~20% at time point 5. Similarly, Pseudomonas and Flavobacterium displayed a decreasing relative abundance in function of time, from ~4% to ~0.3% and from ~4% to ~2%, respectively. The relative abundance of Sphingobium and Rhizobium complex remained rather constant (~1-3%) throughout the growing season. Parabacteroides displayed a marked spike in relative abundance (~2%) at time point 3 after which it declined, while the relative abundance of Pseudolabrys gradually increased in function of time from ~0.2% to ~2% (Fig. 3A). When the individual greenhouses are examined, comparable trends are observed (Fig. S7). Splitting the dataset into samples originating from healthy (HGSs) (greenhouses 2, 3, 6, and 8-12) and HRD-infested (IGSs) greenhouses (greenhouses 1, 4, 5 and 7), a higher relative abundance of Paenibacillus was observed in HGSs (32.0%) compared to IGSs (24.2%), while the relative abundance of “Rhizobium complex”, a group of bacteria closely related to Rhizobium which also includes rhizogenic agrobacteria, was higher in IGS (4.4%) compared to HGS (2.6%) (Fig. 3B; Table S6). Remarkably, the Paenibacillus:Rhizobium complex relative abundance ratio was considerably higher in HGSs (12.3:1) than in and IGSs (5.5:1) (Table S6). A similar trend was observed when individual greenhouses were examined, with HGSs presenting ratios of 9.6-31.3:1 and IGSs presenting ratios of 3.7-9.3:1 (Table S6). 

 Identification of ASVs and biomarkers for healthy and HRD-infested greenhouses
ASVs associated with either HGSs or IGSs were identified by generating a robust Aitchinson PCA, linking specific ASVs to beta diversity ordination through the use of compositional biplots. In this analysis, ASVs identified as Paenibacillus and uncultured Micropepsaceae members were found to be highly associated with HGSs, whereas specific ASVs belonging to Rhizobium complex 4, Streptomyces,  Sphingobium, and Microbacteriaceae were the ones associated with IGSs (pseudo-F = 11.45, p-value = 0.001) (Fig. 4). Remarkably, the ASV assigned as Rhizobium complex 4 (ASV identifier 8ce12e88f6b59bb09494567f0d678092) presented a 100% nucleotide identity match with sequences from rhizogenic Agrobacterium bv. 1 strains that were isolated previously from HRD-infested greenhouses (GenBank accessions MZ298106-MZ298126). 
As a complementary approach, the LEfSe analysis yielded a set of biomarkers, with a total of 301 ASVs identified as differentially abundant in either HGSs or IGSs (Table S7). Among the top 25 differentially abundant ASVs that were identified down to genus level, three ASVs were assigned as Rhizobium complex. One of these ASVs (referred to as Rhziobium complex strain 1) showed a 99.21% identity match with sequences from rhizogenic Agrobacterium bv. 1 strains that were obtained previously (GenBank accessions MZ298106-MZ298126). Other ASVs significantly associated with IGSs, and previously observed among the top 10 most relatively abundant genera of IGSs, were identified as Devosia sp., Flavobacterium sp., and Pseudolabrys sp. An ASV identified as Luteimonas sp. presented the highest LDA score of ASVs associated with IGSs. On the other hand, two ASVs assigned as Sphingopyxis sp. and Hyphomicrobium sp.  were associated with HGSs (LDA scores of -3.86 and -3.60) (Fig. S8). 
In order to understand better the relationship between Rhizobium complex (including rhizogenic Agrobacterium) and Paenibacillus, a network analysis and subsequent correlation values were calculated using SparCC with samples obtained at sampling time 5. Network and correlation analysis yielded a considerably dense network that presented the Paenibacillus and Rhizobium complex as important genera since they have considerably high numbers of connections in the network (Fig. S9, Table S8). In this network, the genus Paenibacillus presented a higher log-transformed count in HGSs and 39 connections (18 negative correlation and 21 positive correlations). The genus Paenibacillus was negatively correlated with the Rhizobium complex genus (-0.38), as well as with Pseudoxanthomonas (-0.33), and Novosphingobium (-0.38); meanwhile it was positively correlated with Hyphomicrobium (0.46). Additionally, Rhizobium complex presented a higher log-transformed count in IGSs and 33 connections (16 negative and 17 positive correlations). The Rhizobium complex was positively correlated with Devosia (0.68), and it was negatively correlated with Paenibacillus (-0.38).

