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Abstract – External disturbances such as alpha particles, elec-

tromagnetic interference, or malicious external attackers can 

cause erroneous bit-flips in the hardware of modern embedded 

systems. A broad range of software-implemented error detec-

tion techniques have been presented in the past to safeguard 

embedded systems against these disturbances. Two well-known 

state-of-the-art techniques are SWIFT and SWIFT-R. How-

ever, since those solutions must be implemented in low-level 

code, such as assembly language, implementing them can be 

time-consuming and error-prone. To solve this issue, this paper 

describes a GCC compiler extension in the form of a plugin that 

can integrate the data flow error detection of SWIFT and 

SWIFT-R to any ARMv7-M program. We verify that the com-

piler implements the techniques correctly by performing fault 

injection campaigns on various case studies. 
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I. INTRODUCTION 

The increasing use of embedded systems in harsh working 
environments makes their reliability increasingly important, 
especially in safety-critical domains such as medical devices, 
automotive systems, and avionics. In these environments, ex-
ternal disturbances like electromagnetic interference or high 
energy particles may impact the systems by creating unin-
tended charges in the hardware components, causing a bit-flip 
in a memory cell of the microcontroller. This is often referred 
to as a soft error or a single event upset (SEU). Such a bit-flip 
can result in an erroneous jump in the executing process, 
called a control flow error (CFE), or in a corruption of data, 
called a data flow error (DFE). 

To increase the reliability of embedded systems, several 
approaches are possible. Hardware-based countermeasures 
such as error correcting codes (ECC) are often used as a way 
to protect a system. Software-based solutions, however, have 
grown in popularity since they provide a more versatile, gen-
erally more applicable, and low-cost solution. Since these 
software-implemented techniques are designed to work with-
out the need for any hardware modification, they can also be 
used on commercial off-the-shelf systems. 

Software-implemented techniques rely on redundancy to 
detect errors. This redundancy can be enforced at two levels: 
high-level, i.e. using processes and threads, and instruction-
level, i.e. adapting the instructions or source code of the pro-
gram. High-level redundancy techniques require either an op-
erating system or a superscalar processor. This, however, ex-
cludes a big part of the embedded system market, since ap-
proximately 35% of all embedded systems operate bare-
metal [1]. In contrast, instruction-level redundancy tech-
niques can be used without the need for an operating system. 
Although there are instruction-level techniques that should be 

used at high-level code, such as C or C++, the majority of 
these techniques are applied in low-level code, such as assem-
bly language. This is because the compiler might remove re-
dundant instructions during its optimization passes when 
compiling the high-level code. 

Manually implementing a low-level soft error detection 
technique is, however, a time-intensive and error-prone pro-
cess that requires a profound knowledge of both assembly 
language and the specific error detection technique. Moreo-
ver, since these techniques are applied on low-level code, the 
techniques must completely be reimplemented after every 
change in the high-level code. This often makes manually im-
plementing an instruction-level redundancy technique unfea-
sible. In this paper, we present how such instruction-level 
techniques can automatically be implemented using a com-
piler extension. This massively decreases the time-to-market 
and development cost of systems that want to implement 
these soft error detection techniques. 

In this paper, two well-known state-of-the-art error detec-
tion techniques are implemented in a compiler plugin: 
SWIFT and SWIFT-R [2], [3]. Software Implemented Fault 
Tolerance (SWIFT) is one of the best known software-imple-
mented error detection techniques proposed by Reis et al. [2]. 
It uses a variation on EDDI [4] (EDDI+ECC) to detect data 
flow errors, combined with an advanced version of 
CFCSS [5] (EDDI+ECC+CF) to detect control flow errors. In 
this paper, we will focus on the data flow error detection 
(DFED). SWIFT, like most soft error detection techniques, 
calls an error handler when it detects an error. This error han-
dler should be used to bring the program to a safe state, which 
typically is application specific. SWIFT-R (Software Imple-
mented Fault Tolerance with Recovery) proposed by Chang 
et al. shows how SWIFT can be extended with triplication and 
majority voting to create a system that can recover from SEUs 
without an error handler [3]. 

The remainder of this paper is structured as follows: In 
Section II, the internal operation of the compiler extension is 
discussed. Section III goes over the implementation of 
SWIFT, followed by Section IV, which discusses the imple-
mentation of SWIFT-R. Next, the future work is discussed in 
Section VI. Finally, in Section VII, our conclusions are sum-
marized. 

