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Abstract. Due to the simplicity and performance of zk-SNARKs they are widely used
in real-world cryptographic protocols, including blockchain and smart contract systems.
Simulation Extractability (SE) is a necessary security property for a NIZK argument to
achieve Universal Composability (UC), a common requirement for such protocols. Most
of the works that investigated SE focus on its strong variant which implies proof non-
malleability. In this work we investigate a relaxed weaker notion, that allows proof ran-
domization, while guaranteeing statement non-malleability, which we argue to be a more
natural security property. First, we show that it is already achievable by Groth16, arguably
the most efficient and widely deployed SNARK nowadays. Second, we show that because
of this, Groth16 can be efficiently transformed into a black-box weakly SE NIZK, which is
sufficient for UC protocols.

To support the second claim, we present and compare two practical constructions, both of
which strike different performance tradeoffs:

– Int-Groth16 makes use of a known transformation that encrypts the witness inside the
SNARK circuit. We instantiate this transformation with an efficient SNARK-friendly
encryption scheme.

– Ext-Groth16 is based on the SAVER encryption scheme (Lee et al.) that plugs the
encrypted witness directly into the verification equation, externally to the circuit. We
prove that Ext-Groth16 is black-box weakly SE and, contrary to Int-Groth16, that its
proofs are fully randomizable.

Keywords: zk-SNARKs, Simulation Extractability, UC Security

1 Introduction

Succinct non-interactive arguments of knowledge (SNARK) have revolutionized the deployment
of zero-knowledge proofs, particularly in the blockchain and cryptographic currency space [BCG+14,
KMS+16, KKK20, BCG+20, SBG+19]. The ready availability of cryptographic libraries imple-
menting SNARKs has also inspired numerous other applications [NT16, DFKP16]5.

Due to its exceptional performance and simplicity, currently the most widely deployed SNARK
is Groth16 [Gro16]. In this work, we identify an important gap in the security analysis of Groth16,
namely the lack of study into the limits of malleability (and non-malleability) of Groth16.
This is surprising considering the importance of non-malleability in distributed settings such
as blockchain and the popularity of Groth16 for practical applications.

5 See also the application chapter of [ZKP19].
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Arguably, the strongest extraction and non-malleability property for SNARK systems is
simulation-extractability (SE) [Sah99, DDO+01], a security notion that extends knowledge-
soundness (KS) by giving the adversary access to the simulation oracle. One of the important
properties of this notion is that its straight-line extractable, black-box variant is necessary to
achieve universally composable (UC) security [Can01] for non-interactive zero-knowledge (NIZK)
proof systems, as shown by [CLOS02, GOS06, Gro06]. This is an important practical concern
since applications employing SNARKs often use the UC framework due to its flexibility and
expressive power [KMS+16, KKKZ19, KKK20]. Moreover, SE is needed in game-hopping style
proofs [Sho04] in which one game hop introduces the simulator and a subsequent game hop relies
on extraction [KMS+16, CDD17].

Simulation-extractability comes in two flavors: the adversary against the stronger flavor is
required to produce a proof that differs from any simulated proof that the adversary obtained
from the simulator. In this work, we focus on the weaker flavor [KZM+15], that allows for a
limited malleability of proofs but requires the adversary to produce a proof for a statement
that differs from any of the statements queried from the simulator. Weak SE and strong SE of
proof systems are in analogy to chosen message attack (CMA) and strong CMA unforgeability
of signatures.

Another important parameter of a SE notion is whether it supports white-box (WB) or black-
box (BB) extraction. A well-known impossibility result [GW11] states that SNARKs cannot be
proven secure under falsifiable assumptions. In practice, the non-falsifiability of the assumptions
used for SNARKs comes from their white-box nature; that is, they imply some knowledge of
the adversary’s internals. This prevents proving black-box extraction (and black-box SE), which
requires extracting from the adversary only using its “input/output” interface. Since precisely
this notion is required for UC security, in practice compilers lifting zk-SNARKs to black-box
SE are used [KZM+15, AB19, Bag19], and, crucially, their efficiency can benefit from a stronger
(white-box) property of the input SNARK as we show in this work.

Although black-box strong SE is sometimes a desirable property, weak SE is sufficient for
many UC applications, for instance in Hawk [KMS+16], as argued in [KZM+15]. Hawk uses
SE NIZKs directly as a raw primitive (without employing a functionality), and it suggests to
use non-succinct strong SE NIZK, since no other candidates were known at that time. Kosba
et al. [KZM+15] point out that weak SE NIZK can be used instead. We also note that weak
SE is sufficient for the SNARKs to signatures of knowledge (SoK) compiler of [GM17] that
embeds a hash of the message into the statement proven. Thus applications employing SoK, such
as [BMRS20], can also benefit from our work. Note that in weak SE it is the statement rather
than the proof that cannot be mauled. The resulting SoK satisfies CMA unforgeability.

Our contributions. Our results are twofold. First, we show that Groth16, as described in the
literature and deployed in practical applications, is already white-box weak SE.

Surprisingly, this was not known before. Proof malleability was noted by [GM17] as an ob-
stacle for proving the strong SE property for Groth16, which resulted in them constructing a
new non-malleable SNARK. Allowing proof randomization in the definition resolves the issue
differently by proving a security property for the original system that lies in strength between
knowledge soundness and strong SE. Additionally, we show that only a specific type of proof
malleability is possible and that rerandomized proofs have the same distribution as fresh proofs
of the same statement. We show in the algebraic group model (that we state as an assumption)
that the extractor can either obtain the witness or point to the unique simulated proof that was
randomized to obtain the proof produced by the adversary. Thus, even if the adversary queries
multiple proofs for the same statement, it cannot combine them into a new proof of the same
statement, which is the main technical challenge in proving white-box weak SE.



Another Look at Extraction and Randomization of Groth’s zk-SNARK 3

As our second contribution, we give two optimized constructions for black-box weak SE: Int-
Groth16 and Ext-Groth16. Int-Groth16 is based on the (strong) WB-to-BB SE compiler of [Bag19].
It adds a public key of a cryptosystem to the CRS and a ciphertext containing encryption
of the witness to the proof. It then employs a SNARK to prove an extended statement to
ensure that the witness is correctly encrypted. We show that this compiler can be used for weak
WB-to-BB conversion, and therefore instantiated with the more efficient Groth16.6 We optimize
the encryption scheme and employ a SNARK-friendly variant of ElGamal with randomness
reuse [Kur02]. A noteworthy technical detail is that the witness needs to be mapped to SNARK-
friendly elliptic curve points. The downside of this construction is that even state-of-the-art
SNARK-friendly public-key operations incur a substantial overhead in the circuit size.

Ext-Groth16 uses a verifiable encryption technique of Lee et al. [LCKO19] to overcome this
limitation. We again encrypt the witness, but with a different encryption scheme in which re-
sulting ciphertexts enter Groth16 verification equation directly and thus have almost no effect
on the circuit structure. To show Ext-Groth16 secure, we need to directly prove black-box weak
simulation-extractability, which we do by a reduction to white-box weak SE of Groth16. The main
technical challenge is, again, to show which transformations exactly are available to the adversary.
Additionally, we prove that the zero-knowledge property of Ext-Groth16 can rely on the standard
Decisional Diffie-Hellman assumption rather than the novel assumption stated in [LCKO19].

To compare the efficiency of these two constructions, we estimate CRS and proof size, prover
time, and verifier time as a function of the encrypted witness size. Our results show that both
constructions have low overhead compared to the commonly used generic transformations. In
particular, Ext-Groth16 leads to almost no increase in CRS size and prover time, while resulting
in slightly bigger proofs and verification time.

Related Work. Simulation-extractability is relevant for both CRS-based and Random-Oracle
(RO) based NIZKs. Faust et al. [FKMV12] show that NIZKs obtained from Σ-protocols using
the Fiat-Shamir heuristic satisfy simulation-extractability in the RO model. In this work we focus
on simulation-extractability of CRS-based NIZKs, and on the Groth16 SNARK in particular.

White-box constructions. White-box SE SNARKs have been discovered only recently. Groth and
Maller [GM17] presented the first construction in 2017, targeting the language of Square Arith-
metic Programs (SAPs). They also proved a lower bound of three group elements for the proof
size and two verification equations for all non-interactive linear proof (NILP) based SNARKs,
which covers many previously known pairing-based SNARKs. Weak SE allows us to go below
this bound with a single verification equation.

Bowe and Gabizon [BG18] give a RO-based variant of Groth16 for Quadratic Arithmetic
Programs (QAPs) that is simulation-extractable, and has five group elements and two verification
equations. Lipmaa [Lip19] presents a different technique that allows to construct SE SNARKs
for QAP and the three other arithmetization techniques from the QAP family (namely, SAP,
SSP, and QSP). Kim, Lee, and Oh [KLO19] present a SE SNARK for QAP with three elements
but just a single verification equation, avoiding the lower bound of Groth and Maller by using a
RO in addition to a knowledge extraction assumptions and a CRS.

Black-box transformations. A generic transformation that makes ordinary NIZKs black-box SE
has been known at least since [DDO+01]. Along this direction, Kosba et al. [KZM+15] extend,
analyse, and optimize this transformation technique — they present three transformations; two
of which build weak SE NIZKs, while the third builds a strong SE NIZKs. Atapoor and Bagh-
ery [AB19] adapt Kosba et al.’s work directly to Groth16 and evaluate the efficiency of the

6 In fact, even weak simulation soundness without extractability is sufficient for the compiler.
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resulting strong SE argument. Baghery [Bag19] analyses a transformation from white-box SE to
black-box SE, and instantiates it with the strong SE SNARK by Groth and Maller. We show
that this technique also works for lifting white-box weak SE to black-box weak SE. Other generic
transformations take into account CRS subversion and updatability [ARS20, BS20].

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N. We say that a function f : N → R is
negligible, if for a big enough λ, f < 1/p(λ) for all polynomials p(λ). We write g(λ) = negl(λ)
to mean that g is some negligible function. For a distribution X we denote random sampling by

x
$←− X, and when this notation is used with a finite set S, x

$←− S denotes uniform sampling
from S. We write vectors in bold, and write a · b for the inner product of two vectors a and b.

When working with polynomials, we generally use upper case letters for indeterminates as
X,Y,∆,Xγ , and lower case for concrete values x, y, δ, γ. We use vector notation to denote a list of
formal variables, so for X = X1, . . . , Xn, we write P (X) ∈ F[X1 . . . Xn] = F[X] for a polynomial
in these variables, and for a x ∈ Fn, P (x) will denote the polynomial evaluation P (x1 . . . xn).

PPT stands for (uniform) probabilistic polynomial-time. An execution transcript transP of
an algorithm P contains P’s private coins, inputs and outputs, including interactions with any
oracles that it is provided with. Having access to transP implies white-box access to P.

2.1 Bilinear Groups

Let (G1,G2,GT , e(·, ·), p) be a Type III7 bilinear group of prime order p with generators G,H,
and e(G,H) for the three groups respectively. The pairing e : G1×G2 → GT is a bilinear map.
We will write G1, G2, and GT additively. It will be convenient to use square brackets notation
to represent group elements by specifying their exponents: [a]ι , [a]Gι. We will denote the
(exponent-level) pairing for the square brackets notation as [a]1 • [b]2 , e([a]G, [b]H). When a is
a vector of values ai ∈ Zp, we will overload the square brackets notation, and denote a vector of
[ai]ι by [a]ι. In the same way we will overload [{a, b, c, . . .}]ι = {[a]ι, [b]ι, [c]ι, . . .} for sets. When
set or vector A contains elements from several groups, we will denote it by combining all the
group indices in the subscript, e.g. [A]1,2,T if A contains elements from all the three groups.

2.2 Circuit Form and Quadratic Arithmetic Programs

LetR be a relation for an NP language L, such that (φ,w) ∈ R ⇔ φ ∈ L. WhenR is implemented
as an arithmetic circuit C, we assume it to be of the following form. The input wires are split
into: l public input wires corresponding to φ1, . . . , φl, and lw private input wires, corresponding
to w1, . . . , wlw . We denote the total number of wires by m, and thus the remaining m − l − lw
wires are called intermediate — they can be computed from φ and w.

A quadratic arithmetic program (QAP, [GGPR13]) for the circuit C consists of the quo-
tient polynomial t(x) of degree n, and three sets of polynomials {ui(X)}mi=0, {vi(X)}mi=0 and
{wi(X)}mi=0 of degree n− 1. A particular QAP assignment {ai}mi=0 contains assignments to the
circuit wires, and a0 = 1 is a fixed parameter. We will refer to the sets {φi}∪{wi} and {ai} inter-
changeably when there is no risk of confusion, with φ0 corresponding to a0. The assignment {ai}
satisfies the QAP if and only if (

∑m
i=0 aiui(X))(

∑m
i=0 aivi(X)) − (

∑m
i=0 aiwi(X)) = h(X)t(X)

for some h(X) of degree n− 2. That is, t(x) divides the left hand side of the equation.

