
Evaluating user interface generation
approaches: model-based versus
model-driven development

Jenny Ruiz de la Peña

jruizp@uho.edu.cu
University of Holguín, XX Anniversary Ave, 80100 Holguín,

Cuba

Prof. dr. Estefanía Serral Asensio

estefania.serralasensio@kuleuven.be

Prof. dr. Monique Snoeck

Monique.Snoeck@kuleuven.be

Department of Decision Sciences and Information Management, KU Leuven, Leuven,

Belgium

PREPRINT: This paper has been accepted for Software and Systems Modelling

Please cite as follows:

Ruiz, J., Serral, E. & Snoeck, M., Evaluating user interface generation approaches:

model-based versus model-driven development, Softw Syst Model (2018).

https://doi.org/10.1007/s10270-018-0698-x

Evaluating User Interface Generation Approaches:
Model-based vs Model-Driven Development

Jenny Ruiz1, Estefanía Serral2, Monique Snoeck2
1University of Holguín, XX Anniversary Ave, 80100 Holguín, Cuba

+53 482672, jruizp@uho.edu.cu
2KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium

+32 16 32 68 79, {estefania.serralasensio, monique.snoeck}@kuleuven.be

Abstract

Advances in software design possibilities have led to a growing interest in the study of User Interfaces (UIs).
Many Model-Based User Interface Development Environments (MB-UIDEs) have been proposed to deal
with the generation of the UIs (semi) automatically by using models with different levels of abstraction.
Often, this generation is limited to the UI-part of an application. However, achieving true model-driven
development (MDD) requires the co-development of application and user interface and hence needs to go a
step further. This paper analyzes a large set of existing MB-UIDEs and evaluates, from a critical perspective,
to what extent they can be considered full MDD environments and adequately addressing the co-design of UI
and application. A robust assessment framework is defined and applied for this purpose. Following the
guidelines proposed by Kitchenham & Charters in 2007, we performed a systematic literature review. A total
of 82 papers were examined. Based on these papers, an assessment framework containing 10 criteria with
specific metrics to evaluate MB-UIDEs was defined and 29 different environments were evaluated following
these criteria. The evaluation shows that, although a strong progress has being achieved over the last years,
the existing environments do not yet fully exploit the benefits and potentialities of MDD, nor do they
adequately integrate UI design with application logic design and generation. Further research needs to be
done to support the model-driven development of user interfaces and the co-design of the underlying
application. The difficulty of use of the existing MB-UIDEs, the lack of UI design flexibility, and the lack of
complete and integrated development support, are the main research gaps that need to be addressed.

Keywords

Model-based User Interface software tools, User Interface generation, Model-driven Development,
Integration with Application Development.

1. Introduction
In the last decades, the Information Technology industry has witnessed a rapid growth of
platforms, devices, interaction modalities, and environments. This has led to an increase of
design possibilities and therefore to a growing interest in the study of User Interfaces (UIs)
(Gomaa, Salah, & Rahman, 2005).
The development of the UI of an application represents around 50% of the total application
code and development time (Myers & Rosson, 1992), (Jha, 2005), (Kennard & Leaney,
2010). Different kinds of software tools have been created to manage the complexity and
reduce the time of UI development. (Myers, 1995) classified these UI tools according to
how the UI layout and its dynamic behavior are specified: language-based tools, interactive
graphical specification tools, and Model-Based User Interface Development Environments
(MB-UIDEs) tools. In language-based tools, developers have to program in a specific
language. With interactive graphical specification tools, developers can make an
interactive design of the UI. Last, MB-UIDEs aim to generate user interfaces (semi)
automatically using models with different levels of abstraction (abstract, concrete, final
UI), and provide supporting tools to assist in the modeling task and/or the automatic
generation of the UI. MB-UIDEs generate UIs from a set of declarative and high-level
models that represent required UI characteristics as collected during the analysis and
design phase. The use of high-level models allows an application to be designed by using
concepts that are much less bound to the underlying implementation technology and are
much closer to the problem domain. The use of abstract models facilitates therefore the
participation of end-users in the early stages of the development process because models
allow end-users to focus on the main concepts (the abstractions) without being confused by
many low-level details (Paternò, 2003).
While the benefits of MB-UIDEs are clear, further benefits can be gained by targeting
model-driven development (MDD), which goes a step further than model-based
development. The term MDD is used to denote approaches that focus on the creation and
exploitation of domain models as prime artefacts to document domain knowledge in an
abstract way and use this knowledge (among others) for software creation. The
foundational principles of MDD have been explained by many authors. Generally
speaking, authors agree on the following basic building blocks: the use of models, meta-
models, model-transformations, and platform definitions (Mellor, 2004), (Bézivin, 2004),
(Hailpern & Tarr, 2006), (Schmidt, 2006), (Brambilla, Cabot, & Wimmer, 2012), (Kleppe
2003). Model-driven development is further supported by different artefacts: tools,
standards, and languages. Some of these artefacts are 'general-purpose MDD tools', such as
the tools AndroMDA1, Acceleo2, ArcStyler3. Other MDD artefacts are specific for UI
development, such as the UI definition languages UsiXML, UIML, XIML, or standards
such as the International Flow Modeling Language (IFML)4 adopted by the Object

1 http://www.andromda.org/
2 https://eclipse.org/acceleo/downloads/
3 http://www.arcstyler.com
4 http://www.ifml.org

Management Group and the Extensible Hypertext Markup Language (XHTML)5
developed by the WWW.
While model-based and model-driven UI development environments share a same
principle (Aquino, Vanderdonckt, Panach, & Pastor, 2011), namely that one or many
models are used to explicitly represent the target UI characteristics and to generate the UI
code (Calvary et al., 2003), there is a main difference. In MDD, models are the prime
artefacts that drive the development of software based on explicit model transformations.
In MB-UIDE however, models are sometimes simply only used for purposes like analysis,
early or advanced design, evaluation, etc. and if they are used for code generation, the
transformations are not always made explicit. Another shortcoming of a number of MB-
UIDEs, is that often the UI model is an isolated artifact used to generate a UI that is not
linked with the application logic. This is problematic as, for example, a class diagram will
determine what data is available to show in the UI, and how data can be navigated (through
defining associations between classes). In MDD, the use of meta-models that define the
semantics of the models used allows UI models to be integrated with the rest of the
application models and as such generating a UI that is directly integrated with application
logic.
The goal of this research is therefore to analyze prevalent MB-UIDEs and answer the
following question: to what extent can these MB-UIDEs be considered as 'real' MDD
environments and to what extent are they able to integrate UI design and generation
directly with the design and generation of the rest of the software application?
To answer this research question, we followed the methodology depicted in Figure 1. We
first performed a systematic literature review (SLR) of MB-UIDEs (see Section 2) in order
to identify existing surveys on MB-UIDEs and assess to what extent the question can be
answered by extracting information from these surveys.
Different surveys were found, but neither on their own, and neither a combination of them
provided the required information to answer our research question (see section 2). We
proceeded therefore to the elaboration of a new more complete survey. We built an
assessment framework to evaluate MB-UIDEs: a) we determined the criteria to be used for
the evaluation and b) we defined a metric for each criterion of the framework (see Section
3). Based on the results of the initial and subsequent searches, we also determined the set
of MB-UIDEs to be assessed (see Section 4) and we then evaluated these according to the
proposed framework (see Section 5). Finally, the analysis of the assessment results led to
the identification of important research gaps (see section 6).

5 https://www.w3.org/TR/xhtml1/

Figure 1 Methodology followed for the comparison and evaluation of MB-UIDEs

It is important to note that this study focuses on model-based approaches that are
specifically geared to UI development. Therefore, even though general purpose tools,
languages, and standards may be used as a component of a MB-UIDE, they are out of
scope of this evaluation. For surveys of general-purpose model-driven engineering tools,
the reader is referred to (Karanam, 2015) and (Cabot & Teniente, 2006). For surveys of UI
definition languages the reader is referred to (Guerrero-García, Gonzalez-Calleros,
Vanderdonckt, & Muñoz-Arteaga, 2009; Guerrero-García, González-Calleros,
Vanderdonckt, & Muñoz-Arteaga, 2011; Souchon & Vanderdonckt, 2003).

2. Systematic Literature Review on MB-UIDEs
With the purpose of finding the relevant research done on MB-UIDEs, we performed a
SLR following the guidelines proposed by (Kitchenham & Charters, 2007). These
guidelines propose to perform the SLR in three phases: planning, conducting, and
reporting.
Planning the SLR
The main research questions that need to be answered through this search is: Which
reviews about UI generation approaches have been performed?

