
Page 1/29

Single-cell ATAC and RNA sequencing reveal pre-existing and
persistent subpopulations of cells associated with relapse of
prostate cancer
Sinja Taavitsainen 

Tampere University
Nikolai Engedal 

Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
Shaolong Cao 

The University of Texas MD Anderson Cancer Center
Florian Handle 

KU Leuven
Andrew Erickson 

Nuffield Department of Surgical Sciences, University of Oxford, UK
Stefan Prekovic 

The Netherlands Cancer Institute
 https://orcid.org/0000-0002-7051-9321
Daniel Wetterskog 

University College London
Teemu Tolonen 

Tampere University
Elisa Vuorinen 

Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center,
Tampere, Finland
Antti Kiviaho 

Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center,
Tampere, Finland
Reetta Nätkin 

Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center,
Tampere, Finland
Tomi Häkkinen 

Tampere University
Wout Devlies 

KU Leuven
Sallamari Henttinen 

Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center,
Tampere, Finland
Roosa Kaarijärvi 

Institute of Biomedicine, University of Eastern Finland, Kuopio
Mari Lahnalampi 

Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
Heidi Kaljunen 

Institute of Biomedicine, University of Eastern Finland, Kuopio
Karolina Nowakowska 

University College London Cancer Institute, London, United Kingdom.

https://doi.org/10.21203/rs.3.rs-384422/v1
https://orcid.org/0000-0002-7051-9321


Page 2/29

Heimo Syvälä 
Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center,

Tampere, Finland
Merja Bläuer 

Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center,
Tampere, Finland
Paolo Cremaschi 

University College London
Frank Claessens 

KU Leuven
 https://orcid.org/0000-0002-8676-7709
Tapio Visakorpi 

Tampere University
Teuvo Tammela 

Tampere University
Teemu Murtola 

Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center,
Tampere, Finland
Kirsi Granberg 

Tampere University
 https://orcid.org/0000-0001-6549-7810
Alastair Lamb 

University of Oxford
 https://orcid.org/0000-0002-2968-7155
Kirsi Ketola 

Institute of Biomedicine, University of Eastern Finland, Kuopio
Ian Mills 

University of Oxford
Gerhardt Attard 

University College London
 https://orcid.org/0000-0002-4811-7983
Wenyi Wang 

The University of Texas MD Anderson Cancer Center
 https://orcid.org/0000-0003-0617-9438
Matti Nykter 

Tampere University
Alfonso Urbanucci 
(

alfonsourbanucci@gmail.com
)

Oslo University Hospital, Institute for Cancer Research
 https://orcid.org/0000-0003-2931-3652

Article

Keywords: single-cell ATAC sequencing, single-cell RNA sequencing, cancer genomics, gene signature score, prostate cancer;
enzalutamide, cancer treatment resistance, treatment response prediction, chromatin reprogramming

Posted Date: April 12th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-384422/v1

License:


This work is licensed under a Creative Commons Attribution 4.0 International
License.
 
Read Full License

Version of Record: A version of this preprint was published at Nature Communications on September 6th, 2021. See the published
version at https://doi.org/10.1038/s41467-021-25624-1.

https://orcid.org/0000-0002-8676-7709
https://orcid.org/0000-0001-6549-7810
https://orcid.org/0000-0002-2968-7155
https://orcid.org/0000-0002-4811-7983
https://orcid.org/0000-0003-0617-9438
mailto:alfonsourbanucci@gmail.com
https://orcid.org/0000-0003-2931-3652
https://doi.org/10.21203/rs.3.rs-384422/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41467-021-25624-1


Page 3/29

Abstract
Prostate cancer is heterogeneous and patients would benefit from methods that stratify those who are likely to respond to
systemic therapy. We employed single-cell assays for transposase-accessible chromatin (ATAC) and RNA sequencing in models
of early treatment response and resistance to enzalutamide. In doing so, we identified pre-existing and treatment-persistent cell
subpopulations that possess transcriptional stem-like features and regenerative potential when subjected to treatment. We found
distinct chromatin landscapes associated with enzalutamide treatment and resistance that were linked to alternative
transcriptional programs. Transcriptional profiles characteristic of persistent stem-like cells were able to stratify the treatment
response of patients. Ultimately, we show that defining changes in chromatin and gene expression in single-cell populations from
pre-clinical models can reveal hitherto unrecognized molecular predictors of treatment response. This suggests that the high
analytical resolution of pre-clinical models enabled by single-cell methods may powerfully inform clinical decision-making.

Significance
We used models of resistance to approved androgen receptor-targeted therapies for prostate cancer to identify subpopulations of
treatment-persistent and pre-existing cells. We established that chromatin structure reconfigurations led to alterations in gene
expression and drove alternative tumor adaptations and treatment escape. Motivated by the need for pre-treatment biomarkers in
prostate cancer, we identified molecular predictors of therapy response based on the presence of treatment-persistent and pre-
existing cells.

Summary

Here we show that subpopulations of treatment-persistent cells with stem-like and regenerative properties foster alternative
trajectories of enzalutamide resistance in prostate cancer. Alternative transcriptional patterns of resistance are induced by
divergent chromatin reprogramming. Transcriptional enrichment of signals from these treatment-persistent cells stratifies patient
outcomes in both early stage treatment-naive and treatment-exposed tumors.

Highlights

1. Identification of prostate cancer cells with gene expression patterns of regenerative potential that persist and exist prior to
enzalutamide treatment.

2. Profiling of chromatin and transcriptional features from subpopulations of treatment-challenged prostate cancer cells.

3. Identification of gene signatures associated with stem-like and regenerative potential.

4. Stratification of prostate cancer patients from “bulk” RNA sequencing data based on identified stemness- and regeneration-
related gene signatures.

Introduction
Prostate cancer (PC) relies on androgen receptor (AR) signaling for development and progression. Progression on androgen
deprivation therapy (ADT) or AR signaling inhibitors (ARSIs) such as the second-generation AR antagonist enzalutamide (ENZ)
leads to castration resistant (CRPC) or treatment-induced neuroendocrine prostate cancer (NEPC) (Beltran et al., 2016). The most
frequently characterized mechanisms of PC or CRPC resistance to ARSIs, ADT, or both, revolve around the re-establishment of AR
signaling via AR overexpression or AR mutations (Abida et al., 2019; Alumkal et al., 2020; Devlies et al., 2020; He et al., 2018).

PC is profoundly heterogeneous (Haffner et al., 2020; Løvf et al., 2019; Tomlins et al., 2015; Woodcock et al., 2020) and patients
would benefit from methods that differentiate between clinically mild disease and more aggressive forms. Although evidence of
clonal expansion has been shown (Haffner et al., 2020), most studies to date have characterized genetic mutations (Gerhauser et
al., 2018; Grasso et al., 2012; Taylor et al., 2010) that do not allow for understanding tissue complexity or biological bases of the
emergence of treatment resistance. In contrast, although more frequent, non-genetic changes in transcriptomics, chromatin
structure, and DNA accessibility of transcription factor (TF) binding motifs are less understood in PC drug resistance (Abida et al.,
2019; Alumkal et al., 2020; Devlies et al., 2020; He et al., 2018). DNA accessibility is the first layer of gene regulation and
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transcriptomic changes are now being used to identify molecular predictors of cancer treatment response (Doultsinos and Mills,
2021). However, most RNA sequencing data are obtained from the bulk of the tumors and therefore cannot account for PC
heterogeneity. This is because the transcriptome is the result of several biological processes contributing to differential gene
regulation and such processes are not necessarily synchronized in all cells within the tumor bulk (Su et al., 2020; Zhang et al.,
2020). The development of single-cell sequencing technologies has enabled the more detailed examination of genomic features
in treatment resistant cancers, but the limited analytical methods are just beginning to reveal their potential.

To explore how heterogeneous PCs respond to ARSIs, we analyzed the emergence of resistance in the epithelial-derived
component of PC cells in models of ENZ exposed and resistant PC cell lines at a single-cell level. Through enrichment analysis of
transcriptional signals from molecular gene classifiers derived in this study, we show evidence of treatment-persistent and pre-
existing PC cells that can predict treatment response in both primary and advanced patients.

Results
Chromatin reprogramming underpins enzalutamide resistance

To study molecular consequences of AR signaling suppression and drug resistance dynamics in PC, we used LNCaP parental and
LNCaP-derived ENZ-resistant cell lines RES-A and RES-B generated via long-term exposure to AR-targeting agents (Handle et al.,
2019) (see Methods), as well as other independently generated LNCaP- and VCaP-derived models (Fig. 1A). We hypothesized that
chromatin structure would be reshaped in ENZ-resistant cells and lead to modification of the transcriptome (Sönmezer et al.,
2020; Strickfaden et al., 2020).

To extrapolate the contribution of chromatin structure to ENZ resistance, we performed single-cell (sc) assays for transposase-
accessible chromatin and sequencing (scATAC-seq) on four samples: (1) LNCaP parental cells (LNCaP), (2) LNCaP exposed to
short-term (48 hours) ENZ (10 µM) treatment (LNCaP-ENZ48), (3) RES-A and (4) RES-B (Fig. 1A). We first analyzed the scATAC-
seq data as if it would have been sequenced in bulk cells (see Methods). The ATAC-seq signal at transcription start sites (TSS)
decreased in ENZ-resistant cells compared to parental, particularly in RES-B cells (average enrichment score 4.8 in RES-B vs 6.2 in
LNCaP, p < 0.001, t-test) (Fig. 1B). RES-A and RES-B cells shared a large proportion (14% in RES-A and 17% in RES-B) of “ENZ-
resistant-specific” open chromatin regions not found in parental LNCaP. Additionally, RES-A cells had a higher proportion of
unique open sites compared to RES-B (19% vs 5%, P < 0.001, chi-square test) and LNCaP (19% vs 7%, P < 0.001, chi-square test)
(Fig. 1C). These findings are consistent with TSS non-targeted opening (Jiang and Zhang, 2021) of the chromatin upon ENZ
resistance.