II. GCC COMPILER PLUGIN 

To automatically implement SWIFT and SWIFT-R, a 
GCC compiler plugin, originally proposed by Vankeirsbilck 
et al., is extended [6]. This compiler plugin is an extension to 
the GNU Compiler Collection (GCC). GCC compiles high-
level source code such as C and C++ to low-level machine 
code through three stages, with each stage consisting of a 
number of passes. A pass is a series of instructions that ac-
complishes a particular task during the compilation process, 



such as dead code removal, inline expansion and loop optimi-
zation. The front-end deals with the high-level language it-
self, the middle-end deals with the intermediate language, and 
the back-end component deals with code specific for the tar-
get system [7]. During this process, the source code goes 
through several intermediate representations such as an Ab-
stract Syntax Tree (AST) representation, GIMPLE and Regis-
ter Transfer Language (RTL). These representations are 
shown in Fig. 1. 

For the compiler plugin, the middle-end stage is most in-
teresting, specifically the RTL representation at the end of its 
chain. This representation is very close to assembly language 
and corresponds to an abstract target architecture. It is used to 
describe the data flow at the register transfer level of the ar-
chitecture. The plugin is implemented near the end of this rep-
resentation to ensure that no major optimization passes, that 
might intervene with the instructions injected by the plugin, 
can follow. Currently, the plugin supports the ARMv7-M in-
struction set architecture, although support for other architec-
tures will be added in the future. 

A. Usage 

To use the compiler plugin, a developer should first define 
the error handler to be used when an error is detected by an 
error detection technique. This function should be named 
DFE_Detected. When using C++, the handler should be de-
fined in an extern “C” environment so that the name is not 
mangled during the compilation process [8]. Since this func-
tion is only called when an error is detected, the error detec-
tion technique should not be implemented on this handler. To 
be able to specify this behavior, we defined the noProtection 
function attribute. This attribute can be added to any function 
that does not need to be protected by the error detection tech-
nique. For some applications, it might be useful to exclude 
some functions to reduce unnecessary code size overhead, 
such as applications with a large initialization function that is 
only called once. 

Every instruction-level soft error detection technique re-
quires some registers to be specifically reserved for that tech-
nique. Therefore, the compiler should not use these registers 
for its compilation of the business logic. When using the GCC 
compiler, this can be done with the compiler flag -ffixed-rN, 
with N being the number of the register to be reserved. Some 
plugin-related compiler flags also have to be used. A first 
compiler flag indicates where the compiler can find the plugin 
executable. Secondly, the plugin argument technique indi-
cates which DFE detection technique to implement. Finally, 
the optional function argument indicates which program func-
tion(s) to apply the technique to. When this argument is not 
given, all program functions will be protected. 

B. GCC Plugin Implementation 

The implementation of the compiler plugin is shown in 
Fig. 2 as a UML class diagram. This diagram shows the clas-
ses and methods needed for SWIFT and SWIFT-R. The 
plugin is designed according to the Factory Method and Tem-
plate Method design patterns defined by Gamma et al. [9]. 

Upon first execution of the plugin, it registers itself as a 
compilation pass. Next, for each function, the compiler calls 
the gate method of the Plugin class. This method determines 
whether or not the given function should be protected by an 
error detection technique based on the conditions discussed in 
Section II.A. If the gate method returns true, the execute 
method is called. This method contains the compilation pass. 
It will evaluate the plugin-specific compiler flags discussed 
in Section II.B, instantiate a DFED_Creator object, and call 
its implTech method. 

The DFED_Creator utilizes the Factory Design pattern. 
It knows which instruction sets are implemented in the plugin 
and how the implemented soft error detection techniques 
should be built. First, the used instruction set is determined. 
Next, the DFED_Creator object instantiates the class of the 
selected technique (SWIFT or SWIFT_R in Fig. 2). 

Following the Template Method design pattern, all classes 
implementing DFED techniques inherit from the abstract 
GeneralDFED class and are implemented via its implement 
(template) method. This method calls the insertError, in-
sertSetup and implementDupComp methods. The insertError 
method adds a call to the DFED_error handler at the end of 
the evaluated function and places a label at the position of the 
inserted call. The plugin can later use this label to branch to 
this call when an error is detected. The insertSetup and Imple-
mentDupComp are both abstract functions that are imple-
mented in the SWIFT and SWIFT_R classes discussed in Sec-
tions III and IV. This approach ensures that the algorithm’s 
structure remains unchanged, while allowing the subclasses 
to provide implementation of the technique-specific steps. 

III. SWIFT 

In this section, the implementation of SWIFT in the com-
piler plugin is discussed. SWIFT can be split up in two parts: 
data flow error detection (DFED) and control flow error de-
tection (CFED). This paper focuses on the DFED part of 
SWIFT. 