Rather than searching specifically for literature reviews, we searched in general for papers
about model-driven development of user interfaces. We performed our search with Scopus
and Web of Science databases, which are the largest databases of peer-reviewed literature.
Therefore, the search string in Web of Science was: Theme: ("model-based user interface"
OR "model-driven user interface") AND theme: (development or design or generation).
The exact search string in Scopus was: (TITLE-ABS-KEY ("model-based user interface"
OR "model-driven user interface") AND TITLE-ABS-KEY (design OR development or
generation)) AND (EXCLUDE(SUBJAREA,"MEDI OR EXCLUDE SUBJAREA OR
EXCLUDE SUBJAREA ") OR EXCLUDE(SUBJAREA," DENT OR EXCLUDE
SUBJAREA OR EXCLUDE SUBJAREA ") OR EXCLUDE(SUBJAREA," EART OR
EXCLUDE SUBJAREA OR EXCLUDE SUBJAREA ") OR EXCLUDE(SUBJAREA,"
VETE OR EXCLUDE SUBJAREA ") OR EXCLUDE(SUBJAREA,"MEDI OR
EXCLUDE SUBJAREA ") OR EXCLUDE(SUBJAREA," CENG") OR

EXCLUDE(SUBJAREA,"EART") OR EXCLUDE(SUBJAREA,"AGRI") OR
EXCLUDE(SUBJAREA,"ARTS") OR EXCLUDE(SUBJAREA,"BIOC") OR
EXCLUDE(SUBJAREA,"SOCI") OR EXCLUDE(SUBJAREA,"BUSI") OR
EXCLUDE(SUBJAREA,"DECI") OR EXCLUDE (SUBJAREA,"ECON OR EXCLUDE
SUBJAREA ") OR EXCLUDE (SUBJAREA," PHAR") OR
EXCLUDE(SUBJAREA,"MATE") OR EXCLUDE(SUBJAREA,"ENVI") OR
EXCLUDE(SUBJAREA,"ENGI") OR EXCLUDE(SUBJAREA,"MULT OR EXCLUDE
SUBJAREA ")).
In order to assess the quality of the query, we checked that the studies we already knew to

be relevant for our search (such as (Da Silva, 2001), (Engel, Herdin, & Märtin, 2014)),

appeared in the results in order to ensure that this search process was able to find these

papers.

Reporting the SLR:
The query resulted in a collection of 241 papers (201 from Scopus and 124 from Web of
Science) dating from 1994 to 2016. Most of the papers were in both databases. In
anticipation of the fact that existing surveys might be incomplete, and that "regular" papers
could have interesting information in their "related work" sections, the inclusion and
exclusion criteria should not only allow the identification of existing evaluations of MB-
UIDEs but also allow selecting papers for the later extraction of the set of MB-UIDEs to be
further analyzed. The inclusion and exclusion criteria were therefore as follows:

• Inclusion criteria:
- Papers with explicit criteria-based comparison of MB-UIDEs
- Papers that describe (and possibly also analyze) MB-UIDEs specifically for the

design, development or generation of UI.
• Exclusion criteria: The papers that were excluded mostly had a too narrow scope,

e.g. only describe a particular aspect of the development. The full list of rejection
criteria and number of papers rejected according to those criteria is provided in
Appendix 1.

Based on these criteria, we retained 55 papers and discarded 186 papers. Next, 27
additional papers were found through snowballing the references of all 55 papers directly
obtained from the SLR, finally leading to a total of 82 papers.

Within the complete set of papers, we searched for surveys on MB-UIDE. We found the

following 7 surveys summarized in : 4 as direct result of the query ((Akiki, Bandara, & Yu,

2015), (Engel et al., 2014), (Griffiths et al., 2001) and (Da Silva, 2001)); and 3 as a result

of the snowballing step ((Gomaa et al., 2005), (Schlungbaum, 1996) and (Vi Tran,

Vanderdonckt, Kolp, & Wautelet, 2010)). Those papers describe the most prominent MB-

UIDE approaches.

Table 1 Selected papers about Model Based User Interface Development Environments
Reference Summary
(Schlungbaum,
1996)

Characterizes the criteria that an environment should have to be
classified as model-based, gives a definition for declarative
models, and analyses their use by model-based approaches.

(Griffiths et al.,
2001)

Presents a survey of MB-UIDEs and the main features to be
classified as interface development environment: support for the
automatic generation of interfaces, use of declarative methods
and models for specifying interfaces and a methodology to
support the development of the interface.

(Da Silva, 2001) Gives a survey of MB-UIDEs and their use of declarative
models. It describes the User Interface process design in a MB-
UIDE, and presents the models, their semantics and notations,
and the tools that are used by each MB-UIDE.

(Gomaa et al., 2005) Presents a survey of MB-UIDEs with a short description of each
approach. This survey also shows which models are used by the
MB-UIDEs and describes some limitations of the approaches.

(Vi Tran et al.,
2010)

Presents an analysis of the models used by the MB-UIDEs as
well as a description of their tools and the languages used to
describe the generated UI.

(Engel et al., 2014) Presents a brief description of some MB-UIDEs and an analysis
of the models they use. This survey also shows the coverage of
the Cameleon Reference Framework (CRF) abstraction levels
and the notations used by each of the approaches.

(Akiki et al., 2015) Focuses on adaptive UIs and presents an overview and an
analysis of the strengths and shortcomings of model-driven UI
architectures, techniques, and tools.

Table 2 shows which MB-UIDEs were analyzed in which survey. As can be seen in this
table, older evaluations are obviously missing more recent approaches. But even (Engel et
al., 2014) and (Akiki et al., 2015), which are the most recent evaluations, are nevertheless
incomplete in terms of approaches covered: they do not cover older evaluations and -as
will be explained in section 4- in the total set of papers we found another 11 (recent)
approaches that are missing from their analysis as well.

Table 2 MB-UIDEs and authors who analyzed them

Approach
(Schlungbaum,
1996)

(Griffiths
et al.,
2001)

(Da Silva,
2001)

(Gomaa
et al.,
2005)

(Vi Tran et al.,
2010)

(Engel et
al., 2014)

(Akiki et
al., 2015)

ITS

X X X

X
 HUMANOID

X X X

 UIDE X X X X
 AME X X X X

X
 ADEPT X X X X

 GENIUS X X X X X
 TRIDENT X X X X X
 JANUS X X X X X
 MECANO X X X X X X

 TADEUS X X X X X
 MASTERMIND X X X X

 FUSE X X X X X
 TEALLACH

X X X X

 UI-TERESA

X

X
 SUPPLE

X X

GOLIATH

X
 MARIA

X X

DRIVE

X
 Dygimes

X

 CTTE

X
Cedar

X

Damask

X
GrafiXML

X

GUMMY

X
Ideal XML

X

Leonardi

X
MASP

X

SketchiXML

X
UsiComp

X

Looking at criteria used for evaluation, the different papers use different sets of criteria,
which makes it difficult to obtain a global picture, even by combining the results from two
or more papers. Some of the older works use criteria that are interesting from the
perspective of evaluating the model-driven character of the approach, but recent works do
not use these criteria given the different focus of the survey. For example, (Akiki et al.,
2015) does not use Models used, Language used for generated UI, or Generation of
application code (see section 3 for more details). This survey rather focuses on adaptive
UIs, while our research targets a more general goal.
Finally, metrics for the criteria are often missing. For example, (Akiki et al., 2015)
explains the criteria but does not propose metrics for the criteria. The evaluation indicates a
level of satisfaction (full, half or empty circle) but without explaining when a criterion is
completely, or only partially fulfilled. Also this makes it hard to derive a clear picture from
the existing surveys.

From this overview it is clear that none of the existing criteria-based comparisons, nor a
combination of them, provides an answer to the question to what extent existing MB-
UIDEs are model-driven or not and to what extent they address the integration with
application logic development.
A new comparison is therefore needed, which will be presented in the rest of this paper. In
summary, compared to the existing surveys, the evaluation in section 5 will present the full
collection of approaches (see section 4), including 11 recent approaches that have not been
analyzed before, and the comparison will be based on a uniform set of criteria with a clear
metric for each criterion (see section 3).

3. Framework to assess MB-UIDEs
In this section we build and motivate an evaluation framework to assess MB-UIDEs. First,
in subsection 3.1 we identify the main criteria to be included in the framework. Next,
subsection 3.2 details how criteria satisfaction will be measured.

3.1 Framework Criteria

As we are targeting the assessment of the extent to which a MB-UIDE can be considered a
full MDD environment, the specific characteristics of MDD are an important source to
determine the relevant evaluation criteria. However, starting from the general MDD
principles holds the risk to end up with too general criteria, not specifically geared towards
UI design and development. We therefore decided to collect first the set of criteria
proposed in previous research (see step 1 in Figure 2). This yielded 20 criteria that were
then critically evaluated for overlap and subsumption, and for their relevance in a MDD
context (see step 2 in Figure 2). Nine criteria were retained, and 11 criteria were removed.
Finally, in the third step, we performed a completeness check against the major MDD
principles to check the coverage of the list of retained criteria. In this third step, 1 new
criterion was added, resulting in a total set of 10 criteria in the framework.

Figure 2 Methodology to determine criteria to use for MB-UIDE evaluation

We collected the criteria by analysing the papers obtained from the SLR that give an
explicit criteria-based comparison of MB-UIDEs. Authors of previous surveys propose
criteria for evaluating MB-UIDEs from the perspective of the richness of the models used

by the tools (Da Silva, 2001), the coverage of different levels of abstraction by the
approaches (Engel et al., 2014), the extent and quality of support the tools offer to the UI
developers for the creation and manipulation of models, and the generation of UI code
(Griffiths et al., 2001), (Akiki et al., 2015). Only the criteria that satisfy the following
constraints were included:

- having been referenced as an important feature for MB-UIDEs by relevant authors
in the field,

- being relevant for the purpose of determining to what extent the MB-UIDEs adhere
to major principles of MDD.

Below we present the 20 criteria proposed in these surveys. Some of the criteria have been
renamed or slightly modified to better represent what is actually evaluated. The first three
of the retained criteria are of a descriptive nature (meaning that the rating can only be done
by means of a factual description), whereas for the remaining six criteria the support can be
rated on an ordinal scale. The metrics for those criteria will be presented in subsection 3.2.
Descriptive criteria retained for the comparison of the approaches:

1. Models used: proposed by (Schlungbaum, 1996), (Da Silva, 2001), (Griffiths et al.,
2001), (Gomaa et al., 2005), (Vi Tran et al., 2010), and (Engel et al., 2014). This
criterion describes which models are used by the different model-based approaches.
As the importance of this aspect is to know which models are used by the
approaches in a descriptive way, we evaluate the approaches in a purely descriptive
way along this criterion, without rating it against a predefined norm.