We corroborated the extent of chromatin opening and reprogramming in ENZ-resistant cells by performing formaldehyde-assisted
isolation of regulatory elements (FAIRE) sequencing (Giresi et al., 2007) on the parental LNCaP and RES-A cells subjected to
androgen starvation, or exposed to androgens, ENZ, or both agents (Figure S1A-D) (see Methods). Even in this bulk assay, ENZ
and androgen starvation appeared to be more significant drivers of reprogramming in RES-A than in parental LNCaP. While there
was no difference in the total number of open chromatin sites, ENZ-resistant samples had a higher proportion of unique open
sites compared to parental in the presence of androgens (P < 0.001, chi-square test) (Figure S1E) and in androgen-deprived
(castrate) conditions (P < 0.001, chi-square test) (Figure S1C). Read distribution analysis (see Methods) demonstrated that the
chromatin of ENZ-resistant cells is more open in castrate conditions (P = 0.018, t-test) (Figure S1D) but not in presence of
androgens (P = 0.239, t-test) (Figure S1F), and that ENZ has an additive effect on castration in inducing chromatin compaction in
parental ENZ-sensitive cells that is counteracted by androgens (Figure S1D, Figure S1F).

Next, we used all samples with scATAC-seq to generate cluster visualizations of cell subpopulations with different chromatin
accessibility profiles (Fig. 1D) (see Methods). We identified clusters that we termed “unique” or “shared” across the samples
(Fig. 1E). Unique clusters were specific to RES-A, RES-B, or both (named “ENZ-induced clusters”), or specific to the untreated
and/or short-term ENZ-treated parental line (named “initial clusters”). Shared clusters were present at similar proportions across
the samples and were named “persistent clusters” (Fig. 1E). We compared each cluster to all other clusters to determine its unique
chromatin profile based on differentially accessible chromatin regions (DARs; Table S1).
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The most prevalent chromatin-based scATAC-seq clusters (0, 1, and 2) were persistent (Fig. 1E) and defined by fewer than 20
unique DARs, suggesting that 74% of the cells share an overall similar chromatin accessibility profile during development of ENZ
resistance. We then assessed for changes in cluster chromatin DARs between the parental LNCaP, LNCaP-ENZ48, and in RES-A
and RES-B (Table S1). DARs were observed around MYC and TP53 in several clusters during the short-term response to
enzalutamide, including in cluster 6 that arises during enzalutamide resistance in RES-A.

Studies on PC cell lines cultured for an extended time without androgens tend to display neuroendocrine-like phenotypes
(Braadland et al., 2019; Fraser et al., 2019). The largest fold changes in chromatin accessibility based on average signal from all
cells showed enrichment for neural system and neurite development processes between the parental (LNCaP-ENZ48 or DMSO)
and resistant cells (RES-A or RES-B) (P < 0.001 in RES-A and P = 0.001 in RES-B). Using Gene Set Variation Analysis (GSVA) for
gene expression scoring (see Methods), we found elevated expression of NEPC-derived signatures among upregulated genes
(Braadland et al., 2019; Tsai et al., 2017) in RES-A and RES-B cells (particularly EZH2, AURKA, STMN1, DNMT1, and CDC25B), as
well as increased expression of NEPC-downregulated genes in initial clusters (Figure S1G). Interestingly, in the same cell lines,
enrichment analysis of NEPC signatures showed high NEPC signal in RES-A cells only (Figure S1H).

Overall, these data show extensive chromatin reprogramming during the emergence of resistance to AR-targeting agents.
Enzalutamide resistance reconfigures availability of TF binding DNA motifs in the chromatin

Chromatin accessibility determines transcriptional output by exposing a footprint of TF DNA binding motifs. We hypothesized
that increased chromatin opening in resistant cells would change the footprint of TF DNA motifs exposed. To this end, we first
utilized AR and MYC binding site maps in LNCaP cells (Barfeld et al., 2017) and explored their relationship with open chromatin
sites in the bulk FAIRE-seq data from RES-A cells. Using read distribution analysis, we observed a significant increase in open
chromatin at MYC binding sites in ENZ-resistant cells (P < 0.001 in castrate conditions and with androgens, t-test) (Fig. 2A, Figure
S2A), as well as a reduction of open chromatin at AR binding sites (P < 0.001 in castrate conditions and with androgens, t-test)
(Fig. 2B, Figure S2B). These findings suggest that chromatin dysregulation in ENZ-resistance is associated with reconfiguration
of AR and MYC chromatin binding, consistent with previously reported increased MYC and reduced AR transcriptional activity in
these cells (Handle et al., 2019).

To resolve how chromatin reprogramming affects TF DNA motif exposure at the single-cell level, we performed a TF motif
enrichment analysis on the marker DARs characterizing the scATAC-seq cell clusters in each sample (Fig. 2C, Table S1). This
analysis confirmed the enrichment of motifs for several PC-associated TFs such as AR and MYC, as well as GATA2, HOXB13, and
others in persistent clusters 3 and 5, as well as initial cluster 4 in parental and LNCaP-ENZ48 (Fig. 2C). Clusters 3 and 5 remained
enrichment of a subset of the same TFs motifs in RES-A and RES-B, with cluster 5 showing a consistent enrichment profile in all
samples (Fig. 2C). AR, CREB1, E2F1, GATA2, and ZFX were common motifs. Cluster 3 was characterized by FOXA1 and JUND,
while cluster 5 was characterized by CTCF, ETS-like, and MYC. Although they possessed distinct sets of DARs, the ENZ-induced
clusters 6 and 7 did not display enrichment of TF motifs in RES-A or RES-B.

Between pairs of samples, DARs were predominantly closing in cluster 3 compared to all other clusters (8% vs 4% DARs
differentially closing, P < 0.001, chi-square test) and predominantly opening in cluster 4 (11% vs 8% DARs differentially opening, P 
< 0.001, chi-square test) (Figure S2C). We performed selective TFs motif enrichment analysis in DARs opened (Fig. 2D) and
closed (Figure S2D) between pairs of samples (see Methods). While we observed no enrichments after short-term ENZ-treatment
(LNCaP-ENZ48 vs parental; Fig. 2D), comparing open DARs in RES-A or RES-B vs LNCaP parental retrieved distinct sets of TFs,
with MYC and ESR1 being the most common across all clusters in RES-A and RES-B, respectively (Fig. 2D). Similarly, comparing
open DARs in RES-A or RES-B vs LNCaP-ENZ48 showed enrichment of most of the PCa-related TF motifs tested in most clusters
(Fig. 2D), and to an even greater extent when considering closing DARs between sample conditions (Figure S2D).

These analyses demonstrate that ENZ-resistance is associated with reconfiguration of TF DNA motif footprints.
Transcriptional patterns of enzalutamide resistance are induced by divergent chromatin reprogramming

To study transcriptional patterns in relation to reconfiguration of chromatin structure at the single-cell level, we performed scRNA-
seq in the LNCaP parental, RES-A and B models. Integrated clustering of four LNCaP samples (Fig. 3A) (see Methods) showed 7
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persistent, 3 ENZ-induced, and 3 initial cell clusters (Fig. 3B) defined by sets of marker differentially expressed genes (DEGs; Table
S2; between 17 and 283 DEGs in the 13 clusters). To confirm that these cell subpopulations are relevant in other independent
models of ENZ-resistance, we used the label transfer approach (Stuart et al., 2019) to query for matching cell populations in
independent scRNA-seq datasets: a LNCaP parental sample, LNCaP ENZ-treated for 1 week (LNCaP-ENZ168), and an
independent ENZ-resistant (RES-C) LNCaP-derived cell line (Fig. 1A). Transferring scRNA-seq cluster labels confirmed the
presence of initial clusters (4, 6, and 10) in LNCaP parental (Figure S3A) and RES-C (Figure S3B). Presence of ENZ-induced
clusters was confirmed in RES-C (17% of cells in cluster 3) and LNCaP-ENZ168 (79% in cluster 3), suggesting that one week of
ENZ treatment is sufficient to give rise to this cluster prior to the development of resistance (Figure S3C). Most importantly, we
could retrieve persistent subpopulations of cells in the alternative LNCaP-parental sample (4%), in LNCaP-ENZ168 (13%), and in
RES-C (31%), suggesting that these persistent cells are consistently found during emergence of ENZ-resistance.

We additionally performed scRNA-seq on a VCaP parental cell line treated with DMSO or ENZ for 48 hours to test for the
generalizability of our results beyond a single cell line (Fig. 1A). A similar analysis with VCaP cells confirmed the prevalence of
persistent cells in the VCaP parental (93% of cells), as well as initial and ENZ-induced cells in VCaP-ENZ48 (38% and 55% of cells,
respectively) (Fig. 3C).

We then sought to determine whether the observed scRNA-seq clusters (Fig. 3A) could be the result of enriched TFs binding
activity in alternative open DARs. Using annotated databases, we queried the transcriptional targets of the enriched TFs in the
open DARs when comparing RES-A or B to the parental LNCaP (Fig. 2D) in the matching scRNA-seq samples (see Methods).
Chromatin remodeling affected TF activity and consequently DEGs in the scRNA-seq for up to a maximum of 11% in cluster 0 in
RES-A and 7.1% in cluster 1 in RES-B (Fig. 3D). While target DEGs for TFs such as MYC, JUND, and E2F where found in most
clusters in both RES-A and B, other target DEGs for TFs such as AR, RELA (a NFkB subunit), and GRHL2 appeared more specific to
RES-A or B, consistent with proposed stoichiometric models of TFs chromatin binding (Klemm et al., 2019). This analysis
confirmed that alternative open DARs in ENZ-resistance can activate divergent transcriptional programs.

Next, we connected the scRNA-seq clusters to their matching scATAC-seq clusters. We took advantage once more of the label
transfer approach to identify matching scRNA- and scATAC-seq cell states in the same sample conditions (see Methods). In this
process, we assigned cell cluster labels within the scRNA-seq to the scATAC-seq clusters, or vice versa (Figure S3D). We found
that a chromatin state can correspond to multiple transcriptional states (96% in scATAC-RNA vs 48% in scRNA-ATAC of cells
assigned on average across all samples, P < 0.001, chi-square test). Querying the integrated scRNA-seq clusters (Fig. 3A-B) from
the scATAC-seq data, we could find matching cell states in the scATAC-seq for scRNA clusters 9, 10, and 11 (Figure S3E). Across
the sample conditions, 95% of the cells projected to belong to scRNA-seq cluster 10 belonged to scATAC-seq cluster 4, while 72%
of cells projected to belong to scRNA-seq cluster 9 or 11 belonged to scATAC-seq cluster 3 (Fig. 3E).

