
Proc. XXX International Scientific Conference Electronics - ET2021, September 15 - 17, 2021, Sozopol, Bulgaria

978-1-6654-4518-4/21/$31.00 ©2021 IEEE

A Compiler Extension to Protect Embedded Systems

Against Data Flow Errors
Brent De Blaere, Elias Verstappe, Jens Vankeirsbilck and Jeroen Boydens

Department of Computer Science
KU Leuven

Spoorwegstraat 12, 8200 Bruges, Belgium
{Brent.DeBlaere, Jens.Vankeirsbilck, Jeroen.Boydens}@kuleuven.be

Abstract – External disturbances such as alpha particles, elec-

tromagnetic interference, or malicious external attackers can

cause erroneous bit-flips in the hardware of modern embedded

systems. A broad range of software-implemented error detec-

tion techniques have been presented in the past to safeguard

embedded systems against these disturbances. Two well-known

state-of-the-art techniques are SWIFT and SWIFT-R. How-

ever, since those solutions must be implemented in low-level

code, such as assembly language, implementing them can be

time-consuming and error-prone. To solve this issue, this paper

describes a GCC compiler extension in the form of a plugin that

can integrate the data flow error detection of SWIFT and

SWIFT-R to any ARMv7-M program. We verify that the com-

piler implements the techniques correctly by performing fault

injection campaigns on various case studies.

Keywords – GCC compiler plugin; embedded systems; re-

dundancy; reliability; soft error detection;

I. INTRODUCTION

The increasing use of embedded systems in harsh working
environments makes their reliability increasingly important,
especially in safety-critical domains such as medical devices,
automotive systems, and avionics. In these environments, ex-
ternal disturbances like electromagnetic interference or high
energy particles may impact the systems by creating unin-
tended charges in the hardware components, causing a bit-flip
in a memory cell of the microcontroller. This is often referred
to as a soft error or a single event upset (SEU). Such a bit-flip
can result in an erroneous jump in the executing process,
called a control flow error (CFE), or in a corruption of data,
called a data flow error (DFE).

To increase the reliability of embedded systems, several
approaches are possible. Hardware-based countermeasures
such as error correcting codes (ECC) are often used as a way
to protect a system. Software-based solutions, however, have
grown in popularity since they provide a more versatile, gen-
erally more applicable, and low-cost solution. Since these
software-implemented techniques are designed to work with-
out the need for any hardware modification, they can also be
used on commercial off-the-shelf systems.

Software-implemented techniques rely on redundancy to
detect errors. This redundancy can be enforced at two levels:
high-level, i.e. using processes and threads, and instruction-
level, i.e. adapting the instructions or source code of the pro-
gram. High-level redundancy techniques require either an op-
erating system or a superscalar processor. This, however, ex-
cludes a big part of the embedded system market, since ap-
proximately 35% of all embedded systems operate bare-
metal [1]. In contrast, instruction-level redundancy tech-
niques can be used without the need for an operating system.
Although there are instruction-level techniques that should be

used at high-level code, such as C or C++, the majority of
these techniques are applied in low-level code, such as assem-
bly language. This is because the compiler might remove re-
dundant instructions during its optimization passes when
compiling the high-level code.

Manually implementing a low-level soft error detection
technique is, however, a time-intensive and error-prone pro-
cess that requires a profound knowledge of both assembly
language and the specific error detection technique. Moreo-
ver, since these techniques are applied on low-level code, the
techniques must completely be reimplemented after every
change in the high-level code. This often makes manually im-
plementing an instruction-level redundancy technique unfea-
sible. In this paper, we present how such instruction-level
techniques can automatically be implemented using a com-
piler extension. This massively decreases the time-to-market
and development cost of systems that want to implement
these soft error detection techniques.

In this paper, two well-known state-of-the-art error detec-
tion techniques are implemented in a compiler plugin:
SWIFT and SWIFT-R [2], [3]. Software Implemented Fault
Tolerance (SWIFT) is one of the best known software-imple-
mented error detection techniques proposed by Reis et al. [2].
It uses a variation on EDDI [4] (EDDI+ECC) to detect data
flow errors, combined with an advanced version of
CFCSS [5] (EDDI+ECC+CF) to detect control flow errors. In
this paper, we will focus on the data flow error detection
(DFED). SWIFT, like most soft error detection techniques,
calls an error handler when it detects an error. This error han-
dler should be used to bring the program to a safe state, which
typically is application specific. SWIFT-R (Software Imple-
mented Fault Tolerance with Recovery) proposed by Chang
et al. shows how SWIFT can be extended with triplication and
majority voting to create a system that can recover from SEUs
without an error handler [3].