2. Language used for generated UI: proposed by (Da Silva, 2001), (Vi Tran et al.,
2010), (Engel et al., 2014). This criterion describes for which languages the
approach generates the UI. It will be divided in language used for expressing a UI
design (= input for the code generation) and target language used for the generated
UI code (= output of the code generation). This criterion is useful to select the most
appropriate approach for a specific case.

3. Tool support: proposed by (Da Silva, 2001), (Griffiths et al., 2001), (Vi Tran et al.,
2010), (Engel et al., 2014), (Akiki et al., 2015). This criterion evaluates the tools
used by the approaches for the creation, manipulation and transformation of
models, and the generation of UIs.

Quantitative criteria retained for the evaluation of the approaches:
4. Threshold and ceiling: proposed by (Akiki et al., 2015). This criterion describes to

what extent an approach is easy to use and how advanced the outcome of the tool
can be. An ideal tool should be easy to learn and use. We propose to keep this
criterion for the framework and name it Ease of use.

5. Generation of application code: proposed by (Da Silva, 2001), (Griffiths et al.,
2001), (Vi Tran et al., 2010). This criterion evaluates to what extent the approach is
able to generate application code. As it is not only necessary to create and
manipulate the models, but also to obtain code that can be used in an application we
keep this criterion for the framework.

6. Completeness: proposed by (Engel et al., 2014), (Engel et al., 2014). This criterion
is related to the types of UIs (e.g. WIMP, tangible, etc.) that can be produced using
an approach. A system with higher completeness can be used for developing a
wider variety of software applications, a need that UI designers have today. We

propose to keep this criterion but reformulate it as Code generation extensibility.
The completeness describes the current possibilities the approach has. However,
our proposed reformulated criterion not only addresses the current possibilities but
also those that the approach can have in a near future if extended. The evolution
from model-based to model-driven development implies the use of explicitly
defined model-to-model and model-to-code transformations that are compliant with
an explicitly defined meta-model of the approach. The use of explicit
transformations enables the possibility to generate code for different target
platforms. This criterion will allow evaluating to what extent MD-UIDEs have
evolved to MDD.

7. User feedback on the adapted UI: proposed by (Akiki et al., 2015). This criterion
evaluates whether the approach keeps the end-users in the loop of the adaptation
process. Due to the variety of types of users that we witness today, and the
necessity of creating UIs able to accommodate for all these types of users, we keep
this criterion for the framework. We proposed to rename it as User adaptiveness,
to clarify that it evaluates to what extent an environment is taking into account the
user characteristics and preferences.

8. Coverage of the UI development levels as proposed by the CRF: proposed by
(Da Silva, 2001), (Gomaa et al., 2005), (Engel et al., 2014), (Akiki et al., 2015).
Explains if the approach provides the UI from the most abstract way to the most
concrete one. As previously explained, today there is a variety of contexts of use
and hence a need to develop UIs that can be used in all these contexts. Because the
CRF offers a solution for this issue because of its ability of capturing the UI at
different levels of abstraction, we keep this criterion for the framework.

9. Control over the UI: proposed by (Akiki et al., 2015). This criterion relates to the
level of details that the designer can manipulate and the fact that it is important to
allow the designer providing different versions of the UI. We keep this criterion for
the framework but we propose to rename it as UI design flexibility.

A number of criteria used in previous research was not retained for the framework for
being subsumed by one of the retained criteria or not being relevant for the analysis of the
adherence of the environments to MDD. Below we list those criteria and motivate for each
of them why we did not retain it:

10. Empowering new design participants: proposed by (Akiki et al., 2015). This
criterion evaluates the possibility of incorporating people to the design process like
non-developers such as end-users, IT personnel, etc. This criterion will not be
retained in the framework. As previously explained we propose to use the criterion
User adaptiveness to incorporate the ability of the approach to incorporate in the
generated UI the user preferences and characteristics, rather than involving them to
the development process.

11. Possibility of domain model for integration with Computer Aided Software
Engineering (CASE) tool: proposed by (Schlungbaum, 1996). This criterion
evaluates whether the domain model can be integrated with existing CASE tools.
As the approaches should have their own tools to create and manipulate models,
(not only the domain model), and we already have the criterion Tool support, we
propose not to keep this criterion for the framework.

12. Inter model relationship: proposed by (Da Silva, 2001), (Engel et al., 2014)6. This
criterion evaluates which constructs from different models are related to each other.
Although we believe that once an approach is selected this is an important criterion
to understand how the approach is defined, the level of details of this criterion is
out of scope for the comparison of approaches.

13. Extensibility: proposed by (Akiki et al., 2015). This criterion evaluates to what
extent a UI adaptation approach includes a variety of adaptation types such as
feature reduction, navigation, help, etc. At the same time, it assesses the capability
of the approach to add new adaptive behavior at runtime. This criterion was
proposed specifically for analyzing the way adaptive behavior is developed, and
therefore it is not aligned to the purpose of evaluating the adherence to MDD
principles. However, part of the criterion that is relevant is included in the criterion
User adaptiveness (number 7 above).

14. Visual and code-based adaptive behavior: proposed by (Akiki et al., 2015).
Describes the visual and code-based representation for the developers to implement
adaptive behavior. As this criterion (like the previous one) was proposed
specifically for analyzing the way adaptive behavior is developed, we propose to
not use it in the framework.

15. Modeling, generation and synchronization: proposed by (Akiki et al., 2015).
This criterion evaluates the ability of the tools to create and manipulate the models
with different levels of abstraction in an easy way. This criterion is subsumed in
Coverage of the levels of abstraction, the Ease of use and the Tool support
criteria already considered in the framework.

16. Preserving designer input on the UI: proposed by (Akiki et al., 2015). This
criterion evaluates if the approach is able to maintain the UI designer decisions
without overriding the input made by the designer. Fulfilling the criterion UI
design flexibility should satisfy the ability of taking into account the designer
decisions and therefore this criterion is not retained.

17. Reducing solution viscosity: proposed by (Akiki et al., 2015). This criterion
assesses the reduction of the effort required to iterate on the possible solutions so as
to be able to make rapid design changes and have users testing the adaptive
behavior. This criterion also evaluates if the designer can accomplish more by
expressing less and how close the means for expressing design choices are related
to the problem being solved. We propose to not use this criterion in the framework
as it evaluates the choices for realizing adaptive behavior.

18. Functionality: proposed by (Engel et al., 2014). This criterion assesses if the
approach provides support for UI modeling and UI generation. We propose not to
retain this criterion in the framework as we already have criteria that assess the
Tool support and the Generation of application code (not only UI code) of the
approach.

19. Availability: proposed by (Engel et al., 2014). This criterion describes whether the
tools of the approach can be found. In our evaluation we already indicate the tool/s

6 Proposed as Model notation criterion by these authors

provided for each approach. We consider the readily availability of the tools not a
robust criterion because it can change in the future.

20. Application examples: proposed by (Engel et al., 2014). This criterion just
mentions where the approach has been used. We proposed to discard this criterion
for the comparison of approaches.

When modelling the different aspects of an application-to-be, different modelling
languages can be used for different aspects. Nevertheless, MDD assumes an encompassing
meta-model or model bridges such as to be able to integrate different models into an
encompassing view. This is required in order to generate integrated code that covers all
aspects of the application.
For this reason, we propose to add the following criterion: Integration in the application
development cycle. This criterion is aligned with the principle of MDD approaches of
driving the complete development process with models as opposed to having separate,
non-integrated approaches for the development of UIs on the one hand, and the
development of the applications functionality on the other hand. This criterion thus
evaluates to what extent MD-UIDEs consider the UI as part of the whole application and
not as an isolated aspect.

3.2 Metrics to Measure the MB-UIDE Assessment Framework

This section presents the metrics, i.e. the assessment scales, for each of the framework
criteria. First we will explain the rating scale for the three criteria that allow making
comparison between the different analyzed approach in a descriptive way: Models used,
Language used for the generated UI and Tool support.
Models used: According to (Gomaa et al., 2005), the following kinds of declarative
models can be distinguished in the existing MB-UIDE approaches:

• Task model. Describes the tasks to be accomplished by the users when using the
application. It can include sub-tasks, their goals, and how the goals can be
achieved.

• Application or domain model. Specifies a description of the objects that can be
manipulated, accessed or visualized by the users. This information is independent
of the way objects are displayed, or how the operations are invoked.

• User model. Describes the abilities, characteristics and knowledge of users of the
applications. It also models the User Interface preferences of individual users or
user groups.

• Presentation model. Describes the static representation of the User Interface. This
model exists at two different levels of abstraction: abstract and concrete. The first
one is an abstract view of an interface, independent from platform, language or
interaction model. The second one is a concrete interface that can be presented to
the user.

• Dialogue model. Holds the conversational (human-computer dialog) aspect of the
UI.

While analyzing the surveyed approaches we found that there are other models used by
only some approaches. Those models are the context, interaction, device, platform,

transformation, mapping, data service, service, layouting, event, view, data and validation
and workflow models.
User, presentation and dialogue models are specific for the development of the UI.
Application or domain models are obviously the main sources of integration of UI
generation with application generation. Task models are specific for UI development as
well, but at the same time they provide the possibility of integration with the concept of
activity or task of business process models, thus facilitating the integration of UI design for
process aware information systems.
The mentioned models used by the different approaches will be shown in a table where:

: Indicates that the model is used
: Indicates that the model is not used

Evaluation along the criteria Language used for generated UI and Tool support will be
presented in a table showing for which languages the approaches can generate the UIs and
with which tools.
The remaining seven criteria will be assessed on a scale with three levels. The following
clarifies the rating scale for each of these criteria.

