
KATHOLIEKE UNIVERSITEIT LEUVEN

Faculteit Psychologie en Pedagogische Wetenschappen
Onderzoeksgroep Hogere Cognitie en Individuele Verschillen

Item response models for self-report
data on emotional responses

Proefschrift aangeboden tot
het verkrijgen van de graad van

Doctor in de Psychologische Wetenschappen
door Dirk Smits

o.l.v. Prof. Dr. Paul De Boeck (promotor)

2003



Dirk Smits, Item response models for self-report data on emotional reponses.
Proefschrift aangeboden tot het verkrijgen van de graad van Doctor in de Psycholo-
gische Wetenschappen, juni 2003. Promotor: Prof. dr. P. De Boeck

In dit proefschrift worden vier benaderingen besproken waarmee men de struc-
tuur van concepten zoals emoties kan onderzoeken in termen van componenten (ap-
praisals en actietendensen). Deze vier benaderingen worden gëıllustreerd met zelf-
rapporteringsdata over schuldgevoelens. Daarenboven bespreken we ook één bena-
dering om de band tussen de gedragsmatige expressie van een emotie en de neiging
daartoe te bestuderen. Deze laatste wordt gëıllustreerd met zelf-rapportage data over
verbaal agressief gedrag. Alle data werden verzameld aan de hand van situatie-response
vragenlijsten, zodat de invloed die een situatie uitoefent op een component, een emotie,
een actietendens of een gedrag steeds mee in rekening kan worden gebracht. De vijf
benaderingen zijn allen gestoeld op item response theorie en bevatten parameters die
specifiek zijn voor het individu en parameters die specifiek zijn voor het item (com-
binatie van een situatie met een component, een emotie of een gedrag). Een functie
van beide soorten parameters bepaalt de kans dat men een component als aanwezig
beschouwt in een situatie, een emotie ervaart in een situatie of een gedrag wil stellen
of stelt in de situatie.

In Hoofdstuk 1 wordt de componentiële structuur van het schuldgevoel onderzocht.
Deze structuur bestaat uit 3 componenten: de appraisal norm overtreding en de meer
actie-gerichte componenten piekeren en de neiging om het goed te maken. Dit werd
onderzocht aan de hand van het MIRID waarbij de itemparameter van een schulditem
een gewogen som is van de itemparameters van de component-items (items die elk
een specifieke component in een situatie representeren). De schatting van het MIRID
en de robuustheid van de parameters t.o.v. schendingen van de normaliteitsassumptie
voor de persoonsparameter vormt het onderwerp van Hoofdstuk 6. In het tweede
hoofdstuk wordt het MIRID uitgebreid tot het RW-MIRID, zodat het gewicht van een
component kan verschillen van persoon tot persoon. Op basis van dit model kunnen
we afleiden dat er geen interindividuele verschillen zijn in het belang of gewicht van
de componenten voor het schuldgevoel. In Hoofdstuk 3 onderzoeken we de relationele
structuur van emoties aan de hand van modellen voor Locale Item Afhankelijkheden.
De resultaten vervolledigen het beeld van het schuldgevoel als een gevoel waarvan de
betekenis deels gekleurd wordt door de situatie waarin de emotie ervaren wordt.

In een vierde hoofdstuk maken we abstractie van interindividuele verschillen door
de introductie van het Marginaal LLTM. Dit is een model waarbij de effecten van de
item covariaten effecten zijn op het niveau van de populatie. Een belangrijk voordeel
van deze benadering is dat de associaties tussen de items erg soepel kunnen gemo-
delleerd worden en dat de juistheid van het model voor de associaties de parameters
van de gemiddelden-structuur niet noodzakelijk bëınvloedt.

In Hoofdstuk 2 wordt onderzocht of men verbaal agressief gedrag kan voorspellen

op basis van de neiging om zich verbaal agressief te gedragen. Het effect van deze

neiging op het gedrag verschilt van persoon tot persoon. De band tussen beide wordt in

Hoofdstuk 5 verder bestudeerd aan de hand van het leermodel van Embretson (1991).

Hierbij vonden we dat de neiging om zich verbaal agressief te gedragen bëınvloed wordt

door factoren eigen aan de persoon en door factoren eigen aan de combinatie van

een situatie en een gedrag, terwijl het inhiberen van deze actietendens voornamelijk

bepaald wordt door factoren eigen aan de persoon.



We live on an island surrounded by a sea of ignorance. As our island of
knowledge grows, so does the shore of our ignorance.

