
Speed-Up of Nonlinear Model Predictive Control
for Robot Manipulators Using Task and Data

Parallelism
Alejandro Astudillo, Joris Gillis, Goele Pipeleers, Wilm Decré and Jan Swevers
MECO Research Team, Department of Mechanical Engineering, KU Leuven, Belgium

DMMS lab, Flanders Make, Leuven, Belgium
{alejandro.astudillovigoya, joris.gillis, goele.pipeleers, wilm.decre, jan.swevers}@kuleuven.be

Abstract—The repetitive evaluation of computationally
expensive functions in the objective and constraints represents
a bottleneck in the solution of the underlying optimal control
problem (OCP) of nonlinear model predictive controllers (MPC)
for robot manipulators. We address this problem by exploiting
the parallel evaluation of such functions within the execution
of a first-order and a second-order OCP solution algorithm,
such as the proximal averaged Newton-type method for
optimal control (PANOC) and the sequential convex quadratic
programming (SCQP) method, respectively. The use of task
parallelism with multicore executions and data parallelism with
single-instruction-multiple-data (SIMD) instructions is shown to
effectively reduce the solution time of the underlying OCP so
that the satisfaction of real-time constraints in the deployment
of MPC for robot manipulators can be achieved.

Index Terms—Robot manipulator, model predictive control,
parallelization, vectorization, tunnel following

I. INTRODUCTION

The deployment of advanced motion controllers for
nonlinear systems requires the satisfaction of real-time
constraints. For model predictive controllers (MPC), this
implies that the underlying optimal control problem (OCP)
must be solved in a time shorter than the sampling time of the
control system. For highly nonlinear systems, however, the
evaluation of expressions for dynamics and kinematics in the
OCP objective or constraints is computationally expensive and
may represent a bottleneck in the solution time of the OCP.
This is the case for nonlinear MPC of robot manipulators,
where the forward dynamics of the robot are imposed as
equality constraints when torques are set as control inputs.

After transcribing the OCP into a nonlinear program (NLP),
efficient algorithms such as the proximal averaged Newton-
type method for optimal control (PANOC) [1] and the
sequential convex quadratic programming (SCQP) method [2]
can be used to solve such NLP in a shorter time compared
to the widely used interior point (IP) method solver IPOPT
[3] or the sequential quadratic programming (SQP) method
with exact Hessian of the Lagrangian [4]. Nevertheless, the
bottleneck in the evaluation of expressions for dynamics and

*This work has been carried out within the framework of the Flanders
Make SBO project MULTIROB: “Rigorous approach for programming and
optimal control of multi-robot systems” and the FWO project G0A6917N of
the Research Foundation - Flanders (FWO - Flanders). Flanders Make is the
Flemish strategic research centre for the manufacturing industry.

kinematics of the robot manipulator is still present in such
solution algorithms.

A. Approach and Contributions
The use of a prediction horizon with N time steps in the

MPC setting involves numerous evaluations of functions in the
objective and constraints of the OCP. In fact, every function
in (i) the stage objective, i.e., the part of the objective that
is added at each time step, and (ii) the path constraints, i.e.,
constraints that must be satisfied along the whole prediction
horizon, is present N times in the objective (or constraints)
function and must be evaluated the same amount of times for
different arguments or inputs.

In this paper, we propose to exploit the repetitive presence
of functions in the OCP objective and constraints to
parallelize their evaluation and, consequently, to reduce the
OCP solution time. Such parallelization is included within
the automatic code generation feature in the numerical
optimization framework CasADi [5]. This is done without
modifying the NLP solution algorithms themselves nor
their convergence properties. We explore task parallelism,
i.e., multi-core parallelization, and data parallelism, i.e.,
single-instruction-multiple-data (SIMD), to efficiently evaluate
multiple instances of the robot dynamics and kinematics in
a tunnel-following MPC [6], [7] for a robot manipulator,
where the underlying OCP is solved by using (i) the first-
order method PANOC with augmented Lagrangian, and (ii)
the second-order method SCQP. The effect of parallelization
of function evaluations on both methods is also compared.