Discussion
Although numerous studies have analysed the rhizosphere microbiome in soil, only few studies have focused on soilless culture, be it of organic (e.g. peat, coconut coir, or biochar) or mineral nature, such as rockwool (Calvo-Bado et al. 2006; Grunert et al. 2016; Sheridan et al. 2017). In the current study, we described the first comprehensive analysis of the bacterial community present in hydroponic tomato greenhouses. We focused on differences in bacterial communities in HRD-infested and healthy greenhouses, with a particular focus on rhizogenic Agrobacterium bv. 1, the causative agent of HRD, and Paenibacillus, for which some members were recently identified as BCOs that reduce HRD incidence (Bosmans et al. 2017, Vargas et al. 2021). 
Alpha and beta diversity is uniformly distributed within a greenhouse, but differs among infested and healthy greenhouses 
Our data indicate that bacterial communities in rockwool samples are uniformly distributed in individual greenhouses, since no significant differences were observed in alpha and beta diversity among samples taken at the start, middle or end of the irrigation network. This has enabled us to treat samples taken at three different locations in the same greenhouse as biological replicates, allowing for a more robust statistical analysis. However, this observation was rather unexpected, since in a previous study, we found significant differences in Agrobacterium bv. 1 concentrations in nutrient solution sampled at different sites in greenhouses (Bosmans et al. 2017).  However, when comparing the greenhouses, differences in diversity were observed. Sampling time presented the highest value for the test statistics applied, suggesting that this variable has the largest effect on the dataset. The alpha diversity was significantly higher in IGSs rockwool samples (median Shannon index 6.69), compared to HGSs (median Shannon index 5.97), suggesting that HRD-infested greenhouses are more diverse than HRD-free greenhouses. These results are similar to those found by Wei et al. (2019) who found a less diverse bacterial community in the rhizosphere of healthy tomato plants grown in soil compared to diseased plants. Despite the significant difference in beta diversity of IGSs and HGSs rockwool samples, a large overlap hampers clear clustering of IGSs apart from HGSs rockwool when conducting a PCoA. However when conducting a CAP, a clearer clustering of samples based on health status was observed. 
Beta diversity analysis revealed that even though all greenhouses seemed to present a significantly different bacterial community composition, no apparent clustering pattern based on greenhouses was displayed. This could be partially explained by the fact that different and unique combinations of rootstock and scion were used in each greenhouse, resulting in specific bacterial communities. These findings are in line with Poudel et al. (2018) who tested the effect of rootstock-scion combination on bacterial community composition and suggested that grafting influences rhizosphere microbiome assembly as well as plant yield and biomass. Additionally, the lack of clear-cut clustering of samples based on greenhouses provenance could be explained by the fact that different rootstocks would assemble distinct but overlapping bacterial communities as suggested by French, Tran and Iyer-Pascuzzi (2020). Moreover, the test statistics applied on sampling time yielded the highest value, suggesting that this variable has the largest effect on the dataset.  
Bacterial community composition changes throughout the growing season 
Our study included sampling at five different time points to investigate the dynamics of bacterial communities throughout the tomato growing season (February through November). In general, only a minority of rhizosphere microbiome-related literature includes sampling over a longer period of time (Brunel et al. 2020). Our results demonstrate that the Shannon index in the samples increases throughout the growing season, starting at lower values (median of 5.07) at time point 1 and finishing at higher Shannon index values at time points 4 and 5 (medians of 6.77 and 6.85, respectively), hinting to an increase in diversity in function of time. Also on community composition, sampling time explained most of the variation observed in the data set. Even though all bacterial communities at different sampling times differ significantly in a pairwise manner, some overlap is observed between subsequent sampling times. Moreover, a gradual transition in beta diversity of different sampling time points was observed along axis 1.