The idea behind many DFED techniques is that either all 
calculations or a select set of calculations are performed twice 
on different registers. These registers are often referred to as 
shadow registers. At specific synchronization points in the  
program, the values of the original registers are compared to 
the values of the shadow registers. If a mismatch is detected, 
the program branches to its error handler. SWIFT uses the 

Fig. 1. Stages and intermediate representations used by GCC and 
the plugin execution point 

Fig. 2. UML class diagram of the DFE compiler plugin 



principle of EDDI with some key refinements to improve its 
performance. 

As mentioned previously in Section II.B, the insertSetup 
method of SWIFT will first be called. The method will insert 
some setup instructions to initialize the shadow registers. A 
register map is used to map original registers to the shadow 
registers. The register map is shown in Table 1. 

Next, the implementDupComp method is called. The im-
plementation of this method is shown in Algorithm 1. It first 
evaluates all instructions in the function and duplicates all 
those that should be duplicated (lines 3 and 4). This entails 
making a copy of the instruction, replacing the used registers 
with their corresponding shadow registers and placing the du-
plicate after the original instruction. In SWIFT, any instruc-
tion that modifies the value of a register should be duplicated. 
Compare instructions and control flow instructions such as 
branch instructions are therefore not duplicated. Exceptions 
are store, push and pop instructions. Since memory structures 
are often well-protected by hardware schemes like ECC and 
parity checking, SWIFT considers the memory to be outside 
of the sphere of replication. Therefore, store instructions are 
not duplicated. Push and pop instructions are also not dupli-
cated since the duplicated instructions could push or pop a 
wrong value onto or from the stack. However, since pop in-
structions modify a register value, the corresponding shadow 
register should also be updated (lines 5 and 6 in Algorithm 1). 
Additionally, pop instructions will modify the stack pointer. 
The shadow register of this stack pointer should therefore also 
be updated after each pop instruction. A similar rationale 
holds for push instructions (lines 7 and 8). 

Now that the instructions are duplicated, the correctness 
of the calculations can be verified by comparing the original 
registers to the shadow registers at certain synchronization 
points in the program code. The program’s output defines 
program correctness. This means that, for a system that uses 
memory mapped I/O, any data written to memory should be 
correct. This is why EDDI, and consequently also SWIFT, 
uses store instructions as synchronization points. However, 
misdirected branches can also cause stores to be skipped. This 
is why EDDI also considers instructions affecting the control 
flow synchronization points. With SWIFT, incorrect transfer 
of control can be protected with its control flow error detec-
tion mechanism instead, which we will not discuss in this pa-
per. Function calls to unprotected subroutines may also affect 
program output. Therefore, function calls are also considered 
synchronization points. 

Before these defined synchronization points, the correct-
ness of the program is checked. Each register is compared to 

its shadow register. If there is a mismatch, the program jumps 
to the error handler call discussed in Section II.A. However, 
in some circumstances, adding a compare instruction can 
break the control flow of the program. This is illustrated in 
the left part of  Fig. 3. Instruction 8 is a conditional branch 
which normally depends on the compare instruction at line 2. 
However, by adding compare instructions at lines 3 and 5, the 
conditional flags are changed and the control flow of the pro-
gram can be corrupted. To resolve this issue, the concept of 
unsafe areas is introduced. An unsafe area is defined as the 
area starting from an instruction that sets the condition flags 
and ending with the last instruction that relies on those spe-
cific condition flags. In the right part of Fig. 3, the unsafe area 
is marked. If a synchronization point resides inside an unsafe 
area, the compare and jump instructions are added before the 
unsafe area instead. The implementation of this logic can be 
seen in Algorithm 1 at lines 9 through 15. 

One last consideration with regards to the implementation 
of SWIFT is call handling. When a function call occurs, the 
control of the program is transferred to a subroutine which 
may or may not be protected by the error detection technique. 
This means that when the subroutine returns, the original reg-
isters might have changed while the shadow registers might 
not have, causing the program to incorrectly transfer control 
to the DFE error handler at the next synchronization point. 
Therefore, all shadow registers are re-initialized after each 
function call. Because a function call is already a synchroni-
zation point, this has no major effect on the error detection 
capability. 