The remainder of this paper is structured as follows: In
Section II, the internal operation of the compiler extension is
discussed. Section III goes over the implementation of
SWIFT, followed by Section IV, which discusses the imple-
mentation of SWIFT-R. Next, the future work is discussed in
Section VI. Finally, in Section VII, our conclusions are sum-
marized.

II. GCC COMPILER PLUGIN

To automatically implement SWIFT and SWIFT-R, a
GCC compiler plugin, originally proposed by Vankeirsbilck
et al., is extended [6]. This compiler plugin is an extension to
the GNU Compiler Collection (GCC). GCC compiles high-
level source code such as C and C++ to low-level machine
code through three stages, with each stage consisting of a
number of passes. A pass is a series of instructions that ac-
complishes a particular task during the compilation process,

such as dead code removal, inline expansion and loop optimi-
zation. The front-end deals with the high-level language it-
self, the middle-end deals with the intermediate language, and
the back-end component deals with code specific for the tar-
get system [7]. During this process, the source code goes
through several intermediate representations such as an Ab-
stract Syntax Tree (AST) representation, GIMPLE and Regis-
ter Transfer Language (RTL). These representations are
shown in Fig. 1.

For the compiler plugin, the middle-end stage is most in-
teresting, specifically the RTL representation at the end of its
chain. This representation is very close to assembly language
and corresponds to an abstract target architecture. It is used to
describe the data flow at the register transfer level of the ar-
chitecture. The plugin is implemented near the end of this rep-
resentation to ensure that no major optimization passes, that
might intervene with the instructions injected by the plugin,
can follow. Currently, the plugin supports the ARMv7-M in-
struction set architecture, although support for other architec-
tures will be added in the future.

A. Usage

To use the compiler plugin, a developer should first define
the error handler to be used when an error is detected by an
error detection technique. This function should be named
DFE_Detected. When using C++, the handler should be de-
fined in an extern “C” environment so that the name is not
mangled during the compilation process [8]. Since this func-
tion is only called when an error is detected, the error detec-
tion technique should not be implemented on this handler. To
be able to specify this behavior, we defined the noProtection
function attribute. This attribute can be added to any function
that does not need to be protected by the error detection tech-
nique. For some applications, it might be useful to exclude
some functions to reduce unnecessary code size overhead,
such as applications with a large initialization function that is
only called once.

Every instruction-level soft error detection technique re-
quires some registers to be specifically reserved for that tech-
nique. Therefore, the compiler should not use these registers
for its compilation of the business logic. When using the GCC
compiler, this can be done with the compiler flag -ffixed-rN,
with N being the number of the register to be reserved. Some
plugin-related compiler flags also have to be used. A first
compiler flag indicates where the compiler can find the plugin
executable. Secondly, the plugin argument technique indi-
cates which DFE detection technique to implement. Finally,
the optional function argument indicates which program func-
tion(s) to apply the technique to. When this argument is not
given, all program functions will be protected.

B. GCC Plugin Implementation

The implementation of the compiler plugin is shown in
Fig. 2 as a UML class diagram. This diagram shows the clas-
ses and methods needed for SWIFT and SWIFT-R. The
plugin is designed according to the Factory Method and Tem-
plate Method design patterns defined by Gamma et al. [9].

Upon first execution of the plugin, it registers itself as a
compilation pass. Next, for each function, the compiler calls
the gate method of the Plugin class. This method determines
whether or not the given function should be protected by an
error detection technique based on the conditions discussed in
Section II.A. If the gate method returns true, the execute
method is called. This method contains the compilation pass.
It will evaluate the plugin-specific compiler flags discussed
in Section II.B, instantiate a DFED_Creator object, and call
its implTech method.

The DFED_Creator utilizes the Factory Design pattern.
It knows which instruction sets are implemented in the plugin
and how the implemented soft error detection techniques
should be built. First, the used instruction set is determined.
Next, the DFED_Creator object instantiates the class of the
selected technique (SWIFT or SWIFT_R in Fig. 2).