• Ease of use: According to (Myers, 1995), MB-UIDEs have not been well spread
because their use implies that programmers must learn new languages to define and
describe the models. This can be avoided by offering easy to use MB-UIDEs. Ease
of use means that the environment should be clear and understandable, flexible to
interact with, and easy to become skillful at. This can only be measured in an
indirect way. Due to the complexity of the criterion, in order to properly evaluate it,
we have subdivided it into the following sub criteria:

o Needed tools and their interoperability. (Myers, 1993) explains that the tools
to help with UI are extremely complex. So, the more tools are needed by an
approach, the more difficult it is to use them:

: One single tool for all the phases of the approach
: Different tools that are interoperable: different tools are needed
but it is possible to import models from one tool to another.
: It is necessary to use different tools that are not interoperable

o Amount of documentation. If developing the UI is a difficult process
another way to make it easier is by having documentation:

: Documentation for all the covered phases and tools
: Incomplete documentation; e.g., documentation provided only for
some phases or tools
: No documentation available

o Clarity of documentation. It is not enough to have sufficient documentation;
it is also important that this documentation is clear:

: Clear and understandable documentation
: Documentation requires some effort to understand
: Unclear and hard to understand documentation

o Global evaluation. This criterion aggregates the previous three sub criteria
into one value:

: Either all the sub criteria are evaluated as , or two of the three
as  and one as 

: All the other combinations of evaluation of the three sub criteria
: At least two out of the three sub criteria are evaluated as 

• Generation of code (Vi Tran et al., 2010): this criterion assesses application code
generation. To produce an accurate application at low cost, developers expect that
both the UI and the application code are automatically generated:

: Fully functional application generated
: UI code only or with generic application functions generated
: No code generated

• Code generation extensibility: This criterion refers to the facilities that the
environment provides to add transformations in order to generate code for different
target languages and platforms:

: Transformations to generate code for different languages and platforms
can be added and the approach already provides transformations for
different languages and platforms.
: Transformations for code generation for different languages can be added
but currently the approach only generates the code for one language and
platform.
: Transformations for code generation for different languages and
platforms cannot be adapted.

• User adaptiveness (Seffah, Gulliksen, & Desmarais, 2005): This criterion
evaluates the consideration of characteristics and skills of the target users in order
to obtain better acceptance of the application:

: Considered
: Considered but without any example that makes use of it.
: Not considered

• Coverage of the UI development levels: The environment must offer support for
the four UI development levels corresponding to the four levels of abstraction of
the CRF:
• Task and concepts: This level considers the logical activities that need to be

performed in order to reach the end user´s goals; and the domain objects
manipulated by these tasks.

• Abstract User Interface (AUI): This level represents the UI in terms of
interaction spaces (or presentation units), independently of which interactors are
available and even independently of the modality of interaction (e.g., graphical,
vocal, haptic).

• Concrete User Interface (CUI): This level represents the UI in terms of
“concrete interactors”, which depend on the type of platform and media
available and which have a number of attributes that more concretely define
how the UI should be perceived by the end user.

• Final User Interface (FUI): This level consists of source code, in any
programming or markup language (e.g., Java, HTML5, VoiceXML, X+V)
(Aquino et al., 2011).

The score for this criterion is defined as follows.
: Support for all the UI development levels

: Support for two or three UI development levels.
: Support for only one or none UI development levels

• UI design flexibility: This criterion evaluates whether the approach offers different
UI designs options for the design. According to (Aquino et al., 2011) this allow
making the UI customizable and reusable:

: UI design can be customized
: UI design options can be partially customized or with some effort.
: UI design cannot be customized

• Integration of UI development in the application development cycle: The
environment needs to consider the UI as part of the whole application development
process (requirement elicitation, analysis, design, implementation and testing
phases), i.e., the UI development should not be done in an isolated way, but
maintaining and making explicit the link with the rest of the application (Gomaa et
al., 2005). Note that implementation is not always done through code generation;
therefore, this is tested in a separated criterion (see above):

: The development of the UI is integrated within the application
development.
: The development of the UI is partially integrated within the application
development (integrated with some phases of the development cycle, but
not with all).
: The UI development is not integrated in the application development
cycle, but done in an isolated way.

4. Model-Based Approaches for User Interface Generation

The 7 previous surveys together present an evaluation of 29 different environments (see
Table 2). However by analyzing the total set of papers found through SLR and snowballing
contains 40 different MB-UIDEs. Table 3 presents the complete set of MB-UIDEs and
where we found them (in a survey paper, in a descriptive paper, or as the result of
snowballing). Note that some approaches analyzed by previous surveys were not found in
the descriptive papers. This is because these approaches are relatively old or because they
are described not specifically as Model-Based or Model-Driven User Interface approaches
in general, but created for a narrower scope. Examples are: DRIVE, which produces
interfaces to databases rather than applications in general; SUPPLE, which is positioned as
an automated design tool; SketchiXML, which is created for interface sketching; and
FlowiXML, which is used for designing workflow management systems.

Table 3 MB-UIDEs and where they were found
Approach Survey papers (29) Descriptive papers (23) Snowballing (17)

ITS X

HUMANOID X X

UIDE X X X

AME X X

ADEPT X X

GENIUS X
TRIDENT X X

JANUS X X

MECANO X X X

TADEUS X X
MASTERMIND X
FUSE X X

TEALLACH X X X

UI-TERESA X X X

SUPPLE X
GOLIATH X X
MARIA X X X

DRIVE X
Dygimes X X
CTTE X X
Cedar X X
Damask X X
GrafiXML X X
GUMMY X
Ideal XML X X
Leonardi X
MASP X X X

SketchiXML X
UsiComp X X
OO-Method X X

Just-UI X X

UsiXML X
CoGenIVE X
MANTRA X X

WAINE X
XMobile X
CIAT-GUI X
LIZARD X
FlowiXML X

DB-USE X

The final list of MB-UIDEs has been compiled from the previous sources taking into
account the following inclusion and exclusion criteria.
Inclusion criteria:

- The approaches must target specifically the development of UI or be relevant
for this context.

- Recent approaches not included in the analyzed surveys that meet the other
criteria.

Exclusion criteria:
- Tools used to edit models.
- Approaches without enough documentation.
- Approaches that evolved into another.
- Approaches in an early stage of development.

We do not consider in our evaluation the MB-UIDEs for which the documentation is not
detailed enough to be analyzed or that represent an older version of a new one already
considered in our study. Specifically, we omitted AME (Märtin, 1996), ITS (Wiecha,
Bennett, Boies, Gould, & Greene, 1990), DRIVE (Mitchell & Kennedy, 1996) and
Leonardi7, because they do not provide enough information for being analyzed. We also
omitted HUMANOID (Luo, Szekely, & Neches, 1993) and UIDE (Sukaviriya, Foley, &
Griffith, 1993), which have become MASTERMIND (Szekely, Sukaviriya, Castells,
Muthukumarasamy, & Salcher, 1995), and which has been included instead. We omitted
CTTE (Mori, Paternò, & Santoro, 2002) because it is only for developing and analyzing
task models. We omitted Damask (Lin & Landay, 2002) because rather than generating
UIs from models, is targeted towards prototyping UIs.
As the result of the step Extract MB-UIDE from descriptive papers (see Figure 3), our
evaluation includes the following additional MB-UIDEs not included yet in previous
analyses: Just-UI (P. J. Molina, Meliá, & Pastor, 2002), OO-Method (J. C. Molina &
Pastor, 2004), CoGenIVE (Cuppens, Raymaekers, & Coninx, 2005), MANTRA
(Botterweck, 2007), WAINE (Delgado, Estepa, & Estepa, 2007), XMobile (Viana &
Andrade, 2008), CIAT-GUI (A. I. Molina et al., 2012) and LIZARD (Marin, Ortin,
Pedrosa, & Rodriguez, 2015). Instead of describing some of the tools (GrafiXML,
IdealXML, SketchiXML) presented by previous authors, we decided to describe UsiXML,
which is not only a UIDL, but also a conceptual methodology that encompasses the use of
these tools (Vanderdonckt, 2008).

7 http://www.leonardi-free.org and http://www.w4.eu

Figure 3 Methodology to determine the set of MB-UIDEs to be assessed

As a result of the step Snowball papers (27 papers), our evaluation includes the following
additional MB-UIDEs not included yet either in previous analysis or in the SLR:
FlowiXML (Guerrero, Vanderdonckt, & Gonzalez, 2008) and DB-USE (Vi Tran,
Vanderdonckt, et al., 2010).

5. Evaluation of MB-UIDEs
By applying the presented assessment framework we evaluated to what extent each
approach exploits the advantages of MDD. Ideally, such evaluation should have been
performed through a controlled case-based lab test with each of the tools. Specially, for a
few criteria such as User adaptiveness, UI design flexibility, or Ease of use, which depend
on the opinion of specific users. However, for some of the MB-UIDEs the tools are not
(freely) available (any more), which makes it impossible to subject them to a lab-test. In
other cases, we faced pernicious installation problems. These issues limited the possibility
of performing a case-based lab test with all the analyzed approaches. Therefore, to ensure
an equal test for all approaches, we decided to perform a documentation-based assessment
of all the selected MB-UIDEs based on the information about the features and utilization of
the approaches that is available. We gathered, read and analyzed as much literature and
documentation as possible on each MB-UIDE. In addition, to avoid a bias in the evaluation
along the criteria that can depend on users’ opinions, we tried to make the metrics as
objective as possible. For instance, for the Ease of use, the two first criteria (Needed tools
and their interoperability and Amount of documentation) are totally objective, and only the
third criterion (Clarity of documentation) may be considered subjective.
In the following, we explain in detail the evaluation of the selected MB-UIDE approaches.