7 Asymmetric, with G1 6= G2 and without any efficiently computable nontrivial homomorphism in either
direction between G1 and G2, according to the classification of [GPS06].
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As QAP relations are defined over a finite field that determines suitable bilinear groups,
they need to be compatible with the desired security level λ. Our asymptotic security notions
are all quantified over λ-compatible relations Rλ. In practice SNARK systems use very specific
pre-defined groups for a fixed security level. For these reasons we elide most of these details in
our formal modelling and typically write R instead of Rλ.

2.3 Non-interactive Zero-knowledge Arguments

We introduce security notions for non-interactive zero-knowledge (NIZK) arguments that we
use throughout the paper. In particular, we define proof rerandomization and different fla-
vors of simulation-extractability. In the following, NIZK denotes a tuple of efficient algorithms
(Setup,Prove,Verify,Sim) unless specified otherwise.

We elide standard definition of knowledge soundness (KS) and zero-knowledge and a weaker
simulation-soundness notion that is only used by our compiler in Section 4.1. They can be found
in Appendix A.

Weak simulation extractability (SE) is an extension of knowledge soundness where adversary
can query simulated proofs (even for false statements) and finally has to come up with a statement
and a proof for which an extractor cannot recover a witness. Moreover, the statement cannot be
any of the statements queried from the oracle. First, we give a definition for white-box version
which allows there to be a different extractor for each adversary.

Definition 1 (White-box Weak Simulation-Extractability, [KZM+15]). We say that
NIZK is white-box weak SE if for any PPT adversary A there exists a polynomial time extractor
XA such that for Rλ,

Pr

[
(σ, τ)← Setup(Rλ); (φ, π)← ASσ,τ (σ);

w ← XA(transA)
:
Verify(σ, φ, π) = 1∧
(φ,w) /∈ Rλ ∧ φ /∈ Q

]
= negl(λ),

where Sσ,τ (φ) is a simulator oracle that calls Sim(σ, τ, φ) internally, and also records φ into Q.

The important distinction between this notion and strong SE lies in the last condition in the
security game. Strong SE requires (φ, π) /∈ Q, where S records pairs of queried instances and
simulated proofs. If NIZK is randomizable, A can just pass re-randomized simulated proof for an
instance it does not know a witness of and win the strong SE game. This is forbidden, thus the
strong SE scheme must be non-malleable. Honest proofs are also non-randomizable, otherwise
zero-knowledge would not hold. Weak SE relaxes this non-malleability requirement by allowing
to produce π′ 6= π for the simulated (and thus also real) proof π.

The black-box variant of weak SE specifies the existence of a single extractor that works for
all adversaries.

Definition 2 (Black-box Weak Simulation-Extractability, [KZM+15]). We say that NIZK =
(Setup,Prove,Verify,Sim,Ext) is black-box weak SE if for any PPT adversary A and Rλ,

Pr

[
(σ, τ, τext)← Setup(Rλ);

(φ, π)← ASσ,τ (σ);w ← Ext(σ, τext, φ, π)
:
Verify(σ, φ, π) = 1∧
(φ,w) /∈ Rλ ∧ φ /∈ Q

]
= negl(λ),

where Sσ,τ (φ) is a simulator oracle that calls Sim(σ, τ, φ) internally, and also records φ into Q.

Proof malleability can also be a beneficial security property. We call the proof system for
the relation R randomizable or proof malleable, if there exists a (non-trivial) PPT procedure
Rand such that Pr[Verify(σ, φ,Rand(π))] = 1 for all honestly generated proofs π for σ and φ. The
notion of proof rerandomization we use is similar to [BCC+09] and the ciphertext rerandomization
in [LCKO19]:
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Definition 3 (Proof Rerandomization). A proof system is rerandomizable with respect to
relation Rλ and randomization transformation Rand, if for all (φ,w) ∈ Rλ, all σ output by
Setup(Rλ) and all π such that Verify(σ, φ, π) = 1: {Prove(σ, φ, w)}λ = {Rand(σ, φ, π)}λ, where
the randomness is over the random variables used in Prove and Rand.

2.4 Algebraic Modelling and Assumptions

Following [FKL18, Lip19], we say that the algorithm A is algebraic, if there is a way to represent
any group element it returns using elements it has seen before, specifically as a linear combination
of these elements with known (extracted) coefficients. Security against algebraic adversaries can
be formalized either as a standard model white-box knowledge-extraction assumption [BV98,
PV05, Lip19], or by defining a separate cryptograpic model as done in the algebraic group
model (AGM) [FKL18]. We are following the extraction assumption style from [Lip19], without
considering the stronger hashed version that additionally allows A to sample random elements
in G without knowing their exponents.

Definition 4 (Algebraic Algorithm, [Lip19]). A PPT algorithm A is algebraic with respect

to a cyclic group Gι of prime order p, if there exists a polynomial time extractor X alg
A returning

a coefficients matrix K, such that for all m and all efficiently sampleable distributions D over
(Z∗p)m,

Pr
[
σ

$←− Dλ; e
$←− A([σ]ι);K ← X alg

A (transA) : e 6= [Kσ]ι

]
= negl(λ).

It is easy to see how this definition extends to the asymmetric bilinear groups (X alg
A should

return K with m1 +m2 rows, and (e1 e2)T =
[
K(σ1 σ2)T

]
1,2

), and to the case when A obtains

elements from an oracle (transA captures communication with it). That means that in the sound-
ness and knowledge soundness games, an algebraic adversary A gets only CRS elements as an
input, and in the simulation-based definitions A additionally sees the simulated proof elements.

In proofs with algebraic adversaries, we use the following variant of the discrete logarithm
assumption [FKL18].

Definition 5 ((q1, q2)-Discrete Logarithm Assumption). Let (G1,G2, ·, ·, p) be a Type III
bilinear group. We say that (q1, q2)-dlog holds if for all PPT A,

Pr
[
x

$←− Z∗p; z
$←− A([x, . . . , xq1 ]1, [x, . . . , x

q2 ]2) : x = z
]

= negl(λ).

Wep present a lemma which intuitively shows that in a typical SNARK soundness proofs
against algebraic adversaries, one can view the verification equation as a polynomial equality
test where trapdoors are substituted by indeterminates.

We assume a two-step sampling procedure Sλ = (Dλ,Setupλ), where an effectively sampleable
distribution Dλ defines a set of trapdoors τ ∈ (Z∗p)n, and a polynomial time deterministic
procedure Setupλ(τ) generates elements in G1 and G2 as polynomials of τ . Let T = T1, . . . , Tn
be a set of formal variables corresponding to the trapdoors. This setup models CRS generation,
that is Setupλ constructs two sets of elements σ1 and σ2, where every σι,i = Pι,i(τ ) for some set
of polynomials {Pι,i(T )}ι,i.

Lemma 1 (Algebraic Verification Satisfiability). Let E = (E1,1, . . . , E1,m1
, E2,1, . . . , E2,m2

)
be a vector of formal variables in Zp, where Eι,i represents an exponent value of some [Eι,i]ι ∈ Gι.
Let V (E) be a pairing equation, expressed in the GT exponent8.

8 That is, V (E) =
∑
i Γit1,it2,i for tι,i being either some Eι,i or a constant from Z∗p, and Γi ∈ Z∗p. This

corresponds to the base group elements pairing equation
∏
i e(z1,i, z2,i)

Γi = 1 with zι,i being either
variable or constant group elements [tι,i]ι.
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For all algebraic PPT A, and all two-step sampling procedures Sλ with trapdoor variables T :

Pr

[
τ

$←− Dλ; (σ1 σ2)← Setupλ(τ ); [e]1,2
$←− A([σ1]1, [σ2]2);

K ← X alg
A ([σ1]1, [σ2]2, transA)

:
V (e) = 0 ∧

V
(
K(Setupλ(T ))

)
6= 0

]
= negl(λ)

assuming (d1, d2)-dlog holds, where dι = maxi(deg(Pι,i(T ))) of Setupλ, and V
(
K(Setupλ(T ))

)
denotes V (e) interpreted as a polynomial over T . The probability is quantified over Dλ and the
private coins of A.

Proof. Deferred to Appendix B.

The lemma is defined with respect to positive powers polynomials, while Groth16 CRS is
defined for Laurent polynomials. This obstacle is easy to overcome — as shown in [FKL18], it is
enough to modify the group generator by raising it to a certain trapdoor power such that all the
negative powers cancel out. This does not change the main statement of Lemma 1, although it
slightly increases the required degree of (d1, d2)-dlog9.

2.5 Vector ElGamal Cryptosystem

A public key cryptosystem is a triple of efficient algorithms (KGen,Enc,Dec) where KGen(1λ)
outputs a public key pk and a secret key sk, Enc takes as an input a public pk and a message m
and outputs a ciphertext c, and Dec takes in the secret key sk and a ciphertext c and outputs
the message m. We require that m = Dec(sk,Enc(pk,m)) for any valid pk, sk, and m. A stan-
dard privacy property for public cryptosystems is INDistinguishability under Chosen Plaintext
Attacks (IND-CPA) which intuitively says that an efficient adversary has a negligible advan-
tage of distinguishing c1 = Enc(pk,m1) from c2 = Enc(pk,m2) where m1,m2 are chosen by the
adversary.

We describe a common variant of ElGamal cryptosystem that can be used to encrypt a
vector of group elements. Let the message space be Gn for some integer n. The vector ElGamal
cryptosystem works as follows:

– KGen(1λ): Samples s1, . . . , sn
$←− Zp and returns pk← [s1, . . . , sn] and sk← {si}ni=1.

– Enc(pk, {[mi]}ni=1): Samples r
$←− Zp and returns c← [r, rs1 +m1, . . . , rsn +mn].

– Dec(sk, [c0, . . . , cn]): Computes [mi] = [ci]− si[c0] for i = 1, . . . , n and returns {[mi]}ni=1.

It is also possible to have Znp as a message space, but then messages have to be small enough to
compute the discrete logarithm. Both variants are known to be IND-CPA secure [Kur02] under
the well-known DDH assumption described below.

Definition 6 (Decisional Diffie-Hellman assumption). Let G be a cyclic group with a gen-
erator G = [1]. We say that the DDH assumption holds in G, if for all PPT A, AdvDDHG,A ,

|ε0 − ε1| = negl(λ), where εb , Pr
[
x, y, z

$←− Z∗p : A([x], [y], [xy + bz]) = 1
]
.

3 White-box Weak SE and Randomizability of Groth16

In this section, we show that Groth16 is white-box weakly simulation extractable, which to our
knowledge is the first SNARK construction that is proved to (only) achieve this notion. Addi-
tionally, we provide some facts about randomization of Groth16. We start by recalling Groth16
in Fig. 1.

9 In case of Groth16, we multiply by γδ, thus [xn−2t(x)/δ]1 becomes [γxn−2t(x)]1 of degree 2n−1, hence
d1 = 2n− 1.



8 Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov

To simplify notation we denote qi(α, β, x) = βui(x)+αvi(x)+wi(x) and yi(α, β, γ, x) = qi(α, β, x)/γ,
and use it as qi(x) and yi(x) omitting other variables when it is clear from the context. As explained
before, a = φ ‖ w.

Setup(R):

τ = x, α, β, γ, δ
$←− Z∗p

σ1 ←
[
α, β, δ, {xi}n−1

i=0 ,
{
xit(x)
δ

}n−2

i=0
, {yi(x)}li=0,

{
qi(x)
δ

}m
i=l+1

]
1

σ2 ←
[
β, γ, δ, {xi}n−1

i=0

]
2

return (σ = σ1 ∪ σ2, τ )

Prove(σ,φ = φ1 . . . φl,w = w1 . . . wm−l):

ra, rb
$←− Z∗p

[a]1 ←
[
α+

∑m
i=0 aiui(x) + raδ

]
1
; [b]2 ←

[
β +

∑m
i=0 aivi(x) + rbδ

]
2

[c]1 ←
[∑m

i=l+1 ai
qi(x)
δ

+ h(x)t(x)
δ

+ arb + bra − rarbδ
]
1

return ([a]1, [b]2, [c]1)

Verify(σ,φ = φ1 . . . φl, π = (a, b, c)):

assert e(a, b) = e([α]1, [β]2) · e(
∑l
i=0 φi[yi(x)]1, [γ]2) · e(c, [δ]2)

Sim(τ ,φ = φ1 . . . φl):

µ, ν
$←− Z∗p; return

(
[µ]1, [ν]2,

[
µν−αβ−

∑l
i=0 φiqi(x)

δ

]
1

)
Rand(σ, π = (a, b, c)):

r1, r2
$←− Z∗p; a 7→ (1/r1)a; b 7→ r1b+ r1r2[δ]2; c 7→ c+ r2a

return (a, b, c)

Fig. 1. Groth16 zk-SNARK with simulation and randomization procedures.

