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A B S T R A C T

MRI scanner and sequence imperfections and advances in reconstruction and imaging
techniques to increase motion robustness can lead to inter-slice intensity variations in
Echo Planar Imaging. Leveraging deep convolutional neural networks as universal im-
age filters, we present a data-driven method for the correction of acquisition artefacts
that manifest as inter-slice inconsistencies, regardless of their origin. This technique
can be applied to motion- and dropout-artefacted data by embedding it in a reconstruc-
tion pipeline. The network is trained in the absence of ground-truth data on, and finally
applied to, the reconstructed multi-shell high angular resolution diffusion imaging sig-
nal to produce a corrective slice intensity modulation field. This correction can be
performed in either motion-corrected or scattered source-space. We focus on gaining
control over the learned filter and the image data consistency via built-in spatial fre-
quency and intensity constraints. The end product is a corrected image reconstructed
from the original raw data, modulated by a multiplicative field that can be inspected and
verified to match the expected features of the artefact. In-plane, the correction approxi-
mately preserves the contrast of the diffusion signal and throughout the image series, it
reduces inter-slice inconsistencies within and across subjects without biasing the data.
We apply our pipeline to enhance the super-resolution reconstruction of neonatal multi-
shell high angular resolution data as acquired in the developing Human Connectome
Project.

© 2021 Elsevier B. V. All rights reserved.

1. Introduction

Diffusion MRI (dMRI) provides unique information about
the microstructural properties of brain tissue by sensitisation to
the motion of water molecules on the order of micrometers via
strong gradient amplitudes. However, this poses a major chal-
lenge for in-vivo imaging where bulk subject motion or flow
can cause severe phase errors.

In single-shot echo planar imaging (EPI) (Mansfield, 1977;
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Wu and Miller, 2017), the k-space data of a 2D image can be
encoded within typically 100 ms after a single excitation which
effectively freezes motion. A 3D image can be formed by ac-
quiring a stack of parallel 2D EPI images at different slice po-
sitions. In EPI, interactions with previous pulses (spin-history
effects) and interference across slices (stimulated echo artefacts
(Burstein, 1996; Crawley and Henkelman, 1987)), variations in
slice timing, imperfect signal unmixing in simultaneous multi-
slice (SMS) imaging, and scanner hardware limitations can all
lead to inter-slice inconsistencies.

Sensitivity to subject motion and the push to higher in-plane
and slice acceleration exacerbates the potential for inter-slice
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inconsistencies. This can destabilise super-resolution recon-
struction algorithms and affect downstream data analyses. In
this work, we address the problem of removing inter-slice in-
consistencies in neonatal dMRI data of the brain, a cohort that
is particularly prone to motion and, due to relatively long T1 re-
laxation times, spin history effects.

1.1. EPI slice intensity inconsistencies

Techniques to reduce acquisition time, such as the use of
EPI, often combined with partial Fourier (McGibney et al.,
1993), parallel imaging (Larkman and Nunes, 2007; Pruess-
mann et al., 1999; Griswold et al., 2002), and simultaneous
multi-slice (SMS) (Larkman et al., 2001; Barth et al., 2016;
Setsompop et al., 2012; Blaimer et al., 2013) are prone to im-
age degradation, particularly in the presence of motion. For
example, inter-slice and intra-slice signal leakage in acceler-
ated slice-Grappa EPI acquisitions from neuronal (Cauley et al.,
2014; Todd et al., 2016) and non-neuronal origin, such as eye
blinking (McNabb et al., 2018) and motion (Kelly et al., 2013;
Muresan et al., 2005), cannot be fully suppressed, which can
lead to false positive activations in fMRI analysis (Todd et al.,
2016; McNabb et al., 2018). Variations in slice timings and
subject motion orthogonal to the slice plane result in a tempo-
rary disruption to the steady-state and yield pose-, motion- and
tissue-dependent intensity modulations (spin-history artefacts)
(Friston et al., 1996); this is exacerbated when using SMS tech-
niques, as they can reduce the repetition time (TR) to the order
of typical T1 times for brain tissue. Spin-history artefacts are
typically 3 to 7% of the image intensity and difficult to model
(Muresan et al., 2005) as they are non-linearly related to motion
trajectories (Yancey et al., 2011). They can also be caused by
localised motion related to breathing (Friston et al., 1996) and
cardiac pulsation (Dagli et al., 1999).

In this study, we aim to remove inter-slice artefacts
in neonatal multi-shell dMRI scans that were acquired as
part of the developing Human Connectome Project (www.
developingconnectome.org). In this data, we observe inter-
slice intensity variations of unknown origin: the shell-average
of the raw images in scattered source space shows a clear
stripe pattern (see figure 1). On a population level, parts of
the artefact pattern seem to be linked with the diffusion gra-
dient strength, acquisition order and multiband boundaries. In
the shell-average images of a single subject with the least mo-
tion in the cohort as well as in the population average across
700 subjects, we observe that the intensity modulation seems
to be relatively smooth in-plane, with sharp transitions in the
through-plane direction. The stripe modulation artefact has a
similar appearance to motion-related slice-wise intensity arte-
facts. These are frequently observed in the neonatal cohort and
can dominate the slice modulation we aim to correct as demon-
strated in the shell-average of the subject with median motion
in figure 1. The properties of the artefact are described more
comprehensively in the Results and Discussion section, where
we assess it using spatial and angular constraints applied to es-
timated destripe fields.

1.2. Prior and related work in MRI artefact removal
In fMRI analysis, motion-induced spin-history artefacts are

commonly removed via nuisance regressors (Murphy et al.,
2013; Kelly et al., 2013) but there is currently no standard
method for removing spin-history artefacts from diffusion-
weighted images (Andersson and Sotiropoulos, 2016). Variable
slice-timing artefacts are best avoided at the setup of the acqui-
sition sequence but this may not be possible for all applications
and scanner software versions (Meyer et al., 2014) and retro-
spective correction might be required for already acquired data.

A suggested retrospective zeroth-order correction of inten-
sity inconsistencies is to apply a single scale factor to even
slices to match average intensities between those and adjacent
slices (David et al., 2017). While the computational simplicity
and transparency is appealing, this approach does not account
for spatially variable or tissue-specific intensity modulation, is
potentially biased if the true average image intensities do vary
between slices and is not applicable to motion corrupted data.
Prospective methods have been proposed to deal with similar
artefacts in multi-slab acquisition, but to date these do not elim-
inate the problem (Engström and Skare, 2013; Frost et al., 2014;
Van et al., 2011; Parker et al., 1991; Van et al., 2015; Wu et al.,
2016; Setsompop et al., 2018; Liao et al., 2018).