An overview of the models used by the studied approaches is provided in Table 4. As it
can be observed in the table, the models that are used the most in automatic UI generation
are domain and task models. Almost all MB-UIDEs use either one or the other, and many
MB-UIDEs use both like TRIDENT (Bodart & Vanderdonckt, 1995), TADEUS (Stary,
2000), MASTERMIND (Szekely et al., 1995), FUSE (Lonczewski & Schreiber, 1996),
TEALLACH (Griffiths et al., 2001), UI TERESA (Berti, Correani, Paterno, & Santoro,
2004), UsiXML (Limbourg, Vanderdonckt, Michotte, Bouillon, & Florins, 2004),
FlowiXML (Guerrero et al., 2008), MASP (Feuerstack, Blumendorf, Schwartze, &
Albayrak, 2008), DB-USE (Vi Tran et al., 2010), CIAT-GUI (A. I. Molina et al., 2012) and

LIZARD (Marin et al., 2015). Presentation, dialog and user models are not so commonly
used (used by 10, 9 and 7 approaches respectively). The context, interaction, device,
platform and transformation models are each used by 2 approaches. The least used models
are the mapping model (only used by UsiXML), data service model (only used by
LIZARD), service and layouting models (only used by MASP (Blumendorf, Lehmann,
Feuerstack, & Albayrak, 2008)), event model (only used by MARIA) (Paterno, Santoro, &
Spano, 2009), view model (only used by LIZARD), data and validation model (only used
by XMobile) and workflow model (only used by FlowiXML (Guerrero et al., 2008)). Two
special cases are MANTRA (Botterweck, 2007) and GUMMY (Meskens, Vermeulen,
Luyten, & Coninx, 2008). MANTRA starts from an AUI model without using any of the
mentioned models. However, as (Botterweck, 2007) explains, it is possible to start from a
task model and transfer the task model into the AUI model. Unlike other approaches,
GUMMY aims to generate a Concrete User Interface from a set of existing UI that are all
created for the same application, without using the analyzed models in the previous table.

Table 5 shows the languages used by all the analyzed approaches for the generated UIs and
the supporting tools.

The languages presented in the first column of Table 5 are used (as input languages) for
designing the UI. In some cases, domain-specific languages have been defined for storing
the resulting UIs in MB-UIDE. For example, MECANO uses MIMIC for expressing both
generic and application-specific interface models (Puerta, 1996). JANUS uses the JANUS
Definition Language (that is an extended AM CORBA IDL and ODMG ODL) (Da Silva,
2001). TERESA, SUPPLE, MARIA and UsiXML have their own languages: TERESA
XML (Mori, Paterno, & Santoro, 2004), SUPPLE´s functional specification language
(Gajos & Weld, 2004), MARIA XML (Paterno et al., 2009) and UsiXML (Limbourg,
Vanderdonckt, Michotte, Bouillon, & López-Jaquero, 2005) respectively. The second
column presents the languages used for the code generation (the output of the approaches
expressed in these languages) by the MB-UIDE´s tools. C++ is an example of a language
used for code generation by approaches like JANUS, MASTERMIND, FUSE and
CoGenIVE. Other approaches use a textual description for a UIMS or generate UI code in
programming languages.
Regarding the tools used by MB-UIDEs, we note that most of them are research
prototypes, except for OO-Method, which is supported by the Oliva Nova8 tool and is used
by the company Integranova to commercially develop real-life software applications.
Table 6 analyzes first the Ease of use criterion for the presented approaches according to
the explained metrics.

8 Olivanova software: http://software.olivanova.com/uk/

Table 4 Models used by the studied approaches

Mb-UIDE / Models

D
om

ai
n

T
as

k

Pr
es

en
ta

tio
n

D
ia

lo
g

U
se

r

C
on

te
xt

In
te

ra
ct

io
n

D
ev

ic
e

Pl
at

fo
rm

T
ra

ns
fo

rm
at

io
n

M
ap

pi
ng

D
at

a
se

rv
ic

e

Se
rv

ic
e

L
ay

ou
tin

g

E
ve

nt

V
ie

w

D
at

a
an

d
va

lid
at

io
n

W
or

kf
lo

w

ADEPT (1992)                  
GENIUS (1993)                  
TRIDENT (1993)                  
JANUS (1993)                  
MECANO (1994)                  
TADEUS (1994)                  
MASTERMIND (1995)                  
FUSE (1996)                  
TEALLACH (1999)                  
OO-Method (2001)                  
Just-UI (2002)                  
UI TERESA (2003)                  
Dygimes (2003)                  
SUPPLE (2004)                  
GOLIATH (2004)                  
UsiXML (2004)                  
CoGenIVE (2005)                  
MANTRA (2006)                  
WAINE (2007)                  
XMobile (2008)                  
GUMMY (2008)                  
FlowiXML (2008)                  
MASP (2008)                  
MARIA (2009)                  
DB-USE (2010)                  
CIAT-GUI (2012)                  
UsiComp (2012)                  
Cedar (2013)                  
LIZARD (2015)                  
 20 18 10 9 7 2 2 2 2 2 1 1 1 1 1 1 1 1

Table 5 Languages used by MB-UIDEs for the generated UI and supporting tools

MB-UIDE
Language for the UI at
design level

Language for the UI code
generation

Tool

ADEPT Communication Sequential
Process

Textual description for
UIMS

Interface builder

GENIUS Petri-net based dialogue
description

Textual description ER diagram editor

TRIDENT Activity Chaining Graph Textual description SEGUIA, SIERRA
JANUS Janus Definition Language C++ OOA-Tool
MECANO MIMIC - Browser tool, Intelligent

designer tool
TADEUS Dialogue graph notation Textual description for

UIMS
TADEUS

MASTERMIND MDL C++ Mastermind prototyping
support C++ code
generator

FUSE Hierarchic Interaction
graph Template

C++ FIRE/FLUID, BOSS,
PLUG-IN

TEALLACH Hierarchical tree with state
objects

Java TEALLACH

OO-Method OASIS C# or ASP running on
.NET or .NET 2.0; and
EJB, JSP, or Java Server
Faces running on Java

OlivaNOVA

Just-UI OASIS Visual Basic; Java; JSP;
ASP; Cold Fusion.

CARE technologies
S.A.

UI TERESA TERESA XML XHTML and VoiceXML TERESA
Dygimes XML, WSDL Java AWT, Java Swing,

Java-enabled Mobile
Phone

CTT annotation tool,
Spatial layout constraint
tool, and Runtime
library

SUPPLE SUPPLE´s functional
specification language

Swing, AWT, HTML

SUPPLE, ARNAULD,
ABILITY MODELER

GOLIATH Caml Java GOLIATH´s design tool
UsiXML UsiXML Java, XUL, XHTML GrafiXML, IdealXML,

SketchiXML,
GUILayout++

CoGenIVE VRIXML C++ CoGenIVE
MANTRA Ecore C-Sharp or XHTML with

embedded PHP
Set of Eclipse-based
tools

WAINE ASL HTML, Java script WAINE engine
XMobile XForms, XIML and XML SuperWaba, J2ME MIDP,

J2ME DOJA and J2ME
Permsonal Java based on
Java

XMobile with interface
component framework
(XFormUI), and a User
Interface Generator

GUMMY UIML Java Swing, .Net, DVB
MHP

GUMMY, external
UIML renderer

FlowiXML UsiXML HTML, SCXML ATOMS extension for
FlowiXML

MASP Not specified HTML, VoiceXML Task tree editor as an
Eclipse plugin,
layouting tool, task tree

simulator
MARIA MARIA XML XHTML, HTML5, JSP

+WS access, VoiceXML,
X + V, SMIL

MARIA

DB-USE UsiXML Java and VB.Net Model editor, UI
builder, Function editor,
Code generator.

CIAT-GUI - XAML and .Net CIAT-GUI
UsiComp UsiXML;

Balsamiq mockup exported
to XML file

Java UsiComp Editor and
Runtime modules

Cedar Currently: relational
database; planned: XML

C# for the Windows
Presentation Foundation

Task, Domain, AUI,
CUI and workflows
visual tools

LIZARD UsiXML Java and XML for Adroid;
C# and XAML for
Windows phone

Ecore model editor of
the Eclipse IDE;
LIZARD

Table 6 Ease of use of the MB-UIDE approach
Mb-UIDE: Ease of
use criteria

Needed tools
and their
interoperability

Amount of
documentation

Clarity of
documentation

Global
evaluation

ADEPT    
GENIUS    
TRIDENT    
JANUS    
MECANO    
TADEUS    
MASTERMIND    
FUSE    
TEALLACH    
OO-Method    
Just-UI    
UI TERESA    
Dygimes    
SUPPLE    
GOLIATH    
UsiXML    
CoGenIVE    
MANTRA    
WAINE    
XMobile    
GUMMY    
FlowiXML    
MASP    
MARIA    
DB-USE    
CIAT-GUI    
UsiComp    
Cedar    
LIZARD    

As shown in Table 6 JANUS, TADEUS, MANTRA, CoGenIVE, FlowiXML, MARIA,
CIAT-GUI, UsiComp and Cedar score the best for the sub criterion Needed tools and their
interoperability, as they each have one single tool for all the phases. Other approaches like
TRIDENT, MASTERMIND, GOLIATH and SUPPLE have different tools that are
interoperable. LIZARD is interoperable with the Eclipse IDE, where the model instances
can be manipulated using the Ecore model editor. GUMMY relies on an external UIML
renderer to provide the visual representation of its UIML description, using proxies to
communicate between GUMMY and the external renderer. Only TRIDENT, TEALLACH,
OO-Method, UsiXML and DB-USE offer enough documentation, which is in addition the
clearest for OO-Method, UsiXML and DB-USE. OO-Method and UsiXML score globally
the highest. Observe that the clarity of documentation cannot be objectively measured
unless by means of a survey; for the purpose of this paper, the authors have assessed the
clarity to the best of their knowledge.
Table 7 presents a summary of the analysis of the MB-UIDEs for the seven other criteria
from the proposed assessment framework.