White-box weak SE. Our proof is in the AGM and relies on the same hardness assumptions
((q1, q2)-discrete logarithm) as Groth16 knowledge soundness. Additionally we require a form
of linear independence from QAP polynomials — a similar requirement was used for square
arithmetic programs in [GM17].

Theorem 1. Assume that {ui(x)}li=0 are linearly independent and Span {ui(x)}li=0 ∩ Span
{ui(x)}mi=l+1 = ∅. Then Groth16 achieves weak white-box SE against algebraic adversaries under
the (2n− 1, n− 1)-dlog assumption.

The proof of the theorem splits in two branches — we show that either A uses simulated
elements, and in this case it can only use them for a single simulation query k, or it does not
use them at all. In particular, this implies that A cannot combine several elements from different
queries algebraically for the π it submits. We then argue that the non-simulation case reduces
to knowledge soundness, and in the simulation case we show that A supplies φ that is equal
to one of the simulated instances, which proves that A reuses a simulated proof, potentially
randomized. An interesting detail not captured in the weak SE definition is that not only can
we decide whether the proof π′ provided by algebraic A is a modification of the simulated proof
π queried before in the simulation case, but we can pinpoint which exact simulated proof it was
derived from.

Before we start the weak SE proof we present a re-phrased knowledge soundness proof, on
top of which we will build the main theorem proof.
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Theorem 2 ([FKL18]). Groth16 achieves knowledge soundness against algebraic adversaries
under the (2n− 1, n− 1)-dlog assumption.

Proof. We start by assuming a certain number of variables to be unknown to A, in this particular
case these are just the CRS trapdoors τ = (α, β, γ, δ, x). We rely on Lemma 1. When A presents
the proof π = ([a]1, [b]2, [c]1) that satisfies the verification equation, that is V (π) = 0, we conclude
that A could not come up with π satisfying V unless for V ′ = V (K·Setupλ(T )) we have V ′(T ) =
0 as a polynomial. Then we, step by step, analyze the coefficients K of the verification equation,
by relying on the property that every monomial coefficient of the equation is zero (because
the polynomial is constant zero). This is the most technical part of the proof, and we remind
the reader that the other part that provides the reduction to (2n − 1, n − 1)-dlog is deferred
generically to Lemma 1.

The matrix K contains a representation of A,B, and C as linear combination of public CRS
elements (where C follows the same pattern as A):

A = A1α+A2β +A3δ +

n−1∑
i=0

A4,ix
i +

l∑
i=0

A5,i
βui(x) + αvi(x) + wi(x)

γ
+

m∑
i=l+1

A6,i
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

A7,i
xit(x)

δ

B = B1β +B2γ +B3δ +

n−1∑
i=0

B4,ix
i C = C1α+ . . .+

n−2∑
i=0

C7,i
xit(x)

δ

We let C = (A1, . . . , A7,n−2, . . . , B4,n−1, . . . , C7,n−2) denote this set of variables serving as
linear combination coefficients. In the following we will write CRS trapdoors as concrete values
(α, β, . . . , x), though they can be equally interpreted as formal variables (Xα, Xβ , . . . , Xx); we
will avoid these former notation for convenience, since the main variables in scope that the system
of equation is over are {Ai}, {Bi}, {Ci}, and we use trapdoor variables only to show how to form
the system. This is, however, an important distinction: When we write P (α, x) = 0, we imply
P (Xα, Xx) is constant zero, and not just zero at (α, x).

For a polynomial P (X) and a monomial M = Xb1
1 X

b2
2 · · ·Xbn

n , P[M ] will denote the coef-
ficient of P (X) at M , that is P (X) =

∑
M P[M ]M . For each monomial M , we write out the

corresponding monomial coefficient V ′[M ] as an equation V ′[M ] = 0, and iteratively simplify the
system of equations in C. To simplify the proof, the ’monomials’ we consider implicitly contain
sums of powers of x 10, thus xi will appear in coefficients. We start with examining the follow-
ing equations, listed by monomials they are produced by, and by the terms of the verification
equation they are extracted from:

αβ in AB − αβ : A1B1 = 1 =⇒ A1 6= 0, B1 6= 0

β2 in AB : A2B1 = 0 =⇒ A2 = 0

αγ : A1B2 = 0 =⇒ B2 = 0

β2/δ :
( m∑
i=l+1

A6,iui(x)
)
B1 = 0 =⇒

m∑
i=l+1

A6,iui(x) = 0

10 For monomial M instead of analysing V ′[M ] = 0 we set Ṽ ′[M ] =
∑
i V[Mxi] = 0. This is still a valid

statement, since V ′(T ) = 0 implies V ′[Mxi] = 0 for each i, so each sum over xi for M not containing

any powers of x is also zero. It is always possible to split Ṽ ′[M ] further as (Ṽ ′[M ])[xi], extracting coefficients

of xi from it. We will do so implicitly in the “different spans of x powers” argument in the proof.
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βα/δ :
( m∑
i=l+1

A6,ivi(x)
)
B1 = 0 =⇒

m∑
i=l+1

A6,ivi(x) = 0

β/δ in AB :
( m∑
i=l+1

A6,iwi(x) +

n−2∑
i=0

A7,ix
it(x)

)
B1 +

( m∑
i=l+1

A6,iui(x)
)( n−1∑

i=0

B4,ix
i
)

= 0 ∧

1/δ :
( m∑
i=l+1

A6,iwi(x) +

n−2∑
i=0

A7,ix
it(x)

)( n−1∑
i=0

B4,ix
i
)

= 0

=⇒
n−2∑
i=0

A7,ix
it(x) = 0 ∧

m∑
i=l+1

A6,iwi(x) = 0

If (
∑n−1
i=0 B4,ix

i) = 0 then from β/δ we have
∑m
i=l+1A6,iwi(x) +

∑n−2
i=0 A7,ix

it(x) = 0, and

otherwise from 1/δ we have
∑m
i=l+1A6,iwi(x) +

∑n−2
i=0 A7,ix

it(x) = 0. Now, since the sums have

different spans of xi powers,
∑n−2
i=0 A7,ix

it(x) = 0 and
∑m
i=l+1A6,iwi(x) = 0.

β2/γ in AB :
( l∑
i=0

A5,iui(x)
)
B1 = 0 =⇒

l∑
i=0

A5,iui(x) = 0

βα/γ :
( l∑
i=0

A5,ivi(x)
)
B1 = 0 =⇒

l∑
i=0

A5,ivi(x) = 0

β/γ :
( l∑
i=0

A5,iwi(x)
)
B1 +

( l∑
i=0

A5,iui(x)
)( n−1∑

i=0

B4,ix
i
)

= 0 ∧

1/γ :
( l∑
i=0

A5,iwi(x)
)( n−1∑

i=0

B4,ix
i
)

= 0 =⇒
l∑
i=0

A5,iwi(x) = 0 as with β/δ ∧ 1/δ

We now consider the following three monomials (β, α, and 1 that is only x powers) that we
will call critical (and, respectively, the related equations too). Critical equations contain parts of
the QAP, and we will eventually extract the witness from them. The underlined coefficients are
already known to be zero, and thus the related sums are immediately cancelled:

β in AB − ϕ(φ)γ − Cδ :( n−1∑
i=0

A4,ix
i
)
B1+

( n−1∑
i=0

B4,ix
i
)
A2+

( l∑
i=0

A5,iui(x)
)
B2+

( m∑
i=l+1

A6,iui(x)
)
B3 =

l∑
i=0

aiui(x)+

m∑
i=l+1

C6,iui(x)

α in AB − ϕ(φ)γ − Cδ :( n−1∑
i=0

B4,ix
i
)
A1 +

( l∑
i=0

A5,ivi(x)
)
B2 +

( m∑
i=l+1

A6,ivi(x)
)
B3 =

l∑
i=0

aivi(x) +

m∑
i=l+1

C6,ivi(x)

1 (only x) in AB − ϕ(φ)γ − Cδ :( n−1∑
i=0

A4,ix
i
)( n−1∑

i=0

B4,ix
i
)

+
( l∑
i=0

A5,iwi(x)
)
B2 +

( m∑
i=l+1

A6,iwi(x) +

n−2∑
i=0

A7,ix
it(x)

)
B3

=

l∑
i=0

aiwi(x) +

m∑
i=l+1

C6,iwi(x) +

n−2∑
i=0

C7,ix
it(x)
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Substituting the first two equations into the left hand side of the third one, given that
A1B1 = 1:

( l∑
i=0

aiui(x) +

m∑
i=l+1

C6,iui(x)
)( l∑

i=0

aivi(x) +

m∑
i=l+1

C6,ivi(x)
)

=

l∑
i=0

aiwi(x) +

m∑
i=l+1

C6,iwi(x) +

n−2∑
i=0

C7,ix
it(x)

Because a0 is always 1 and A1 and B1 are nonzero, what we obtain is exactly a QAP statement
with h(x) =

∑n−2
i=0 C7,ix

i, hence {C6,i}mi=l+1 is the assignment of the witness wires. The extractor
can thus simply return these values. ut

Finally, we give a proof for Theorem 1 which shows that Groth16 has white-box weak SE.

Proof (Proof of Theorem 1, Weak SE of Groth16). Let q denote the number of simulation
queries of A, and {ai,j}lj=0 denote the instance for the ith query. We now add the three proof

elements [ãi]1, [b̃i]2, [c̃i]1 revealed in each simulation to the list of elements that A can use as an

algebraic extraction basis: ãi = µi, b̃i = νi, and c̃i = (µiνi − αβ −
∑l
j=0 ai,j(βuj(x) + αvj(x) +

wj(x)))/δ. We write out the representation of A and B (C follows the same pattern as A) from
the verification equation as the linear combination of the public CRS and new simulated proof
elements:

A = · · ·+
q∑
i=1

A8,iµi +

q∑
i=1

A9,i

µiνi − αβ −
∑l
j=0 ai,j(βuj(x) + αvj(x) + wj(x))

δ

B = · · ·+
q∑
i=1

B5,iνi

Our goal is to reduce the theorem to the knowledge-soundness case by restricting the coef-
ficients related to the new simulated proofs variables, namely A8,i, A9,i, B5,i, C8,i, C9,i. We will
show that a successful A must either reuse one of the simulated proofs (potentially randomizing
it), or it must not have used any simulation-related variables, thus allowing for the reuse of
the extraction argument from knowledge soundness. We start by inspecting coefficients of the
following monomials (affected by simulated proofs):

αβ in AB − Cδ : A1B1 −
q∑
i=1

A9,iB3 +

q∑
i=1

C9,i = 1 µiβ in AB : A8,iB1 = 0

µiνj(i 6= j) in AB : A8,iB5,j = 0 µiγ in AB : A8,iB2 = 0

µiνi in AB − Cδ : A9,iB3 +A8,iB5,i − C9,i = 0 µiδ in AB − Cδ : A8,iB3 − C8,i = 0

µiνiνj/δ in AB : A9,iB5,j = 0 νiα in AB : B5,iA1 = 0

µiνiβ/δ in AB : A9,iB1 = 0 νiβ in AB : B5,iA2 = 0

νiδ in AB : B5,iA3 = 0

First, we show that all A9,i = 0. Assume the contrary: A9,k 6= 0 for some k. Then from
Equation (µkνkνj/δ) for all j: B5,j = 0. From Equation (µiνi) for all i we have that C9,i =
A9,iB3, which, substituted into Equation (αβ) give us A1B1 = 1. Hence B1 6= 0, but from
Equation (µkνkβ/δ) we see that A9,kB1 = 0, but neither A9,k nor B1 is zero, a contradiction.
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Thus, all A9,i = 0, and furthermore Equation (αβ) simplifies to A1B1 +
∑q
i=1 C9,i = 1 and

Equation (µiνi) simplifies to A8,iB5,i = C9,i.
We now show, that if at least one A8,k 6= 0, then A reuses the kth simulated proof, and

otherwise if all A8,i = 0 it does not use any simulation-related elements.

– Assume, first, that all A8,i = 0: From Equation (µiνi) all C9,i = 0. Then, A1B1 = 1 by
Equation (αβ), so from Equation (νiα) all B5,i = 0 (since A1 6= 0), and from Equation (µiδ)
all C8,i = 0 because all A8,i = 0. We now have cancelled all the simulation-related variables,
and thus A does not use simulation queries when constructing its proof, and we can reduce
the proof to the knowledge soundness case.