1.3. Problem formulation and contribution
A physical model of the artefact or paired corrupted and un-

corrupted data could inform us on how to model the correction;
whether the stripe correction is best modelled as a linear or non-
linear, local or non-local function of the data, what constraints
to use and whether the model is tied to acquisition-space or to
the subject anatomy or to a mixture of both. In the absence
of this prior knowledge, we aim to make informed and data
integrity-preserving decisions.

The effect of the artefact correction should be directly in-
spectable and, if possible, the model should be guaranteed to
produce corrections that match the observed patterns of the arte-
fact. To maintain the trustworthiness of the images, any degree
of freedom beyond that should ideally be restricted.

We assume the artefact to be a smooth multiplicative voxel-
wise correction field per acquired slice. In the absence of con-
straints, this choice does not limit the space of possible solu-
tions. However, this choice matters when enforcing inplane
smoothness constraints. A multiplicative smooth in-plane field
– similar to a B1 inhomogeneity correction field – ensures
that the correction approximately preserves local image con-
trast within each acquired slice.

We build on (Pietsch et al., 2019b) to create a method that
facilitates the data-driven and model-free removal of inter-
slice inconsistencies of potentially motion-artefacted diffusion-
sensitised images in scattered source space or in motion-
corrected space. Our framework:

• can be applied retrospectively

• works in tandem with motion correction techniques to re-
move stripes in the presence of subject motion

• is not tied to a particular q-space sampling scheme or mo-
tion correction technique

www.developingconnectome.org
www.developingconnectome.org
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Fig. 1. Raw (before motion and distortion correction) signal averaged within shells using data from the AP phase-encode direction. The single-subject data
is from the scan with the highest (middle) and with the median motion-correction derived quality assessment score (right) in the cohort. The population-
averaged raw signal shows clear slice-wise intensity modulation patterns that exhibit a b-value dependency. The population-average pattern is to some
degree discernible in the low-motion subject but, in particular for subjects with more motion, the shell-average raw signal contains stripe patterns from
motion-related artefacts.

• requires no ground truth data for training

• produces directly human-inspectable correction fields, in
the same space as the dMRI data

• uses explicit constraints that locally preserve in-plane im-
age contrast

The source code will be made publicly available at https:
//github.com/maxpietsch/dStripe.

2. Methods

2.1. Data

The dMRI data were acquired as part of the developing Hu-
man Connectome Project. Each dataset consists of 300 volumes
at 1.5×1.5×3 mm voxel-resolution, acquired in 64 slices with
1.5 mm slice-overlap; interleave 3, shift 2; grid: 99 × 99 × 64
voxels; multiband factor 4; TR/TE=3800 /90 ms; diffusion
weightings b = 0 , 400 , 1000 , and 2600 s/mm2 with 20, 64,
88, and 128 directions, respectively (Hutter et al., 2018; Hughes
et al., 2017; Tournier et al., 2020).

The k-space data were reconstructed to 1.5 mm3 isotropic
voxel size and denoised in the complex domain (Veraart et al.,
2016). Field maps and brain masks were estimated with FSL
topup (Andersson et al., 2003) and bet (Smith, 2002).

For visualisation of single-subject data, the data ‘sub-
CC00083XX10/ses-30900’ was used as it has clearly visible
stripe patterns. This baby’s postmenstrual age (PMA) at scan

is 42 weeks and the image lies in the 59th percentile quality
score estimated from the motion and outlier weights (Christi-
aens et al., 2020). To create a population-average template from
representative data, we randomly selected 32 subjects from 38
to 42 weeks PMA that have quality assessment scores above
the 20th percentile (see figure A.10). Summary data contains
the single subject and population template data and additional
11 subjects ranging from 34.3 to 43.2 weeks PMA and qual-
ity scores ranging from 3rd to 100th percentile. For network
training, we randomly selected 20 scans from the dHCP, none
of which are part of the data used for evaluation. The PMA of
subjects in the training dataset spans 31 to 43 weeks.

To test generalisation performance to a different cohort and
sequence, we use two scans of babies acquired at 29 and at
38 weeks PMA using a Philips Achieva 3T product sequence
which exhibits severe slice intensity artefacts due to inhomo-
geneous slice-timing. The data were acquired with one b = 0
volume and 32 volumes with b = 750s/mm2, TR/TE = 7856/49
ms, voxel size: 1.75 mm inplane, 2 mm through-plane, grid:
128×128×49 voxels, using a single phase-encode direction and
a regular single-band slice interleaving (interleave 2, shift=1).

2.2. Slice-to-volume motion correction and reconstruction
framework

The dMRI data were processed using a motion correction
and reconstruction algorithm (MCR) with integrated slice-to-
volume reconstruction (SVR) (Christiaens et al., 2020). In
brief, the reconstruction is based on an iterative estimation of

https://github.com/maxpietsch/dStripe
https://github.com/maxpietsch/dStripe
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a data-driven multi-shell low-rank (model-free) data represen-
tation (SHARD), slice outlier estimation, and rigid registration
algorithm (Christiaens et al., 2019). The reconstruction utilises
information from overlapping slices and the native slice profiles
for super-resolution deconvolution and is formulated as an in-
verse problem that iteratively estimates the reconstruction coef-
ficients C, defined in the motion-corrected “anatomical” space
(the moving subject-aligned reference frame), and the rigid mo-
tion parameters µ that map between “source” space (the scat-
tered slices in scanner coordinates) and anatomical space by
minimising the difference between the acquired signal of a slice
in the source space Rs and its signal prediction

min
C,µ

∑
s

ws ‖Rs − BsI(µs)Qs(µs)C‖22 + r(C).

The model consists of the q-space (SHARD) basis Qs(µs),
the linear motion and interpolation operator I(µs), and the blur-
ring and slice selection matrix Bs that also incorporates the slice
sensitivity profile. Slice weights ws are used to reduce the ef-
fect of outliers, and a regularisation term r(C) is used to stabilise
the inverse problem. EPI distortions are corrected by unwarp-
ing the input dMRI data before each reconstruction step using
a field map and the subject motion parameters.

To isolate the effects of dStripe from those of the motion
correction, motion, slice-weight and SHARD basis parameters
were kept constant after their estimation on the original data for
subsequent reconstruction when using source-space destriping
(see below).