B. Notation
We denote ⟨v1, · · · , vn⟩ :=

[
v⊤1 · · · v⊤n

]⊤
as the

concatenation of multiple column vectors vi, i ⊂ {1, ..., n},
||v||P :=

√
v⊤Pv as the weighted ℓ-2 norm of v, and 0 as the

zero matrix.

C. Outline
The remainder of the paper is organized as follows. Section

II introduces the tunnel-following MPC problem and the
algorithms used to solve it. In Section III, the methodology for
parallelizing the functions evaluation is presented. Numerical
experiments are reported in Section IV. Section V finally
details some concluding remarks and proposes future work.

II. PROBLEM FORMULATION

This section briefly introduces the tunnel-following NMPC
scheme, presented by van Duijkeren [6], which is the motion
control scheme used in this study. We present the dynamics
of the robot and the constraints imposed over it using the
multiple-shooting method, and then introduce the two NLP
solution algorithms that are evaluated.

A. System Dynamics
Robot manipulators are chains of rigid bodies connected by

joints, which constrain their movement with respect to their
neighbouring bodies. For a manipulator with ndof actuated
joints, i.e., ndof degrees of freedom (dof), its dynamics can
be expressed by means of rigid body dynamics as [8]

M(q)q̈+ C(q, q̇)q̇+G(q) = τ + Jc(q)
⊤f c, (1)

where M ∈ Rndof×ndof , C ∈ Rndof×ndof and G ∈ Rndof

are the joint-space inertia, Coriolis and gravity matrices,
respectively, q ∈ Rndof , q̇ ∈ Rndof , q̈ ∈ Rndof are the
generalized joint position, velocity and acceleration vectors,
τ ∈ Rndof is the generalized joint torque vector, Jc ∈ R6×ndof

is the contact Jacobian, and f c ∈ R6 is the stack of external
forces applied to the robot. Solving (1) for q̈, assuming there
are no external forces affecting the robot, i.e., f c = 0, defines
the forward dynamics (FD) function

q̈ = M−1(τ − Cq̇−G) =: FD(q, q̇, τ). (2)

which can be efficiently computed by using the articulated-
body algorithm [9].

Remark 1: The forward dynamics function FD is highly
nonlinear and its evaluation is computationally expensive.

Let us now introduce the state vector x := ⟨q, q̇⟩ ∈ R2ndof

and the input vector u := τ ∈ Rndof . Based on the definition of
FD, the ordinary differential equation describing the nonlinear
dynamics of the robot is defined as

ẋ = ⟨q̇,FD(q, q̇, τ)⟩ =: ξ(x, u). (3)

For path-following-like motion control, it is useful to
introduce virtual states and inputs that augment the system
dynamics, to allow the optimizer to decide not only where the
end-effector of the robot must be, but also when to be there
[10]. Therefore, we define the path parameter s ∈ T := [0, 1],
which is assumed to have double-integrator dynamics [6].
These dynamics are used to augment the system dynamics
ξ as

˙̂x = ⟨q̇,FD(q, q̇, τ), ṡ, s̈⟩ =: ξ̂(x̂, û), (4)

where x̂ := ⟨q, q̇, s, ṡ⟩ ∈ R2ndof+2 and û := ⟨τ , s̈⟩ ∈ Rndof+1.

B. Multiple Shooting
The continuous dynamics (4) can be discretized for a

sampling time δt ∈ R>0 by means of a numerical integrator
such as the Runge-Kutta fourth-order method described below

k1 = ξ̂(x̂k, ûk), k2 = ξ̂(x̂k + 0.5δtk1, ûk),

k3 = ξ̂(x̂k + 0.5δtk2, ûk), k4 = ξ̂(x̂k + δtk3, ûk),

x̂k+1 = x̂k +
δt
6
(k1 + 2k2 + 2k3 + k4) =: ξd(x̂k, ûk).