Taken together, these data show that transcriptional configuration of ENZ-resistant cells, especially cells persisting during
treatment, emerges from processes driven partially by chromatin structure and TF-mediated transcriptional reprogramming.
These processes affect a number of important regulators of cell fate, consistent with lineage commitment recently observed in
tissue development (Ma et al., 2020).
Prostate cancer cell subpopulations with features of stemness precede enzalutamide resistance

Cell cycle phase can be a strong determinant of the integrative clustering of scRNA-seq data. Accordingly, we found that
persistent clusters 8, 9, and 11 scored highly for S and G2/M phase related genes using cell cycle scoring in Seurat (see Methods)
(Fig. 4A), suggesting that cells in these clusters are more actively cycling and proliferative. However, we found that cells in
clusters 9 and 11 were characterized not only by cell cycle genes, but also by expression of genes involved in chromatin
remodeling and organization (CTCF, LAMINB, ATAD2), increased cell cycle turnover and stemness (FOXM1, (Ketola et al., 2017),
and DNA repair (BRCA2, FANCI, RAD51C, POLQ) (Fig. 4B). Clusters 5 and 11 showed high expression of a gene set, which we
named “Stem-Like”, composed of stemness-related genes mainly from Horning et al (Horning et al., 2018) (Fig. 4C). Karthaus et al
recently identified activated luminal prostate cells able to regenerate the epithelium following castration (Karthaus et al., 2020).
We extracted the gene expression profile associated with these prostate luminal cells (see Methods) and used it to score each
scRNA-seq cluster. We found cluster 10, an initial cluster, to score highly for this gene signature, which we renamed PROSGenesis
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(Fig. 4D, Figure S4A). We visualized the expression of PROSGenesis and Stem-Like in the VCaP scRNA-seq samples, confirming
the presence of these subpopulations of cells in other models (Fig. 4E).

We then set out to reconstruct the trajectories of how these clusters of interest were generated during the development of ENZ-
resistance. Based on cytoTRACE (Gulati et al., 2020), cells in clusters 10 and 11 were the least differentiated across most of the
sample conditions (Fig. 4F), suggesting that the other cells could derive from cells in these clusters. RNA velocity analysis
estimated cluster 10 as a precursor of the enzalutamide-induced clusters (Fig. 4G), concordant with a state derived from activated
regenerative luminal prostate cells as previously suggested (Karthaus et al., 2020). Cluster-specific differential velocity analysis in
RES-A and RES-B revealed downregulation of many PC-related genes, such as ATAD2, as well as upregulation of genes such as
UBE2T, PIAS2, PFKFB4, and EGFR (Figure S4B-C). ATAD2 and UBE2T were otherwise upregulated in persistent clusters 8, 9, and
11 (Figure S4C), suggesting additional transcriptional reprogramming in ENZ-induced clusters.

These analyses point at two distinct subpopulations of PC cells which precede ENZ resistance: one persistent cell cluster (cluster
11) matching “Stem-Like” and one initial cluster (cluster 10) matching PROSGenesis, a signature derived from tissue regeneration
(Karthaus et al., 2020). Collectively, our data suggest that there exists a small number of PC cells within the bulk with stem-like
and regenerative potential.
Model-based characterization of gene signatures in prostate cancer bulk RNA sequencing

The use of molecular gene classifiers or signature scores is an attractive strategy to select cancer patients for treatment
(Doultsinos and Mills, 2021; Eggener et al., 2020). According to an unbiased enrichment and differential expression analysis of
hallmark gene sets (see Methods), most of the persistent clusters and cluster 10 also showed significant enrichment of E2F
targets, G2M checkpoint, and MYC target genes (Figure S4D). These data are largely concordant with the bulk RNA-seq data on
the same cells in our previous study (Handle et al., 2019), reflecting the fact that signals from subpopulations of cells can be
retrieved in bulk RNA-seq data. Differential expression within clusters (Figure S4E-G) further revealed that oxidative
phosphorylation was immediately upregulated in LNCaP-ENZ48, and this process is maintained highly selectively in RES-A but
not in RES-B. Moreover, genes regulated by activated mTORC1 signaling were consistently upregulated in most of the clusters as
ENZ resistance develops (Figure S4E-G), in agreement with previous reports showing its activation during ENZ treatment in
patients (Ma et al., 2020).

We therefore used a collection of signatures derived from the scRNA-seq analysis to describe features of the same cells in bulk
RNA-seq datasets. In addition to Stem-Like and PROSGenesis, we included (1) NEPC markers (Figure S1G), (2) a BRCAness gene
signature (Li et al., 2017) as RES-A and RES-B maintain sensitivity to PARP inhibition (Handle et al., 2019) and the persistent
cluster 11 is characterized by markers of DNA repair (Fig. 4B), (3) gene sets as proxies of AR signaling activation (He et al., 2018),
including activation of AR splice variants (AR-Vs), (4) the DEGs defining our scRNA-seq clusters, and (5) gene sets for mTORC1
signaling and MYC targets (Figure S4D-G) (Table S3).

In the bulk, the ENZ-induced DEGs selectively appeared in the RES-B cells (Fig. 5A). Similarly, the persistent clusters were
associated with the Stem-Like signature only in RES-A and RES-B when induced with DHT (Fig. 5A). On the other hand, the
PROSGenesis signature was elevated only in RES-B (Fig. 5A). The NEPC features in RES-A were associated with MYC activation
(Fig. 5A). Consistent with both resistant lines remaining responsive to PARP inhibition (Handle et al., 2019), we found samples
from RES-A and RES-B to score highly for BRCAness (Fig. 5A), which is known to downregulate DNA repair machinery (Li et al.,
2017). BRCAness was associated with the AR-V signature as previously shown (Kounatidou et al., 2019) (Fig. 5A).

To confirm the properties of different signatures, we used VCaP cells to develop an independent model of resistance to AR
signaling-targeted treatments including ADT, bicalutamide, ENZ, and bicalutamide/ENZ multi-resistant sublines, and performed
bulk RNA-seq (Fig. 1A). These VCaP-based sublines did not show NE features (Fig. 5B). Only ENZ-resistant VCaP cells scored
highly for the ENZ-induced DEGs, confirming the specificity of this signature to ENZ treatment and resistance. Parental and ENZ-
resistant VCaP cells scored highly for the PROSGenesis signature, while the scores of the persistent, Stem-Like, mTORC1
signaling, and MYC target signatures scored highly selectively in resistant VCaP sublines (Fig. 5B). This suggests a convergent
mechanism of resistance to these agents in independent models.
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Next, we scored xenografts of AR+/NE−, AR−/NE+, or AR−/NE− CRPC and NEPC tumors resistant to ENZ (Labrecque et al., 2019;
Lam et al., 2020) with the same signature sets (Figure S5A). AR+/NE− xenograft samples clustered into two separate clusters. AR−

tumors clustered together with a series of AR+/NE− tumors due to low mTORC and MYC signaling, while one cluster of AR+/NE−

scored highly for all of the gene sets except for markers upregulated in NEPC (“NEPC upregulated”). Interestingly the
PROSGenesis signature, along with initial clusters and ENZ-induced clusters, scored particularly high in AR+ tumors while the
Stem-Like signature, along with the persistent clusters, scored high in both AR+/NE− and AR−/NE+ tumors (Figure S5A),
suggesting that the two signatures capture different tumor biologies. In a transcriptome dataset based on an independent
xenograft model (King et al., 2017), we found ENZ resistance to be uniquely associated with higher AR activity, higher expression
of MYC target genes, PROSGenesis high score, and high expression of ENZ-induced cluster gene sets (Figure S5B). These data
suggest that the Stem-Like status is independent of the AR status and that persistent cells might mediate the development of
both AR positive CRPCs and negative NEPCs.

Collectively, the persistent, initial, PROSGenesis, and Stem-Like derived gene signatures show potential for identifying aggressive,
regenerative features of PC from bulk RNA-seq.
Transcriptional signal enrichment analysis identifies treatment-persistent cells and prognostic gene signatures in prostate cancer
patients

We hypothesized that we could use enrichment of gene signature expression to stratify advanced and primary PC patients.

To this end, we interrogated clinical data of CRPC patients treated with ENZ reported in Alumkal et al. (Alumkal et al., 2020). The
patients aggregated into two clusters based on our complete signature set (Figure S5C), but patients in neither cluster had
significantly shorter progression-free survival (PFS; P > 0.05, log-rank test). Utilizing a stepwise variable selection process we
identified five significant signatures (NEPC upregulated, PROSGenesis, MYC targets, AR activity, and ARV) that are able to identify
patients with significantly shorter PFS (Figure S5D). Moreover, PFS analysis of individual gene signatures revealed association
with shorter time to progression for patients scoring high for the Stem-Like signature (P = 0.025, log-rank test) or for genes
upregulated in NEPC (P < 0.001, log-rank test) (Fig. 5C-D), while patients with longer PFS scored highly for PROSGenesis (P = 
0.021, log-rank test) and for the initial cluster signature(P = 0.018, log-rank test) (Figure S5E).

None of the cluster marker gene sets showed a significant difference between Stand Up To Cancer (SU2C) CRPC
abiraterone/ENZ-naive and abiraterone/ENZ-exposed patients (Abida et al., 2019) according to their latest treatment regime,
suggesting that differences between the tumors based on the signatures may be difficult to retrieve using bulk sequencing from
heavily pre-treated patients. Despite the challenges of applying single-cell derived signatures to bulk data however, Stem-Like was
still significantly associated with poor overall survival in these patients (Fig. 5E), supporting the potential significant activity of
the persistent cells in this group of patients. Similarly, we could not stratify patients that developed resistance to ENZ in the SU2C
West Coast DT Quigley et al dataset (Figure S5F) (Quigley et al., 2018), although in this case, ENZ-sensitive patients had higher
expression of PROSGenesis (P = 0.024, Wilcoxon rank-sum test) (Figure S5G).

These data show that the Stem-Like signature associated with persistent cells (cluster 11) from our single-cell analysis of ENZ
resistance is a consistent classifier with the potential of stratifying patients for response to second line AR-targeted treatments
(Fig. 5F).

We then hypothesized that we could systematically use the persistent cluster 11, Stem-Like, initial cluster 10, and PROSGenesis
signatures as a proxy for the presence of PC cells with different transcriptional features in clinical settings, to capture signals
from such types of pre-existing subclones with metastatic potential in primary untreated tumors. To this end, we took advantage
of a recently published scRNA-seq dataset on clinically relevant PCs specimens (Fig. 6A) (Chen et al., 2021). We used GSVA score
to highlight our 13 scRNA-seq clusters in 36424 cells from primary untreated PC specimens of 13 patients (Figure S6A). The
analysis showed that our LNCaP model-derived cell clusters scored higher in luminal and basal/intermediate cells compared to
fibroblasts (P = 0.047, t-test) (Figure S6A). Additionally, luminal cells had higher expression of genes associated with our initial
scRNA-seq clusters compared to the basal/intermediate cells (P = 0.02, t-test) and compared to fibroblasts (P < 0.001, t-test).