2.3. dStripe approaches: source or anatomical space

MCR provides a mapping between the “source” space of the
scanner and the “anatomical” space of the moving subject and
separates dropout and other artefacts from anatomical features.
The stripe artefact can be affected by the scanner geometry and
the subject tissue properties and motion. This raises a question
about the best space to operate in.

2.3.1. Anatomical-space destriping
Destriping can be applied in anatomical space to remove

residual stripe patterns in the MCR output. This can be per-
formed with any motion correction and reconstruction frame-
work as it operates solely on its output and produces correction
fields directly in the space of interest. However, this approach
cannot be used to interactively refine the MCR, and will only
work well if the destripe mechanism can cope with stripe pat-
terns that are themselves scattered due to motion.

2.3.2. Source-space destriping
Taking advantage of the mapping MCR provides, we can use

information from the motion-corrected anatomical space to cor-
rect the raw data in source space. For each excitation (single
slice or multiband shot), we generate the corresponding cor-
rected signal prediction (BsI(µs)Qs(µs)C). This allows modu-
lating the corresponding slice in its “native” orientation, poten-
tially increasing the effectiveness of the dStripe algorithm.

This approach relies on the signal representation in anatom-
ical space capturing the contrast of interest together with the

stripe patterns. Similarly to anatomical-space destriping, this
approach does not necessarily capture the full source-space
stripe pattern as intensity modulations in target space can be
attenuated due to interpolation or if they are discarded by the
outlier removal or rank-reduced model fit. Moreover, destrip-
ing each excitation in “slice-native” space requires destriping a
slice-native volume with corresponding motion parameters; for
our data, this increases the computational cost by a factor of 16
compared to anatomical-space destriping (64 slices, multiband
4). Finally, to ensure convergence of the output, we need to de-
stripe and perform the subsequent MCR again multiple times (3
times is sufficient in our data), further increasing the computa-
tional cost of the source-space destriping approach.

Note that because the dHCP employed overlapping slices
with a super resolution reconstruction, stripe patterns are am-
plified by the slice profile deconvolution in the reconstruction.
When projecting the signal to source-space, we therefore mod-
ify the slice selection matrix Bs to preserve the super-resolved
contrast by avoiding slice profile blurring. Instead, we subse-
quently downscale the dStripe-estimated slice modulation fields
to account for the difference in slice thickness.

2.4. Metric of stripiness

dMRI images, in particular highly diffusion weighted vol-
umes, have significant anatomical contrast. While stripe pat-
terns can be detected visually with the trained eye, it is not
trivial to mathematically separate expected from artefactual
through-plane intensity variations.

Inter-slice signal variation can be measured for instance us-
ing the standard deviation (SD) of the dMRI signal (or its spher-
ical harmonic representation) over a kernel of neighbouring
voxels along the through-plane direction. We expect signal-
preserving destriping to reduce the through-plane SD while pre-
serving the equivalent in-plane SD. However, directly optimis-
ing a SD-derived measure is not viable because the expected
anatomical through-plane SD dominates the artefactual SD by
one to two orders of magnitude.

Therefore, we decided to use a neural network trained to re-
move simulated stripes artificially introduced into the training
data. To assess its performance on the original data, we opt to
visually rate images using scalar or rotation invariant represen-
tations of the diffusion weighted data, as well as derived images,
as outlined below.

The angular information of the signal can be expressed in
the basis of real, symmetric spherical harmonics (SH) (mr-
trix.readthedocs.io, 2020), which allows to investigate its an-
gular frequency spectrum (Kazhdan et al., 2003). We use
the l2-norm of the coefficients in a particular harmonic band

` = [0, 2, 4, . . .] defined as
√∑`

m=−`

(
cm
`

)2
, where cm

` are the SH
coefficients of the dMRI signal in the given voxel and shell.
These angular measures, denoted as ‖S‖`, are proportional to
the square root of the power spectral density corresponding to
that frequency band.

Finally, we investigate data consistency across shells and in
the angular domain using (i) a diffusion tensor representation
(Basser et al., 1994) and (ii) the brain tissue and free water
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maps obtained using multi-shell multi-tissue constrained spher-
ical deconvolution (MT CSD) fits (Jeurissen et al., 2014) (us-
ing population-averaged basis functions measured in WM and
in CSF voxels (Dhollander et al., 2019; Pietsch et al., 2019a)).
Signal changes due to dStripe are assessed quantitatively and
visually using the fit residuals and fit-derived measures.

2.5. Destriping method

2.5.1. The CNN architecture

# layer tensor shape param.
input volume S 1, nx, ny, nz

1 SeparableConv (3,3,3) 16, nx, ny, nz 60
2 BatchNorm 32
3 ConvBlock (3,3,7) 2,128
4 ConvBlock (3,3,7) & ReLU 2,128
5 ConcatPool (2,2,1) 32, nx

2 , ny
2 , nz

6 BatchNorm 64
7 ConvBlock (3,3,7) 5,792
8 ConvBlock (3,3,7) & ReLU 5,792
9 ConcatPool (.,.,1) 64, 16, 16, nz

10 SeparableConv 32, 16, 16, nz 2,080
11 SeparableConv & ReLU 1, 16, 16, nz 33
12 DRC: T 7→ 2.0

1+exp(−T) + 10−4

13 log transform
14 x,y lowpass filter (9,9,1) (81)
15 z highpass filter (1,1,9) (9)
16 exp transform
17 x,y upsample 1, nx, ny, nz

Table 1. The dStripe network architecture as used during training. Ten-
sor shape denotes number of channels, and inplane extent. Layers with
operations aggregating information across multiple spatial locations are
highlighted with their (maximum) spatial extent in brackets, those without
are pointwise operations or 1×1×1 convolutions. For clarity, tensor shapes
are omitted if unchanged. Parameter counts for fixed layers are denoted
in brackets. Layers and dynamic range constraint (DRC) and frequency
filters are described in sections 2.5.1 and 2.5.2. For inference, layer #15 is
deactivated and its function replaced by FFT-based high-pass-filtering of
the network output (see section 2.5.6).

Input to the network is a single 3D volume S of dimensions
nx, ny, nz (one channel). The output of the network is the multi-
plicative field defined in the space of S and when element-wise
multiplied with the input image (S � F), ideally reverses the
stripe-producing mechanism.