Following the Template Method design pattern, all classes
implementing DFED techniques inherit from the abstract
GeneralDFED class and are implemented via its implement
(template) method. This method calls the insertError, in-
sertSetup and implementDupComp methods. The insertError
method adds a call to the DFED_error handler at the end of
the evaluated function and places a label at the position of the
inserted call. The plugin can later use this label to branch to
this call when an error is detected. The insertSetup and Imple-
mentDupComp are both abstract functions that are imple-
mented in the SWIFT and SWIFT_R classes discussed in Sec-
tions III and IV. This approach ensures that the algorithm’s
structure remains unchanged, while allowing the subclasses
to provide implementation of the technique-specific steps.

III. SWIFT

In this section, the implementation of SWIFT in the com-
piler plugin is discussed. SWIFT can be split up in two parts:
data flow error detection (DFED) and control flow error de-
tection (CFED). This paper focuses on the DFED part of
SWIFT.

The idea behind many DFED techniques is that either all
calculations or a select set of calculations are performed twice
on different registers. These registers are often referred to as
shadow registers. At specific synchronization points in the
program, the values of the original registers are compared to
the values of the shadow registers. If a mismatch is detected,
the program branches to its error handler. SWIFT uses the

Fig. 1. Stages and intermediate representations used by GCC and
the plugin execution point

Fig. 2. UML class diagram of the DFE compiler plugin

principle of EDDI with some key refinements to improve its
performance.

As mentioned previously in Section II.B, the insertSetup
method of SWIFT will first be called. The method will insert
some setup instructions to initialize the shadow registers. A
register map is used to map original registers to the shadow
registers. The register map is shown in Table 1.

Next, the implementDupComp method is called. The im-
plementation of this method is shown in Algorithm 1. It first
evaluates all instructions in the function and duplicates all
those that should be duplicated (lines 3 and 4). This entails
making a copy of the instruction, replacing the used registers
with their corresponding shadow registers and placing the du-
plicate after the original instruction. In SWIFT, any instruc-
tion that modifies the value of a register should be duplicated.
Compare instructions and control flow instructions such as
branch instructions are therefore not duplicated. Exceptions
are store, push and pop instructions. Since memory structures
are often well-protected by hardware schemes like ECC and
parity checking, SWIFT considers the memory to be outside
of the sphere of replication. Therefore, store instructions are
not duplicated. Push and pop instructions are also not dupli-
cated since the duplicated instructions could push or pop a
wrong value onto or from the stack. However, since pop in-
structions modify a register value, the corresponding shadow
register should also be updated (lines 5 and 6 in Algorithm 1).
Additionally, pop instructions will modify the stack pointer.
The shadow register of this stack pointer should therefore also
be updated after each pop instruction. A similar rationale
holds for push instructions (lines 7 and 8).

Now that the instructions are duplicated, the correctness
of the calculations can be verified by comparing the original
registers to the shadow registers at certain synchronization
points in the program code. The program’s output defines
program correctness. This means that, for a system that uses
memory mapped I/O, any data written to memory should be
correct. This is why EDDI, and consequently also SWIFT,
uses store instructions as synchronization points. However,
misdirected branches can also cause stores to be skipped. This
is why EDDI also considers instructions affecting the control
flow synchronization points. With SWIFT, incorrect transfer
of control can be protected with its control flow error detec-
tion mechanism instead, which we will not discuss in this pa-
per. Function calls to unprotected subroutines may also affect
program output. Therefore, function calls are also considered
synchronization points.

Before these defined synchronization points, the correct-
ness of the program is checked. Each register is compared to

its shadow register. If there is a mismatch, the program jumps
to the error handler call discussed in Section II.A. However,
in some circumstances, adding a compare instruction can
break the control flow of the program. This is illustrated in
the left part of Fig. 3. Instruction 8 is a conditional branch
which normally depends on the compare instruction at line 2.
However, by adding compare instructions at lines 3 and 5, the
conditional flags are changed and the control flow of the pro-
gram can be corrupted. To resolve this issue, the concept of
unsafe areas is introduced. An unsafe area is defined as the
area starting from an instruction that sets the condition flags
and ending with the last instruction that relies on those spe-
cific condition flags. In the right part of Fig. 3, the unsafe area
is marked. If a synchronization point resides inside an unsafe
area, the compare and jump instructions are added before the
unsafe area instead. The implementation of this logic can be
seen in Algorithm 1 at lines 9 through 15.