– Assume, otherwise, that at least one A8,k 6= 0: Then B1 = B2 = 0 from Equation (µkβ)
and Equation (µkγ). For all j 6= k from Equation (µkνj) we have B5,j = 0, and since
C9,j = B5,jA8,j , all C9,j = 0 for j 6= k too. From Equation (αβ) we obtain C9,k = 1, thus
B5,k = 1/A8,k by Equation (µiνi). Since now B5,k 6= 0, from the Equations (νkα), (νkβ),
(νkδ) we have A1 = A2 = A3 = 0. Thus, we are only left with exactly one nonzero triple
(A8,k, B5,k, C9,k), which means A has used at most one simulated proof number k, not being
able to combine several simulated proofs into one.
We next look at additional coefficients related to monomials that include νk and µk. From
Equations (νiβ/δ), (νiα/δ), (νi/δ) we have

∑m
i=l+1A6,i(βui(x)+αvi(x)+wi(x))/δ+

∑n−2
i=0 A7,ix

it(x)/δ =
0 (related terms of A are the only terms matching this νi in B):

νkβ/δ in AB :
( m∑
j=l+1

A6,juj(x)−
q∑
i=1

A9,i

l∑
j=0

uj(x)
)
B5,k = 0 =⇒

m∑
j=l+1

A6,juj(x) = 0

νkα/δ in AB :
( m∑
j=l+1

A6,jvj(x)−
q∑
i=1

A9,i

l∑
j=0

vj(x)
)
B5,k = 0 =⇒

m∑
j=l+1

A6,jvj(x) = 0

νk/δ in AB :
( m∑
j=l+1

A6,jwj(x) +

n−2∑
i=0

A7,ix
it(x)−

q∑
i=1

A9,i

l∑
j=0

wj(x)
)
B5,k = 0

=⇒
m∑

j=l+1

A6,jwj(x) = 0 ∧
n−2∑
i=0

A7,ix
it(x) = 0 (different powers of x)

Similarly, from Equations (νiβ/γ), (νiα/γ), (νi/γ) we have
∑l
i=0A5,i(βui(x)/γ) =

∑l
i=0A5,i(αvi(x)/γ) =∑l

i=0A5,i(wi(x)/γ) = 0 (the coefficients are also extracted from AB).

νkβ/γ in AB :
( l∑
j=0

A5,juj(x)
)
B5,k = 0 =⇒

l∑
j=0

A5,juj(x) = 0

νkα/γ in AB :
( l∑
j=0

A5,jvj(x)
)
B5,k = 0 =⇒

l∑
j=0

A5,jvj(x) = 0

νk/γ in AB :
( m∑
j=0

A5,jwj(x)
)
B5,k = 0 =⇒

m∑
j=l+1

A5,jwj(x) = 0

Because of Equation (νk) and Equation (µk) we have
∑n−1
i=0 A4,ix

i = 0 and
∑n−1
i=0 B4,ix

i = 0
related terms cancelled as well:

νk in AB :
( n−1∑
i=0

A4,ix
i
)
B5,k = 0 =⇒

n−1∑
i=0

A4,ix
i = 0
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µk in AB :
( n−1∑
i=0

B4,ix
i
)
A8,k = 0 =⇒

n−1∑
i=0

B4,ix
i = 0

Which also implies A4,i = B4,i = 0 for all i. We now focus on the first critical equation,
β, which has the same elements as in the KS case, except for the additional C9,i. Its left
side vanishes completely, and on the right we have exactly one additional simulated instance
wires set corresponding to C9,k = 1:

0 =

l∑
i=0

aiui(x) +

m∑
i=l+1

C6,iui(x)−
l∑
i=0

ak,iui(x)

Because of disjointness11 between ui(x) for witness and instance sets of indices we have both∑l
i=0(ai − ak,i)ui(x) = 0 and

∑m
i=l+1 C6,iui(x) = 0, thus also ai = ak,i because of the linear

independence of the first set. Then A has reused the simulated instance φk = {ak,i}li=0,
which concludes the proof.

ut

Transforming the Proof. It is known that Groth16 has malleable proofs. It is not hard to
extend this statement to show that Groth16 is rerandomizable, that is its output of Rand is indis-
tinguishable from honest proofs, even if Rand is applied to maliciously generated (but verifiable)
proofs.

Theorem 3. Groth16 zk-SNARK is rerandomizable12 with respect to the randomization trans-
formation Rand presented in Fig. 1.

Proof. Deferred to Appendix C. In a nutshell, the proof elements a and b output by Rand are
random and independent of each other; and the verification equation fixes a unique c based on
a, b,σ,φ.

Together with white-box weak SE forbidding instance malleability, and perfect ZK, Theorem 3
implies that randomization is equivalent to any other way to transform the honest (or simulated)
proofs. But this does not give an explicit algebraic characterization of the transformation — we
do not know if there is any other way to create an honest proof, or any other way to rerandomize
it (that would produce the same distribution). One of the interesting properties of the proof
of Theorem 1 is that it can be extended to show that Rand is the only algebraic transformation
possible, which we present as an independent result. We also show that the most-general algebraic
form of the honest generation procedure has at most three random “axes”, any two of which are
required for perfect zero-knowledge; Rand, parametrised by just two random values, changes all
three of them. Details are provided in Appendix C.

Observation 1. Let V (C) = 0 with C = (A1, . . . , A7,n−2, B1, . . . , B4,n−1, C1, . . . , C7,n−2) be
the verification equation of Groth16 expressed in terms of exponent of GT with the 9 + 5n+ 2m
variables serving as linear coefficients that construct the proof from CRS elements, then the
kernel13 of V (C) is as presented in Fig. 2.

Observation 2. The only form of algebraic transformation on Groth16 proofs that is pos-
sible without violating its verification equation is the randomization procedure Rand(σ, π =
(a, b, c); r1, r2), where r1, r2 are chosen by the adversary.

11 This technique was applied in a similar manner for strong SE in [GM17]
12 This property has been observed before, for example in [LCKO19] in a similar context.
13 That is, X ⊂ Z|C|p such that ∀c ∈ X.V (c) = 0
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a = A1α+A3δ +A1

m∑
i=0

aiui(x) b =
1

A1
β +B3δ +

1

A1

m∑
i=0

aivi(x)

c = B3A+A3B −A3B3δ +

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

Fig. 2. The kernel of Groth16 verification equation (a subspace of Z9+5n+2m
p ) structured as a proof

generation routine (the most general one). Note the additional random value A1, that is set to 1 in Prove
of Fig. 1, but is affected by randomization.

4 Black-box Weak SE

We study two approaches to achieve black-box weak SE by encrypting the witness. The first con-
struction Int-Groth16 integrates ciphertexts directly to the relation, and the second construction
Ext-Groth16 proves the correctness of ciphertexts with external techniques.

4.1 Black-box Weak SE with Internal Encryption

First, we describe a generic transformation for achieving black-box weak SE. We let the prover
encrypt the witness w with a IND-CPA secure cryptosystem and then use a weak simulation
sound NIZK (e.g., Groth16) to prove the relation

R′ , {((φ, pk, c), (w, r)) : (φ,w) ∈ R ∧ c = Enc(pk, w; r)},

where φ is the statement the prover wants to prove and R is the corresponding relation. Since
we make the public key pk a part of the reference string, it will be possible to black-box extract
the witness from the ciphertext. Full details of the construction can be seen in Fig. 3.

Setup(Rλ): (pk, sk)← KGen(1λ); (σ′, τ ′)← Setup′(R′);
return (σ = σ′ ∪ pk, τ = τ ′, τext = sk)

Prove(σ = σ′ ∪ pk, φ, w):

r
$←− Z∗p, c← Enc(pk, w; r); π′ = Prove′(σ, (φ, pk, c), (w, r)) return (c, π′)

Verify(σ = σ′ ∪ pk, φ, π = (c, π′)): assert Verify′(σ, (φ, pk, c), π′)

Sim(σ = σ′ ∪ pk, τ , φ):

c← Enc(pk, 0; r) for r
$←− Z∗p; π′ ← Sim′(σ′, τ , (φ, pk, c)); return (c, φ)

Ext(σ, τext, φ, π = (c, π′)): return Dec(τext, c)

Fig. 3. The construction for black-box weak SE NIZK where NIZK′ = (Setup′,Prove′,Verify′, Sim′) is a
weak simulation sound NIZK and (KGen,Enc,Dec) is a IND-CPA secure cryptosystem.

This transformation was first analyzed in [Bag19], where it was shown to lift a white-box
strong SE NIZK to a black-box strong SE. Below we sketch a proof that it also lifts a weak
simulation sound NIZK to a black-box weak SE NIZK.
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Theorem 4. Let NIZK′ = (Setup′,Prove′,Verify′,Sim′) be a complete, weak simulation sound,
and computational zero-knowledge non-interactive proof system and (KGen,Enc,Dec) an IND-
CPA secure cryptosystem. Then the NIZK construction in Fig. 3 is complete, black-box weak SE,
and computational zero-knowledge.

Proof (sketch). Completeness of NIZK follows from the completeness of NIZK′ and correctness
of the cryptosystem. Computational zero-knowledge holds since Enc(pk, 0) is computationally
indistinguishable from Enc(pk, w) and since NIZK′ already has computational zero-knowledge.
Finally, suppose that there exists a PPT adversary A that can break black-box weak SE of
NIZK. We can easily construct a PPT adversary B that can break weak simulation soundness of
NIZK′. B gets σ′ as an input and generates pk itself. Now B can run A(σ′ ∪ pk) internally and
whenever A makes a simulation query φ, B makes a simulation query (φ, pk, c = Enc(pk, 0)) and
gets back a proof π′ which allows him to send (c, π′) to A. Finally, A outputs (φ∗, (c∗, π∗)) such
that φ∗ has not been queried and either φ∗ is an invalid statement or c does not encrypt the
correct witness. Now B can output ((φ∗, c∗), π∗) which will break weak simulation soundness. ut

We can obtain good efficiency if we instantiate the above construction by taking Groth16 as
NIZK′ and by using vector ElGamal (see Section 2.5 for details) as a cryptosystem. We call this
instantiation Int-Groth16. In Section 5 we discuss further optimization of this construction.

Corollary 1. Int-Groth16 is a complete, black-box weak SE, and computational zero-knowledge
NIZK argument.

4.2 Black-box Weak SE with External Encryption

The disadvantage of the previous construction is that one needs to encode the extended relation
as an arithmetic circuit, that is shown, e.g. in HAWK, to result in a considerably larger public
parameters and a slower prover. Thus, we propose a second construction Ext-Groth16 which is
closely based on the SAVER cryptosystem [LCKO19] which in a sense gives ciphertexts as a
public input to Groth16. Having the encryption outside of the circuit allows us to have smaller
circuit overhead which results in smaller CRS size and higher prover efficiency. Inevitably though
as for all black-box extractable constructions [GW11], this approach implies a linear size proof
which is dominated by the size of the encrypted witness. The formal description is presented
on Fig. 4. Roughly speaking, we reinstantiate SAVER, but also prove that the construction is
black-box weak simulation extractable. Additionally we re-prove computational zero-knowledge
under the weaker and more standard DDH assumption.

Technical Details. As Ext-Groth16 is based on SAVER, we point out the important ways it
is different from Groth16. First, we extend the CRS with the pk elements, similarly to how it
is done in Int-Groth16 (since pk uses Groth16 trapdoors, it changes the security proof). Second,
Groth16 itself is modified: while constructing the proof, element c has an additional coefficient,
that is needed to balance out ciphertext randomness.

Crucially, Ext-Groth16 cannot achieve black-box strong SE, because it is proof malleable (and
rerandomizable). First, the rerandomization of embedded Groth16 still works, because it does
not interfere with the “ciphertext randomness cancelling term” of c. Second, ciphertexts are also
rerandomizable: we can replace r with r+ r′ additively in all ci, in ψ and c (as shown in Fig. 4).