To allow potentially taking large parts of the spatial context
into account, the network operates on the full field of view of S
(99× 99× 64 voxels). To accommodate this data in GPU mem-
ory and for performance reasons the network was designed to
be relatively small (18,109 trainable parameters). To stabilise
training and minimise domain shift, the network is trained with
intensity and spatial frequency filter constraints as part of the
architecture. For faster training, we use batch normalisation
(BatchNorm) (Ioffe and Szegedy, 2015; Santurkar et al., 2018).
An overview of the network architecture, implemented in py-
torch (Paszke et al., 2019), is given in table 1.

For approximate invariance to the image dimensions, all lay-
ers use voxel-wise or convolutional operations. Spatially, we
aim to represent slice-specific information at native resolution
through-plane while limiting the in-plane resolution to yield a

smooth field after upsampling. Hence, the resolution in the slice
dimension is preserved throughout the network but is reduced
in-plane via pooling layers (#5,#9) to half its original extent,
and then adaptively to 16× 16 voxels. In all convolution layers,
the image extent is preserved via zero padding.

Throughout the network, depthwise separable convolutions
(Chollet, 2017) are used to limit the number of parameters while
allowing the network to learn global relations between feature
maps and their respective spatial extents (Hu et al., 2018). The
module denoted as SeparableConv consist of a set of input-
channel-specific 3×3×3 convolution filters whose output chan-
nels are linearly combined using pointwise 1×1×1 convolutions
(if the number of output channels exceeds 1).

ConvBlock consist of 3 concatenated depthwise 3 × 3 × 3
convolutions with dilation factors (Yu and Koltun, 2015) of 1,
2, and 3 in the z direction, respectively, followed by a 1 × 1 × 1
convolution and optionally a ReLU activation (T 7→ max(0,T)).
ConcatPool layers concatenate spatial average and maximum
pooling layers.

The inplane lowpass filter is implemented as a fixed 2D
Gaussian blur filter and the through-plane high-pass filter sub-
tracts the low-frequency filtered tensor from its input using a
fixed 1D Gaussian filter (T 7→ T − g(T)).

2.5.2. Modulation field constraints
To restrict the intensity modulation range, the output of the

last convolution and ReLU layer (#11) is mapped to the range
[1.0001, 2.0001] via the dynamic range constraint (DRC, layer
#12) T 7→ 2.0

1+exp(−T) + 10−4. This scaling also facilitates spa-
tial frequency filtering of the multiplicative destripe field in the
log-domain (#13) using numerically stable additive operations
(#14,15). The in-plane and subsequent through-plane filters
are implemented as immutable convolution filters. To suppress
high frequency information in-plane, a 2D Gaussian blur filter
(σ = 1.5 voxels, kernel size 9 × 9) is used. The through-plane
high-pass filter is similarly implemented by subtracting a 1D
Gaussian-filtered version of the image (σ = 1 voxels), which al-
lows factoring out low-frequency background modulations (and
global offset) in the through-plane direction.

Finally, exponential scaling (#16) and in-plane upsampling
(#17) yield the multiplicative field at the target resolution while
preserving in-plane smoothness and through-plane resolution.

2.5.3. Training and augmentation
Training is performed on 20 dMRI datasets in 500 epochs

with a batch size of one, with the Adam optimiser (Kingma
and Ba, 2014) and triangular learning rate scheduler [1, 5] ×
10−4 (80 training iterations per half-cycle) (Smith, 2017). From
each dMRI dataset, 10 randomly selected volumes are selected
for each b-value and all images divided by its 99th percentile
intensity.

Data augmentation was performed by random reorientation
via dihedral transformations (90 degree rotations and axis-
aligned reflections) such that all three axes (AP, LR, IS) are
used as the slice direction with equal probability. Rotated ver-
sions of the data can be assumed stripe-free, and are included in
the augmentation to minimise the influence of any stripes that
might have been present prior to image augmentation.
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Slice-wise intensity stripe patterns were simulated to allow
random multiplicative factors per slice that are correlated in
time according to the slice interleave pattern. For all slices i of
a temporally continuous excitation sequence block τ ∈ [0, 1, 2]
(i mod 3 = τ), multiplicative slice-wise intensity modulations
mi were drawn from the positive-clipped squared normal distri-

bution max
((
N(µτ, σ2

τ)
)2
, 10−10

)
, with block-specific variance

σ2
τ = 0.05 and random but fixed centre drawn from a uniform

distribution µτ ∼ U(0.9, 1.1). This was repeated for all 3 exci-
tation blocks. Finally the modulation vector m was normalised
to unit geometric mean to approximately preserve global scal-
ing effects. We denoteM, the slice-wise intensity modulation
distribution that is defined as the observable consequence of this
slice artefact generating process.

2.5.4. Stein’s Unbiased Risk Estimator-based image recovery
Consider the image reconstruction problem to infer an un-

known image u ∈ Rn from corrupted measurements v = u + δ,
with corruptions δ. This problem is commonly solved by using
prior knowledge about the properties of the image. Convolu-
tional neural networks are powerful models to encode image
properties but typically require large amounts of paired training
data.

In this work, we have only one corrupted measurement and
no ground truth data. Therefore, instead of supervised learning
with paired data, we use a training technique that is based on
Stein’s Unbiased Risk Estimator (SURE) (Stein, 1981), that al-
lows reconstructing an unobserved image u from individual ad-
ditive Gaussian noise corrupted measurements as for instance
demonstrated in (Soltanayev and Chun, 2018; Metzler et al.,
2018). SURE is a measure of the expected generalisation loss
(“risk”) of an estimator of the mean of a data-generating process
v ∼ N(µ,1σ2) with unknown mean µ. Assuming the measure-
ments are corrupted by standard additive homoscedastic noise
and that the estimator fΘ with parameters Θ is weakly differ-
entiable, we can express the expected reconstruction error as
(Stein, 1981)

E
[
1
n
||u − fΘ(v)||22

]
= E

[
1
n
||v − fΘ(v)||22

]
− σ2

+
2σ2

n
∇v · fΘ(v),

(1)

where the expectation term measures the bias, and the diver-
gence term ∇v · fΘ(v) =

∑n
i=1

∂ fΘ(v)
∂vi

expresses the response of
the model to input perturbations (model variance). Remarkably,
SURE does not require access to µ as σ can be estimated from
the data (Efron, 2004) and ||v− fΘ(v)||22 is directly accessible for a
given model (Stein, 1981). ∇v · fΘ(v) can be hard or impossible
to derive analytically for complex fΘ. However, for bounded
functions fΘ with intractable derivatives or prohibitively high-
dimensional parameter spaces, such as deep convolutional neu-
ral networks, Monte-Carlo techniques can be used to estimate
the divergence