(5)

Instead of discretizing (4) as a single simulation along the
prediction horizon N ∈ N+ of an OCP, which would
worsen the nonlinearity of the already highly nonlinear robot
dynamics, such discretization can be performed over N
intervals by using the multiple-shooting method [11]. This is
a direct method that introduces grid state variables Xg :=
{x̂k : k ∈ [0, N]} and grid input variables Ug := {ûk : k ∈
[0, N−1]} as decision variables of the OCP. The trajectory of
x̂k at the end of each interval k will not necessarily coincide
with the trajectory of x̂k+1 at the start of the interval k + 1.
This discontinuity is known as the multiple-shooting gap or
defect, and defines the multiple-shooting equality constraints

x̂k+1 − ξd(x̂k, ûk) = 0, k = 0, . . . , N − 1. (6)

The grid variables Xg and Ug allow the formulation of
N independent dynamic equality constraints (6), one per
discretization interval. This enables the parallel evaluation
of the set of multiple-shooting constraints which, given
the computational complexity of FD, will contribute to the
reduction of the OCP solution time.

C. Tunnel-Following Nonlinear MPC

Unlike path-following MPC, tunnel-following MPC [6], [7]
does not require the position pee(q) ∈ R3 of the end-effector
of a robot manipulator to follow a Cartesian geometric path
pref(s) ∈ R3 exactly. Instead, it allows a certain deviation from
the path within a ρ-neighborhood, i.e., a sphere of radius ρ ∈
R≥0, for every time instant. The union of all ρ-neighborhoods
forms a tunnel around the reference path pref (see Fig. 1).

Fig. 1. Illustration of spheres of radius ρ (ρ-neighborhood) which form the
tunnel around the reference path pref .

The tunnel-following MPC scheme presented in [6] depends
on the following assumption.

Assumption 1: A position reference pref(s) and a path-
velocity reference ṡref(s) are known a priori, while the
end-effector position pee(q) is obtained from the forward
kinematics of the robot.
Tunnel-following MPC imposes a path constraint that sets
an upper bound ρ2 to the squared ℓ-2 norm of the position
error eP(q, s) := pee(q) − pref(s), i.e., imposes a maximum
distance ρ between pee and pref . This constraint, however, can
be relaxed by means of a slack variable lk ∈ R≥0 to guarantee
the feasibility of the solution of the underlying OCP when the

end-effector cannot stay within the ρ-neighborhood. Thus, the
tunnel-following constraint is defined as

||eP(qk, sk)||2 − lk ≤ ρ2, k = 0, . . . , N − 1. (7)

Let us now define the underlying OCP of the tunnel-
following MPC scheme as follows

min
w ∈ W

VN (x̂N) +

N−1∑
k=0

[V (x̂k, ûk) + αlk] (8a)

s.t. x̂0 − χ = 0, (8b)
(6), (8c)
(7), (8d)
ζ(x̂k, ûk) ≤ 0, k = 0, . . . , N − 1, (8e)

where w := ⟨x̂0, û0, l0, · · · ûN−1, lN−1, x̂N ⟩ is the vector of
decision variables in the set W := {w : wmin ≤ w ≤ wmax},

VN (x̂N) := || ⟨eP(qN , sN), sN − 1, x̂N ⟩ ||2P (9)

is the terminal cost with weight matrix P ⪰ 0,

V (x̂k, ûk) := || ⟨eṡ(sk, ṡk), eP(qk, sk), x̂k, ûk⟩ ||2Q (10)

is the stage cost with weight matrix Q ⪰ 0, eṡ(sk, ṡk) :=
ṡk − ṡref(sk) is the time-tracking error, lk are slack variables
that are heavily penalized with a weight α ∈ R≫0, χ is an
estimate of the state vector, and ζ(x̂k, ûk) are general path
constraints. Here, the time-tracking error eṡ(sk, ṡk) is heavily
penalized in V with weight wṡ ≫ 0 to make the system follow
the path-velocity reference ṡref(s) with minimum error, while
the other elements in V are regularization terms with weight
wr : 0 < wr ≪ 1. The term sN−1 is penalized in the terminal
cost with weight wr to create attraction of the state s to its
maximum value smax = 1.