One last consideration with regards to the implementation
of SWIFT is call handling. When a function call occurs, the
control of the program is transferred to a subroutine which
may or may not be protected by the error detection technique.
This means that when the subroutine returns, the original reg-
isters might have changed while the shadow registers might
not have, causing the program to incorrectly transfer control
to the DFE error handler at the next synchronization point.
Therefore, all shadow registers are re-initialized after each
function call. Because a function call is already a synchroni-
zation point, this has no major effect on the error detection
capability.

Algorithm 1 implementDupComp function of SWIFT

 1: procedure SWIFT.implementDupComp()
 2: for each instr ∈ function do
 3: if shouldDuplicate(instr) then
 4: duplicate(instr)
 5: if isPopInstruction(instr) then
 6: updateShadowRegistersAfter(instr)
 7: if isPushInstruction(instr) then
 8: updateShadowSpRegisterAfter(instr)
 9: unsafeAreas ← findUnsafeAreas()
10: for each instr ∈ function do
11: if shouldCompareBefore(instr) then
12: if instr ∉ unsafeAreas then
13: addCmpBneBefore(instr)
14: else
15: addCmpBneBefore(unsafeAreas[instr])

17: initShadowRegsAfterEachFunctionCall()

TABLE 1. THE REGISTER MAP FOR SWIFT AND SWIFT-R,
WHEN USING THE ARMV7-M INSTRUCTION SET

Original Shadow register(s)

register SWIFT SWIFT-R

r0 r7 r7, r8

r1 r8 r9, r10

r2 r9 r11, r12

r3 r10 -

r4 r11 -

SP (r13) r6 r5, r6

LR (r14) r12 r3, r4

Fig. 3. (left): Corrupted control flow by the inserted instructions,
(right): Using an unsafe area to avoid the control flow corruption

IV. SWIFT-R

In this section, the implementation of SWIFT-R is dis-
cussed. The main difference between SWIFT and SWIFT-R
is that SWIFT-R attempts to recover when a DFE is detected
instead of transferring the control to the DFE error handler.
This recovery is possible by using triplication. Where SWIFT
duplicates a calculation, SWIFT-R triplicates the calculation,
meaning that a second set of shadow registers is required. For
that reason, SWIFT-R requires the reservation of two-thirds
of all available registers.

The implementation of the insertSetup method SWIFT-
R is similar to that of SWIFT. As can be seen in the last col-
umn of Table 1, the register map for SWIFT-R consists of
two shadow registers instead of one.

In the implementDupComp method, where SWIFT would
insert a comparison block that compares a register to its
shadow register, SWIFT-R inserts a recovery block instead.
These recovery blocks implement a majority voting proce-
dure as shown in Fig.4. This implementation assumes a single
event upset, meaning that only one fault can occur at a time.
First, the two shadow registers are compared to each other. If
they match, they must be correct, so they are copied to the
original register to rectify a possible corruption. If they do not
match, the original register is certainly correct, so its value is
copied to both shadow registers.

V. VERIFICATION

To verify the correctness of the compiler plugin, it was
used to compile five data processing case studies: bit count,
bubble sort, cyclic redundancy check, matrix multiplication
and quick sort. Each of these case studies have five different
datasets to ensure that various execution paths are taken dur-
ing execution. Each dataset was compiled multiple times:
once without the compiler plugin, once with the compiler
plugin using the SWIFT technique, and once with the com-
piler plugin using SWIFT-R. The ARM Cortex-M3 micro-
processor was chosen as the target platform, as this 32-bit pro-
cessor is widely used in industry applications.

First, the created assembly files of all the compilations
were manually checked for correctness. Next, DFE fault in-
jection campaigns were performed on a simulated ARMv7
Cortex-M3 processor provided by the Imperas instruction set
simulator [10]. This allows for the experiments to be con-
ducted at host speed, which speeds up the fault injection ex-
periments. The fault injection procedure used in this study
was previously discussed by Vankeirsbilck et al. [11].