Page 9/29

We then scored the cells for expression of genes from the Stem-Like and PROSGenesis signatures, along with the associated
clusters (11 and 10, respectively) and control signatures linked to AR activity (ARV, AR-FL, and AR activation), BRCAness, and
NEPC (Fig. 6B). We defined a high score for a gene signature to be above the 90th percentile. 48% percent of the cells that scored
highly for the Stem-Like signature were luminal cells (Fig. 6C). Cells scoring highly for the PROSGenesis signature were mostly
basal/intermediate (78% of high scorers) (Fig. 6D). Each single patient harbored on average 8% of cells scoring high for the Stem-
Like signature (ranging from 2% in patient 173 to 23% in patient 156) and 8% of cells scoring high for the PROSGenesis signature
(ranging from 0.9% in patient 153 to 33% in patient 172) (Fig. 6E).

To reconcile the presence of these cells and their relative histopathological position, we assessed gene expression within two
sections (Prostate A and B) of primary untreated PC with spatial transcriptomics (see Methods). We reconstructed the gene
expression signal from stromal and epithelial components in an average of 1682 spots per sample using clustering analysis and
annotated the tissue architecture in 5 clusters of stromal tissue (ST), benign epithelium (BE), and adenocarcinoma (PC-AC)
(Fig. 6F, Figure S6B). PROSGenesis and Stem-Like signatures, as well as the companion model-derived cluster 10 signature,
showed high expression scores within the sections compared to scores from housekeeping gene signatures (Fig. 6G, Figure S6C).
We compared the score distributions of our signatures to the housekeeping gene set score distributions and determined the 90th
percentile as a score cutoff for high expression by allowing for 5% false positives (see Methods). Spots with high signal were
found interspersed in all 5 clusters in both sections (Fig. 6H, Figure S6D). In Prostate A, however, spots scoring highly for the
Stem-Like signature were more prevalent in the PC-AC cluster compared to ST (P = 0.005, chi-square test). Spots scoring highly for
PROSGenesis were further enriched in the BE and PC-AC clusters compared to ST (P < 0.001 in both cases, chi-square test), while
spots scoring highly for cluster 10 were enriched in the BE clusters compared to all other tissue regions (P < 0.001 for each
comparison, chi-square test) (Fig. 6H). Concordant observations were made for PROSGenesis and cluster 10 signatures in
Prostate B (Figure S6D). To validate these findings, we undertook a similar approach to re-analyze spatial transcriptomics data
from prostate Sect. 3.3, 1.2, and 2.4 from Berglund et al (Berglund et al., 2018), which were annotated to contain a significant
proportion of cancer. Similarly to our initial observation, these sections showed enrichment of spots scoring highly for the
PROSGenesis in the PC-AC clusters compared to ST or prostatic intraepithelial neoplasia clusters (Figure S6E-G). Spots scoring
highly for cluster 10 were more prevalent in both benign and cancerous clusters. Taken together these data suggest the presence
of treatment-persistent cells interspersed within the primary untreated prostate tissue of PC patients with high metastatic
potential.

Finally, we verified whether we could predict recurrence in primary PC patients using the signature genes derived in these cells. We
interrogated legacy primary tumor TCGA PRAD (https://www.cancer.gov/tcga) (Fig. 7A) and early onset PC (EOPC) ICGC
(Gerhauser et al., 2018) RNA-seq data (Figure S7A) for our gene signatures of interest. Using all signatures for clustering the
TCGA PRAD cohort separated 54% of Gleason score (GS)-7 and 15% of GS-8 + patients which would not benefit from additional
treatment, as they had relatively good prognosis (Fig. 7B). A similar trend was also observed in the ICGC cohort (Figure S7B).
ENZ-induced (Fig. 7C), PROSGenesis (Fig. 7D), Stem-Like (Fig. 7E), and persistent (Fig. 7F) gene signatures were the most
significant (P < 0.05, log-rank test) contributors to cluster separation in the TCGA cohort, while NEPC downregulated genes were
the major determinant in the ICGC cohort (Figure S7C). In line with previous reports (Alumkal et al., 2020), signatures reflecting AR
activity (AR activity and full length) in these tumors were consistently associated with longer time to progression in the TCGA
cohort (Fig. 7G-H), suggesting a better response to inhibition of AR signaling in AR driven tumors. In the EOPC cohort, which is
enriched in GS-7 tumors compared to the TCGA PRAD, the persistent and PROSGenesis signatures significantly stratified GS-7
patients (P < 0.05, log-rank test) (Figure S7D-E), suggesting the ability of these signatures to further refine GS-based risk
stratification in patients and avoid overtreatment. High PROSGenesis score was associated with good prognosis together with the
gene set from the initial cluster 10 (Fig. 7I). Individually, 8 out 13 clusters-derived signatures showed association with PFS in the
TCGA cohort (Fig. 7I), pointing at the utility of these signatures in PC patient risk stratification.

Discussion
In this study we provide a molecular perspective of the emergence of resistance to AR-targeted treatment at a single-cell level.
Karthaus and colleagues recently found that luminal prostate cells that persist after ADT in a mouse model can contribute to
tissue regeneration of the normal prostate epithelium by assuming stem-like transcriptional properties (Karthaus et al., 2020).
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Using PC specimen tumor DNA, we recently showed the presence of subclones within the primary tumors that preserve the ability
to expand and metastasize years after treatment and are found interlayered within different lesions of multifocal tumors
(Woodcock et al., 2020). Similarly, a recent work studying lung cancer metastases found that metastatic capacity arises from pre-
existing and heritable differences in gene expression (Quinn et al., 2021). Here we find that during exposure to AR-targeting
agents, a small proportion of persistent cells remain transcriptionally unperturbed by the treatment.

We visualize these cells in primary untreated PC specimens and find them to be enriched in cancerous regions of
histopathologically relevant tumors using spatial transcriptomics, as well as interspersed in apparent benign tissue. To
understand the presence and function of these cells in histopathologically non-cancerous regions will warrant further studies. Our
data show evidence of a hierarchical model of emergence of resistance to enzalutamide (Maitland, 2021) in which treatment-
persistent cells are able to regenerate the bulk of the resistant ones. We describe the properties of the persistent cells using RNA
velocity and show different intermediate states in alternative trajectories of treatment resistance. This process is partially driven
by chromatin remodeling, which is consistent with chromatin accessibility lineage-priming (Ma et al., 2020; Martin et al., 2020).

In PC, gain of function of bromodomain-containing proteins such as BRD4 (Asangani et al., 2014; Urbanucci et al., 2017) and
ATAD2 (Morozumi et al., 2016; Urbanucci et al., 2017), as well as loss of function of chromatin remodeler CHD (Zhang et al.,
2020), have been shown to contribute to PC progression and lineage plasticity in therapy resistance. This process is likely
accompanied by chromatin reprogramming (Braadland et al., 2019; Urbanucci et al., 2017; Uusi-Mäkelä et al.). While many groups
have focused on the effect of AR-targeted treatment on chromatin-associated factors such as CREB5 (Hwang et al., 2019), or TFs
such as GR (Arora et al., 2013) and AR (Yuan et al., 2019), in this study we found that exposure to AR-targeting agents increases
the overall relaxation of the chromatin. Applying the label transfer method across datasets revealed that subpopulations of cells
with different chromatin states lead to multiple transcriptional configurations, including those of persistent cells. Using different
cell line models mimicking alternative trajectories of treatment resistance, we infer that differential DNA motif exposure
determined by chromatin structure may partially contribute to TF activity-mediated transcriptional reprogramming in the different
cell subpopulations induced by exposure to enzalutamide. According to this analysis, specific subpopulations of PC cells are
more subjected than others to TFs activity reprogramming. This is consistent with recent studies showing simultaneous detection
of multiple transcription factors on single DNA molecules and TFs co-occupancy frequently occurring at sites of competition with
nucleosomes (Strickfaden et al., 2020).

We show that treatment-persistent cells have high cell cycle turnover, compatible with high regenerative potential (Poli et al., 2018;
Wang et al., 2020), and assume states of stemness from their transcriptional profiles. As these features have been associated
with more aggressive tumors, we developed transcriptional signatures derived from two states in particular: one state derived in
ADT-treated prostate cells by Karthaus et al. (Karthaus et al., 2020), which we renamed PROSGenesis, tightly associated with
initial and enzalutamide-induced clusters in our model of enzalutamide resistance, and one state that we called “Stem-Like”,
associated with persistent cells during the emergence of enzalutamide resistance. PROSGenesis, Stem-Like, and associated
signatures can capture different tumor types and stratify ARSI-exposed CRPC patients' outcome. Moreover, we show that in
primary PC patients undergoing ADT treatment, high signature scores in treatment-naive specimens are associated with shorter
time to progression (biochemical recurrence). Interestingly, in primary treatment-naive patients, high score for PROSGenesis is
associated with longer response to ADT, possibly due to the stronger contribution of AR activity in these tumors. Overall, we have
identified and characterized gene signatures that can be used to profile subpopulations of treatment-persistent cells with stem-
like and regenerative properties that foster alternative trajectories of AR-targeted treatment resistant PCs.

Methods
Cell lines and culture

LNCaP and VCaP cell lines were obtained from American Type Culture Collection (ATCC; LGC Standards) and authenticated
periodically (HPA cultures or Eurofins). RES-A and RES-B cells were generated by prolonged exposure to the second-generation
anti-androgens enzalutamide and RD-162 as described earlier (Handle et al., 2019). LNCaP parental (ATCC), RES-A, and RES-B
cells were cultured in RPMI 1640 (Sigma R0883) supplemented with 10% FBS (Sigma F7524), 2 mM Alanyl-glutamine (Sigma
G8541), 1 mM sodium pyruvate (Merck TMS-005-C), 2.5 g/L glucose (Sigma G8769), and 1x Antibiotic-Antimycotic (Gibco,
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15240062) in a humidified 37°C incubator with 5% CO2. RES-A and RES-B cells additionally received 10 µM enzalutamide
(MedChemExpress HY-70002) with each cell splitting/feeding. VCaP cells were cultured in DMEM (Gibco) supplemented with 10%
FBS in a humidified 37°C incubator with 5% CO2.