D. Solution of the Optimal Control Problem

Let us now briefly introduce the two NLP solution
algorithms that will be evaluated in this study.

1) PANOC with augmented Lagrangian: Following a direct
optimal control method for parametric optimization, OCP (8)
can be transcribed into an NLP of the type

min
w ∈ W

f(w) (11a)

s.t. g(w,χ) ∈ Z. (11b)

where f(w) and g(w,χ) are nonconvex smooth functions,
and Z is a closed convex set. This NLP can be solved by
using a first-order method like the proximal averaged Newton-
type method for optimal control (PANOC) with augmented
Lagrangian [1], [12]. This method solves an inner optimization
problem with PANOC and applies the augmented Lagrangian
method with an outer iterative procedure.

The NLP (11) is casted into the inner optimization problem

min
w ∈ W

f(w) +
ς

2
dist2Z(g(w,χ) + ς−1λ), (12)

where distZ(v) := infβ∈Z ||β − v|| is the distance between
a vector v and the set Z , λ is the vector of Lagrange

multipliers corresponding to g(w,χ), and ς ∈ R>0 is a
penalty parameter. The problem (12) is then solved by
PANOC using the projected gradient operator and the
forward-backward envelope [13]. The Lagrange multipliers
λ and the penalty parameter ς are updated by the outer
iterative procedure. The interested reader is referred to [1]
for additional information on PANOC and to [12] for more
information on the augmented Lagrangian method used in
the outer iterative procedure.

2) SCQP: Let us introduce a compressed representation of
OCP (8) as the following NLP

min
w

ϕ0(c0(w)) (13a)

s.t. hi(w,χ) = 0, i = 1, ..., nh, (13b)
ϕi(ci(w)) ≤ 0, i = 1, ..., ng, (13c)

where ϕi(ci(w)), i ⊂ {0, . . . , ng}, are convex-over-nonlinear
functions, with a convex outer part ϕi(c) and a nonlinear inner
part ci(w). The sequential convex quadratic programming
(SCQP) method [2] is a variation of the SQP method applied
to NLPs of the type (13), where the exact Hessian of the
Lagrangian BSQP is replaced, for every QP subproblem,
by an approximation BSCQP that (i) ignores the second-
order derivatives of inner nonlinear functions ci(w) in the
objective and constraints, (ii) is cheaper to evaluate, and (iii)
is guaranteed to be positive semidefinite. Such approximation
is computed as

BSCQP
k (w, µ) :=

∂c0
∂w

(w)⊤∇2
cϕ0(c0(w))

∂c0
∂w

(w)

+

ng∑
i=1

µi
∂ci
∂w

(w)⊤∇2
cϕi(ci(w))

∂ci
∂w

(w), (14)

where µi are the Lagrange multipliers corresponding to the
inequality constraints (13c). For a full discussion on the SCQP
method, the reader is referred to [2].

III. PARALLELIZATION OF FUNCTIONS EVALUATION

In this section, we introduce the methodology used to
parallelize the evaluation of functions in the objective and
constraints within the solution of the OCP (8).

Since the multiple instances of expressions V (x̂k, ûk) and
lk in (8a), x̂k+1 − ξd(x̂k, ûk) in (8c), and ||eP(qk, sk)||2 − lk
in (8d) are independent from each other along the prediction
horizon, the optimization framework used to construct and
solve OCP (8) can be instructed to parallelize the evaluation
of such instances in up to N processing units, instead of
evaluating them sequentially. In this work, we use CasADi
[5] as numerical optimization and algorithmic differentiation
framework (i) to define the expressions needed to construct
the OCP (8), (ii) to differentiate such expressions by means of
algorithmic differentiation, and (iii) to generate self-contained
C-code of the expressions and their derivatives, which can then
be compiled for efficient evaluation.

A. Task parallelism

Many computers today have powerful processors with
multiple cores, which can be leveraged to execute multiple
tasks concurrently using task parallelism. This form of
parallelization executes multiple functions (or multiple
instances of one function) simultaneously in separate cores.