Another important distinction is that in order for the decryption to work efficiently (since
it relies on solving discrete logarithm), plaintexts should be small enough. This is critical to
guarantee the extraction — to prevent A from creating un-extractable proofs, we require the
circuit itself to make range-checks on plaintext values. We account for the circuit growth in our
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Setup(R):

τ1 = x, α, β, γ, δ
$←− Z∗p; τ2 = {si}lwi=1, {ti}

lw
i=0

$←− Z∗p
σ1 ←

[
α, β, δ, {xi}n−1

i=0 ,
{
xit(x)
δ

}n−2

i=0
, {yi(x)}l+lwi=0 ,

{
qi(x)
δ

}m
i=l+lw+1

]
1

σ2 ←
[
β, γ, δ, {xi}n−1

i=0

]
2

pk1 ←
[
{δsi}lwi=1, {yl+i(x)ti}lwi=1, δ(t0 +

∑lw
i=1 tisi), γ(1 +

∑lw
i=1 si)

]
1

pk2 ←
[
{ti}lwi=0

]
2

return (σ = σ1 ∪ σ2 ∪ pk1 ∪ pk2, τ = τ1 ∪ τ2, τext = {si}lwi=1)

Prove(σ,φ = φ1 . . . φl,w = w1 . . . wlw . . . wm−l):

r, ra, rb
$←− Z∗p;

c0 ← r[δ]1; ci ← r[δsi]1 + wi[yl+i(x)]1 for i ∈ [1 . . . lw]

ψ ← r
[
δ(t0 +

∑lw
j=1 tjsj)

]
1

+
∑lw
i=1 wi[yl+i(x)ti]1

[a]1 ←
[
α+

∑m
i=0 aiui(x) + raδ

]
1
; [b]2 ←

[
β +

∑m
i=0 aivi(x) + rbδ

]
2

[c]1 ←
[∑m

i=l+lw+1 wi−l
qi(x)
δ

+ h(x)t(x)
δ

+ arb + bra − rarbδ
]
1
− r
[
γ
(
1 +

∑lw
i=1 si

)]
1

return (([a]1, [b]2, [c]1), CT = (c0, . . . , clw , ψ))

Verify(σ,φ = φ1 . . . φl, π = ((a, b, c), (c0, . . . , clw , ψ))):

assert
∏lw
i=0 e(ci, [ti]2) = e(ψ,H)

assert e(a, b) = e([α]1, [β]2) · e(
∑l
i=0 φi[yi(x)]1 +

∑lw
i=0 ci, [γ]2) · e(c, [δ]2)

Sim(τ ,φ = φ1 . . . φl):

µ, ν, c0, . . . , clw
$←− Z∗p

(a, b, c)←
(

[µ]1, [ν]2,
[
µν−αβ−γ(

∑l
i=0 φiyi(x)+

∑lw
i=1 ci)

δ

]
1

)
;

ψ ←
[∑lw

i=0 tici
]
1

return ((a, b, c), CT = ([c0]1, . . . , [clw ]1, ψ))

Ext(σ, τext = {si}lwi=1, φ, π = (·, (c0, c1, . . . , clw , ·)):
for i ∈ [1 . . . lw]: [yi(x)wi]1 ← ci − sic0; wi ← dlog[yi(x)]1

(
[yi(x)wi]1

)
;

return w1, . . . , wlw
Rand(σ, π = ((a, b, c), (c0, c1, . . . , clw , φ)):

r1, r2, r
′ $←− Z∗p;

c0 7→ c0 + r′[δ]1; ci 7→ ci + r′[δsi]; ψ 7→ ψ + r′[δt0 +
∑lw
j=1 δtjsj ]1

a 7→ (1/r1)a; b 7→ r1b+ r1r2[δ]2; c 7→ c+ r2a− r′[γ
(
1 +

∑lw
i=1 si

)
]1

return ((a, b, c), (c0, c1, . . . , clw , φ))

Fig. 4. Ext-Groth16: the black-box-extractable SAVER-inspired variant of Groth16. The relation R must
assert that inputs on witness input wires l . . . l+ lw are small enough to be efficiently decryptable. qi(x)
and yi(x) are as for Groth16, e.g. in Fig. 1.

efficiency evaluation, but in this section we assume the circuit transformation to be an implicit
part of the construction, since this suffices for our security analysis.

Finally, we estimate the resulting performance parameters of Ext-Groth16. Construction CRS
size (omitting constants) is m+ 2n+ 2lw G1, and n+ lw G2. Proof size is lw + 4 G1 and 1 G2, so
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lw + 2 times more G1. Prover time is (omitting constants) m+ 3n− l+ 2lw E1 and n E2. Verifier
time is l E1 and lw + 5 P , so lw + 2 pairings more than in Groth16.

Security. We give a direct proof for the security of Ext-Groth16, as opposed to relying on the
security of a transformation as for Int-Groth16. We prove computational zero-knowledge under
the standard DDH assumption, as compared to a decisional polynomial assumption introduced
and used in SAVER. The weak SE proof is structurally similar to the proof of Theorem 1: that
is, we show that either A reuses a simulated proof (potentially randomizing it), or it does not
use simulated data at all, and in that case we can extract the witness. The crucial difference now
is that extractor Ext is black-box and operates by decrypting the ciphertext.

Theorem 5. The Ext-Groth16 NIZK argument in Fig. 4 achieves perfect completeness; com-
putational zero-knowledge under the DDH assumption; and black-box weak SE against algebraic
adversaries under linear independence of U = {ui(X)}l+lwi=0 , and span independence between U
and rest of ui(X).

Proof (Theorem 5, Perfect Completeness). The validity of the statement is ensured by
straightforward verification of the simulated ciphertext satisfying both verification equations.

ut

Proof (Theorem 5, Computational Zero-Knowledge). LetA be an arbitrary PPT adversary
that makes q queries to the simulation oracle in the ZK game. We consider a sequence of games
and prove that in each game adversary’s advantage changes at most by a negligible amount. Let
us denote the probability that A outputs 1 in Gamex by εx and let εDDH denote the maximum
distinguishing advantage in the DDH game.

Game0: This is the original game in Definition 9 when b = 0. That is, A can query the oracle
S0,σ,τ with inputs (φ,w) ∈ R and gets back proofs π = Prove(σ, φ, w).

Game1: In this game, we change the oracle S0,σ,τ to S ′0,σ,τ in Fig. 5 that uses the trapdoor τ
to simulate a, b, c, and ψ. Elements in the grey box in the figure are changed compared to S0,σ,τ .

S ′0,σ,τ (φ = φ1 . . . φl, w = w1 . . . wm−l):

if (φ,w) 6∈ R return ⊥
µ, ν, r

$←− Z∗p; c0 ← r[δ]1
ci ← r[δsi]1 + wi[yl+i(x)]1 for i ∈ [1 . . . lw]

(a, b, c)←
(

[µ]1, [ν]2,
[
µν−αβ−γ

∑l
i=0 φiyi(x)

δ

]
1

+
∑lw
i=1( ci

δ
)
)

, ψ =
∑lw
i=0 tici

return ((a, b, c), CT ← (c0, . . . , clw , ψ))

Fig. 5. Simulation oracle S ′0,σ,τ in Game1

Let us argue that the probability that A outputs 1 in the Game0 is the same as in the Game1,
i.e., ε0 = ε1. Firstly, c0, . . . , clw are computed the same way in both games. Since ψ =

∑lw
i=0 tici =

t0[rδ]1+
∑lw
i=1 ti([rδsi+wiyl+i(x)]1) = r[δ(t0+

∑lw
i=1 tisi)]1+

∑lw
i=1 wi[yl+iti]1, then in both games

ψ is uniqely determined by c0, . . . , clw . Finally, a, b are uniformly random in both games and c
is the unique value determined by c0, . . . , clw , a and b. It is easy to verify that c in Fig. 5 does
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indeed satisfy the verification equation. Hence, output of S ′0,σ,τ has the same distribution as the
output of S0,σ,τ . From this it follows that ε0 = ε1.

Game2:(1,1): For convenience, let us denote the ciphertext elements of different queries by ci,j

where i ∈ [0, lw] and j ∈ [1, q]. We change the oracle in the previous game such that c1,1 is
sampled randomly.

We show that |ε1−ε2| is bounded by the probability of breaking the DDH assumption. Let us
construct an adversary B that usesA to distinguish DDH tuples. The adversary B gets as an input

[zx, zy, z]1 where zx, zy
$←− Zp and either z = zxzy or z

$←− Zp. Next, B samples σ and τ except that
[s1]1 = [zx]1 and thus that element of τ is unknown. The adversary B continues by running A on
the input σ while simulating the query oracle. The query oracle behavies like S ′0,σ,τ except on the
first query it outputs c0,1 = δ[zx]1, c1,1 = δ[z]1 + w1[yl+1(x)]1, c1,2 = (δs2)[zx]1 + w2[yl+2(x)]1,
. . . , c1,lw = (δslw)[zx]1 +wlw [yl+lw(x)]1. Note that if z is uniformly random then c1,1 is uniformly
random as in Game2:(1,1), but when z = zxzy, then c1,1 is a valid ciphetext element as in Game1,
where zx takes the role of r, and zy of s1. Therefore, |ε1 − ε2:(1,1)| ≤ εDDH .

Game2:(i,j) for i ∈ [2 . . . lw], j ∈ [1 . . . q]: We continue with a similar strategy as in Game2:(1,1).

Namely, we change the oracle of the previous game by sampling ci,j uniformly randomly. We
use the same reduction idea as in Game2:(1,1) and show that |ε2:(i−1,j) − ε2:(i,j)| ≤ εDDH (or
|ε2:(lw,j−1) − ε2:(1,j)| ≤ εDDH).

Finally, Game2:(lw,q) is the original ZK game where A has an oracle access to the simulator
presented in Fig. 4, which produces all ci,j uniformly random; this is equivalent to honest en-
cryption of a random message. It follows that the advantage that A breaks ZK is bounded by
lw · q · εDDH . ut

Proof (Theorem 5, Weak BB SE). The knowledge soundness (KS) theorem of [LCKO19]
shows how to reduce KS of the SAVER scheme (with two verification equations) to the KS of
Groth16. This theorem is also structured as a reduction, but to a weak white-box SE of Groth16
that we have proved in Section 3.

Additionally to the set of elements A sees in the proof of Theorem 1, we have two more: (1)
the CRS is extended with one embedded public key, hence we have elements that depend on
the ti and si trapdoors; (2) simulation queries now also produce random ciphertexts ci,j (also,
simulated C depends on these ciphertexts, which changes C9,i element).

We write out the representation of A and B (C, Ψ , Ci follow the same pattern as A) from
the verification equation as the linear combination of the public CRS and new simulated proof
elements:

A = A1α+A2β +A3δ +

n−1∑
i=0

A4,ix
i +

l+lw∑
i=0

A5,iyi(x) +

m∑
l+lw+1

A6,i
qi(x)

δ
+

n−2∑
i=0

A7,i
xit(x)

δ
+

+

q∑
i=1

(
A8,iµi +A9,i

(µiνi − αβ − γ(
∑l
j=0 φi,jyj(x) +

∑lw
j=r ci,j)

δ

))

+

lw∑
i=1

A10,iδsi +

lw∑
i=1

A11,itiyl+i(x) +A12δ(t0 +

lw∑
i=1

tisi) +A13γ(1 +

lw∑
i=1

si)+

+

q∑
i=1

( lw∑
j=0

A14,i,jci,j +A15,i

lw∑
j=0

tjci,j)

)

B = B1β +B2γ +B3δ +

n−1∑
i=0

B4,ix
i +

q∑
i=1

B5,iνi +

lw∑
i=0

B6,iti
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We will refer to the terms A1 . . . A9,i and B1 . . . B5,i as “first category” (since they are used
in the SE proof), and the other terms are, correspondingly, “second category”. We use the
same indexing for the first category coefficients as in the SE proof for compatibility; the only
difference is that there are fewer A6,i coefficients, and A5,i ranges to l+ lw and not l. Technically,
this change is merely syntactical: we could assume secret inputs are part of the (hidden) instance,
which would leave the coefficients as they were before (by setting l = l + lw).

We will show that it is possible to extract the witness from the coefficients an algebraic A
returns for the ciphertexts. At the same time, Ext in Fig. 4 is black-box. The security proof will
use the white-box extracted coefficients, but they are equal to those returned by Ext because of
correctness of the encryption scheme.