For experimental treatments, ~1x106 cells were seeded into 5 cm culture plate dishes, and allowed to settle before exposure to 10
µM enzalutamide or DMSO vehicle control (0.1%) for 48 h or 168 h. The additional LNCaP cells (ATCC) and RES-C cells were
cultured in a humidified CO2-incubator at 37°C in Gibco™ RPMI 1640 (1X) media (Thermo Fisher Scientific) supplemented with
10% FBS (Gibco standard FBS, Thermo Fisher Scientific), 2 mM L-Glutamine (Gibco®, Thermo Fisher Scientific), and a
combination of 100 U/ml Penicillin and 100 µg/ml Streptomycin (Gibco® Pen Strep, Thermo Fisher Scientific). The enzalutamide
resistant LNCaP RES-C cell line was generated by passaging of LNCaP cells with continuous treatment with 10 µM enzalutamide
for 9 months and maintained in the same medium as LNCaP except for the supplementation with 10 µM enzalutamide.
Generation of resistant VCaP subline derivatives and RNA-seq

Androgen-sensitive VCaP prostate cancer cell line (passage (p.) 15.) was a gift from Dr. Tapio Visakorpi, Tampere University,
Finland. Cells were cultured in RPMI 1640 supplemented with 10 % DCC-FBS, 1 % L-glutamine, 1 % A/A, and 10 nM testosterone
(T) for seven months to establish T-dependent subclone VCaP-T. VCaP-T cells were then cultured at low testosterone (0.1 nM) for
10 months to establish VCaP-CT, an androgen-independent cell line able to grow despite low testosterone. VCaP-CT were then
cultured at 10 µM enzalutamide until the cells regained ability to grow despite enzalutamide, creating enzalutamide resistant cell
line VCaP-CT-ET. Another cell line was created by incubating first VCaP-CT cells with bicalutamide and subsequently with
enzalutamide upon reaching bicalutamide insensitivity. Ultimately these cells also gained the ability to grow despite
enzalutamide, creating the multiresistant cell line VCaP-CT-Br-ER.

RNA sequencing was performed with Illumina HiSeq 3000. We sequenced 3 replicates, obtaining an average of 111 million
paired-end reads per sample. Reads were aligned using STAR aligner v2.5.4b (Dobin et al., 2013) and Ensembl reference genome
GRCh38. Genewise read counts were quantified using featureCounts v1.6.2 (Liao et al., 2014) and Gencode annotations release
28.
Single-cell samples preparation and sequencing

LNCaP parental (treated for 48 hours with enzalutamide or DMSO), RES-A, and, RES-B cells were harvested with 0.05% Trypsin-
EDTA (Sigma T3924). After neutralization with complete medium, centrifugation (300 x g for 5 min), and resuspension in
PBS/0.5% BSA, the cells were filtered through a 35 µm Cell Strainer (Corning 352235) and a single-cell suspension of living cells
was acquired through sorting on a FACS Aria II cell sorter. The cell concentration of the single-cell suspension was assessed with
a Countess II FL Automated Cell Counter and ~ 3 x 104 cells were pelleted (300 x g for 5 min) for further processing for using the
Chromium Single Cell 3’ Library, Gel Bead & Multiplex Kit, and Chip Kit (v3, 10x Genomics).

For the additional LNCaP parental and RES-C cells, 1 million cells were thawed in RPMI (Gibco) with 10% FBS (Gibco) and
centrifuged at 300g for 5 min. The cells were then suspended in PBS with 0.04% BSA (Ambion) and filtered with Flowmi™ cell
strainer (Bel-Art). Before loading, the cells’ viability and concentration was determined using Trypan blue with Cellometer Mini
Automated Cell Counter (Nexcelom Bioscience). Chromium Single Cell 5` RNA-seq was performed using the 10X Genomics
Chromium technology, according to the Chromium Next GEM Single Cell V(D)J Reagent Kits v1.1 kit User guide CG000208 Rev D
with loading concentration of 1000 − 200 cells/µl.

The LNCaP-ENZ168, VCaP, and VCaP-ENZ48 single-cell RNA-seq samples were prepared with Drop-seq (Macosko et al., 2015)
using the Dolomite cell encapsulation system (Dolomite Bio). Cells were trypsinized with TrypLE™ Express Enzyme (ThermoFisher
Scientific, #12604021), spun down (5 min at 300xg) and washed with 0.1% BSA-PBS. After pelleting, the cells were resuspended
in plain PBS and passed through a 40-micron filter. The number of viable cells was estimated with the use of trypan blue staining
and Fuchs-Rosenthal hemocytometer chamber. The concentration of cells was brought down to 3x105 cells/mL in 0.1% BSA-
PBS. For single-cell encapsulation, single-cell suspension, beads in lysis buffer and oil were connected with the loops and tubing
to the Mitos P pumps and run through the glass microfluidic chip at the following flow rates: 100µL/min (Oil channel), 20µL/min
(Bead channel); 350 mbar (Cell channel). Droplets were separated by centrifugation and beads counted with the use of Fuchs-
Rosenthal hemocytometer chamber and up to 90000 beads were collected into one tube for Reverse Transcription reaction,
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exonuclease treatment, and amplification of cDNA library according to the original protocol (Macosko et al., 2015). Tagmentation
of cDNA was performed with the Nextera XT DNA Library Preparation Kit (Illumina, #FC-131-1024). The PCR product was cleaned-
up with AMPure XP beads, eluted in 10µL H2O and sequenced using Illumina HiSeq 2500 Rapid run.

For scATAC-seq, cell nuclei were isolated following the 10x Genomics Demonstrated Protocol for Single Cell ATAC Sequencing
(CG000169-Rev C). Briefly, the cell suspension was washed once in PBS/0.04%BSA, and 2 x 105 cells were pelleted (300 x g for 5
min), resuspended in 100 µl freshly prepared Lysis Buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20,
0.1% NP40 Substitute, 0.01% Digitonin, 1% BSA), and incubated on ice for 4 min (LNCaP parental cells), 6 min (RES-A), or 5 min
(RES-B). The lysates were diluted with 1 ml wash buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 1%
BSA), and the nuclei were pelleted (500 x g for 5 min) and resuspended in 30 µl 1x Nuclei Buffer (10x Genomics PN-2000153).
Successful preparation of intact, isolated nuclei was confirmed through visual inspection in a phase-contrast microscopy, and
nuclei concentration was assessed with a Countess II FL Automated Cell Counter, before proceeding immediately to processing
for Single Cell ATAC sequencing using 10x Chromium, 10x Genomics library preparation and the Chromium Single Cell ATAC
Reagent Kits (v1) User Guide (CG000168 Rev D).

Sequencing was performed on the Illumina NextSeq500 instrument at the genomics core facility at the Oslo University Hospital,
while sequencing of the additional LNCaP parental and RES-C was performed with Novogene Company Limited, Cambridge, UK´s
sequencing core facility was used with a PE150 NovaSeq sequencer, aiming at 50000 reads per cell.

For scRNA-seq, sequencing reads were processed into FASTQ format and single-cell feature counts using Cell Ranger v3.0.2
(Zheng et al., 2017). Similarly, Cell Ranger ATAC v1.1.0 (Satpathy et al., 2019) was used to process sequencing reads from
scATAC-seq into FASTQ format and peak-barcode counts. In both cases, we used the Cell Ranger pre-built GRCh38 reference. The
LNCaP-ENZ168, VCaP, and VCaP-ENZ48 Drop-seq samples were pre-processed, aligned, and processed to cell count matrices with
the Drop-seq tools v2.3.0 pipeline (as described in https://github.com/broadinstitute/Drop-seq/blob/master/doc/ Drop-
seq_Alignment_Cookbook.pdf) using default parameters and with the expectation that each sample contained 1000 cells
(Macosko et al., 2015). The pipeline uses the STAR aligner v2.7.3a (Dobin et al., 2013) and Picard Tools v2.18.22
(http://broadinstitute.github.io/picard/). We utilized the human reference genome version GRCh38, along with Gencode
annotations version 33.
Formaldehyde-assisted isolation of regulatory elements (FAIRE) sequencing and analysis

FAIRE was performed on parental and LNCaP-ResA cells in biological triplicate according to the standard protocol (Simon et al.,
2012). Prior to FAIRE-seq, cells were cultured for three days in RPMI medium supplemented with 5% DCC FBS and 10 µM
enzalutamide was added only to the resistant cell line. Both sublines were then treated with DMSO (control), DHT (10nM; Sigma
Aldrich), enzalutamide (10µM, Selleckchem), or a combination of DHT and enzalutamide for 18 hours. The DNA fragments
isolated by FAIRE were used for library preparation with the Roche KAPA library prep kit according to the manual and sequenced
on the Illumina HiSeq 2500 to produce 50 bp single-end reads at the Genomics core (KU Leuven) and aligned using bwa v0.7.8-
r455 (Li and Durbin, 2010) against hg19. Duplicates were marked and realigned using Picard 1.118. Peak calling was performed
on the aligned files using MACS2 v2.1.0 (Zhang et al., 2008). MSPC v4.0.2 (Jalili et al., 2018) was used to jointly analyze the
peaks called in the three technical replicates from each sample and to derive a common peak set. DiffBind v2.14.0 (Stark et al.,
2011) was used to explore peak overlaps and differential accessibility between samples. Read distribution analysis around
transcription start sites, MYC binding sites, and AR binding sites was performed by counting the average number of reads across
replicates for each sample condition in 100bp bins extending 1kb up- and downstream of the sites. The value at the center
(position 0) of the resulting distributions was compared between samples using the t-test to assess for differences in chromatin
openness at these sites.

Software and statistical testing
Analyses were performed using R v3.6.3 or Python v3.7.0. Statistical testing was performed using R v3.6.3. Statistical tests used
are indicated in the text and in figure legends. The Shapiro-Wilk test was used to test for normality.

Single-cell RNA pre-processing and quality control
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The Cell Ranger output was used as the input to Seurat v3.2.0 (Butler et al., 2018; Stuart et al., 2019) for further analysis of the
scRNA-seq samples. For each sample, poor quality cells were filtered based on the number of detected genes, the total number of
molecules detected, and the percentage of reads arising from the mitochondrial genome. Specific thresholds for each filtering
criterium were adjusted per sample to preserve a maximal number of cells. To address the effects of cell cycle heterogeneity in
the data, each cell was scored for its expression of genes associated with S or G2/M phases (gene sets provided within Seurat)
using the Seurat CellCycleScoring function. The difference between the G2/M and S phase scores was regressed out using
sctransform (Hafemeister and Satija, 2019).