CasADi implements a map construct that can be applied
to expressions that need to be evaluated multiple times with
different arguments. To perform such evaluations in multiple
cores, the map construct makes use of the Open Multi-
Processing API (OpenMP) to instruct task parallelization
to such expressions and to extend such instruction to the
evaluation of their derivatives. For a CasADi function F that is
needed to be evaluated N times, task parallelism is instructed
by using the command F = F.map(N, "openmp").

B. Data parallelism

Additional to task parallelism, some modern processors
allow an additional type of parallelization within each of their
cores. This type of parallelization is known as data parallelism,
vectorization or single-instruction-multiple-data (SIMD), and
relies on internal processing units within a core to evaluate
the same expression or function on multiple data arguments
simultaneously. This indicates that data parallelism can be used
to parallelize the evaluation of functions in OCP (8).

Data parallelism is generally applied in modern computers
by means of SIMD instructions sets. These instruction sets
are, in turn, based on the so-called AVX registers, which
can perform simultaneous operations on multiple data. These
registers can hold 128 bits, 256 bits, or 512 bits of data
depending on the SIMD instruction set available for the
processor (SSE4, AVX2 or AVX512, respectively).

Modern compilers, e.g., GCC and ICC, automatically
identify expressions that are suitable for vectorization in the
generated C-code [14]. However, many of such expressions are
ignored by the compiler since their data arguments lack two
conditions that allow vectorization: (i) data structure alignment
and (ii) space locality of data. Data structure alignment refers
to the placement in memory of each argument of an expression
such that its base address is a multiple of the AVX register
size. In addition, preserving the spatial locality of the data
refers to locating the initial element of successive data arrays
in contiguous memory locations, i.e., preserving a unit-stride.

We have explicitly dealt with the satisfaction of the two
aforementioned conditions by (i) inserting padding to the data
argument structures to impose an element size equal to the size
of the AVX register used, and (ii) reordering the arguments of
expressions to preserve unit-stride during execution. Without
these implementations, automatic vectorization in the compiler
would not recognize some functions as parallelizable with
AVX2 or AVX512 instructions, and would rely mainly on
SSE4 instructions to vectorize operations were possible.

The map construct in CasADi also allows to evaluate an
expression multiple times in a serial or sequential manner,
i.e., using just one core. This can be instructed by using the
command F = F.map(N, "serial").

However, we have extended the serial option of map to use
OpenMP to instruct the use of SIMD in the evaluation of
multiple instances of an expression within one core.

IV. NUMERICAL EXAMPLE

The proposed methodology has been implemented in
CasADi1 and tested in a simulated environment. The tests were
executed on a PC running Ubuntu 18.04 with a 10-cores Intel
i9-9900X CPU. This CPU is compatible with the SSE4, AVX2
and AVX512 instruction sets. All code-generated functions
are compiled using GCC 9.1.0 with compilation flags -O3,
-march=native and -fopenmp unless stated otherwise.

Efficient CasADi functions for forward dynamics FD and
kinematics pee of the robot were generated with the interface
[15] of the rigid-body dynamics library Pinocchio [16].

The tunnel-following nonlinear MPC is applied to a 7-dof
Kinova Gen3 robot following a lemniscate-shaped path. We
use a prediction horizon of N = 16, a sampling time δt =
0.005 s, a tunnel radius ρ = 0.01 m, a maximum ṡref(s) of
0.1, and weights α = 100, wr = 10−3, and wṡ = 10.

A. Evaluation of robot dynamics

Let us first evaluate the effects of parallelization on one of
the most computationally expensive functions used to define
OCP (8), the multiple-shooting constraints (6). As already
mention in Section II, by introducing grid state and input
variables the multiple-shooting method defines N = 16
independent instances of the expression x̂k+1 − ξd(x̂k, ûk),
which must be evaluated for 16 pairs of arguments (x̂k, ûk).

Remark 2: As baseline for comparison, we execute the
generated code without the explicit instruction of any type
of parallelization with the map function, and without assisting
the satisfaction of data structure alignment and space locality
of data. This baseline is labeled as NO-PAR hereafter.