∇v · fΘ(v) = lim
ε→0

E
[
pT fΘ(v + ε p) − fΘ(v)

ε

]
,

with the normally distributed noise vector p ∼ N(0,1). As
shown by (Ramani et al., 2008), due to the high dimensional-
ity of the data, this can be approximated with a single or few
samples and a small non-zero ε via

∇v · fΘ(v) ≈ pT fΘ(v + ε p) − fΘ(v)
ε

. (2)

2.5.5. Loss functions
The training loss is evaluated inside the brain mask M, which

contains nM true elements, and depends on the slice direction
after the dihedral transformation d. For simplicity of notation,
let S� m denote the broadcast-multiplication of each slice S:,:,s
with the modulation ms and d(S)�m the transformed and mod-
ulated image. Along the AP and LR axes, the training loss con-
sists of the sum of Jaug, the mean squared loss between original
signal So and augmented Sd,m = d(S) � m corrected by the
network fΘ

Jaug =
1

nM
‖d(So) − fΘ

(
Sd,m

)
‖22,M

and Jconst, the mean squared loss that penalises altering the orig-
inal image (free of stripe artefacts in that direction):

Jconst =
1

nM
‖d(So) − fΘ (d(So)) ‖22,M.

For slice directions along IS, we construct the MC SURE-
based loss using an augmented image as input. Following equa-
tions 1 and 2 and limiting the divergence to the non-negative
domain to bound the loss, we use

JSURE =
1

nM
‖Sd,m − fΘ

(
Sd,m

)
‖22,M − σ

2
SURE

+2
σ2

SURE

nM
|ρSURE|

with σSURE = SD
(
Sd,m − d(So)

)
M the standard deviation of the

signal change due to image augmentation inside the brain mask,
and ρSURE the model variance penalty to input perturbations
which is estimated using

ρSURE =

〈
P �

fΘ
(
Sd,m + εP

)
− fΘ

(
Sd,m

)
ε

,M
〉

F
,

with ε = 10−3 and the calibrated perturbation image
P = (Sd,s � m̂ − Sd,s)/SD(Sd,m � m̂ − Sd,m)M generated using
an additional simulated slice modulation vector m̂ drawn from
M, and 〈., .〉F the Frobenius inner product which denotes an
element-wise multiplication and summation over all elements.

2.5.6. Modifications for inference: attention and iterative field
updates

Training is performed as described, however during infer-
ence we can improve performance and avoid issues we have ob-
served. First, destripe performance can be improved by incre-
mentally estimating the destriped image by applying the neural
network to the previous best estimate for up to three iterations
after which the resulting images are approximately converged.
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However, naı̈ve multiplication of field updates would increas-
ingly relax the field’s frequency constraints. Second, in-plane,
the field estimates require additional low-pass filtering due to
upsampling artefacts of the bilinear interpolation layer (#17).
Third, the field estimate can be unreliable in areas dominated
by noise or ill-defined due to the lack of signal of interest and
close to the edge of the field of view. This can, through the field
frequency constraints, negatively impact the field in adjacent
brain areas.

The approach to address these issues consists of the follow-
ing modifications to the final stages of the network, applied dur-
ing inference only:
1) We remove the built-in high-pass filter (layer #15) and re-
place its function with a FFT-based high-pass filter (hz) that is
applied to the (upsampled) field.
2) To prevent frequency spectrum drift over iterations i, we
do not apply the through-plane filter hz (described above) to
the output of the network, but instead to the composition of the
current best estimate of the field Fi and its update:

Fi+1 ← hz (Fi � fΘ(So � Fi))

For this filter, we use a parametric FFT-based frequency filter
which allows high-quality frequency constraints that can be eas-
ily adapted retrospectively. We use a 4th order Butterworth fil-
ter (b1: normalised frequency cutoff: 21/32, padding: 17) to
block low-frequency components.
3) To address edge effects we implement an attention mech-
anism based on the brain mask that attenuates high-frequency
contributions to the field from outside trusted areas. This mod-
ulation has to be applied before high-pass frequency filtering
to reduce leakage of the field into areas of interest. Hence, the
attention mechanism is incorporated into the through-plane fre-
quency filter hz. It uses a through-plane frequency separation
into low- and mid- to high-frequency components and a spatial
attention map A with voxel-values in [0, 1] to smoothly blend
these frequency bands in the image domain.

Specifically, hz(F) is defined as

step 1:F← exp(log(F/Flp,3D) � A) � Flp,3D

step 2: F← F/fft−1
z (fftz(F) � b1),

where Flp,3D is a lowpass-filtered version of the field (3D
Gaussian-blur, σ = 5 × 5 × 11 voxels). In step 1, the field’s
medium- to high-frequency information (F/Flp,3D) is exponen-
tiated voxel-wise with A, which down-weights this frequency
band in untrusted areas (where A < 1), while leaving low-
frequency components unaltered. In step 2, this locally filtered
field is subsequently high-pass filtered through-plane with the
Butterworth filter b1. The key is that the Gaussian filter al-
lows estimating the low-frequency background without caus-
ing distortion to the high-frequency components of interest and
A is spatially smooth, allowing a weighted blending of low-
with medium- to high-frequency components. In areas with low
trust, the low-frequency field dominates in step 1, hence high-
frequencies from these areas contribute little to the filtering in
step 2.

We use a brain mask M to create the attention map A. In
plane, to gradually reduce contributions from outside the brain

mask while preserving attention inside the brain, M is dilated
by the full width at one-tenth maximum of a Gaussian filter and
subsequently blurred (13 dilations, σ = 9×9 voxels). Through-
plane, this image is smoothed further (σ = 3 voxels), down-
weighting contributions of the most inferior and superior parts
of the masked area.
4) As a final step, the field is low-pass filtered in-plane with a
cutoff frequency chosen to suppress in-plane upsampling arte-
facts (3rd order Butterworth filter, normalised frequency cutoff:
2/32, padding: 24).

2.6. Degrees of freedom

As outlined in the introduction (1), in this work we assumed
that the field needs to be modelled as a function of position and
b-value (see figure 1), and direction of the diffusion weight-
ing. We can control the effective spatial degree of freedom of
dStripe by modifying the minimum inplane grid size of the net-
work architecture (layer #9), by modifying the frequency filter
parameters, or by applying filters to the final upsampled field.