Single-cell RNA clustering
The mutual nearest neighbor approach fastMNN (Haghverdi et al., 2018) was used to integrate the four LNCaP samples using
2000 integration features and account for batch effect. Clustering and UMAP non-linear dimensionality reduction were performed
using Seurat v3.2.0, and we refer to the result as our integrated clusters. The marker genes of each cluster were determined by
identifying genes differentially expressed in each cluster compared to all other clusters based on the generalized linear model
MAST framework v1.12.0 (Finak et al., 2015), using the number of RNA reads as a latent variable. A gene was considered to be
differentially expressed with Bonferroni corrected p-value < 0.01, at least 10% of the cells in the cluster expressing the gene, and
an average log-fold change of at least 0.25.

Cluster and sample characterization
We utilized hallmark gene sets from the Molecular Signatures Database (MSigDB) v7.2 (Liberzon et al., 2015; Subramanian et al.,
2005) to characterize clusters and samples based on their differentially expressed genes. Gene set variation analysis (GSVA) was
performed using the GSVA package v1.36.2 to characterize the average expression profile of each cluster. See the “Bulk RNA-seq
and clinical data analysis” section for a more detailed description of the method. To characterize the gene expression changes
within each cluster between samples, all genes were ranked based on their average log-fold change. The fgsea package v1.14.0
was then used to perform gene set enrichment analysis for the MSigDB hallmark gene sets using 1000 permutations.
Differentiation states of each cell in each sample were predicted using cytoTRACE v0.3.3 (Gulati et al., 2020). The RNA velocities
of single cells in the scRNA-seq samples were assessed using scVelo v0.2.2 (Bergen et al., 2020). Loom input files for scVelo were
generated from the FASTQ files of each sample using loompy v3.0.0, and the metadata for running scVelo (filtered cell identifiers,
UMAP coordinates, and cluster information) were extracted from the integrated Seurat object and integrated with the Loom files.

Single-cell ATAC pre-processing and quality control
The output of the Cell Ranger ATAC pipeline was used as the input to Signac package v0.2.5 (Stuart et al., 2020) for further
analysis of the scATAC-seq samples. For each sample, poor quality cells were filtered based on the following features: strength of
nucleosome binding pattern, transcription start site enrichment score as defined by ENCODE, total number of fragments in peaks,
fraction of fragments in peaks, and percentage of reads in ENCODE blacklisted genomic regions. Specific thresholds for each
adjusted per sample to preserve the maximal number of cells. Data normalization and dimensionality reduction was performed
using Signac with latent semantic indexing (LSI), consisting of term frequency-inverse document frequency (TF-IDF)
normalization and singular value decomposition (SVD) for dimensionality reduction, using the top 50% of peaks in terms of their
variability across the samples. The first LSI component reflected sequencing depth across the samples and was not utilized in
downstream analyses.

Single-cell ATAC clustering
Integrated clustering of the scATAC-seq samples was performed with harmony v1.0 (Korsunsky et al., 2019) using LSI
embeddings. The resulting harmony-adjusted cell embeddings were used as input for UMAP non-linear dimensionality reduction
and clustering using default parameters and the smart local moving (SLM) algorithm for modularity optimization.

A “pseudo-bulk” analysis of changes in chromatin accessibility in the scATAC-seq samples was performed by pooling the reads
from all good-quality cells in each sample. Visualization of peak overlap between samples was generated using R package
ggradar v0.2. Differentially accessible regions in the clusters were identified using logistic regression with the total number of
peaks as a latent variable. Regions were considered differentially accessible with Bonferroni corrected p-value < 0.05, at least 10%
of the cells showing accessibility in the region, and an average log-fold change of at least 0.25. Differentially accessible regions
were annotated with their closest gene using the Signac ClosestFeature function.
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Transcription factor motif enrichment
Transcription factor motif enrichment was performed using Signac in differentially accessible regions between sample conditions
and between clusters in each sample with R package TFBSTools v1.26.0 and JASPAR database position frequency matrices
retrieved from the R JASPAR2018 data package v1.1.1. The hypergeometric test was used to test for significant motif
enrichments, taking into account sequence characteristics of the peaks (e.g. GC-frequency). P-values were adjusted with the
Benjamini-Hochberg method and motifs with adjusted p-values less than 0.05 were considered to be enriched. Transcription
factors that are known to play a role in PC were filtered based on their expression in the single cell dataset. Chromatin states in
scATAC-seq (as defined by the enriched TFs in differentially open chromatin regions) were connected to transcriptional outputs in
the scRNA-seq by assessing for overlap between the target genes of enriched transcription factors and differentially expressed
genes in the scRNA-seq clusters. Transcription factor target genes were obtained using the GTRD database v18.06 (Kolmykov et
al., 2021) and selecting those with differentially accessible regions observed between castration-resistant prostate cancer and
prostate cancer patients in Uusi-Mäkelä et al (Uusi-Mäkelä et al.).

Integration of scRNA-seq datasets and scRNA- and scATAC-seq datasets using label transfer
The clusters identified from the integrated clustering of scRNA-seq from LNCaP, LNCaP-ENZ48, RES-A, and RES-B (Fig. 3A) were
queried in additional scRNA-seq samples (alternative LNCaP parental, LNCaP-ENZ168, RES-C, VCaP parental, and VCaP-ENZ48)
(Fig. 1A) using the label transfer approach implemented in Seurat v3.2.0 (Stuart et al., 2019). The additional scRNA-seq samples
were individually clustered and anchors were identified for each additional scRNA-seq sample (the query) and the LNCaP
integrated clusters (the reference). This was done using the FindTransferAnchors function with principal component analysis
(PCA). The anchors were used to transfer cluster label identifiers between the two data types using the TransferData function.
Each cell in the query was assigned the cluster label with the highest confidence score, and only query cells with confidence
scores above 0.5 were considered to have been successfully label transferred.

LNCaP, LNCaP-ENZ48, RES-A, and RES-B had scRNA-seq and scATAC-seq data available from each sample (Fig. 1A). These data
types were integrated using the cluster label transfer procedure as implemented in Signac v0.2.5 and Seurat v3.2.0. Each scRNA-
seq sample was clustered individually and its cluster labels were projected onto the matching, individually clustered scATAC-seq
sample, or vice versa. The clustering resolution of each sample was assessed and decided using clustree v0.4.3 (Zappia and
Oshlack, 2018). Briefly, RNA-seq expression levels were imputed from the scATAC-seq data by defining for each gene a genomic
region including the gene body and 2kb upstream of the transcription start site and taking the sum of scATAC-seq fragments
within the region. Anchors were identified for condition-matched scRNA- and scATAC-seq samples using the FindTransferAnchors
function and canonical correlation analysis (CCA) was performed on the scRNA expression values and the scATAC imputed gene
expression values. The anchors were used to transfer cluster label identifiers between the two data types using the TransferData
function. Each cell in the query was assigned the cluster label with the highest confidence score, and only query cells with
confidence scores above 0.4 were considered to have been successfully label transferred.

Signature gene selection
To generate the PROSGenesis signature, we extracted the gene expression profile associated with the regenerative mouse
prostate luminal 2 cells reported in Karthaus et al (Karthaus et al., 2020) and found 78 genes with homologues in humans that
were profiled in our scRNA-seq dataset. The mTORC1 signaling and MYC target gene signatures were obtained from the hallmark
gene sets from the Molecular Signatures Database (MSigDB). Other signature gene sets were retrieved from previous publications
or from our scRNA-seq data analysis as indicated in the main text.

Bulk RNA-seq and clinical data analysis
Each gene signature or set was assessed for enrichment and scored in a sample using the GSVA package v1.36.2, which is a non-
parametric, unsupervised method for estimating gene set enrichment of each sample from gene expression data. For GSVA
analysis, first, scale normalization at the seventy-fifth percentile based on the DSS package (Wu et al., 2013) was applied to the
raw read counts from samples in datasets where these counts were available. For the TCGA and ICGC cohorts, we then filtered
out genes with a zero count in any of the tumor samples. For each gene, GSVA performed a Poisson kernel transformation based
on its empirical cumulative density function (CDF) across all samples. For RNA-sequencing datasets where only log-normalized
expression values rather than raw counts were available, Gaussian kernels were utilized instead of Poisson kernels in the GSVA
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calculation. The kernel transformed expression values were then converted to ranks for each sample across all genes and the
ranks were normalized to centered at zero. Next, for a given gene signature or set, following a similar procedure as GSEA
(Subramanian et al., 2005), the Kolmogorov-Smirnov-like random walk statistics were calculated using the normalized ranks
based on two statistics: 1) a running sum of the genes which belong to the gene set. It is denoted as . 2) a running sum for the
genes which do not belong to the gene set. It is denoted as . For sample j, and gene signature k, we define  as the largest

positive deviations from zero of - , and  as the smallest negative deviations from zero of - . The final GSVA

enrichment score of sample j and gene signature k is - . The GSVA enrichment score emphasizes genes in pathways

that are concordantly activated in one direction only, either over-expressed or under-expressed relative to the overall population.
For pathways containing genes strongly acting in both directions, the deviations of and will cancel each other out

and show little or no enrichment.

In cases where the expression of a gene set was assessed at the single-cell level, the GetModuleScore function in Seurat was
used to generate an average expression score per cell. Survival analyses were performed using the survival package v3.2-3 and
Kaplan-Meier curves were plotted using the survminer package v0.4.8. For single signature survival analyses, median GSVA score
was used to stratify patients into low and high expressing groups for the signature. For survival analyses of multiple signatures,
samples were clustered using their GSVA enrichment scores for each signature using Euclidean distance and hierarchical
clustering. The clustering result was then used to define the two-group split of samples for the survival analysis.

We utilized a published scRNA-seq dataset of prostate cancer patient tumor samples from Chen et al (Chen et al., 2021) to assess
for the presence of our gene signatures in different cell types. The data was processed and visualized according to the code
provided as part of the publication (https://github.com/chensujun/scRNA) using Seurat v3.2.0. Cell types were identified from the
data using the marker genes reported in Fig. 1B of the publication.

Spatial transcriptomics analysis of primary prostate cancer tissue
Two sections of cryopreserved prostate cancer tissue from one patient (pT = 2b, T1c, Gleason 6, PSA 3.5 ng/mL) were profiled for
spatial transcriptomics using the Visium Spatial library preparation protocol from 10x Genomics with a resolution of 55 µm (1–
10 cells) per spot. The tissues were cryosectioned at 10 µm thickness to Visium library preparation slide, fixed in ice-cold 100%
methanol for 30 min, H&E stained with KEDEE KD-RS3 automatic slide stainer and the whole-slide was imaged using Hamamatsu
NanoZoomer S60 digital slide scanner.