In Table I, we show the average evaluation time
of the group of 16 instances of (6) instructed to be
evaluated using (i) task parallelism with 2, 4 and 8
cores, and (ii) data parallelism using the compilation flag
-mprefer-vector-width=SIZE, with SIZE=128 for
SSE4, SIZE=256 for AVX2 and SIZE=512 for AVX512
vectorization.

The evaluation of FD (2) requires evaluating the sine and
cosine of the joint positions qj , j ⊂ {1, ..., ndof}. Due to
the compilation flag -O3, this evaluation is transformed by
the compiler into a call to the sincos(qj) subroutine, which
performs the operations sin(qj) and cos(qj) simultaneously.
However, the sincos subroutine is not automatically vectorized
by the GCC compiler. Therefore, for data parallelism we
also use the compilation flag -fdisable-tree-sincos
to disable the conversion of {sin(qj), cos(qj)} into a call to
sincos(qj).

As shown in Table I, data parallelism speeds up the
evaluation of the instances of (6) by a factor greater and
closer to the theoretical speedup than the actual speed-
up achieved with task parallelism. An explanation for the

1Source code available at https://github.com/casadi/casadi/tree/vectorize3

TABLE I
AVERAGE EVALUATION TIME OF A GROUP N = 16 INSTANCES OF THE

MULTIPLE-SHOOTING CONSTRAINTS (6) FROM 106 SAMPLES.

Parallelization method Theoretical speed-up Evaluation time
(Actual speed-up)

NO-PAR − 25.102 µs (−)
2 cores 2 14.345 µs (1.75)
4 cores 4 8.995 µs (2.79)
8 cores 8 6.256 µs (4.01)
SSE4 2 14.197 µs (1.77)
AVX2 4 6.873 µs (3.65)

AVX512 8 3.761 µs (6.67)

difference between actual and theoretical speed-up would
involve the presence of communication overhead in task-
parallel executions and the fact that SIMD instructions
are affected by frequency scaling or downclocking, i.e.,
the maximum operation frequency of the core is reduced
while executing SIMD instructions [17]. The communication
overhead in task-parallel execution would also explain the
poor performance achieved with 4 and 8 cores, since such
overhead cannot be neglected for executions in the order of
the microseconds.

B. Solution of the optimal control problem

As we mentioned previously in Section III, we instructed
CasADi to parallelize the N independent instances of the
expressions V (x̂k, ûk) and lk in (8a), x̂k+1 − ξd(x̂k, ûk) in
(8c), and ||eP(qk, sk)||2− lk in (8d). In OCP (8), the terminal
cost VN (x̂N) in (8a) and the initial state constraint (8b) cannot
be parallelized. However, they are not as computationally
expensive as the functions that are instructed to be parallelized
and we assume that the effect of not evaluating these functions
in parallel is negligible.

According to Amdahl’s law [18] applied to parallel
computing, the theoretical speed-up that can be achieved
in a process with parallel executions is upper-bounded by
the percentage of the process that cannot be parallelized.
Therefore, let us first compare the NLP solution methods
described in Section II (PANOC and SCQP), besides the
widely used SQP and IP methods, in terms of (i) the
percentage of time required to evaluate the functions in
the OCP, and (ii) the average multiple-shooting constraint
violation along the execution of the tunnel-following task.
For this test, we use the NO-PAR baseline with no explicit
parallel instructions. Only one quadratic subprogram is solved
for every SCQP execution, following the real-time iteration
scheme. Note that the IP solver IPOPT is not suitable for code-
generation. Therefore, the results shown for solver evaluation
time in IP are not obtained using the compilation flags
mentioned above.

Table II presents the results of the comparison of the
NLP solution methods. The data in this table confirms that
PANOC and SCQP have a lower solution time compared to
the SQP method with exact Hessian and the IP method, being
PANOC the method that would benefit the most from parallel

evaluation of the functions, since a greater percentage of its
solution time is spent on functions evaluation. Nevertheless,
one major drawback of PANOC is the average multiple-
shooting constraint violation of 4.206 × 10−3. This indicates
that multiple-shooting constraints are not properly satisfied
with PANOC for this highly nonlinear system, which restricts
its implementation on a real robot.