Using the framework for the evaluation of MB-UIDEs we can observe that more recent
tools score better than older ones, yet only for the criteria generation of code, code
generation extensibility and the coverage of the UI development levels. In general,
however, more recent approaches do not always have better scores than the older ones. For
example, long existing MB-UIDEs sometimes score better than recent ones for UI design
flexibility and integration of UI development in the application development. We therefore
discuss the specificities of each criterion below.

Ease of use: The ease of use is negatively affected by the lack of sufficient documentation
and, where present, its lack of clarity. The models and their notation are complex, often
hard to learn and use (Da Silva, 2001), and generally MB-UIDEs do not provide enough
and clear documentation. As said before, only OO-METHOD and UsiXML have the
maximum score in this respect. The interoperability of the tools to develop de UI is not
sufficient in the majority of the approaches: they require developers to use different tools.
Approaches like DB-USE (Vi Tran, 2010) require developing models (like task and
database models) in external tools and then to import them. Also other environments
combine several tools and require importing from one tool to another, like in FUSE,
MASTERMIND or SUPPLE, which need four and three tools, respectively.

Table 7 Evaluation of the MB-UIDE approaches

Mb-UIDE
/Criteria

Ease
of

use

Genera-
tion of
code

Code
generation

extensibility

User
adapti-
veness

Coverage of
the UI

development
levels

UI
design
flexibi-

lity

Integration of UI
development in
the application
development

cycle

ADEPT       
GENIUS       
TRIDENT       
JANUS       
MECANO       
TADEUS       
MASTERMIND       
FUSE       
TEALLACH       
OO-Method       
Just-UI       
UI TERESA       
Dygimes       
SUPPLE       
GOLIATH       
UsiXML       
CoGenIVE       
MANTRA       
WAINE (2007)       
XMobile       
GUMMY       
FlowiXML       
MASP       
MARIA       
DB-USE       
CIAT-GUI       
UsiComp       
Cedar       
LIZARD       

Code generation extensibility: This criterion is met by the most recent approaches. In
general, the analyzed MB-UIDEs that provide facilities to add transformations to generate
code for different languages are model-driven approaches. This criterion is well-supported
by OO-Method, Just-UI, UI TERESA, Dygimes, UsiXML, MANTRA, XMobile,
GUMMY, MARIA, MASP, CIAT-GUI and LIZARD, which provide support to define UI
in different platforms by transformations that are implemented by the tool. It is partially
supported by CoGenIVE, WAINE, FlowiXML, DB-USE, UsiComp and Cedar.

User adaptiveness: The analyzed approaches do not consider individual user preferences
and characteristics, except 1) ADEPT and DB-Use, which cover this criterion with a user
model (see Table 4), making groups of users according to the set of preferences and
characteristics they share, 2) SUPPLE, which adapts the User Interface to the user´s
individual work style and personal preferences, 3) UsiXML, with its GrafiXML tool,
which allows specifying a user in a context (which is characterized by attributes such as
task experience, disabilities, motivation, experience with interaction devices, preferences),
and 4) Cedar which adapts the UI by removing features that are not required by certain
end-users, and is more focused on the context of use and the user´s preferences. Although
UsiComp claims to employ a user model, there is no example of use, to our knowledge.
WAINE does not allows complete user adaptativeness: users are categorized into groups
according to their role to have specific security option, but user´s preferences are not taken
into account. MASP has a layout model generator where the designer can load contexts-
of-use scenarios that contain preferences of the user, but not their characteristics and skills.

Coverage of the UI development levels: TEALLACH, UI-TERESA, Dygimes, UsiXML,
WAINE, FlowiXML, MASP, MARIA, DB-USE, CIAT-GUI, MASP, UsiComp and Cedar
are the approaches that incorporate all the UI development levels starting with the task and
concepts, followed by the AUI, the CUI, and the FUI. With respect to the rest of the
approaches, MANTRA, which begins with the AUI, but has the possibility of start with a
task model, is closer to covering all the phases compare to the other approaches. All the
other approaches use task and concepts or a functional interface specification to start from.
Most of them use the abstract and concrete UI. The final UI is achieved by some of the
most recent approaches (TEALLACH, OO-METHOD, Just-UI, UI-TERESA, Dygimes,
SUPPLE, GOLIATH, UsiXML, CoGenIVE, MANTRA, WAINE; XMobile, GUMMY,
FlowiXML, MASP, MARIA, DB-USE, CIAT-GUI, UsiComp, Cedar and LIZARD).

UI design flexibility: In general, the analyzed approaches do not incorporate flexibility for
designing UIs. The majority of them obtain a UI with a default design and do not give the
possibility to change design options. Only JANUS, OO-method with its extension of
transformation templates (Aquino, Vanderdonckt, & Pastor, 2010), UsiXML, WAINE,
GUMMY, MASP and Cedar. With the tool GrafiXML (for UsiXML), the designer can
draw in direct manipulation any graphical UI by directly placing concrete objects and
editing their properties. In WAINE customization is possible by changing the proposed
default layout (e.g. Form to table, forbidding edition in the first and third fields, etc.).
GUMMY allows drag and drop widgets at the concrete level, and has design flexibility by

allowing for different design options. MASP allows layouting based on several
environment-related aspects such as distance. With Cedar, the UI can be adapted for
different contexts of use, by using the user´s feedback about whether features are relevant
or not, choosing possible alternative layout optimizations. As explained by (Akiki,
Bandara, & Yu, 2013) “the CUI design tool supports placeholders upon deletion in
addition to complete deletion of elements which could be manually replaced and mapped
to the AUI model”. SUPPLE uses an optimization algorithm to find the most appropriate
widgets according to the individual abilities of a user or the characteristics of the device,
but prevents designer input from being made at the CUI level. This makes it difficult to
adopt it for enterprise applications, due to the absence of designer control on the final
design of the UI. MECANO and TRIDENT deal partially with this criterion. In MECANO,
at low level the interface objects can be polished and assigned widgets. TRIDENT´s tool
generates a first layout to be further refined by the visual designer. Dygimes allows
changing the choices for widgets to be rendered; this can be indicated by adding a rule that
contains the full name of the abstract interaction object to be mapped into a concrete one in
the templates.

Integration of UI development in the application development: As we can see in Table
7, this is the criterion that is met the least. As also pointed by (Goderis, 2008), in the
majority of the studied approaches, except for OO-Method and its extension Just-UI, it is
the programmer who has to provide the actual link between the application and its UI.
Hence the programmer still lacks the afore-mentioned support in specifying the complex
control flows. There are approaches like TERESA (Mori et al., 2004) that represent the
interaction abstractly but they do not support interaction modelling together with
persistence and functionality. With MARIA (Paterno et al., 2009) it is possible to generate
UIs for various platforms from existing UIs, able to keep functioning with the rest of the
application. Using TEALLACH (Griffiths et al., 2001) and GOLIATH (Julien, Ziane, &
Guessoum, 2005), developers have to define the methods of the application. Dygimes
(Coninx, Luyten, Vandervelpen, Van den Bergh, & Creemers, 2003) allows the application
logic to describe operations as web services that are linked to the application. MASP
(Feuerstack, Blumendorf, Kern, et al., 2008) has a service model which connects backend
services to application tasks, but it is still the developer who needs to make the link with
the application. This kind of UI generation, where the majority of approaches need to
integrate the UI with the rest of the application later, separates the UI development from
the rest of application development and therefore lacks support to aid the developer in
linking the underlying application with the UI in an integrated design and development
effort.

6. Discussion

6.1 Limitations

The limitations of this study relate to the limitations inherent to the search of relevant
papers, to the assessment framework and to the evaluation.
While the systematic search process offers some guarantee for completeness, we can never
claim 100% certainty that no interesting MD-UIDEs exist beyond the ones we evaluated.
All elements contributing to completeness have been taken into account, like the use of
two large databases, a sufficient broad set of keywords, and additional backward and
forward snowballing to search for additional papers. The fact that we identified 11 extra
environments on top of the environments already covered by existing surveys is an
indication of reasonable completeness of our search.
Also our assessment framework may present some limitations. The proposed criteria have
not been yet approved by the scientific community. However, we have selected those
criteria that have been referenced as important features for MB-UIDEs by relevant authors
in the field. Objectivity of the evaluation has been strived for by formulating and
describing the metrics applied per criterion. Nevertheless, the criterion Ease of use may be
considered as a partly subjective criterion due to the difficulty to assess clarity of
documentation. In this area, there is still a need for more objective measures, like an
experimental assessment with UI developers. This would however be quite challenging to
achieve, as it would require an extensive test lab and a sufficiently large set of users for
testing all 29 environments.

6.2. Identification of Research Gaps

Although many diverse MB-UIDE approaches have been developed, they do not yet fully
exploit the benefits and potentialities of MDD. Looking at the different evaluation criteria,
and the criteria that are met the least by the tools, we have specifically identified the
following research gaps for which further research is needed:

• Difficult to use. Even without considering the difficulties to download and install
the software for the different MB-UIDs, the majority of the approaches score badly
on "Ease of use". One of the main hurdles for ease of use is that designers need to
use a specific language to create UI (input) models, which implies the need to learn
those languages. The input models and their notations should therefore be easy to
learn and build. This implies the availability of sufficient and clear documentation,
two criteria on which the majority of the environments scored badly. Additionally,
there is a need for environments with high-level tool interoperability, where it is not
necessary to export and import models from one tool to another. OO-Method and
UsiXML are the environments that score well on the "ease of use" criterion overall,
but nevertheless, the sub criterion Needed tools and their interoperability still can
be improved.