The summarized results of the experiments are shown in
Fig. 5. In this figure, the silent data corruption (SDC) is indi-
cated in red. This is the percentage of injected faults that re-
sulted in a corrupt output of the program but was not detected.
The green boxplot (Det) shows the percentage of injected
faults that were detected by SWIFT. The results show that, as
expected, bot SWIFT and SWIFT-R reduce the amount of si-
lent data corruptions significantly. This indicates that the

GCC plugin works as expected. The remaining SDCs are
largely due to a corrupted control flow caused by the injected
errors, which is currently not yet checked by our implemen-
tation of SWIFT and SWIFT-R.

VI. FUTURE WORK

Using the plugin makes it very convenient to implement
a soft error detection technique on any algorithm in a matter
of seconds. The work on SWIFT and SWIFT-R is, however,
only fully complete when the CFED portion is also imple-
mented. Additionally, further versions of SWIFT and
SWIFT-R like Selective SWIFT-R could also be included for
algorithms where register availability is a major concern [12].

VII. CONCLUSION

Manually implementing a soft error detection technique is
a tedious, slow and error-prone task. Therefore, we presented
our GCC compiler extension for SWIFT and SWIFT-R. This
plugin works on the RTL language, a low-level intermediate
representation which can directly be translated into machine
code or assembly code. The internal working of the compiler
plugin was shown and discussed, after which we demon-
strated that the low-level implementation of SWIFT and
SWIFT-R work as expected by performing fault injection ex-
periments on five different case studies. Using the compiler
extension significantly lowers the effort and time needed to
implement the SWIFT and SWIFT-R techniques.

REFERENCES

[1] Aspencore, “2019 Embedded Markets Study, Integrating

IoT and Advanced Technology Designs, Application
Development & Processing Environments,” Mar. 2019.
Accessed: Mar. 19, 2021. [Online].

[2] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.
I. August, “SWIFT: Software implemented fault
tolerance,” in Proceedings of the 2005 International

Symposium on Code Generation and Optimization, CGO

2005, 2005, vol. 2005, pp. 243–254.
[3] J. Chang, G. A. Reis, and D. I. August, “Automatic

Instruction-Level Software-Only Recovery,” in
International Conference on Dependable Systems and

Networks (DSN’06), 2006, vol. 2006, pp. 83–92.
[4] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error

detection by duplicated instructions in super-scalar
processors,” IEEE Transa. Reliab., vol. 51, no. 1, pp. 63–
75.

[5] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow
checking by software signatures,” IEEE Trans. Reliab.,
vol. 51, no. 1, pp. 111–122.

[6] J. Vankeirsbilck, H. Hallez, and J. Boydens, “Automatic
Implementation of Control Flow Error Detection
Techniques,” in ACM International Conference

Proceeding Series, Sep. 2019.
[7] S. Kwong, “An Overview of GCC,” Bitboom Technical

Fig. 4. Low-level single-fault tolerant majority voting
Fig. 5. Fault injection results when using the GCC extension

Blog, 2018. http://bitboom.github.io/an-overview-of-gcc
(accessed Jun. 02, 2021).

[8] D. Herity, “C++ in embedded systems: Myth and reality,”
EE Times-India, Feb. 1998.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Software, 37nd print.
Boston: Addison-Wesley, 1996.

[10] Imperas Software, “ISS - The Imperas Instruction Set
Simulator.” https://www.imperas.com/iss-imperas-
instruction-set-simulator (accessed Mar. 21, 2021).

[11] J. Vankeirsbilck, J. Van Waes, H. Hallez, and J. Boydens,
“A New Approach to Selectively Implement Control Flow
Error Detection Techniques,” in Lecture Notes in

Networks and Systems, vol. 96, Springer, 2020, pp. 704–
715.

[12] F. Restrepo-Calle, A. Martínez-Álvarez, S. Cuenca-
Asensi, and A. Jimeno-Morenilla, “Selective SWIFT-R: A
flexible software-based technique for soft error mitigation
in low-cost embedded systems,” J. Electron. Test. Theory

Appl., vol. 29, no. 6, pp. 825–838.

Proc. XXX International Scientific Conference Electronics - ET2021, September 15 - 17, 2021, Sozopol, Bulgaria

978-1-6654-4518-4/21/$31.00 ©2021 IEEE