The resulting path of the end-effector of the Kinova Gen3
robot achieved during the simulated task is shown in Fig. 2.

Fig. 2. Comparison of the path-followed by the end-effector pee and the
reference path pref during the tunnel-following task solved with SCQP. The
results obtained with PANOC, SQP and IP are not shown for the sake of
simplicity since they overlap the resulting pee of SCQP.

Figure 3 shows the excursion of the ℓ-2 norm of the position
error along the simulated task using PANOC and SCQP. What
can be clearly seen in this figure is the satisfaction of the
tunnel-constraints ∀ s ∈ T without requiring the slack variable
lk to be greater than zero. The slack variable lk would become
important for experiments with a lower tunnel radius ρ and
a greater maximum path-velocity reference ṡref . However,
PANOC could not solve OCP (8) with such modified values.

Fig. 3. Excursion of the ℓ-2 norm of eP along the tunnel-following execution.
Errors obtained with IP and SQP are not shown in the figure for the sake of
simplicity since their difference with respect to the plots already shown is
negligible.

Let us now evaluate the application of task and data
parallelism on the evaluation of functions in PANOC and
SCQP. Figure 4 illustrates the different solution times achieved
for PANOC and SCQP with (i) no parallelization of the
functions evaluation (NO-PAR), (ii) task parallelization with
2 cores, 4 cores and 8 cores, and (iii) data parallelization with
SSE4, AVX2 and AVX512 instructions.

What stands out from this figure is the speed-up achieved
with task parallelism on PANOC, with a maximum of 3.29
by using 8 cores. This speed-up, however, may have been
increased by automatic vectorization (with SSE4) of the code
executed in each core. The SCQP method also benefits from
task parallelism, but to a lesser extent, as anticipated from
Table II. The speed-up achieved with 4 and 8 cores is also

TABLE II
COMPARISON OF THE NLP SOLUTION METHODS APPLIED TO THE TUNNEL-FOLLOWING MPC PROBLEM WITHOUT EXPLICIT PARALLELIZATION

Solution
method

Solution
time

Function
evaluation time

Solver
evaluation time

Average of the multiple-shooting
constraint violation

PANOC 5.079 ms 4.627 ms (91.11%) 0.452 ms (8.89%) 4.206× 10−3

SCQP 5.157 ms 2.344 ms (45.46%) 2.813 ms (54.54%) 3.217× 10−6

SQP 25.140 ms 22.293 ms (88.68%) 2.847 ms (11.32%) 1.838× 10−7

IP 1036.711 ms 968.196 ms (93.39%) 68.515 ms (6.61%) 0.422× 10−7

Fig. 4. Comparison of the solution times achieved with task and data
parallelism over the evaluation of functions of OCP (8) solved with PANOC
and SCQP. The speed-up relative to the corresponding NO-PAR execution is
shown on top of each bar.

affected by communication overhead, which limits the benefit
obtained form task parallelism for this test. Data parallelism
does not achieve the same performance as task parallelism,
with a maximum speed-up of 1.55 with PANOC using AVX2.
This is justified by the frequency scaling of the processor
during SIMD executions, which is more noticeable with
AVX512 instructions. It should be noted that such frequency
scaling affects not only the evaluation of the functions that
are instructed to be parallelized, but also all other processes
running on the processor, including the evaluation of (i) the
rest of the functions in the OCP, (ii) their derivatives and
(iii) the solver itself, which slows down the OCP solution.
Nevertheless, these results suggest that a combination of task
and data parallelism can be exploited to further extend the
benefits of parallelization in PANOC and SCQP.