We now analyse the first verification equation of Ext-Groth16:

lw∏
i=0

[Ci]1[ti]2 = [Ψ ]1[1]2 or, in exponent form: C0t0 + . . .+ Clw tlw = Ψ

It is immediately clear that Ψ can only be composed of elements that contain ti, since they are
in the immutable part of the left hand side:

lw∏
i=0

Citi =

lw∑
i=1

Ψ11,itiyl+i(x) + Ψ12δ(t0 +

lw∑
i=1

tisi) +

q∑
i=1

Ψ15,i(

lw∑
j=0

tjci,j)

Now, we derive the restrictions on the ciphertext coefficients Ci. Going through the other elements
of the equation, to balance properly, each Ci must consist of either: (1) some strictly other tj
(clearly we cannot have t2i in the equation; in particular, Ci,12 = Ci,15,j = 0 for all j ∈ [1 . . . l]
because of that); or (2) yl+i(x) for i > 0; or (3) δ for i = 0 and siδ for i > 0; or (4) simulated
ciphertexts {cj,i}qj=1. Substituting it into the equation:

(
C0,3δ +

lw∑
i=1

C0,11,itiyl+i(x) +

q∑
i=1

lw∑
j=0

C0,14,i,jci,j

)
t0

+

lw∑
j=1

(
Cj,10,jsjδ + Cj,5,jyl+j(x) +

lw∑
i=1,i6=j

Cj,11,itiyl+i(x) +

q∑
i=1

lw∑
k=0

Cj,14,i,kci,k

)
tj

=

lw∑
i=1

Ψ11,itiyl+i(x) + Ψ12δ(t0 +

lw∑
i=1

tisi) +

q∑
i=1

Ψ15,i(

lw∑
j=0

tjci,j)

From δt0 we obtain C0,3 = Ψ12, and for i > 0 from δtjsj we get Ψ12 = Cj,10,j . Now, looking
at tjyl+j(x) (in fact, on tjx/γ, αtjx/γ, βtjx/γ), we also get Cj,5,j = Ψ11,j . From each t0ci,j we
derive that C0,14,i,0 = Ψ15,i, and all other C0,14,i,j = 0; similarly only Cj,14,i,j = Ψ15,i. Finally,
notice that tjt0 for j > 0 cannot be balanced by anything from Cj (Cj,11,i start from i = 1) or
Ψ , so all C0,11,i = 0. Applying these changes, we derive:

(
Ψ12δ +

q∑
i=1

Ψ15,ici,0

)
t0 +

lw∑
j=1

(
Ψ12sjδ + Ψ11,jyl+j(x) +

lw∑
i=1,i6=j

Cj,11,itiyl+i(x) +

q∑
i=1

Ψ15,ici,j

)
tj

=

lw∑
i=1

Ψ11,itiyl+i(x) + Ψ12δ(t0 +

lw∑
i=1

tisi) +

q∑
i=1

Ψ15,i(

lw∑
j=0

tjci,j)
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The coefficients of the resulting equation represent the following logic: (1) original honest
ciphertexts (Ψ11,j are encrypted witness wires, and Ψ12 is randomness), (2) homomorphically
added simulation ciphertexts (Ψ15,i for i = 1 . . . q), and (3) linear combination on the left hand
side (nonzero Cj,11,i).

We now argue that all Cj,11,i = 0, and thus no nontrivial linear combination is possible.
Assuming the contrary, and analysing monomial tk1tk2 for some pair of positive indices k1 6= k2
(both ∈ [1 . . . lw]), we have Ck1,11,k2yl+k2(x)+Ck2,11,k1yl+k1(x) = 0. This, in turn, implies, simul-
taneously, Ck1,11,k2fl+k2(x) + Ck2,11,k1fl+k1(x) = 0, for fi(X) = vi(X), ui(X), wi(X) (viewing

αx, βx, x). But we assumed {ui(X)}lwi=l+1 to be linearly independent, and therefore all Cj,11,i = 0.
The resulting view on the equation is now:

(
Ψ12δ +

q∑
i=1

Ψ15,ici,0

)
t0 +

lw∑
j=1

(
Ψ12sjδ + Ψ11,jyl+j(x) +

q∑
i=1

Ψ15,ici,j

)
tj

=

lw∑
i=1

Ψ11,itiyl+i(x) + Ψ12δ(t0 +

lw∑
i=1

tisi) +

q∑
i=1

Ψ15,i(

lw∑
j=0

tjci,j)

As we can see, it deviates from the proof of SAVER KS in exactly one aspect: A can combine
its message encryption with the simulated zero-ciphertexts homomorphically. This does not give
A any real power: we will show that this combination cannot satisfy the second verification
equation, because A cannot produce the “ciphertext randomness cancelling value” for C.

After showing how exactly Ci are restricted, our next step is substituting their general form
into the second equation which corresponds to the verification equation of Groth16:

AB − αβ −
( l∑
i=0

φiyi(x) +
(
Ψ12δ +

q∑
i=1

Ψ15,ici,0

)
+

lw∑
j=1

(
Ψ12sjδ + Ψ11,jyl+j(x) +

q∑
i=1

Ψ15,ici,j

))
γ − Cδ = 0

We now follow the SE proof reduction: the block of 11 equations from which it starts remains
the same. The equation extracted from αβ is not affected by the change of terms since no
additional αβ terms are created either by second category coefficients, or by the ciphertext
terms. The other 10 equations depend either on µi or νi (µiνj , µi, νi, . . . , νiδ), and they are
exactly the same in our case too, since (1) they do not contain A5,i and A6,i, (2) the second
category monomials do not contain µi or νi, and (3) the ciphertext coefficients do not either.
Hence, in both cases all A9,i = 0, and we follow the branching of the SE proof:

– Non-simulation case. All the simulation elements are zero: A9,i = A8,i = B5,i = C8,i =
C9,i = 0, and thus we have as before A1B1 = 1. From β2 and αδ, we get A2 = B2 = 0.
From Equation (ci,0γ): A9,iB4,0 +A14,i,0B2 − Ψ15,i − C9,i = 0, so Ψ15,i = 0 — this means A
cannot add simulated ciphertexts into a non-simulated one. Indeed, to balance out simulated
ci,j A would need to add the cancelling coefficient to C, but it cannot do that since it is part
of C9,i which is zero.
We easily cancel all the second category terms from A,B. From Equation (βδsi) we have

A10,i = 0, from monomials βtix
i we get

∑lw
i=1A11,itiyl+i(x) = 0 (coefficients may be nonzero

since forming a linear combination may be possible). From Equation (δβt0), A12B1 = 0,
so A12 = 0. From Equation (γβ): A2B2 + A13B1 = 0, so A13 = 0. At the same time,
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from Equation (βci,j): A14,i,jB1 = 0, and from Equation (βci,0t0): A15,iB1 = 0, so all
A14,i,j = A15,i = 0. Considering Equation (αti) we get A1B6,i = 0, so B6,i = 0.
To characterise Ψ12 we must look at Equation (δγ): A3B2 + A13B3 − Ψ12 − C13 = 0. Since
B2 = A13 = 0, we derive C13 = −Ψ12 — that is, the cancelling coefficient in C must be
balanced out by the ciphertext randomness, which is in line with honest proof generation
logic.
Other second category terms in C also cancel: C10,i = 0 because of δ2si; C11,i = 0 from δtix

i;
C12,i = 0 because of δ2t0; and C14,ij with C15,i are zero from δci,j and δci,jtj correspondingly.
Now the verification equation looks like as if A uses a single honestly constructed ciphertext:

AB − αβ −
( l∑
i=0

φiyi(x) + Ψ12δ +

lw∑
j=1

(
Ψ12sjδ + Ψ11,jyl+j(x)

))
γ + Cδ = 0

Moreover, as we showed, Ψ12 (ciphertext cancelling term coefficient) is cancelled out by C13

— the only nonzero from the second category coefficients. So from here we can reduce to the
basic Groth16, with the only difference that now A5,i has more wires and A6,i has less. We
show that this minor change does not significantly affect the proof of Groth16 KS.
For all the equations in the KS proof until we get to critical equations (that is, (β2/δ, βα/δ,
β/δ, 1/δ, β2/γ, βα/γ, β/γ, 1/γ)) the only change that happens is that whenever a sum with
A5,i appears it now spans to l + lw not to l, and whenever a sum with A6,i appears, it goes
from l+ lw +1 to m, not from l+1. This is easy to verify, since the only new monomials that
we have are δγ (with Ψ12 and with C13; is not part of the monomials listed), δγsi (similarly),
and Ψ11,jyl+j(x)γ only affect critical equations. And other second category elements are zero.
Looking at the third critical coefficient (corresponding to powers of x only) we see almost the
same equation as in the KS proof, except now Ψ11,i are instead of first lw wires of C6,i. No
other new terms are added, and coefficients with B2, A6,i and A7,i are cancelled as before,
which gives:

( n−1∑
i=0

A4,ix
i
)( n−1∑

i=0

B4,ix
i
)

=

l∑
i=0

φiwi(x)+

l+lw∑
i=l+1

Ψ11,i−lwi(x)+

m∑
i=l+lw+1

C6,iwi(x)+

n−2∑
i=0

C7,ix
it(x)

To argue that A4,i and B4,i form ui(x) and vi(x) sets, we, as in the KS proof, look at α and
β:

β :
( n−1∑
i=0

A4,ix
i
)
B1 =

l∑
i=0

φiui(x) +

l+lw∑
i=l+1

Ψ11,i−lui(x) +

m∑
i=l+lw

C6,iui(x)

α :
( n−1∑
i=0

B4,ix
i
)
A1 =

l∑
i=0

φivi(x) +

l+lw∑
i=l+1

Ψ11,i−lvi(x) +

m∑
i=l+lw

C6,ivi(x)

Therefore we trivially conclude, substituting the last two equations into the previous one,
and extracting from Ψ11,j , as we extracted from C6,j instead in the KS case.

– Simulation Case. This branch is characterised by A reusing the simulated proof number k
with C9,k = 1; as we showed in Groth16 weak SE proof, all other A8,i, B5,i and C9,i are zero.
From the very same block of 11 equations we derive, as before: A1 = A2 = A3 = B1 = B2 = 0.
Since simulation “ciphertext cancelling” terms are embedded with simulated C, and only
C9,k is nonzero, A cannot use any other set of ciphertexts than {ck,i}i. Formally, we show it
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by looking at Equation (γci,0): A9,iB4,0 + A14,i,0B2 − Ψ15,i + C9,i = 0, so we conclude that
Ψ16,i = 0 for i 6= k, and for i = k since all A9,i = 0 we get Ψ15,k = A9,kB4,0+C9,k = 0+1 = 1.
That is, A uses exactly one simulated ciphertext vector, unmodified.
We now cancel all the second category terms for A and B, looking at combinations of co-
efficients in A with nonzero B5,k(νk) and the coefficients of B with A8,k(µk); all they are
extracted from AB only. From Equation (δsiνk): A10,iB5,k = 0, so A10,i = 0. Looking at
monomials νktiαx, νktiβx, νktix simultaneously: A11,itiyl+i(x)B5,kνk = 0, hence A11,i = 0.
From Equation (δt0νk), A12B5,k = 0, so A12 = 0. From Equation (γνk): A13B5,k = 0, so
A13 = 0. Monomials with ci,jνk do only appear in A14,i,j , A15,i since A9,i = 0, so from Equa-
tions ci,jνk, ci,jtjνk all these coefficients are zero in a similar manner. Finally, we cancel B6,i

by looking at tiµk which gives us A8,kB6,i = 0.
Regarding Ψ12, as in the non-simulation case, we look at Equation (δγ): A13B3−Ψ12−C13 = 0,
which simplifies to Ψ12 = −C13. This means that A can indeed add its own randomness to
C, because it can cancel it out exactly with C13.
Except for C13 we can cancel all the other second category terms of C. C10,i is zero because
δ2si are only balanced by A10,iB3 but A10,i = 0; the same thing happens to C11,i because of
δti(αx+ βx+ x), to C12 (δ2t0 and δ2tisi), to C14,i,j (δci,j), and to C15,i (δci,jtj).
We have now cancelled all the second category terms of A,B,C except for C13 balancing
out Ψ12. Now it is possible to proceed with the reduction exactly as in the second branch
of the Groth16 weak SE proof, having in mind the similar difference with A5,i, A6,i elements
explained in the first branch of the current proof. In particular, we argue that Ψ11,j cancel
from the third critical equation:

0 =

l∑
i=0

aiui(x) +

l+lw∑
i=l+1

Ψ11,i−lui(x) +

m∑
i=l+lw+1

C6,iui(x)−
l∑
i=0

ak,iui(x)

Similarly to Groth16 weak SE,
∑m
i=l+lw+1 C6,iui(x) = 0 because it is linearly independent

from all the 0 . . . l+lw input wires. Then, because input wires are independent, all Ψ11,i−1 = 0
(which forbids adding nonzero honest ciphertexts), and ai = ak,i. Hence, A has reused the
simulated proof number k, but potentially with ciphertext randomization (Ψ12) additionally
to the (A,B,C) randomization of Groth16. ut

Lemma 2. The Ext-Groth16 NIZK is rerandomizable with Rand in Fig. 4.

Proof. Follows directly from rerandomizability of SAVER in [LCKO19].