• Lack of UI design flexibility: The majority of the analyzed approaches only allow
obtaining a UI with a default design where the designer has no control over the

generated UI. UI designers need more flexible approaches for the automatic
generation of UIs from models. This flexibility can be provided through UI options
that can be selected by the designer upon which the UI is generated according to
the chosen options. When tools do not offer sufficient design options, UI code will
need to be changed after the generation, and re-generation will then overwrite the
changes. The approach should therefore give the designer sufficient options
through the generation so that there is no (or less) need to change the code after
generation. The UI design flexibility should support the possibility of incorporating
new design options making the design process easier for designers. JANUS, OO-
Method, UsiXML, WAINE, Gummy, MASP and Cedar provide support for UI
design flexibility. The fact that there are already six approaches that support UI
design flexibility demonstrates the feasibility of providing options to manipulate
the design and as such generate different versions of the UI. Surprisingly, apart
from Cedar, the most recent approaches do not support UI design flexibility, which
indicates that there is room for improvement to make UIs customizable and usable
in different contexts.

• Lack of complete development support. While a number of tools offer code
generation, including code generation extensibility, in order to produce an accurate
application with not too much effort and at low cost, the approaches should not
only generate the UI code, but also the full functional application. This is necessary
to allow the co-design of a UI with its underlying application. The large majority of
approaches fails on this criterion. Only the commercial tool of OO-Method and its
extension Just-UI can generate the code of the full application. On the one hand this
demonstrates that the knowledge to achieve full functional code generation exists.
On the other hand, it also indicates that how to achieve full functional code
generation is not yet understood by the majority of MB-UIDEs. Moreover,
complete development support does not pertain to code generation only. By now,
only the commercial tool of OO-Method provides a complete development support.
While this demonstrates the feasibility of an all-encompassing approach, this relies
on models specifically tailored for the OO-method approach. Research on general
MDD principles, especially for the integration of UI development with the rest of
the application is still required.

Although most of the criteria are reached by one or several approaches, there is not a single
approach that fulfills all the mentioned criteria at once. In order to take advantage of all the
necessary characteristics of MB-UIDE, it is necessary to develop an approach that fully
reaches all the advantages of previous MB-UIDEs and adheres to the principles of MDD
ensuring the integration of UI development with the development of the rest of the
application.

7. Conclusions
The design and implementation of UIs and the underlying application is an iterative
process that cycles between design and development until a satisfactory product is
achieved. To support this process, multiple MB-UIDE approaches have already been
developed. This paper has proposed an assessment framework that identifies and gives
metrics to evaluate MB-UIDE approaches according to the most important criteria
presented in the literature and to which extent they reach the desirable benefits of MDD.
Based on this framework, the paper has evaluated 29 existing MB-UIDE approaches. This
evaluation can help developers to find the most appropriate approach according to their
specific needs and purpose.
In general, the evaluation shows that current approaches have a number of shortcomings
that make interfaces difficult to build, and it shows that the majority of approaches focus
on the development of UIs without having a complete integration in the application
development cycle. Many analyzed approaches require various tools for generating the
final UI, and in some cases also require the use of external tools that are not interoperable.
At the very best, the provided UI tools are integrated in a homogenous development
environment that also allows the generation of the underlying application that is linked
with the interface.
Therefore, further research needs to be developed in the area of MB-UIDE. Specifically,
from the evaluation of the existing approaches, we have identified important research gaps
in the development of MB-UIDE that open potential future research opportunities in this
area.
Ease of use by providing an integrated approach is a first important issue to address. Next
to providing an integrated approach for the design and development of the UI only, also
integration with application development is an important open issue. In order to decrease
development efforts and improve the quality of the whole application, UI development
should be considered as part of the whole application development process, and hence also
as part of the requirement elicitation, analysis, design, implementation and testing phases.
In other words, UI development should not be done in an isolated way, but in an integrated
way and by means of an explicit and maintained link with the rest of the application.

8. Acknowledgments
This project was funded by the VLIR-UOS program under the Cuba Network project
ZIUS2015AP033.

9. References
Akiki, P. A., Bandara, A. K., & Yu, Y. (2013). RBUIS: simplifying enterprise application user interfaces

through engineering role-based adaptive behavior. In Proceedings of the 5th ACM SIGCHI symposium
on Engineering interactive computing systems (pp. 3–12). Conference Proceedings, ACM.

Akiki, P. A., Bandara, A. K., & Yu, Y. (2015). Adaptive model-driven user interface development systems.
ACM Computing Surveys (CSUR), 47(1). Journal Article. http://doi.org/10.1145/2597999

Aquino, N., Vanderdonckt, J., Panach, J. I., & Pastor, O. (2011). Conceptual modelling of interaction. In
Handbook of Conceptual Modeling: Theory, Practice and Research Challenges (pp. 335–358). Book

Section, Springer, Berlin.
Aquino, N., Vanderdonckt, J., & Pastor, O. (2010). Transformation templates: adding flexibility to model-

driven engineering of user interfaces. In SAC´2010 (pp. 1195–1202). Conference Proceedings, Sierre:
ACM Press, New York.

Berti, S., Correani, F., Paterno, F., & Santoro, C. (2004). The TERESA XML language for the description of
interactive systems at multiple abstraction levels. In Proceedings Workshop on Developing User
Interfaces with XML: Advances on User Interface Description Languages (pp. 103–110). Conference
Proceedings.

Bézivin, J. (2004). In Search of a Basic Principle for Model Driven Engineering. The European Journal for
the Informatics Professional, 5(2), 21–24.

Blumendorf, M., Lehmann, G., Feuerstack, S., & Albayrak, S. (2008). Executable models for human-
computer interaction. In International Workshop on Design, Specification, and Verification of
Interactive Systems (pp. 238–251). Conference Proceedings, Springer.

Bodart, F., & Vanderdonckt, J. (1995). Towards a Systematic Building of Software Architectures: the
TRIDENT Methodological Guide. In Design, Specification and Verification of Interactive Systems,
DSV-IS´95 (pp. 262–278). Conference Proceedings, Citeseer.

Botterweck, G. (2007). A model-driven approach to the engineering of multiple user interfaces. In Models in
Software Engineering (pp. 106–115). Book Section, Springer.

Brambilla, M., Cabot, J., & Wimmer, M. (2012). Model-Driven Software Engineering in Practice. Morgan &
Claypool.

Cabot, J., & Teniente, E. (2006). Constraint Support in MDA tools: a Survey. In European Conference on
Model Driven Architecture-Foundations and Applications (pp. 256–267). Conference Proceedings,
Springer.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., & Vanderdonckt, J. (2003). A unifying
reference framework for multi-target user interfaces. Interacting with Computers, 15(3), 289–308.
Journal Article.

Coninx, K., Luyten, K., Vandervelpen, C., Van den Bergh, J., & Creemers, B. (2003). Dygimes: Dynamically
generating interfaces for mobile computing devices and embedded systems. In International
Conference on Mobile Human-Computer Interaction (pp. 256–270). Conference Proceedings, Springer.

Cuppens, E., Raymaekers, C., & Coninx, K. (2005). A model-based design process for interactive virtual
environments. In International Workshop on Design, Specification, and Verification of Interactive
Systems (pp. 225–236). Conference Proceedings, Springer.

Da Silva, P. P. (2001). User interface declarative models and development environments: A survey. In
Interactive Systems Design, Specification, and Verification (pp. 207–226). Book Section, Springer.

Delgado, A., Estepa, A., & Estepa, R. (2007). Waine: automatic generator of web based applications. In
Third International Conference on Web Information Systems and Technologies (pp. 226–233).

Engel, J., Herdin, C., & Märtin, C. (2014). Evaluation of Model-based User Interface Development
Approaches. In International Conference on Human-Computer Interaction (pp. 295–307). Conference
Proceedings, Springer.

Feuerstack, S., Blumendorf, M., Kern, M., Kruppa, M., Quade, M., Runge, M., & Albayrak, S. (2008).
Automated usability evaluation during model-based interactive system development. In Engineering
Interactive Systems (pp. 134–141). CHAP, Springer.

Feuerstack, S., Blumendorf, M., Schwartze, V., & Albayrak, S. (2008). Model-based layout generation. In
Proceedings of the working conference on Advanced visual interfaces (pp. 217–224). Conference
Proceedings, ACM.

Gajos, K., & Weld, D. S. (2004). SUPPLE: automatically generating user interfaces. In Proceedings of the
9th international conference on Intelligent user interfaces (pp. 93–100). CONF, ACM.

Goderis, S. (2008). On the separation of user interface concerns: A Programmer’s Perspective on the
Modularisation of User Interface Code. Book, ASP/VUBPRESS/UPA.

Gomaa, M., Salah, A., & Rahman, S. (2005). Towards a better model based user interface development
environment: A comprehensive survey. In MICS 5. Conference Proceedings.

Griffiths, T., Barclay, P. J., Paton, N. W., McKirdy, J., Kennedy, J., Gray, P. D., … da Silva, P. P. (2001).
Teallach: a model-based user interface development environment for object databases. Interacting with
Computers, 14(1), 31–68. Journal Article.

Guerrero, J., Vanderdonckt, J., & Gonzalez, J. (2008). FlowiXML: a Step towards Designing Workflow
Management Systems. Journal of Web Engineering, 4(2), 163–182. Journal Article.

Guerrero-García, J., Gonzalez-Calleros, J. M., Vanderdonckt, J., & Muñoz-Arteaga, J. (2009). A theoretical
survey of user interface description languages: Preliminary results. In Web Congress, 2009. LA-
WEB’09. Latin American (pp. 36–43). Conference Proceedings, IEEE.