In anatomical-space destriping, angular degrees of freedom
of the final upsampled full rank field (Fb,`,m,x,y,z) can be reduced
for instance via a projection to a spherical harmonics represen-
tation with reduced `max or by shell-averaging, or it can be de-
rived from shell-averaged dMRI signal projections.

For the purpose of investigating the effect of a reduction of
the spatial and angular degrees of freedom of the field (see sec-
tion 3.1), we calculate the geometric mean of the field inside
the brain mask across the angular domain (denoted Fb,x,y,z) and
also averaged within slices (Fb,z) and apply these rank-reduced
fields to the dMRI data via broadcasting operations.

3. Results and Discussion

3.1. Degrees of freedom of slice modulation field

Figure 2 shows that dStripe needs to operate in the spatial,
angular and b-value domains: restricting the field Fb,`,m,x,y,z that
has the same rank as the data, in the angular (Fb,x,y,z) and spatial
domain (Fb,x,y,z, Fb,z) leads to increased residual stripes, justify-
ing the design decisions of the method.

In figure 2, the l2-norm of the resulting data as well as the
difference to the data pre-dStripe are shown for representative
b and ` value combinations for a representative subject. In
the shell-average images, shell-specific but slice-wise constant
multiplicative scale factors (figure 2b) reduce the stripe pattern
but a smoothly varying field (figure 2c) reduces the stripe pat-
tern further. However, stripe patterns in the angular domain re-
main nearly unchanged. The full dStripe field attenuates stripe
patterns in the angular domain and reduces the power in higher
angular frequency components. By design, an inplane reduc-
tion in high-frequency SH power can be attributed to smoothly
varying intensity modulations of individual dMRI volumes and
is therefore likely caused by a reduction of angular variance due
to the removal of stripe artefacts.
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Fig. 2. Exemplary components of the l2-norm spectrum with increasing degrees of freedom of the correction field (top) and the difference in the l2-norm
spectrum due to dStripe (pre-dStripe - post-dStripe) shown below. a): pre-dStripe: original data after motion correction, b) 1D b-value specific correction
applied, c) 3D scalar b-value specific field applied, d) full correction without rank constraints. b-values in units of s/mm2.

3.2. Space-dependency and subject motion

If the artefact is tied to scanner space, it is desirable to de-
stripe in source space; similarly if it is fixed to the subject tissue,
dStripe should be performed in anatomical space. Given the ob-
servation that the field has consistent features in source space of
a cohort with relatively prevalent motion, it is reasonable to at
least partially model the field in source space. However, it is
unclear if it is best to correct stripe patterns in scattered source
or in the motion-corrected anatomical space as this depends not
just on the nature of the artefact but also on how well it can
be corrected given our framework, where we rely on a motion-
corrected model of the data.

The properties of the estimated slice modulation artefact de-
pend on the space in which it is estimated. In particular,
the super-resolution reconstruction increases inter-slice inten-
sity variations compared to the patterns observed in the source

data acquired with overlapping slices. The presence of subject
motion also affects the spatial frequency content of the arte-
fact: assuming a smooth field in source space, subject rotation
can cause higher frequency patterns in motion-corrected space.
We rely on a motion-corrected representation of the data, where
artefacts originating from source space might be smeared out or
might not be fixable given the frequency constraints of the field.
Similarly, when projected to source space, stripes observed in
the motion corrected signal could be distributed over multiple
scattered (oblique) slices.

A possible source of destripe field inconsistencies for source-
space methods is a potential field of view or pose-dependency
of the method. To estimate the slice-specific field, dStripe re-
quires spatially contiguous adjacent slices, in our case a com-
plete “slice-native” volume for context. For source-space de-
striping, intra-volume motion can affect the pose of the slice-
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native volume for each slice of interest, introducing a possi-
ble source of variance into the destripe field estimation, which
can potentially be amplified or introduce local artefacts in the
subsequently required motion correction, especially if super-
resolution algorithms are used. In anatomical-space destriping,
the pose is fixed eliminating this source of inter-slice and intra-
volume variance.

Finally, the choice of the space in which dStripe is performed
has implications for the nature of the change to the motion cor-
rected data. A smooth modulation applied to scattered source
space data can improve subsequent (super-resolution) motion
correction but also introduces local changes in its output due to
the interpolation and aggregation of data from multiple slices;
dStripe performed in anatomical space guarantees smoothly
varying fields in the space where the data is used for analysis.

In the following sections, we attempt to remove stripes in
both spaces independently and compare the data in anatomical
space. This does not prove the origin of the artefact but assesses
the stripe artefact removal potential for each space, given the
framework.

Figure 3 shows the shell-averaged data in motion-corrected
space without dStripe, with dStripe in anatomical space and
in source space. The shell-average signal changes most in
the lower b-values, source-space destriping changes the sig-
nal slightly more, but the difference between source- and
anatomical-space destriping are much smaller than between
data pre- and post-dStripe. The difference between anatomical-
and source-space dStripe at the top of the brain is related to the
implementation of the attention filter that can be gradually cir-
cumvented with further dStripe iterations. In the presence of
motion, potential field of view edge effects of the network can
appear in more central slices, in particular if motion caused the
brain to be cropped during the acquisition.

Figure 4 shows raw b = 0 data and corresponding fields (esti-
mated in source space) for a single volume and averaged across
the shell. By design, the fields are smooth in-plane and rela-
tively sharp through-plane. In source space, using source-space
destriping, the average field shares similarity with that in indi-
vidual volumes but is attenuated overall. This attenuation can
originate from a non-stationary of the modulation artefact, for
instance caused by blurring due to subject motion if the field
is tissue dependent, or assuming a fixed field in source-space,
it could indicate variance in the estimated dStripe field due to
varying subject pose.

3.3. Performance

To evaluate performance we use the following objectives:
post-dStripe, dMRI data has to appear visually less stripy and
have reduced variance in the through-plane direction. Further-
more, we use DTI and MT CSD fits to evaluate the consistency
of the data across shells and in the angular domain.

3.3.1. spatial dMRI signal variance
The local standard deviation of the (motion corrected) dMRI

signal evaluated in 1D patches of 7 voxels inside the brain mask
aligned in-plane (x,y) and through-plane (z) of each spherical
harmonic volume are shown in figure 5. The analysis is split by

b-value and harmonic band. Note that in-plane and through-
plane values of (anatomical) variance are not equal (see left
column) and anatomical and inter-subject variance dominate
changes due to dStripe. Performing a subject-specific com-
parison, dStripe reduces through-plane variance while approx-
imately preserving in-plane signal variance. Anatomical-space
destriping tends to reduce in-plane variance more, source-space
destriping reduces through-plane variance in the outer shell
more which is partially driven by the difference in attention fil-
ters but also due to the amplitude of changes (see figure 3).