John A. Wheeler
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General introduction

Emotions are an important part of life, and as such they received a lot of atten-
tion in literature. Different aspects of emotions are investigated: etiology, biolo-
gical basis and origin, neurological and hormonal structures involved, structure,
behavioral aspects, expressions, etc. Several methods are developed to invest-
igate these different aspects of emotions: for example, introspection, behavioral
observation, self-report measures, neuro-imaging, etc. We will focus on self-
report measures, and demonstrate the use of some data-analytic models and
techniques, which stem from cognitive research, to investigate two aspects: the
structure of emotions in terms of components and the expression of emotions in
behavior. Our research is restricted to two negative emotions: guilt and anger.
Four different modeling approaches will be presented to explore the compon-
ential and relational structure of emotions. All four will be illustrated with an
analysis of data on guilt feelings. One approach will be presented to model the
behavioral expression of emotions, illustrated with an analysis of data on verbal
aggression.

In the first part of this introduction, First, the substantive results on emotions
are described, whereas in the second part the modeling perspective will be
discussed.

1. Research on emotions

1.1 Componential theories of emotions

According to theories about the componential structure of emotions, emotions
can be characterized and differentiated on the basis of their association with
components. The componential approach to emotion is perhaps most clearly
articulated within appraisal theories of emotion. This theory states that emo-
tions are based on a process of appraisal or evaluation of the circumstances in
relation to the organism’s own goals and needs (e.g., Ellsworth & Smith, 1988;
Kuppens, Van Mechelen, Smits, & De Boeck, in press; Ortony, Clore, & Collins,
1988; Omdahl, 1995; Reisenzein & Hofmann, 1993; Roseman, 1984; Scherer,
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1993, 1997, 1999; Smith & Ellsworth, 1985). The main idea is that each emotion
is associated with a distinct pattern of appraisals. Following this line of thought,
it has been argued that action tendencies should be considered as central emo-
tion components as well, in that emotions can also be characterized in terms
of their association with specific action tendencies (e.g., Fischer, 1991; Frijda,
1986; Frijda, Kuipers, & Schure, 1989; Lazarus, 1991; Oatley & Jenkins, 1996;
Skiffington, Fernandez, & McFarland, 1998). In sum, every emotion is assumed
to be characterized by a distinct pattern of appraisals and action tendencies.
Both are summarized by the term components of emotions. Other aspects, like
for example, physiological changes or experiences, bodily feedback, and many
others can be important as well (e.g., Berkowitz, 1990; Izard, 1993), but are not
our primary point of interest, as they are less accessible to self-report.

Appraisal theories link emotions explicitly to the situations in which they
are experienced. For example, a situation may be experienced as threatening,
and could therefore lead to anxiety, and a situation in which one believes to
have violated a norm may lead to feelings of guilt. Using a situational approach
with appraisals allows for explaining emotional responses to the situations and
depending on the specific approach that is followed can shed light on the inter-
action of persons with situations.

1.1.1 Componential structure of emotions: the case of guilt

In the Chapter 1, an approach is presented to investigate the componential
structure of concepts like emotions. A necessary condition that there are situ-
ational differences in how much the situations induce the components and the
emotions (differences other than main effect differences, i.e. there may not be a
perfect correlation over situations between the components). Further, it is as-
sumed that there are individual differences in the proneness to the components
and the emotions but this is not a necessary condition for the approach to apply.
The approach is applied to a data set on situational guilt feelings. These data
stem from my masters’ thesis and are used further in this thesis to illustrate
and investigate various modeling approaches.

We will first describe the work from the masters’ thesis. Based on a survey
of literature a componential theory about situational guilt feelings was con-
structed. Guilt was assumed to be based on three appraisals and two more
action-oriented components. The three appraisals are responsibility, norm viol-
ation, negative self-evaluation and the action-oriented components are worrying
(covert action) and the tendency to rectify (overt action) what one did or failed
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to do. In a first study, situations were collected in which persons reported guilt
feelings. Ten situations were selected using criteria like understandability and
variation in content. In a first exploratory study, the component of responsib-
ility was found to be rated fairly high in the selected set of situations without
much individual differences. Therefore, responsibility was considered a rather
objective appraisal, primarily based on the situation, and not dependent on the
person. Because we expected individual differences in proneness to guilt, we gave
priority to subjective appraisals. Therefore, responsibility was not included as
a component in the main study. Note that we do not argue that responsibility
is not a component of guilt feelings. It can be a component without individual
differences, or the ten situations may not be optimal to reveal such differences.
Second, the correlation over situations between the ratings of norm violation and
negative self-evaluation was very high (.98), so that they cannot be used both
to be related with guilt feelings. It would be impossible to differentiate between
the situational contributions of these two components. Therefore, norm viola-
tion, which was more often mentioned in literature as an important appraisal,
was retained, whereas negative self-evaluation was omitted from the main study.
The remaining three components are norm violation (an appraisal), worrying,
and tendency to rectify (action tendencies).