Sequencing library preparation was performed according to Visium Spatial Gene Expression user guide (CG000239 Rev D, 10x
Genomics), using 24 min tissue permeabilization time. Sequencing was done on the Illumina NovaSeq PE150 sequencer at
Novogene Company Limited, Cambridge, UK´s sequencing core facility, aiming at 50,000 read pairs per tissue covered spot.

Sequenced data was first processed using Space Ranger v1.2.0 from 10x Genomics to obtain per-spot expression matrices for
both sections. Downstream processing and clustering was then performed using Seurat v3.2.0. Normalization of the data was
performed with sctransform to account for differences in sequencing depth across spots. Clustering was performed using the
FindClusters function using a resolution parameter value of 0.8. The resulting clusters were found to correspond to histological
characteristics of the tissue. The GetModuleScore function of Seurat was used to score the spots for our scRNA-seq derived gene
signatures, as well as length-matched random housekeeping gene signatures from the Housekeeping and Reference Transcript
Atlas v1.0 (Hounkpe et al., 2021). The distributions of the gene expression scores for the housekeeping gene sets and our scRNA-
seq signatures were compared to determine the 90th percentile as a score cutoff at which we considered a spot to have high
expression of the scRNA-seq signature, allowing for 5% false positives (spots scoring above the threshold for housekeeping gene
sets).

To validate our spatial transcriptomics findings, we utilized prostate Sect. 1.2, 2.4, and 3.3 from the spatial transcriptomics
publication by Berglund et al (Berglund et al., 2018). H&E images and spot count matrices were provided by the Lundeberg lab.
Processing, clustering, and signature scoring of the data was performed identically to sections of Prostate A and B, but requiring
that each spot would have a minimum of 500 reads counts. Similar to the analysis for Prostate A and B, the 90th percentile cutoff
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for high versus low scoring spots for the gene sets enrichment was assessed and confirmed using comparisons to housekeeping
gene set scores for each spot.
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Dataset Source Identifier

Single-cell RNA- and ATAC-sequencing of
LNCaP

This study GEO: GSE168669

FAIRE-seq of LNCaP This study GEO: GSE168669

Spatial transcriptomics data from prostate
sections Prostate A and Prostate B

 
This study

European Genome-phenome Archive:
EGAS00001000526

Single cell RNA-sequencing of LNCaP and
VCaP from group of Prof. Gerhardt Attard,

UCL

 
This study

 
GEO: GSE168733

RNA-sequencing of VCaP models of CRPC
and resistance to AR signaling-targeted
treatments from group of Prof. Teemu

Murtola, Tampere University

 
 

This study

 
 

GEO: GSE168669

AR and c-MYC binding sites map (Barfeld et al., 2017) GEO: GSE73994

Bulk RNA-sequencing of LNCaP samples  (Handle et al., 2019) GEO: GSE130534
 

Xenografts of AR-positive / NE-negative
and AR-negative / NE-positive CRPC

tumors

 
(Labrecque et al., 2019; Lam

et al., 2020)

 
GEO: GSE124704
GEO: GSE126078

LNCaP xenograft model of CRPC (King et al., 2017) Supplementary File 1 in publication

Patient RNA-sequencing from
enzalutamide responders and non-

responders

 
(Alumkal et al., 2020)

 
Received from authors

RNA-sequencing from SU2C CRPC patient
samples

(Abida et al., 2019) Received from authors

RNA-sequencing from SU2C West Coast
DT patient samples

 
(Quigley et al., 2018)

 
Received from authors

Single cell RNA-sequencing of LNCaP
from group of Dr Kirsi Ketola, University

of Eastern Finland

 
Unpublished

 
Received from Ketola lab

scRNA-seq of 12 treatment-naive prostate
cancer patient tissue samples

 
(Chen et al., 2021)

 
GEO: GSE141445

Spatial transcriptomics data from prostate
tissue sections 1.2, 2.4, and 3.3 

 
(Berglund et al., 2018)

 
Received from authors

TCGA-PRAD RNA-seq https://portal.gdc.cancer.gov/ https://portal.gdc.cancer.gov/

ICGC-EOPC RNA-seq (Gerhauser et al., 2018) Received from authors

Hallmark gene sets from the Molecular
Signatures Database (MSigDB) v7.2

(Liberzon et al., 2015;
Subramanian et al., 2005)

http://www.gsea-
msigdb.org/gsea/msigdb/index.jsp

GTRD database v18.06 (Kolmykov et al., 2021) https://gtrd.biouml.org/

Housekeeping and Reference Transcript
Atlas v1.0

(Hounkpe et al., 2021) http://www.housekeeping.unicamp.br/

Methods Table 1. Details of datasets utilized as part of the study. 
 

https://paperpile.com/c/uIHtgp/A4EV
https://paperpile.com/c/uIHtgp/2uTU
https://paperpile.com/c/uIHtgp/NnYA+dVY4
https://paperpile.com/c/uIHtgp/Kgy3
https://paperpile.com/c/uIHtgp/n10r
https://paperpile.com/c/uIHtgp/q3oc
https://paperpile.com/c/uIHtgp/q9pK
https://paperpile.com/c/uIHtgp/0Yk9
https://paperpile.com/c/uIHtgp/w4n2
https://paperpile.com/c/uIHtgp/aQma
https://paperpile.com/c/uIHtgp/Uikm+Xebd
https://paperpile.com/c/uIHtgp/MC3y
https://paperpile.com/c/uIHtgp/n038
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Resource Source Identifier

Cell Ranger
(version
3.0.2)

(Zheng et
al., 2017)

10x Genomics

Cell Ranger
ATAC (version

1.1.0)

(Satpathy et
al., 2019)

10x Genomics

Space Ranger
(version
1.2.0)

- 10x Genomics

Seurat
(version
3.2.0)

(Butler et al.,
2018; Stuart
et al., 2019)

https://cran.r-project.org/web/packages/Seurat/

sctransform
(version
0.3.1)

(Hafemeister
and Satija,

2019)

https://cran.r-project.org/web/packages/sctransform/

fastMNN /
batchelor 
(version
1.2.4)

 
(Haghverdi
et al., 2018)

https://bioconductor.org/packages/release/bioc/html/batchelor.html

 
MAST

(version
1.12.0)

 
(Finak et al.,

2015)

https://www.bioconductor.org/packages/release/bioc/html/MAST.html

 
GSVA

(version
1.36.2)

 
(Hänzelmann
et al., 2013)

https://bioconductor.org/packages/release/bioc/html/GSVA.html

 
fgsea (version

1.14.0)

 
(Korotkevich

et al.)

https://bioconductor.org/packages/release/bioc/html/fgsea.html

scVelo
(version
0.2.2)

(Bergen et
al., 2020)

https://pypi.org/project/scvelo/

cytoTRACE
(version
0.3.3)

(Gulati et al.,
2020)

https://cytotrace.stanford.edu/

Signac
(version
0.2.5)

(Stuart et al.,
2020)

https://github.com/timoast/signac

harmony
(version 1.0)

(Korsunsky
et al., 2019)

https://github.com/immunogenomics/harmony

ggradar
(version 0.2)

- https://github.com/ricardo-bion/ggradar

 
TFBSTools

(version
1.26.0)

 
(Tan and
Lenhard,

2016)

http://bioconductor.org/packages/release/bioc/html/TFBSTools.html

clustree
(version
0.4.3)

(Zappia and
Oshlack,

2018)

https://github.com/lazappi/clustree

survival
(version 3.2-

(Therneau
and

https://cran.r-project.org/package=survival/

https://paperpile.com/c/uIHtgp/ryV5
https://paperpile.com/c/uIHtgp/LYap
https://paperpile.com/c/uIHtgp/LPVQ+A2m4
https://paperpile.com/c/uIHtgp/L1Sg
https://paperpile.com/c/uIHtgp/8N1w
https://paperpile.com/c/uIHtgp/SfvD
https://paperpile.com/c/uIHtgp/ycoe
https://paperpile.com/c/uIHtgp/aaEd
https://paperpile.com/c/uIHtgp/i5ba
https://paperpile.com/c/uIHtgp/V3zw
https://paperpile.com/c/uIHtgp/9TiF
https://paperpile.com/c/uIHtgp/6B55
https://paperpile.com/c/uIHtgp/7UuU
https://paperpile.com/c/uIHtgp/BX6O
https://paperpile.com/c/uIHtgp/bNOx
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3) Grambsch,
2000)

survminer
(version
0.4.8)

- https://cran.r-project.org/we/packages/survminer/

Drop-seq
tools (version

2.3.0)

(Macosko et
al., 2015)

https://github.com/broadinstitute/Drop-seq

bwa (version
0.7.8-r455)

(Li and
Durbin,
2010)

http://bio-bwa.sourceforge.net/

Picard
(versions
1.118 and
2.18.22)

- https://broadinstitute.githu.io/picard/

MACS2
(version
2.1.0)

(Zhang et
al., 2008)

https://github.com/jsh58/MACS

MSPC
(version
4.0.2)

(Jalili et al.,
2018)

https://genometric.github.io/MSPC/

DiffBind
(version
2.14.0)

(Stark et al.,
2011)

https://www.bioconductor.org/packages/release/bioc/html/DiffBind.html

featureCounts
(version
1.6.2)

(Liao et al.,
2014)

http://subread.sourceforge.net/

STAR
(versions

2.5.4b and
2.7.3a)

(Dobin et al.,
2013)

https://github.com/alexdobin/STAR

 
JASPAR2018

(version
1.1.1)

 
-

https://bioconductor.org/packages/release/data/annotation/html/JASPAR2018.html

loompy
(version
3.0.0)

- http://loompy.org/

Methods Table 2. Software and tools used in the study. The version and download location of each tool is indicated. 
 