3.3.2. Diffusion signal representation fits
Shell-average fit residuals and fit-derived maps are shown for

a subject in figure 6. Stripy residual maps for both data repre-
sentations indicates that the fit residuals are sensitive to stripe
patterns; MD and tissue and fluid volume fraction maps par-
ticularly show clear patterns of stripe artefacts prior to dStripe.
After (anatomical-space) dStripe, both residual maps and MD
and volume fraction maps show clearly reduced stripe patterns
while preserving anatomical contrast.

Using diffusion tensor and MT CSD root mean squared fit
residuals as a proxy for data consistency across shells and di-
rections, figure 7 shows that dStripe increases data consistency
across all shells for both signal representations. Fit residuals
are reduced mostly in the b = 400s/mm2 and b = 1000s/mm2

shells. Source-space dStripe compared to anatomical-space
dStripe tends to yield slightly lower residuals with the exception
of the b = 0s/mm2 and b = 2600s/mm2 shell for the DT fit. For
both fits and spaces a larger relative reduction of residuals can
be observed for data with higher residuals in the b = 400s/mm2

and b = 1000s/mm2 shells; dStripe improves residuals the
most for high-residual data, which tend to coincide with more
subject motion, and source-space dStripe slightly outperforms
anatomical-space dStripe in this regime.

3.4. Population-level effects and anatomical bias

As demonstrated, dStripe reduces stripe patterns in the dMRI
data and overall increases its consistency within subjects. Here,
we use data from 32 age-matched subjects to assess the ef-
fect of dStripe on data consistency across subjects and whether
the dStripe method introduces systematic changes (bias) across
subjects related to specific anatomical locations. Specifically,
to assess the spatial distribution of the signal changes within
each subject in a common reference frame and to measure bias
possibly tied to subject anatomy, we jointly coregister each sub-
jects’ pre- and post-dStripe data to create a common population-
average template for pre- and post-dStripe data. Below we anal-
yse changes to signal properties between groups, first across the
whole brain then spatially-resolved.

3.4.1. Whole-brain analysis
Figure 8 shows the relative change of CSD-derived quanti-

ties inside the brain that can be attributed to applying dStripe.
We display the bias using histograms of the voxel-wise rela-
tive change in the population-average fluid and tissue compo-
nent volume fractions and the tissue angular power (A). After
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Fig. 3. Exemplary shell-average signal pre- and post-dStripe and shell-average signal difference images displayed in motion-corrected anatomical-space.

dStripe, on average, the volume fractions in the template com-
ponents are close to constant (fluid: +0.12%, tissue: -0.07%),
the tissue angular energy is slightly reduced in the ` = 2 (-
0.30%) and ` = 4 (-0.44%) band and slightly increased in the
` = 6 band (+1.00%). This is in line with an observed overall

reduction in angular power in single-subject dMRI signal (see
figure 2d).

In the coregistered data, we use the intra-template cross-
subject standard deviation as a measure of data consistency.
Figure 8 (B) shows the histograms of the relative reduction in
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voxel-wise cross-subject standard deviation due to dStripe. The
relative inter-subject variation is most decreased by dStripe in
the fluid volume fraction and in the ` = 4 band of the tissue
signal. On average, dStripe decreases inter-subject standard de-
viation nearly across the entire power spectrum of the fluid and
tissue components (figure 8f: -1.61%, g: -0.64%, h: -0.97%,
i: -2.1%, j: -0.24%) indicating higher data consistency across
subjects after dStripe.

Performing dStripe in anatomical space or in source space
yields close to identical results but source-space dStripe ex-
hibits a higher dispersion of the voxel-wise population-average
tissue volume fractions and exhibits slightly wider inter-subject
standard deviation (compare lines in figure 8).

3.4.2. Spatially-resolved analysis
Here we use data from the relatively homogeneous group of

32 subjects selected for template creation to investigate whether
the application of dStripe causes systematic changes (bias) or
increased variance of the dMRI signal in certain anatomical lo-
cations. After alignment of the data to the population-average
template space, the heterogeneity of subject position in source-
space should dampen the influence of any subject-specific stripe
patterns. Any systematic difference between coregistered and
averaged pre-dStripe data and post-dStripe data beyond random
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dStripe is slightly superior for data with larger residuals. n=44.

variations due to the finite number of images and subject poses
in source-space indicates either systematic anatomical bias of
the method or a dependence of the stripe artefact on subject
anatomy.

Figure 9 shows the corresponding images of the population-
average (a), its absolute change (b) and the change in within-
template standard deviation (d) due to dStripe as well as a map
of the within-subject standard deviation across subjects in tem-
plate space (c). We use these to spatially assess variance and
bias associated with dStripe.

In the majority of locations, the inter-subject variance is re-
duced by dStripe, in particular in the tissue ` = 4 band (figure
9d), indicating that dStripe increases consistency throughout
the brain and, despite the spatial inhomogeneity of the across-
subject standard deviation of signal changes (figure 9c), does
not introduce inconsistencies at specific locations. Within indi-
vidual subjects, the fluid component is more affected by dStripe
than the tissue component (figure 9c) but no such systematic ef-
fect is observable in the population average, indicating that the
variance due to the stripe modulation in the fluid component is
larger than in the tissue component.

In the template, systematic effects across subjects due to
dStripe (bias) are small (figure 9b) compared to the inter-subject
standard deviation of within-subject signal changes (figure 9c).
This shows that across subjects, the changes due to dStripe tend
to be independent of anatomical location. The most prominent
local effect on the average compartment volume fractions occur
superior to the body of the corpus callosum and in the vicin-
ity of the pons, medulla and cerebellum and the superior frontal
lobe, areas prone to pulsation and distortion artefacts. A consis-
tent local reduction of angular power can be observed superior
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to the body of the corpus callosum (cingulum and parts of the
fornix), most prominent in the template in the tissue ` = 2 and
` = 4 and FA images (b). This systematic reduction in angular
power in the population-average template resembles a feature in
appearance and amplitude that can be observed in the angular
spectrum of the unregistered cohort-average (N=700) raw data
signal. This creates some ambiguity about whether and how
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much of this change should be attributed to anatomical bias of
the network rather than a genuine need for consistent change as
our reference point for zero expected change in the population-
average space might not be neutral in this area.