Guerrero-García, J., González-Calleros, J. M., Vanderdonckt, J., & Muñoz-Arteaga, J. (2011). A theoretical
survey of user interface description languages: complementary results. UsiXML 2011, 229–236.
Journal Article.

Hailpern, B., & Tarr, P. (2006). Model-driven development: The good, the bad, and the ugly. IBM SYSTEMS
JOURNAL, 45(3), 451–461.

Jha, N. K. (2005). Low-power system scheduling, synthesis and displays. In IEE Proceedings-Computers
and Digital Techniques (Vol. 152, pp. 344–352). Conference proceedings.

Julien, D., Ziane, M., & Guessoum, Z. (2005). GOLIATH: An extensible model-based environment to
develop user interfaces. In Computer-Aided Design of User Interfaces IV (pp. 95–106). Book Section,
Springer.

Karanam, M. (2015). MDA Tool Support for Model Driven Software Evolution: A Survey. Issues, 1(1), 11–
17. Journal Article.

Kennard, R., & Leaney, J. (2010). Towards a general purpose architecture for UI generation. Journal of
Systems and Software, 83(10), 1896–1906. Journal Article.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software
engineering. Engineering (Vol. 2). http://doi.org/10.1145/1134285.1134500

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., & Florins, M. (2004). USIXML: A User
Interface Description Language Supporting Multiple Levels of Independence. In ICWE Workshops (pp.
325–338). Conference Proceedings.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., & López-Jaquero, V. (2005). USIXML: a
language supporting multi-path development of user interfaces. In Engineering human computer
interaction and interactive systems (pp. 200–220). Book Section, Springer.

Lin, J., & Landay, J. A. (2002). Damask: A tool for early-stage design and prototyping of multi-device user
interfaces. In In Proceedings of The 8th International Conference on Distributed Multimedia Systems
(2002 International Workshop on Visual Computing) (pp. 573–580). Conference Proceedings.

Lonczewski, F., & Schreiber, S. (1996). The FUSE-System: an Integrated User Interface Design
Environment. In CADUI (Vol. 96, pp. 37–56). Conference Proceedings.

Luo, P., Szekely, P., & Neches, R. (1993). Management of interface design in HUMANOID. In Proceedings
of the INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems (pp. 107–114).
Conference Proceedings, ACM.

Marin, I., Ortin, F., Pedrosa, G., & Rodriguez, J. (2015). Generating native user interfaces for multiple
devices by means of model transformation. Frontiers of Information Technology & Electronic
Engineering, 16(12), 995–1017. Journal Article.

Märtin, C. (1996). Software Life Cycle Automation for Interactive Applications: The AME Design
Environment. In CADUI (pp. 57–76). Conference Proceedings.

Mellor, S. J. (2004). MDA distilled: principles of model-driven architecture. Book, Addison-Wesley
Professional.

Meskens, J., Vermeulen, J., Luyten, K., & Coninx, K. (2008). Gummy for multi-platform user interface
designs: shape me, multiply me, fix me, use me. In Proceedings of the working conference on
Advanced visual interfaces (pp. 233–240). Conference Proceedings, ACM.

Mitchell, K. J., & Kennedy, J. B. (1996). DRIVE: an environment for the organised construction of user-
interfaces to databases. In Proceedings of the 1996 international conference on Interfaces to
Databases. Conference Proceedings, British Computer Society.

Molina, A. I., Giraldo, W. J., Gallardo, J., Redondo, M. A., Ortega, M., & García, G. (2012). CIAT-GUI: A
MDE-compliant environment for developing Graphical User Interfaces of information systems.
Advances in Engineering Software, 52, 10–29. Journal Article.

Molina, J. C., & Pastor, O. (2004). MDA, OO-Method y la tecnología OlivaNova Model Excecution. I Taller
Sobre Desarrollos Dirigidos Por Modelos, MDA Y Aplicaciones. Málaga. Journal Article.

Molina, P. J., Meliá, S., & Pastor, O. (2002). Just-UI : A User Interface Specification Model. In CADUI’2002

(pp. 63–74). Conference Proceedings, Dordrecht: Kluwer Acad. Pub.
Mori, G., Paterno, F., & Santoro, C. (2004). Design and development of multidevice user interfaces through

multiple logical descriptions. Software Engineering, IEEE Transactions on, 30(8), 507–520. Journal
Article.

Mori, G., Paternò, F., & Santoro, C. (2002). CTTE: support for developing and analyzing task models for
interactive system design. Software Engineering, IEEE Transactions on, 28(8), 797–813. Journal
Article.

Myers, B. A. (1993). Why are human-computer interfaces difficult to design and implement (Report). DTIC
Document.

Myers, B. A. (1995). User interface software tools. ACM Transactions on Computer-Human Interaction
(TOCHI), 2(1), 64–103. Journal Article.

Myers, B. A., & Rosson, M. B. (1992). Survey on user interface programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems (pp. 195–202). Conference Proceedings, ACM.

Pastor, O., & Molina, J. C. (2007). Model-driven architecture in practice. Book, Springer.
Paternò, F. (2003). From model-based to natural development. IST PROGRAMME. Journal Article.
Paterno, F., Santoro, C., & Spano, L. D. (2009). MARIA: A universal, declarative, multiple abstraction-level

language for service-oriented applications in ubiquitous environments. ACM Transactions on
Computer-Human Interaction (TOCHI), 16(4), 19. Journal Article.

Puerta, A. R. (1996). The MECANO Project: Comprehensive and Integrated Support for Model-Based
Interface Development. In CADUI (Vol. 96, pp. 19–36). Conference Proceedings.

Schlungbaum, E. (1996). Model-based user interface software tools current state of declarative models.
Book, Graphics, Visualization & Usability Center, Georgia Institute of Technology.

Schmidt, D. C. (2006). Model-Driven Engineering. IEEE Computer, 39(2), 25–31.
Seffah, A., Gulliksen, J., & Desmarais, M. C. (2005). Human-Centered Software Engineering-Integrating

Usability in the Software Development Lifecycle (Vol. 8). Book, Springer Science & Business Media.
Souchon, N., & Vanderdonckt, J. (2003). A review of XML-compliant user interface description languages.

In Interactive Systems. Design, Specification, and Verification (pp. 377–391). Book Section, Springer.
Stary, C. (2000). TADEUS: seamless development of task-based and user-oriented interfaces. Systems, Man

and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 30(5), 509–525. Journal Article.
Sukaviriya, P., Foley, J. D., & Griffith, T. (1993). A second generation user interface design environment:

The model and the runtime architecture. In Proceedings of the INTERACT’93 and CHI’93 Conference
on Human Factors in Computing Systems (pp. 375–382). Conference Proceedings, ACM.

Szekely, P. A., Sukaviriya, P. N., Castells, P., Muthukumarasamy, J., & Salcher, E. (1995). Declarative
interface models for user interface construction tools: the MASTERMIND approach. In EHCI (pp.
120–150). Conference Proceedings, Citeseer.

Vanderdonckt, J. (2008). Model-driven engineering of user interfaces: Promises, successes, and failures. In
ROCHI’2008 (pp. 1–10). Conference Proceedings.

Viana, W., & Andrade, R. M. C. (2008). XMobile: A MB-UID environment for semi-automatic generation of
adaptive applications for mobile devices. Journal of Systems and Software, 81(3), 382–394. Journal
Article.

Vi Tran, T. A. (2010). User interface generation from task, domain and user models: DB-USE approach
(Thesis). Louvain School of Management.

Vi Tran, T. A., Vanderdonckt, J., Kolp, M., & Wautelet, Y. (2010). Generating User Interface for
Information Applications from Task, Domain and User models with DB-USE. In 1st International
Workshop on USer Interface eXtensible Markup Language UsiXML’2010 (pp. 183–194). Conference
Proceedings.

Wiecha, C., Bennett, W., Boies, S., Gould, J., & Greene, S. (1990). ITS: a tool for rapidly developing
interactive applications. ACM Transactions on Information Systems (TOIS), 8(3), 204–236. Journal
Article.

Appendix 1

Exclusion criteria for the systematic search.

- Short papers
- Papers analyzing approaches in an early stage
- Books of proceedings
- Papers with techniques for a specific aspect or development phase (e. g.

adaptation technique, prototyping technique, layouting technique, consistency
check technique, requirement elicitation phase) (or comparison of techniques)

- Papers with analysis of languages or notations (or comparison of languages or
notations)

- Papers with tools used to edit some kind of model
- Papers for which the full text is not available
- Paper discussing a prediction tool
- Paper with usability assessment
- Paper analyzing principles of unified UI development
- Paper presenting specification of interactive questionnaires
- Paper with a taxonomy to evaluate task models
- Paper with a web based ontology editor
- Paper with authoring tool
- Paper with a discussion of patterns

Table 8 presents the number of discarded papers according to these exclusion criteria.

Table 8 Number of discarded papers and the causes
Cause Discarded
Short papers 15
Early stage 19
Book of proceedings 15
Technique for only a specific aspect or development phase comparison of
techniques

49

Language or notation, or comparison among languages or notations 21
Tool for some kind of model 26
Paper not available 6
Remaining reasons 35
Total 186

	1. Introduction
	2. Systematic Literature Review on MB-UIDEs
	3. Framework to assess MB-UIDEs
	3.1 Framework Criteria
	3.2 Metrics to Measure the MB-UIDE Assessment Framework

	4. Model-Based Approaches for User Interface Generation
	5. Evaluation of MB-UIDEs
	6. Discussion
	6.1 Limitations
	6.2. Identification of Research Gaps

	7. Conclusions