V. CONCLUSIONS

This paper showed the benefits of exploiting task and data
parallelism in the evaluation of functions for the real-time
implementation of nonlinear MPC of robot manipulators. We
assisted automatic vectorization by modifying data structures
in CasADi to ease AVX2 and AVX512 implementations
on code-generated functions. A first-order solution method
(PANOC) and a second-order method (SCQP) were compared
against the commonly used SQP and IP methods, showing a
speed-up of up to 3.29x for PANOC and 1.51x for SCQP, both
achieved with task parallelism on 8 cores with respect to the
nonparallelized implementation. Future work will investigate
the simultaneous use of task and data parallelism on function
evaluation, as well as the application of the results of this work
in experiments with a real robot.

REFERENCES

[1] L. Stella, A. Themelis, P. Sopasakis, and P. Patrinos, “A simple and
efficient algorithm for nonlinear model predictive control,” in 2017 IEEE
56th Annu. Conf. Decis. Control. IEEE, dec 2017, pp. 1939–1944.

[2] R. Verschueren, N. van Duijkeren, R. Quirynen, and M. Diehl,
“Exploiting convexity in direct Optimal Control: a sequential convex
quadratic programming method,” in 2016 IEEE 55th Conf. Decis.
Control, dec 2016, pp. 1099–1104.

[3] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Math. Program., vol. 106, no. 1, pp. 25–57, 2006.

[4] R. B. Wilson, “A simplicial method for convex programming,” Ph.D.
dissertation, Harvard University, 1963.

[5] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: a software framework for nonlinear optimization and optimal
control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36, mar 2019.

[6] N. Van Duijkeren, “Online Motion Control in Virtual Corridors - For
Fast Robotic Systems,” Ph.D. dissertation, KU Leuven, 2019.

[7] F. Debrouwere, W. Van Loock, G. Pipeleers, and J. Swevers, “Optimal
Tube Following for Robotic Manipulators,” IFAC Proc. Vol., vol. 47,
no. 3, pp. 305–310, 2014.

[8] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduction
to Robotic Manipulation, 1st ed. CRC Press, 1994.

[9] R. Featherstone, Rigid Body Dynamics Algorithms. Boston, MA:
Springer US, 2008.

[10] T. Faulwasser and R. Findeisen, “Nonlinear Model Predictive Control
for Constrained Output Path Following,” IEEE Trans. Automat. Contr.,
vol. 61, no. 4, pp. 1026–1039, apr 2016.

[11] H. Bock and K. Plitt, “A Multiple Shooting Algorithm for Direct
Solution of Optimal Control Problems,” IFAC Proc. Vol., vol. 17, no. 2,
pp. 1603–1608, jul 1984.

[12] P. Sopasakis, E. Fresk, and P. Patrinos, “Open: Code generation for
embedded nonconvex optimization,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 6548–6554, 2020.

[13] A. Themelis, L. Stella, and P. Patrinos, “Forward-Backward Envelope
for the Sum of Two Nonconvex Functions: Further Properties and
Nonmonotone Linesearch Algorithms,” SIAM J. Optim., vol. 28, no. 3,
pp. 2274–2303, jan 2018.

[14] V. Porpodas and T. M. Jones, “Throttling Automatic Vectorization: When
Less is More,” in 2015 Int. Conf. Parallel Archit. Compil. IEEE, oct
2015, pp. 432–444.

[15] A. Astudillo, J. Carpentier, J. Gillis, G. Pipeleers, and J. Swevers,
“Mixed Use of Analytical Derivatives and Algorithmic Differentiation
for NMPC of Robot Manipulators,” in Model. Estim. Control Conf.,
Austin, Texas, 2021.

[16] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The Pinocchio C++ library : A fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in 2019 IEEE/SICE Int. Symp. Syst. Integr. IEEE,
jan 2019, pp. 614–619.

[17] M. Gottschlag and F. Bellosa, “Reducing AVX-Induced Frequency
Variation With Core Specialization,” in 9th Work. Syst. Multi-core
Heterog. Archit., Dresden, Germany, 2019.

[18] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proc. spring Jt. Comput. Conf. -
AFIPS ’67. New York: ACM Press, 1967, pp. 483–485.