Algorithm 1 implementDupComp function of SWIFT 

 1: procedure SWIFT.implementDupComp() 
 2:  for each instr ∈ function do 
 3:   if shouldDuplicate(instr) then 
 4:    duplicate(instr) 
 5:   if isPopInstruction(instr) then 
 6:    updateShadowRegistersAfter(instr) 
 7:   if isPushInstruction(instr) then 
 8:    updateShadowSpRegisterAfter(instr) 
 9:  unsafeAreas ← findUnsafeAreas() 
10:  for each instr ∈ function do 
11:   if shouldCompareBefore(instr) then 
12:    if instr ∉ unsafeAreas then 
13:     addCmpBneBefore(instr) 
14:    else 
15:     addCmpBneBefore(unsafeAreas[instr]) 

17:  initShadowRegsAfterEachFunctionCall() 

TABLE 1. THE REGISTER MAP FOR SWIFT AND SWIFT-R, 
WHEN USING THE ARMV7-M INSTRUCTION SET 

Original Shadow register(s) 

register SWIFT SWIFT-R 

r0 r7 r7, r8 

r1 r8 r9, r10 

r2 r9 r11, r12 

r3 r10 - 

r4 r11 - 

SP (r13) r6 r5, r6 

LR (r14) r12 r3, r4 

 

Fig. 3. (left): Corrupted control flow by the inserted instructions, 
(right): Using an unsafe area to avoid the control flow corruption 



IV. SWIFT-R 

In this section, the implementation of SWIFT-R is dis-
cussed. The main difference between SWIFT and SWIFT-R 
is that SWIFT-R attempts to recover when a DFE is detected 
instead of transferring the control to the DFE error handler. 
This recovery is possible by using triplication. Where SWIFT 
duplicates a calculation, SWIFT-R triplicates the calculation, 
meaning that a second set of shadow registers is required. For 
that reason, SWIFT-R requires the reservation of two-thirds 
of all available registers. 

The implementation of the insertSetup method SWIFT-
R is similar to that of SWIFT. As can be seen in the last col-
umn of Table 1, the register map for SWIFT-R consists of 
two shadow registers instead of one. 

In the implementDupComp method, where SWIFT would 
insert a comparison block that compares a register to its 
shadow register, SWIFT-R inserts a recovery block instead. 
These recovery blocks implement a majority voting proce-
dure as shown in Fig.4. This implementation assumes a single 
event upset, meaning that only one fault can occur at a time. 
First, the two shadow registers are compared to each other. If 
they match, they must be correct, so they are copied to the 
original register to rectify a possible corruption. If they do not 
match, the original register is certainly correct, so its value is 
copied to both shadow registers. 

V. VERIFICATION 

To verify the correctness of the compiler plugin, it was 
used to compile five data processing case studies: bit count, 
bubble sort, cyclic redundancy check, matrix multiplication 
and quick sort. Each of these case studies have five different 
datasets to ensure that various execution paths are taken dur-
ing execution. Each dataset was compiled multiple times: 
once without the compiler plugin, once with the compiler 
plugin using the SWIFT technique, and once with the com-
piler plugin using SWIFT-R. The ARM Cortex-M3 micro-
processor was chosen as the target platform, as this 32-bit pro-
cessor is widely used in industry applications. 

First, the created assembly files of all the compilations 
were manually checked for correctness. Next, DFE fault in-
jection campaigns were performed on a simulated ARMv7 
Cortex-M3 processor provided by the Imperas instruction set 
simulator [10]. This allows for the  experiments to be con-
ducted at host speed, which speeds up the fault injection ex-
periments. The fault injection procedure used in this study 
was previously discussed by Vankeirsbilck et al. [11]. 

The summarized results of the experiments are shown in 
Fig. 5. In this figure, the silent data corruption (SDC) is indi-
cated in red. This is the percentage of injected faults that re-
sulted in a corrupt output of the program but was not detected. 
The green boxplot (Det) shows the percentage of injected 
faults that were detected by SWIFT. The results show that, as 
expected, bot SWIFT and SWIFT-R reduce the amount of si-
lent data corruptions significantly. This indicates that the 

GCC plugin works as expected. The remaining SDCs are 
largely due to a corrupted control flow caused by the injected 
errors, which is currently not yet checked by our implemen-
tation of SWIFT and SWIFT-R. 

VI. FUTURE WORK 

Using the plugin makes it very convenient to implement 
a soft error detection technique on any algorithm in a matter 
of seconds. The work on SWIFT and SWIFT-R is, however, 
only fully complete when the CFED portion is also imple-
mented. Additionally, further versions of SWIFT and 
SWIFT-R like Selective SWIFT-R could also be included for 
algorithms where register availability is a major concern [12]. 

VII. CONCLUSION 

Manually implementing a soft error detection technique is 
a tedious, slow and error-prone task. Therefore, we presented 
our GCC compiler extension for SWIFT and SWIFT-R. This 
plugin works on the RTL language, a low-level intermediate 
representation which can directly be translated into machine 
code or assembly code. The internal working of the compiler 
plugin was shown and discussed, after which we demon-
strated that the low-level implementation of SWIFT and 
SWIFT-R work as expected by performing fault injection ex-
periments on five different case studies. Using the compiler 
extension significantly lowers the effort and time needed to 
implement the SWIFT and SWIFT-R techniques.  
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