3.5. Generalisation

To generalise to unseen data, dStripe needs to remove inter-
slice intensity artefacts while preserving the integrity of the
data. As with other deep learning techniques (Antun et al.,
2020), the transferability to other cohorts and acquisition pa-
rameters needs to be investigated on a case by case basis as gen-
eralisation performance is in general dependent on the quantity
and quality of the training data and the expected domain shift.

On dHCP data, we observe that dStripe is relatively data-
efficient. When trained on a single scan (N=1) and applied to
that training data, this network achieves a similar reduction in
stripe patterns compared to the network trained on 20 different
scans (see figure B.11 b-e). This data-efficiency suggests that
for target domains similar to the dHCP data, the network train-
ing and inference can be readily transferred to other and much
smaller cohorts.

When the network is trained on two scans (29 and 38 weeks
PMA) acquired with the Philips Achieva 3T product sequence
(1 b=0 and 32 b = 750s/mm2 volumes) that exhibit inhomo-
geneous slice timing artefacts, resulting network performance
varies between training runs when assessed on these scans and
on dHCP data (figure B.11 f-h). On this training data, the net-
work requires more than the 66 unique volumes to reliably con-
verge to a good solution.

The performances of networks trained on 20 or 1 dHCP scans
when applied to the product sequence data are on a par with that
of the best instance trained on the native data (figure B.11 B,
C, columns b-e vs h) suggesting that domain adaptation is fea-
sible between both datasets. For data-limited applications for
which self-supervised network training is not stable, more ex-
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Fig. 8. 2D histograms of the fluid and tissue components densities and angular energy spectra (band-specific l2 norm of the spherical harmonic coefficients)
using non-destriped data (pre-dStripe) and data dstriped in anatomical-space (post-dStripe). A shows the population-average change due to dStripe
(comparing the template images), B compares the within-template voxel-wise standard deviation across subjects between original and destriped data. X
is a placeholder for the respective quantities denoted in the plot titles. Boxplots summarise the 5, 25, 50, 75, and 95 percentile and mean (+) in each
band. White lines demark the (conditional) 5%, 50%, 95% probability density of the 2D histograms, yellow dotted lines show the results for source-space
destriping.

tensive data augmentation, domain adaptation, pooling of train-
ing data across cohorts, transfer learning, and model selection
techniques are possible avenues to improve performance.

3.6. Limitations

The focus of this work is to develop and evaluate a frame-
work that allows removing stripe artefacts from motion cor-
rupted data without access to ground truth data. Our algorithm
choices were guided by observations within our data and are po-
tentially tied to the choice of SVR algorithm. The dependency
on the motion corrected prediction can limit the destriping of
the source data when subject motion causes stripe patterns to
be absent in the anatomical-space – they can be either spatially
smeared out, averaged with other data, or removed by the out-
lier detection mechanism.

This study is a first step at modelling inter-slice intensity
modulations. We do not model interactions across slices, vol-
umes (directions) and we do not explicitly use the motion tra-
jectory in the dStripe model. Inter-slice interactions, for in-
stance caused by inhomogeneous g-factor maps biasing the
multiband reconstruction, could require unmixing of the sig-
nal, which would break the modulation field assumptions made
in this work. This and longer-range bias across multiband pack
boundaries can be explored in future work.

We do not take tissue-dependencies of the stripe artefact into
account. However, if needed, the signal could be decomposed
into distinct compartments that separate long T1 from short T1

species, each destriped independently using the same approach
as described here, and subsequently recombined. This approach
requires the ability to robustly decompose the signal into com-
ponents relevant for the artefact – in the presence of stripe arte-
facts.

4. Conclusions and outlook

We presented a data-driven method for the removal of stripe
artefacts from dMRI data. dStripe reduces stripe artefacts from
the shell-average and the angular signal components, and thus
decreasing DTI and MT CSD fit residuals across shells. Single-
subject component and DTI-derived images appear visually less
stripy and inter-subject variation is reduced indicating improved
data consistency across subjects.

Applying the dStripe approach in source space (which is
likely the space of origin of the slice modulation artefact)
slightly outperforms anatomical-space destriping in terms of the
reduction of inter-slice signal variation and of signal represen-
tation fit residuals. However, it is limited in its applicability as it
requires control over the SVR framework’s forward-projection
and comes with a high computational cost. We showed that
anatomical-space dStripe is a suitable substitute as it produces
similar results and performs equally in terms of data consis-
tency. For cohorts with less motion we expect the results of
anatomical-space dStripe to be even more favourable, in partic-
ular for data acquired using lower multiband factors.
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Fig. 9. Effect of dStripe on diffusion tensor and MT CSD-derived quantities aligned to the population-average template (n=32). The template (population
average X) pre-dStripe is shown in column a) and intensity values in all other columns are expressed relative to the maximum intensity in a). The effect
of dStripe on the population-average is shown in b). Column c) displays the standard deviation (SD) of the within-subject changes across subjects due
to dStripe, indicating the expected effect on a subject-level. The change to the within-group heterogeneity measured as the difference between standard
deviation across aligned subjects pre- and post-dStripe data is shown in column d).

While our pipeline is optimised for diffusion MRI, it could
be adapted for other modalities and applications such as the de-
tection and removal of stripe artefacts in transcranial ultrasound
imaging (Vignon et al., 2010), line and area levelling in atomic
force microscopy (Raposo et al., 2007; Wang et al., 2018), or
venetian blind artefact removal in multiple overlapping thin slab
acquisitions (Blatter et al., 1991).
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Appendix A. Data overview
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Fig. A.10. Top: sagittal cross-sections through b=0 data pre-dStripe (left) and post-dStripe (right) for the 44 diffusion MRIs used for the analysis of the
dStripe method. Images are sorted by percentile quality assessment score (higher is better). Bottom: Age at scan versus percentile quality assessment
score. Data used for single-subject analysis and in the template is marked as such.
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Appendix B. Generalisation
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Fig. B.11. Shell-average signal and ADC maps of the original (a) and destriped (b-h) data of a dHCP scan (A) and two scans (B, C) acquired with a Philips
Achieva 3T product sequence which exhibit severe slice intensity artefacts due to inhomogeneous slice-timing. The columns correspond to the reference
network trained on N=20 dHCP scans or to network instances either trained on the one dHCP scan shown in A) or on the two scans acquired with the
product sequence. Instances from repeated training runs are denoted with subscripts 1-3. All scans shown in this figure were part of the training of the
respective networks – except for the N=20 reference network.
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