Rhizogenic Agrobacterium and Paenibacillus are good indicators for HRD health status
In order to identify indicator organisms present in rockwool whose presence predicts a higher or lower risk of HRD incidence, we used two complementary analyses, including the detection of niche-associated ASVs with robust Aitchison regression (DEICODE) and biomarker discovery using LDA-LEfSe. The results obtained with both analyses were in good agreement with each other. Our data showed that the clustering of IGSs was associated with ASVs identified as Rhizobium complex, Streptomyces, Sphingobium and Microbacteriaceae. Interestingly, the ASVs associated with IGSs and identified as Rhizobium complex 4 showed a 100% match with the16S  rRNA V4 sequence of previously identified rhizogenic Agrobacterium bv. 1 strains isolated from HRD-infested greenhouses, clearly pointing to the causative agent of HRD. Additionally, we found other genera associated with IGSs, including Luteimonas, Shinella, Devosia, Pseudolabrys, and Sphingobium. Interestingly, members of Shinella and Streptomyces have shown capabilities for opine degradation, which is a compound produced by HRD-infested plants (Christie and Gordon 2014; Vigouroux et al. 2017; Zhou et al. 2016). Moreover, Shinella and Devosia have also been found in higher relative abundances in soil samples from tomato infected with Ralstonia solanacearum (Elsayed et al. 2020). Pseudolabrys was more prevalent in soil samples from tobacco infected with the same bacterium (Wang et al. 2017). However, it has to be noted that in other studies  Devosia have been associated with disease suppression or plant growth promoting properties in soil-grown tomato (Jaiswal et al. 2017).. 
[bookmark: _GoBack]RPCA analysis detected three ASVs identified as Paenibacillus members show a significant association with HGSs and higher relative abundance in HGSs with adjusted p-values presenting a tendency to significance (p-value = 0.073, data not shown). Additionally, the interaction between Paenibacillus and Rhizobium complex in the network analysis suggests the idea of an existing competition between these two genera (Fernandez et al. 2015). These results suggest that some endogenously present Paenibacillus strains may reduce the risk of HRD incidence in the greenhouse. In a previous study, it was shown that a limited set of Paenibacillus species show antagonistic activity towards rhizogenic Agrobacteria in vitro. Furthermore, the application of such antagonistic Paenibacillus strains  proved effective in the management of HRD by lowering infestation levels from 42% to 6% throughout a complete growing season (Bosmans et al. 2017, Vargas et al. 2021). On the other hand, Paenibacillus was also detected in IGSs, but this could be explained by a relatively low Paenibacillus:Agrobacterium ratio. Indeed in our data, Paenibacillus:Rhizobium complex ratios lower than 0.5 were indicative for infested greenhouses. This is in agreement with Vanlommel et al. (2020), who observed that Paenibacillus should be present in a 10-fold higher concentration compared to rhizogenic Agrobacterium in order to be an effective biocontrol agent. The potential of Paenibacillus as a biocontrol agent is supported by the fact that Paenibacillus spp. are widely known for their plant growth-promoting or disease-protective traits (Grady et al. 2016; Langendries and Goormachtig 2021; Rybakova et al. 2015), and in recent studies, Paenibacillus spp. were also associated with healthy soil-grown tomato (Jaiswal et al. 2017; Zhou et al. 2020). This opens up opportunities for further optimization and development of the previously identified Paenibacillus strains as an effective biocontrol product. This would entail three phases as outlined by Droby et al. (2016): (i) technology development, which includes upscale production, stabilization and formulation of product, and commercial scale testing; (ii) technology transfer, which includes finding production partners, obtaining a commercial partner and/or licensing, conducting environmental risk assessment, and product registration; and (iii) commercial development, which includes product design, launching of product in the market, and effective product sales and client adoption. Moreover, taking into account the prevalence of specific bacterial genera in HGSs other than Paenibacillus, it might open up strategies for the development and inoculation of synthetic bacterial communities adequate for HRD suppression in hydroponic systems (Caradonia et al. 2019; Hultberg, Alsanius and Sundin 2000). However, inoculation would have to be repeated at the start of every growing season, since growing substrates are usually replaced each season. 
In conclusion, this study greatly contributed to the knowledge of the bacterial communities present in rockwool in tomato hydroponics. Our data indicate that the bacterial community composition is uniformly distributed in an individual greenhouse, but it changes considerably throughout the season. Furthermore, we were able to identify bacterial genera that are associated to either healthy or infested greenhouses. In addition to  Agrobacterium bv. 1 that was found to be differentially abundant in HRD-infested greenhouses, ASVs identified as Paenibacillus spp. that were more prevalent in healthy greenhouses were observed. Detection of such additional biomarkers could be suited to improve early diagnostics for HRD in tomato hydroponics cultivation.    
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