In the main study based on a reanalysis for this thesis (the same is true for all
what follows), the following results were found: (1) The individual differences in
the components and guilt feelings can be described with one underlying dimen-
sion: the sensitivity of a person to guilt components and to guilt itself. (2) The
three components were elicited to a different degree by the different situations:
Some situations favor certain components whereas other situations favor other
components. (3) The three components were sufficient to predict situational
guilt feelings. (4) Finally, worrying was found to be the most important com-
ponent, followed by the tendency to rectify, and norm violation. worrying and
the tendency to rectify are more action-oriented (covert and overt, respectively),
whereas norm violation is a pure (actionless) appraisal. This result suggests that
the feeling of guilt is more than just an appraisal, which is in line with the view
of Frijda et al. (1989).

In the previous analysis, it was assumed that the importance of a component
for the emotion is fixed, the same for all persons. All individual differences are
assumed to stem from the position of a person on the latent trait (one general
latent trait was sufficient, component-specific latent traits were not needed).
However, as explained in Chapter 2, the importance of certain components may
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differ from person to person, which leads to person-by-situation interaction. Be-
cause situations differ as to the components they elicit and people differ in how
important these components are for the feeling, the interaction follows. For ex-
ample, for some people norm violation may more important, whereas for other
people the tendency to rectify is more important. This means that the basis for
guilt (or call it the meaning of guilt) is different depending on the person, so
that people will also differ with respect to the kind of situation they feel guilty
about (given that situations differ on the components). As we had no a pri-
ori hypothesis about the specific components that would be person dependent,
we tested them all three. The results indicate that the hypothesis of no such
individual differences could not be rejected. Since no substantive individual dif-
ferences are found in the components beyond the general latent trait (not in the
component levels and not in their weights), it was tentatively concluded that
guilt feelings can be explained by one general underlying guilt proneness. How-
ever, this conclusion will be modified in Chapter 3 on the relational structure
of emotions.

1.1.2 Relational structure of emotions

In Chapter 3, an approach is presented to investigate which relations exist
between the components and between the components and the emotion. The
approach is again exemplified with the data on situational guilt feelings. Differ-
ent relational structures are proposed and tested against each other. The same
components as in the previous study are considered: norm violation, worrying,
and the tendency to rectify.

The following structures are studied: a linear-sequence structure, a star struc-
ture, a cluster structure, and an item-family structure. Although we will use
causal language for the relations in the structure, no causal evidence will be
available. The relations can be associations based on other than causal rela-
tions. A linear-sequence structure implies that the components of guilt can be
linearly ordered in how they affect each other and the resulting guilt feeling.
A star structure implies that all components affect the guilt feelings, but not
each other. A cluster structure implies that there exist clusters of components
that affect each other and the emotion, without any relations between com-
ponents belonging to different clusters. For the data set on guilt, the clusters
are defined based on the kind of component: one cluster is formed by the ap-
praisal of norm violation and the emotion guilt, and a second cluster is formed
by the two action-oriented components, worrying and tendency to rectify, and
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the emotion guilt. Guilt forms the overlap between the two clusters. Finally, an
item-family structure implies that all components and the emotion are related
to the same degree within a situation, but the degree may differ over situations.
For the dataset on guilt feelings, this item-family structure showed the best
fit, better than a structure with relations between the components or between
the components and the emotion (beyond the general guilt sensitivity). The
implication is that apart from the general underlying guilt sensitivity also some
situation-specific individual differences exist. This completes the earlier made
tentative conclusion of one underlying trait.