5 Performance

In this section, we evaluate the efficiency of Int-Groth16 and Ext-Groth16. First, in Table 1, we
give a high-level comparison with Groth16 and (the most efficient) C∅C∅ black-box SE transfor-
mation [KZM+15, Section 4]. It shows the asymptotic dependence on the witness size lw and
the blow-up of the QAP size due to the use of cryptographic primitives for the transformation.
Enclw denotes an encryption scheme with sufficiently large plaintext size to encrypt the witness.
We note that even for Ext-Groth16 the circuit changes, that is m grows by 2lw bits, and n grows
by lw; additionally, lw wires for Ext-Groth16 have 6 times less capacity than for Int-Groth16 and
C0C0. Clearly, in Table 1, an overhead of C∅C∅ in CRS size and prover time is strictly bigger
than in both constructions we suggest, due to the use of PRF and commitment scheme, and
Ext-Groth16 encryption overhead (thus proof size and verification time) is bigger than in first
two transformations because of the expansion factor.
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Table 1. A comparison of Groth16 with the overhead of C∅C∅ framework and our constructions.
Constants are omitted in the case of CRS size and prover’s computation. G1 and G2: group ele-
ments, E: exponentiations and P : pairings. lw is the number of secret input wires. e(lw) = |Enclw |,
c(lw) = e(lw) + |Com|+ |Prf| , where |Op| denotes the number of constraints required for the operation
Op ∈ {Enclw ,Com,Prf}. ei(lw), ci(lw) denote an additional increase in input wires (counted in m, but not
in n). ke is Enc expansion factor, can be assumed ≤ 2. The highlighted cells indicate the best efficiency.

Construction Security CRS Proof Prover Verifier

Groth16, Sec. 3
KS, Weak
WB-SE

m+ 2n G1

n G2

2 G1

1 G2

m+ 3n− l E1

n E2

l E1

3 P

Groth16 + [KZM+15]
Weak

BB-SE

+ 3c(lw) + ci(lw) G1

+ c(lw) G2
+ kelw G1

+ (4c(lw) + ci(lw)−O(lw)) E1

+ c(lw) E2
+ kelw E1

Int-Groth16, Sec. 4.1
Weak

BB-SE

+ 3e(lw) + ei(lw) G1

+ e(lw) G2
+ kelw G1

+ (4e(lw) + ei(lw)−O(lw)) E1

+ e(lw) E2
+ kelw E1

Ext-Groth16, Sec 4.2
Weak

BB-SE

+ 36lw G1

+ 12lw G2
+ 6lw + 2 G1

+ 42lw E1

+ 12lw E2
+ 6lw + 2 P

We also estimate the concrete performance of our constructions, along the same four categories
defined in Table 2, as depending on bit-size of the encrypted witness. For both NIZKs we will use
a 255-bit BLS12-381 curve, defined over a 381 bit prime field. Let us assume that witness size is
Bw bits, and it is provided in bit-decomposed form in the original circuit. We aim to optimize
proof size, which is important for SNARKs, and thus will only consider encrypting secret inputs
at the maximum possible capacity (e.g. we do not encrypt individual bits); the two approaches
have different block capacities, so the number of plaintext (and ciphertext) blocks is different in
both cases. For Int-Groth16, block size is 248 bits, where the 6 remaining bits are reserved for
Koblitz [Kob87] message embedding padding. For Ext-Groth16 we split the plaintext in 43-bit
blocks, thus assuming that we can solve 43-bit discrete logarithm for black-box extraction. This
explains Ext-Groth16 expansion factor of 6 = d248/43e. We base our circuit design estimates,
which are especially relevant to Int-Groth16, on zcash implementation, description of which is
provided in [HBHW20] (Section “Circuit Design”).

Concrete Performance of Int-Groth16. The performance overhead of Int-Groth16 compared
to Groth16 depends mostly on the increase in circuit size — we must implement the encryption
scheme itself, and also the infrastructure that converts the input (plaintext) data to the desired
form, which we discuss first. We remind that JubJub forms a 252 bit group over 255 bit prime
field, which is equal to the group size of BLS, allowing seamless integration of one into another.

Plaintext embedding into the JubJub curve — that is, converting plaintext blocks into JubJub
points — is the main technical challenge, which we solve using the approach of Koblitz [Kob87]
to overcome it. To embed a plaintext block wi of bit-length (254 − log2 κ) into the curve we
reserve a padding pi for a nonce of length log2 κ: with probability 1−2κ the concatenation wi‖pi
is a valid x-coordinate for some p. Because of how lengths are chosen, mi‖pi is always smaller
than the prime field of JubJub. For practical purposes it is enough to reserve 6 bits for the
padding, which gives κ = 64, leaving 248 bits for the message block, and thus lw = dBw/248e.
To avoid issues with completeness — since now it is possible, with negligible probability, that
some wi does not have a suitable padding — we allow a fallback mechanism [MS07], in which
a random blinding bi is chosen, and the algorithm is repeated for wi + bi, and bi is attached
to the ciphertext in clear. To avoid attacks where A finds non-encodable witnesses, we generate
this bi every single time (otherwise the presence of nonzero bi may leak something about the
message). From the circuit side, one extra wire per plaintext block is required to contain bi, but
it takes no extra mul-gates, since any gate that uses wi can use wi + bi for free. We will denote
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this procedure by Embed(wi, bi, pi) = ((wi⊕ bi) ‖ pi, y), where y coordinate is computed from x.
Instead of computing y in the circuit, we pass it through the intermediate secret wires, and just
check that (x, y) is on the curve, which takes just 4 constraints.

The second issue is that we must verify that circuit inputs corresponding to wi are of a right
bit-size in order to guarantee correctness of decryption (used in extraction). The standard way of
solving this is to represent the values as bit-vectors of the needed size. That is, for each encrypted
element e = wi we supply its bit decomposition {ei}n−1i=0 explicitly and assert that e =

∑
2iei,

which certifies that e is a n bit value. This takes n gates to ensure each ei is a binary value, and
then one gate is needed to combine them all. Converting from bit-decomposed representation to
any other base is inexpensive, and takes one gate per digit in the chosen base, so we assume that
application (as opposed to the encryption-correctness check) is taking each wi in bit-decomposed
representation. To simplify the comparison, we assume that this representation is used in the
original non-transformed circuit too, so we omit boolean-checks on wi from both estimates.

We now discuss the encryption scheme itself. To verify the ciphertext c0, c1, . . . , clw we must
check that c0 = r[1]1 and ci = r[si]1 + Embed(wi, bi, pi). All the JubJub exponentiations here
take 750 multiplication gates for each full-bit exponent — we assume that public key points are
embedded into the circuit, thus we use an algorithm for fixed-base exponentiation.

– Checking c0 requires 254 constraints for bit-range check, 750 gates for fixed-base exponenti-
ation, 2 constraints to compare both coordinates of c0 to the computed ones, and to perform
onCurve check for c0 coordinates (4 gates); together it takes 1010 constraints. The num-
ber of additional input wires that we introduce (for r and ci) is 256, which we include in
computation of m but not n.

– For the ci checks we must additionally perform embedding and sum the embedded point
with r[si]. For the embedding, our circuit accepts bit-decomposed wi, bi, pi and y (second
coordinate of embedded point). Bit-checking bi, pi (wi is excluded, r is bit-checked once and
counted for c0 check already) takes 248 · 2 + 6 constraints. In order to optimize l we will
pass bi as field elements through public inputs and perform an equality-check with the bit-
decomposed witness-passed bi; this takes 1 constraint. Next, we must bit-add wi and bi,
which takes 250 constraints. We can now pack the bits corresponding to x = (wi ⊕ bi) ‖ pi
into a field element with a single gate, and it takes 4 gates to verify onCurve(x, y). We sum
the value with r[si] (this takes 750 constraints to compute), which takes extra 6 constraints.
On-curve check for ci and comparison of ci with the computed points takes 6 gates. In total,
we get 1273 constraints. The number of additional input wires is 258 (bi, pi, y, ci).

Combining it all together, n increases by ∆n = 1010 + 1273lw, m increases by ∆m = ∆n + 256 +
258lw = 1266 + 1531lw, and l increases by ∆l = 3lw because of public blinding factors (lw field
elements) and two values for ci.

We now analyse the NIZK parameters we compare along:

1. CRS size. We get extra ∆m + 2∆n = 3286 + 4077lw G1, and ∆n = 1010 + 1273lw G2.
Converting it to Bw, extra 3286 + 16.4Bw G1 and 1010 + 5.1Bw G2.

2. Proof size. Using ElGamal we have lw + 1 points per message block, and lw 248-bit blinding
factors. This results in additional dBw/248e+ 1 G1 plus Bw bits.

3. Prover time.∆m+3∆n−∆l = 4296+5347lw = 4296+21.6Bw E1. As in the CRS, 1010+5.1Bw
E2.

4. Verifier time. Extra ∆l = 3lw ≈ 0.012Bw exponentiations, plus time to decode ci (finding
second point coordinate), which we ignore in our comparison.

Concrete Performance of Ext-Groth16. As we mentioned before, efficient black-box extrac-
tion from Ext-Groth16 is only possible if encrypted plaintext values are small enough, since the
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decryption algorithm needs to solve DLP for each ciphertext element. We assume that it is
feasible to solve 43 bit DLP, which splits every 128 bits into 3 blocks.

Compared to Groth16, Ext-Groth16 has two types of overhead: on the first, structural layer, it
has additional CRS elements (for the public key), ciphertext proof elements, prover exponentia-
tions, and verifier pairings; on the second infrastructural layer, the circuit should be changed to
assert that encrypted wire values fit into 43 bits, and then to convert from this representation to
the desired one. We will denote the number of secret input wires by l′w = dBw/43e to distinguish
it from the number of wires lw in the more efficienly-packed Int-Groth16.

Regarding infrastructure, since we compare to the circuit which already uses binary-decomposed
witness, all the bits are checked to be binary, so the only real overhead is to pack them into field
values and compare to the plaintext values that are plugged-in externally. Each comparison takes
just one constraint, so we have extra ∆n = lw constraints. We also have an additional input wires
for ciphertexts, so ∆m = ∆n+lw = 2lw. Although we connect the ciphertexts externally, formally
they are not counted as public inputs, so ∆l = 0.

This gives, for the four parameters:

1. CRS size. ∆m+2∆n+2lw = 6lw ≈ 0.14Bw G1. For second group elements, ∆n+ lw = 2lw =
0.05Bw G2.

2. Proof size. We produce l′w + 2 extra ciphertext points in G1.
3. Prover time. For E1, ∆m + 3∆n −∆l + 2lw = 7lw = 0.16Bw E1. The overhead for E2 is the

same as of G2 in CRS size.
4. Verifier time. We need to compute l′w + 2 more pairings than in Groth16, and no additional

exponentiations, since ∆l = 0.

Table 2. Overhead comparison of our constructions over plain Groth16. GJ stands for bit-size of an
encoded JubJub point, and Gi is the size of an encoded BLS12-381 point. Highlighted cells indicate
efficiency improvement.

Construction CRS Proof Prover Verifier

Int-Groth16
3286 + 16.4Bw G1

1010 + 5.1Bw G2

(⌈
Bw
248

⌉
+ 1
)
GJ +Bw

4296 + 21.6Bw E1

1010 + 5.1Bw E2
3
⌈
Bw
248

⌉
E1

Ext-Groth16
0.14Bw G1

0.05Bw G2

(⌈
Bw
43

⌉
+ 2
)
G1

0.16Bw E1

0.05Bw E2

(⌈
Bw
43

⌉
+ 2
)
P

Performance Comparison. Our estimates, summarized in Table 2, suggest that both con-
structions are quite efficient. Ext-Groth16 achieves better prover time and CRS size and the
expense of slightly bigger proofs and verification time. CRS size and prover time of Ext-Groth16
incur a very small overhead, and are asymptotically much smaller than the same numbers for
Int-Groth16, giving almost a 100−135× performance gain. Hence, we focus our detailed analyses
on the proof size and verifier time:

1. Proof size. Assuming that encoded BLS12-381 G1 takes 381 bits, and that JubJub point GJ

takes 256 bits, Int-Groth16 overhead is
(⌈

Bw
248

⌉
+ 1
)
256 + Bw ≈ 2.03Bw + 256 bits, and for

Ext-Groth16 it is
(⌈
Bw
43

⌉
+ 2
)
381 ≈ 8.86Bw + 762 bits. Asymptotically, Int-Groth16 proof size

is ×4.4 times smaller.
2. Verifier time. To compare the increase in exponentiations in Int-Groth16 with the increase in

pairings in Ext-Groth16, we use the estimation that micro benchmarks ([AB19, Fig 2], also
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consistent with [FLSZ17, Table 3] for BN-254) show pairings to be approximately N = 35
times slower than processing one element of a multi-exponentiation. Thus, the verification
overhead of Int-Groth16 is small for practical witnesses, e.g. 1600 · 3/248 ≈ 20 wires for
encrypting 200 bytes, comparing to tens of thousands circuit constraints. And the overhead
of Ext-Groth16 therefore is about 70× more than for Int-Groth16, although for real-world
witnesses it takes less than just a few tens milliseconds, and becomes immaterial for bigger
public input sizes.