 

Figures

https://paperpile.com/c/uIHtgp/bNOx
https://paperpile.com/c/uIHtgp/ww4Q
https://paperpile.com/c/uIHtgp/Qadx
https://paperpile.com/c/uIHtgp/nikI
https://paperpile.com/c/uIHtgp/Elrx
https://paperpile.com/c/uIHtgp/kjVh
https://paperpile.com/c/uIHtgp/ujYy
https://paperpile.com/c/uIHtgp/wJWB
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Figure 1

Chromatin reprogramming in enzalutamide resistance. (A) Overview of the cell lines models, assays, and treatments included in
the study. Boxes with sample names are colored according to the data types generated from the sample (single-cell ATAC-, single-
cell RNA-, bulk RNA-, and/or FAIRE-sequencing). (B) LNCaP parental, LNCaP-ENZ48, RES-A, and RES-B single-cell (sc) ATAC-seq
enrichment score in a 2kb window around the transcription start site (TSS). Enrichment scores at each TSS (position 0 in the plot)
were used as the enrichment values and compared between pairs of samples. Each sample comparison is indicated using
colored dots within the plot and the t-test p-value is shown with asterisks (*** p-value < 0.001). (C) Venn diagram of shared and
unique chromatin regions in LNCaP parental, LNCaP-ENZ48, RES-A, and RES-B according to bulk analysis of scATAC-seq. (D)
UMAP scATAC-seq clustering visualization of LNCaP parental, LNCaP-ENZ48, RES-A, and RES-B. (E) Proportions of cells in
scATAC-seq clusters. Clusters are colored according to cluster type: initial (present in prevalence in LNCaP parental and LNCaP-
ENZ48), ENZ-induced (present in prevalence in RES-A or RES-B), or persistent (present in similar proportions in all samples). See
also Figure S1.

Figure 2

Contribution of enzalutamide treatment-mediated chromatin reprogramming to transcription factor DNA motif footprint. (A-B)
Mean FAIRE-seq read count distribution in androgen-deprived conditions within a 2kb interval around MYC binding sites (A) and
AR binding sites (B) in LNCaP cells. (C) Prostate cancer-associated transcription factor (TF) motif enrichment in open
differentially accessible regions (DARs) for each scATAC-seq sample. Enrichments with a Benjamini-Hochberg method adjusted
hypergeometric test p-value < 0.05 are shown in colors, while non-significant enrichment are shown in white. The barplots above
the matrices indicate the number of open DARs found for each cluster in each sample. (D) TF motif enrichments in open DARs
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observed comparing the indicated conditions. Enrichments with a Benjamini-Hochberg method adjusted hypergeometric test p-
value < 0.05 are shown in colors, while non-significant enrichment are shown in white. See also Figure S2.

Figure 3

Chromatin states of enzalutamide resistance can result in multiple transcriptional programs. (A) UMAP clustering visualization of
single-cell RNA sequencing (scRNA-seq) of LNCaP parental, LNCaP-ENZ48, RES-A, and RES-B. (B) Proportions of cells in clusters
identified from scRNA-seq. Clusters are colored according to cluster type: initial (present in prevalence in LNCaP parental and
LNCaP-ENZ48), ENZ-induced (present in prevalence in RES-A or RES-B), or persistent (present in similar proportions in all
samples). (C) Cluster label transfer from the integrated clustering of the LNCaP scRNA-seq data to VCaP parental (left) and VCaP
treated with enzalutamide for 48 hours (right), confirming the presence of these cell states in the alternate model. In the UMAP,
each cell is colored according to the LNCaP scRNA-seq cluster that it is predicted to belong to. The barplot shows the proportion
of the projected cluster labels for each scRNA-seq cluster. (D) Proportion of differentially expressed genes in each LNCaP scRNA-
seq cluster for the indicated sample comparisons that is composed of enriched transcription factor (TF) target genes. The
contributions of enriched TFs identified in the scATAC-seq are shown as a stacked barplot. (E) Identification of matching cell
clusters between the scRNA and scATAC-seq data from LNCaP visualized as heatmap. The heatmap shows the proportions of
scATAC-seq cells across all sample conditions assigned to each scRNA-seq cluster as part of the label transfer process. The
proportions were calculated for each scRNA-seq cluster, with the total as the number of cells from the scATAC-seq that could be
confidently assigned to a scRNA-seq cluster (confidence score > 0.4). See also Figure S3.
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Figure 4

Transcriptional states of stemness in enzalutamide resistance. (A) Average expression of cell-cycle related genes (S and G2/M
phases) in cells from the scRNA-seq data. (B-C) Dot plot of average gene expression of the (B) indicated genes and of the (C)
genes within the Stem-Like signature in each scRNA-seq cluster. The size of the dot reflects the percentage of cells in the cluster
that express each gene. (D) UMAP visualization showing the average expression score of each cell for the genes in the
PROSGenesis gene signature derived from Karthaus et al (Karthaus et al., 2020). (E) Cells in VCaP and VCaP-ENZ48
(enzalutamide-treated for 48 hours) scored for their expression of Stem-Like and PROSGenesis gene signatures. (F) Predicted
differentiation states of cells in the four LNCaP scRNA-seq samples. Each cell is a dot colored according to its differentiation
state. The scRNA-seq clusters are labeled with numbers. (G) RNA velocities based on scRNA-seq depicted as streamlines. Clusters
are shown in different colors and are numbered. See also Figure S4.
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Figure 5

Gene signatures derived from single-cell RNA sequencing capture important features of prostate cancer models and stratify
advanced PC patients. (A) Heatmap of gene signature GSVA enrichment scores in bulk RNA-sequencing of LNCaP treated with
DHT or enzalutamide, and either sensitive or resistant to enzalutamide. (B) Heatmap of gene signature GSVA enrichment scores
in bulk RNA-sequencing from VCaP subline derivatives VCaP-T (long term cultured with 10 uM testosterone), VCaP-CT (VCaP-T
long term cultured with 0.1 nM testosterone), VCaP-CT-ET (VCaP-CT cultured long term with 10 µM enzalutamide), VCaP-CT-Br
(VCaP-CT cultured long term with bicalutamide), and VCaP-CT-Br-ER (VCaP-CT-Br long term treated with enzalutamide upon
reaching bicalutamide insensitivity). (C) Kaplan-Meier progression-free survival curves for Alumkal et al (Alumkal et al., 2020)
patients stratified into two groups based on median GSVA score for the Stem-Like gene signature. Log-rank p-value is indicated
above the curve. (D) Kaplan-Meier progression-free survival curves for Alumkal et al patients stratified into two groups based on
median GSVA score for the NEPC upregulated gene signature. Log-rank p-value is indicated above the curve. (E) Kaplan-Meier
overall survival curve for abiraterone and enzalutamide-naive patients from the Stand Up 2 Cancer (SU2C) CRPC cohort stratified
into two groups based on median GSVA score for the Stem-Like gene signature. Log-rank p-value is shown above the curve. (F)
Summary table of gene signature GSVA score associations with progression-free survival (PFS) or overall survival (OS) in the
clinical datasets. Only gene signatures significantly associated with PFS or OS in one or more datasets are shown. Good
indicates a higher score for the signature (a score higher than the median) is associated with better survival outcome, while poor
indicates that a higher signature score (a score higher than the median) is associated with worse survival outcome. Log-rank p-
values are shown with asterisks (* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001). For each dataset, the header indicates the
number of samples included, along with other qualifying information of the dataset. We used abiraterone (ABI)/ENZ naive
patients from the SU2C CRPC dataset. See also Figure S5.
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Figure 6

Transcriptional signal enrichment analysis identifies treatment persistent cells in prostate cancer. (A) tSNE visualization of
prostate cell types from 12 treatment-naive prostate cancer (PC) patients from Chen et al (Chen et al., 2021). (B) GSVA enrichment
scores for gene signatures in luminal, basal/intermediate, and fibroblast cells from Chen et al. GSVA enrichment scores were
generated from the average expression profile of each cell type. (C-D) tSNE plot of PC cells from Chen et al colored according to
their average expression of the genes in (D) the Stem-Like signature and in (D) the PROSGenesis signature. The adjacent
histograms show the distribution of average expression scores in the cells, with a red dotted line denoting the 90th percentile of
scores. (E) Percentage of cells scoring at or above the 90th percentile for the Stem-Like and PROSGenesis signatures belonging to
each patient. (F-H) Spatial transcriptomics (ST) from a prostate cancer tissue section, Prostate A. (F) H&E staining of the tissue
section (left most panel), UMAP visualization (central panel) of the clusters of the spots on the ST slide (right most panel). Each
cluster is also labeled according to its histological tissue type, with clusters 0 and 1 corresponding to stroma, cluster 2
corresponding to benign epithelium (BE), cluster 3 corresponding to the prostate adenocarcinoma, and 4 corresponding to benign
epithelium (BE). (G) Sensitivity analysis of Stem-Like and PROSGenesis signatures scores in ST against the score distributions of
control housekeeping gene signatures (see Methods). (H) The leftmost panel shows the ST UMAP clusters of spots overlaid on
the H&E slide. Each spot was scored according to its expression of genes in the Stem-Like, PROSGenesis, and cluster 10
signatures. For each signature, spots scoring at or above the 90th percentile (“high”) are colored in red, while spots scoring below
the 90th percentile (“low”) are colored in yellow. The barplots indicate the percentage of spots in each cluster scoring high or low
for each signature. The bars are labeled with their histology and their cluster number in parentheses, with BE referring to benign
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epithelium. Differences in proportions of high scoring spots were tested between clusters with the chi-square test and p-values are
indicated with asterisks (** p-value < 0.01, *** p-value < 0.001). See also Figure S6.

Figure 7

Transcriptional signal from persistent prostate cancer cells can be used to stratify untreated patients. (A) Heatmap of GSVA
enrichment scores for all single-cell-derived gene signatures in the TCGA-PRAD cohort, including the marker gene sets for each
scRNA-seq cluster. Hierarchical clustering of the GSVA scores was used to separate the samples into two groups, marked Branch
1 and Branch 2. (B) Kaplan–Meier survival curve for TCGA-PRAD patients stratified into two groups as indicated in Panel A. (C-H)
Kaplan-Meier survival curves for TCGA-PRAD patients stratified into two groups based on median GSVA score for signatures of
ENZ-induced cluster, PROSGenesis, Stem-Like, persistent cluster, AR activity, and ARFL. In each plot, the log-rank p-value is
indicated above the plotted curves. (I) Summary table of gene signature GSVA score associations with progression-free survival
(PFS) in the TCGA and ICGC datasets. Only gene signatures significantly associated with PFS in one or both datasets are shown.
Good indicates a higher score for the signature (a score higher than the median) is associated with better survival outcome, while
poor indicates that a higher signature score (a score higher than the median) is associated with worse survival outcome. Log-rank
p-values are shown with asterisks (* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001). For each dataset, the header indicates
the number of samples included.
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