1.1.3 Making abstraction of individual differences: a marginal approach

In Chapter 4, we make abstraction of individual differences, in order to apply
what is called a marginal approach. The reason for employing this approach is
that the dependencies we investigated using the relational approach may distort
the results when not taken into account, or obscure the main effects if they are
taken into account indeed. When abstraction is made of individual differences,
using a marginal approach, the dependencies no longer have these effects. The
price one pays is that the effects are population-level effects and not effects at
the level of the person. This approach is exemplified with a subset of the data
on guilt feelings (only three situations). The responses on the items measuring
guilt and its components were predicted based on an effect of the situation and
an effect of the item type (norm violation, brooding, tendency to rectify, and
guilt feelings). Guilt was not decomposed into its components as in Chapter 1
and 2, but the guilt feelings were treated as the components are: as just another
type of item. All effects were significant. In addition to the modeling of the
item difficulty structure, also the relations between the items were modeled in
correspondence with the item family structure, which was supported by the
data.

1.2 Emotional behavior: the case of verbal aggression

Another substantive topic of the dissertation is the link between the action tend-
ency and the emotionally motivated behavior. One kind of behavior associated
with anger is investigated: verbal aggression. The choice for an action tendency
related to anger can be motivated by two reasons: First, anger is a more frequent
emotion than guilt (Zelenski & Larsen, 2000) and as such the opportunity to
study its action tendencies and associated behaviors is much broader. Second,
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anger is often conceived as an action-oriented emotion, leading for example
to aggression (Averill, 1983; Cornell, Peterson, & Richards, 1999; Kassinove,
Sukhodolsky, Tsytsarev, & Solovyova, 1997; Kinney, Smith, & Donzella, 2001),
whereas the behaviors associated with guilt are not that clearly delineated and
are often more covert, and less open to observation. Verbal aggression is chosen
instead of more severe forms of aggression, because it is more common and less
socially undesirable to report. Although the effect it has may be smaller than
the effect of physical aggression, because of its more common character it is an
important phenomenon as well. I can hurt all kinds of relationships and be the
source of many conflicts.

Three verbally aggressive (VA) behaviors were selected: cursing, scolding,
and shouting. For each of these VA behaviors, the participants were asked two
questions, one on the action tendency (wanting to the display the VA behavior
in the situation), called a want-item, and one on the actual behavior (displaying
the VA behavior in the situation), called a do-item. It was investigated how much
the behavior depends on the action tendency, whether inhibition plays a role,
and whether there are situational and behavioral and/or individual differences
in inhibition.

The results concerning these questions are reported in two different chapters.
The results reported in Chapter 2 are: (1) The VA action tendency has a clear
predictive power for the VA behavior. (2) The do-items are more difficult than
want-items, meaning that inhibition occurred. (3) There are individual differ-
ences in the weight of wanting to display verbal aggression (action tendency)
for the prediction of actually displaying verbal aggression.

In Chapter 5, the phenomenon of inhibition is investigated more in depth to
find an explanation for the inhibition. The following theory about verbal aggres-
sion and its inhibition is investigated: The tendency to be verbally aggressive
and the inhibition of VA behavior can be influenced by behavior specific factors,
situation specific factors, general individual differences (a latent trait), or a com-
bination of any of the previous. The person specific factors can be thought of as
traits (an action tendency trait and an inhibition trait), whereas the behavior
and situation specific factors can be thought of as features like visibility of the
behavior, or the degree in which the situation is frustrating, etc.

It was found that the VA action tendency is based on a latent trait (a verbal
aggression trait), and that features of the combination of VA behaviors with
situations also play a role, whereas inhibition is primarily determined by indi-
vidual differences (an inhibition trait), and not so much by the situation or the
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VA behavior in question. The approach was validated by correlating the verbal
aggression trait and the inhibition trait with the following related measures: the
scores of the participants on the Trait Anger scale of Spielberger (1980), the
scales Anger In, Anger Out, Anger In Control, and Anger Out Control of the
Self Expression and Control Scale of Van Elderen, Maes, Komproe, and Kamp
(1997) (an adaptation of the Anger Expression Scale of Spielberger, Johnson,
and Jacobs (1982)), and the Direct Aggression scale and the Indirect Aggres-
sion scale of the Buss-Durkee Hostility Inventory-Dutch (Lange, Hoogendoorn,
Wiederspahn, & Beurs, 1995). The VA behavior-situation specific parameters
were correlated with several situational properties like presence of others, degree
of frustration elicited by the situation, etc. The verbal aggression trait turned
out to be primarily related to Trait Anger, Direct and Indirect Aggression. The
inhibition trait was primarily related to coping with anger: it was negatively
correlated with Anger Out, and positively with Anger In and Control Anger
Out. There was a slight positive correlation between the verbal aggression trait
and the inhibition trait. As for the situational effect, the action tendency was
positively correlated with how frustrating the situation is experienced and with
instrumentality and the expressiveness of VA behavior in the situation. Neg-
ative correlations were found with expected dislike from others and negative
self-evaluation.