6 Conclusion and Future Work

We prove two important theorems about [Gro16] and [LCKO19] enabling the composable analysis
of provable secure protocols. We conjecture that both our white-box and black-box results gener-
alize to other SNARKs. In fact, we first showed white-box weak SE in a modification of [GM17]
with the second equation removed. We decided to focus on Groth16 as the most important SNARK
in this family to give a targeted proof and performance analysis. Besides improving performance,
we expect weak SE and proof randomization to also have positive cryptographic applications
that would be impossible with strong SE — just as for Groth-Sahai proofs [GS08, BCC+09].
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A Additional Definitions

First, we give a standard definition of knowledge soundness (KS).

Definition 7 (Knowledge Soundness). We say that NIZK is knowledge sound if for any
PPT adversary A there exists a polynomial time extractor XA such that for Rλ we have

Pr

[
(σ, τ)← Setup(Rλ); (φ, π)← A(σ);w ← XA(transA) :

Verify(σ, φ, π) = 1 ∧ (φ,w) /∈ Rλ

]
= negl(λ).

We can also have a corresponding notion of weak simulation soundness which is implied by
white-box and black-box weak simulation extractability.

Definition 8 (Weak Simulation-Soundness). We say that NIZK is weakly simulation-sound
if for any PPT adversary A and Rλ we have

Pr

[
(σ, τ, τext)← Setup(Rλ); (φ, π)← ASσ,τ (σ) :

Verify(σ, φ, π) = 1∧
φ /∈ LRλ ∧ φ /∈ Q

]
= negl(λ)

where Sσ,τ (φ) is a simulator oracle that calls Sim(σ, τ, φ) internally, and also records φ into Q,
and LRλ is the language corresponding to Rλ.

Finally, we remind the standard definition of computational zero-knowledge.

Definition 9 (Computational Zero-Knowledge). We say that NIZK is computational zero-
knowledge, if for any PPT adversary A and Rλ, |ε0 − ε1| = negl(λ), where

εb = Pr
[

(σ, τ)← Setup(Rλ) : ASb,σ,τ (σ) = 1
]
.

The oracle Sb,σ,τ on input (φ,w) asserts that (φ,w) ∈ Rλ and then returns π = Prove(σ, φ, w)
if b = 0, and π = Sim(σ, τ, φ) if b = 1.

B Lemmas for Algebraic Proofs

This section contains proofs deferred from Section 2.

Lemma 3 (Schwartz-Zippel). Let f ∈ F[X1, . . . , Xn] be a non-zero polynomial of degree d ≥ 0
over a field F. Let S ⊂ F finite, and let x = (x1, . . . , xn). Then Prx←Sn [f(x) = 0] ≤ d/|S|.
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Proof (Lemma 1: Algebraic Verification Satisfiability (Sketch)). The intuition for the
lemma is that since CRS trapdoors are chosen uniformly, and are “hidden” in the group exponents
(hence the discrete log assumption), A combines e as if it has no knowledge of the internal
structure of the CRS, and thus this is equivalent to choosing the V ′, and then evaluating it
on random T (reversed order), which is negligible by S-Z. For the detailed proof of a similar
statement tailored specifically for Groth16 in AGM, see [FKL18]. Here we present a sketch of the
proof that is slightly more general, and can also be applied to other NILP based SNARKs, e.g.
to Groth and Maller SNARK.

The original generic algebraic verification game has the step [e]1,2
$←− A(σ);K ← X alg

A (transA),
where K is a matrix of algebraic coefficients. We modify the game, launching A also on another
independently generated CRS and ξ — we can do that since we know K, essentially “how e
was constructed from τ”, so we just replace the trapdoors and emulate the execution of A. If
verification passes on both CRSs, it means that A constructed its proof π = [e]1,2 independently
of the concrete CRS structure, and otherwise he has used it in proof construction.

We split the game in two scenarios according to the result of this test: either (i) A does not
use the concrete CRS and returns coefficients blindly (then we arrive at the main positive lemma
statement), or (ii) it uses the CRS, thus we break the (d1, d2)-dlog assumption.

The first option is that A succeeded without using the concrete CRS σ — meaning that it
guessed cι,i as if it only knew the structure of the CRS (Setupλ and all Pι,i, but not the concrete
σi themselves). Then the probability for A to win is low and bounded by S-Z lemma, since the
unknown τ for A is equivalent to the randomly chosen one — we can generate the concrete CRS
after the call to A. By S-Z we know that Pre←A(...)[V (e) = 0 | V ′(T ) 6= 0] < negl(λ) where

V ′(T ) = V
(
K(Setupλ(T ))

)
, and we also assume that Pr[V (e) = 0] = p(λ) is non-negligible,

which means that V can be satisfied by a prover. Then:

Pr[V ′(T ) 6= 0 | V (e) = 0] =
negl(λ) · Pr[V ′(T ) 6= 0]

p(λ)
= negl(λ)

So in the end we arrive at the conclusion that V ′(T ) = 0 in case V (e) = 0 with high probability.
The other option is that A has used the CRS non-trivially, possibly extracting knowledge

about the trapdoor, which allowed it to satisfy the verification equation. Formally, A constructed
e such that V ′(T ) 6= 0, but V ′(τ ) = V (e) = 0 for τ being a concrete trapdoor. Then we can
embed (d1, d2)-dlog instance ([z]ι, [z

2]ι, . . . , [z
dι ]ι) into the CRS before generation (by using the

challenge to generate trapdoors) and solve it. We embed by transforming the challenge into CRS
trapdoors τ = {τi}ni=1 in the following way: [τi]ι = [αiz + βi]ι for random (αi, βi), and then

[τ ji ]ι = [(αiz + βi)
j ]ι is a polynomial in z will all known coefficients, so it can be constructed

from the q-dlog challenge higher powers. Then, after A returns e that depends on this particular
CRS σ with z embedded inside, and satisfies V (e) = 0, we factor V ′(T ), reconstructed using K,
and reinterpreted as a single variable polynomial over z (since in fact it is parameterized only by
one unknown z, and we know all of the other coefficient of this equation except for z), and then
one of the roots of this V ′(z) will be a solution to the discrete log challenge. ut

In other words, the lemma says that A has negligible success in constructing e as linear
combination of CRS elements such that V (e) evaluates to zero, but V ′(T ) = V (K·Setupλ(T ))
is not identically zero as a polynomial in T . It is not hard to generalize this statement for an
adversary A that also obtains some group elements through queries to oracles, or for multiple
equations that A aims to satisfy.

C Randomizability Characterization of Groth16

Proof (Proof of Theorem 3).
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In order to prove the statement, we need to show that the distribution of honestly generated
proofs {π}λ = {(a, b, c)}λ is the same as the distribution of re-randomized proofs {Rand(π)}λ =
{(a′, b′, c′)}λ, where π is perhaps not honestly generated, but necessarily verifies. In honestly
generated proofs, first two values a, b are independently uniform, and the third element of the
tuple is defined from them.

By examining Rand, we immediately see that r1 makes a′ = r1a uniform, and that b′ =
r1b + r1r2[δ]2 is also independent since r1r2δ is uniform because of r2. Thus we obtain two
uniform distributions, and this is true irrespectively of the original distribution of π. Since Rand
is correct, the modified proof also verifies. Hence in both distributions the first two tuple elements
are uniform, and the third depends on them in the same way, defined by Groth16 verification
equation. ut

Proof (Proof of Observation 1). We start by taking the KS version of the proof elements
parametrisation (A,B,C expressed as a linear combination of CRS elements with coefficients
containing Ai, Bi and Ci), and applying the constraints we obtained in the KS proof. The
malleability constraints we will show are the same for both simulated and real proofs because
of indistinguishability of simulated proofs. We apply the reductions from the KS proof, and
immediately cancel A2, B2, A6,i and A5,i related sums, and the sum with A7,i. We also substitute
ai instead of C6,i and h(x) instead of C7,i. Since A1B1 = 1, we set B1 = 1/A1.

A = A1α+A3δ +

n−1∑
i=0

A4,ix
i B =

1

A1
β +B3δ +

n−1∑
i=0

B4,ix
i

C = C1α+ C2β + C3δ +

n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,i
βui(x) + αvi(x) + wi(x)

γ
+

+

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

In order to restrain C5,i we need to investigate another set of coefficients:

βδ/γ :
( l∑
i=0

A5,iui(x)
)
B3 +

l∑
i=0

C5,iui(x) = 0

αδ/γ :
( l∑
i=0

A5,ivi(x)
)
B3 +

l∑
i=0

C5,ivi(x) = 0

δ/γ :
( l∑
i=0

A5,iwi(x)
)
B3 +

l∑
i=0

C5,iwi(x) = 0

And as sums with A5,i are zero, we conclude that the relevant sums with C5,i are also zero, so
we can exclude them from C. We once again investigate critical equations for α and β:

β :
( n−1∑
i=0

A4,ix
i
)

= A1

( l∑
i=0

aiui(x) +

m∑
i=l+1

C6,iui(x)
)

α :
( n−1∑
i=0

B4,ix
i
)

=
1

A1
(

l∑
i=0

aivi(x) +

m∑
i=l+1

C6,ivi(x)
)



32 Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov

We substitute A4,i and B4,i sums into the general form of an honest proof, given that C6,i = ai.
What we get is:

A = A1α+A3δ +A1

m∑
i=0

aiui(x) B =
1

A1
β +B3δ +

1

A1

m∑
i=0

aivi(x)

C = C1α+ C2β + C3δ +

n−1∑
i=0

C4,ix
i +

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

We now restrain A3, B3 (A2 = 0):

δ2 : A3B3 = C3

βδ : A3B1 +A2B3 = C2

αδ : A1B3 = C1

And express C4,i related sum using A4,i and B4,i:

δ :
( n−1∑
i=0

B4,ix
i
)
A3 +

( n−1∑
i=0

A4,ix
i
)
B3 =

n−1∑
i=0

C4,ix
i

The fully reduced system that we obtain now has three free variables (A1, A3, B3), and has the
following form:

A = A1α+A3δ +A1

m∑
i=0

aiui(x) B =
1

A1
β +B3δ +

1

A1

m∑
i=0

aivi(x)

C = A1B3α+
A3

A1
β +A3B3δ +B3A1

m∑
i=0

aiui(x) +
A3

A1

m∑
i=0

aivi(x) +

m∑
i=l+1

ai
qi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ
= B3A+A3B −A3B3δ +

m∑
i=l+1

ai
qi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

Since this general form of proof generation satisfies the verification equation (this is easy to
verify), no further reductions are possible. Indeed, two out of three free variables are used in the
honest generation procedure, and the third one is modified in the randomization transformation.

ut

Proof (Proof of Observation 2).
Now, in order to obtain the explicit form randomization transformation, we would need to

trasform each proof element so that they still fit the bounds we have just presented. Although,
this is easier to show if we repeat the process over again, but with the weak SE proof, now
assuming that A uses one simulated query (weak SE has shown that no combination of two
proofs can be a valid proof). This makes things simpler, because simulated variables µi and νi
stand exactly for already-composed proof elements a and b.

Assume that A8,k 6= 0. In the SE proof we already show almost all the coefficient reductions
(all Ai except for A8,k, all Bi except for B3 and B5,k, C7,i, C9,i for i 6= k, and C9,k = 1). This
gives us the following set of equations:

A = A8,kµk B = B3δ +B5,kνk
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C = C1α+ C2β + C3δ +

n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,iyi(x)

+

m∑
i=l+1

C6,i
qi(x)

δ
+

q∑
i=1

C8,iµi +
µkνk − αβ −

∑l
j=0 ak,jqj(x)

δ

Further reductions are also easy to discover. From Equation (µiδ), B3 = C8,k/A8,k, and all other
C8,i = 0. From Equation (δ2), C3 = A3B3 = 0. From Equation (αδ), C1 = A1B3 = 0. From
Equation (βδ), C2 = A3B1 +A2B3 = 0. We also substitute already obtained B5,k = 1/A8,k from
the SE proof:

A = A8,kµk B =
1

A8,k
νk +

C8,k

A8,k
δ

C =

n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,iyi(x) +

m∑
i=l+1

C6,i
qi(x)

δ
+ C8,kµk +

µkνk − αβ −
∑l
j=0 ak,jqj(x)

δ

We now need to remove the C4,i, C5,i, C6,i related sums. Nothing can compensate
∑n−1
i=0 C4,ix

i if
we take a look at δ, so it cancels out. Same for C5,i related sum, and monomials βδ/γ, αβ/γ, δ/γ.
C6,i also can not be compensated, because of span disjointness of ui(X) for instance and witness
wires, and since the verification equation only includes the instance-related sum (formally, we
view the monomial β equation; the end of Theorem 1 proof explains the technique). What we
left with is precisely the well-known randomization Rand, where r1 = 1/A8,k, and r2 = C8,k:

A = A8,kµk B =
1

A8,k
νk +

C8,k

A8,k
δ

C = C8,kµk +
µkνk − αβ −

∑l
j=0 ak,j(βuj(x) + αvj(x) + wj(x))

δ

ut
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