It seems that our approach was successful in modeling and understanding
the data from a situation-response questionnaire, including its external valida-
tion. The two basic concepts, the VA action tendency and the inhibition of VA
behavior each have interesting correlations with external variables.

2. The modeling perspective

As formal basis for the just described substantive research into the structure
of emotions and emotional behavior, a modeling approach was chosen based on
Item Response Theory (IRT). An important aim of our studies was to show
the suitability of the approach for data stemming from situation-response ques-
tionnaires on emotions and emotion-related behavior, while the approach was
developed primarily for cognitive tests. For practical reasons, we have limited
our modeling to binary data. It would require an additional extension, bey-
ond the extensions we will describe, to handle also multi-categorical data. The
extension is straightforward, but beyond the scope of this dissertation.
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Most IRT models assume that the probability of giving a 1-response on an
item is a function of two kinds of parameters: person specific parameters (com-
monly random effects) and item specific parameters (commonly fixed effects).
The most simple model is the Rasch model (Rasch, 1960), which has one para-
meter per person, often called the ability or latent trait, and one parameter per
item, often called the item difficulty. The person parameter is conceived of as a
random effect in this dissertation, but also a fixed effect is possible as in a JML
(Joint Maximum Likelihood) formulation. However, this approach is not to be
recommended because of consistency problems of the estimation.

The response a person gives to an item is explained by an effect specific to
the person and an effect specific to the item. The model equation of the Rasch
model is the following:

P (Yij = 1|θi) =
exp (θi + βj)

1 + exp (θi + βj)
(1.1)

with i = 1, . . . , I the index for the person,
j = 1, . . . , J the index for the item,
θi the person parameter,
βj the item parameter,
and Yij the response of person i to item j.

Studying emotions with a situation-response questionnaire, the person para-
meter can be conceived of as an emotion specific personal threshold, as the
sensitivity of a person to the emotion in question, whereas the item parameter
can be conceived of as the emotion inducing power of the situation. Note that
this interpretation holds after multiplying the person parameter by -1, resulting
in the parameterization βj − θi instead of θi + βj . According to this repara-
meterization, if the emotion inducing power is larger than the emotion specific
personal threshold, then the probability is higher than .5 for the person to exper-
ience the emotion in question. Note that the more common parameterization is
θi−βj , in line with the interpretation of θi as the ability and βj as the difficulty.

All models used in this dissertation are based on the Rasch model. They are
further developments or modifications of this model. Four modeling approaches
are investigated on their potentialities for the situational study of emotions and
individual differences in these.
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2.1 MIRID: a model for investigating the decomposition of

concepts

In the section on the componential structure of emotions, a componential theory
for situational guilt feelings was presented. This theory was tested with data
from a situation-response questionnaire. An IRT model that is commonly used
to test componential theories is the Linear Logistic Test Model (LLTM, Fischer,
1973, 1977). The LLTM requires that one knows the value of each component in
each situation, which is not always the case. Therefore, an alternative model was
developed: the Model with Internal Restrictions on Item Difficulties (MIRID,
Butter, De Boeck, & Verhelst, 1998). MIRID assumes a relationship between
items, not in the correlational sense, but in the sense that the effect one item
has on the response probabilities is a function of the effect of other items. For
the MIRID it is required that some items are composite items in that it is
hypothesized that they are based on other more elementary items. The set of
more elementary items are component items. For the guilt data for example, the
question ‘Do you worry in this situation?’ is a component item, whereas the item
‘Do you feel guilty in this situation?’ is a composite item. In the MIRID, the item
parameter of the composite item is modeled as a linear combination of the item
parameters of component items. It is assumed that the guilt-inducing power of
a situation is a weighted sum of contributions from different components, which
can be expressed in a linear function:

βs0 =
K∑

k=1

σkβsk + τ (1.2)

with s = 1, . . . , S the index for the situation,
k = 1, . . . , K the index for the type of component, with k = 0 for the composite
items,
σk the weight or the contribution of the component of type k, to be interpreted
as the importance,
βsk the contribution of situation s to component k,
and τ an additive scaling parameter.

The principle as formulated in Equation 1.2 is built into the Rasch model. As
a result, the βj are no longer the basic parameters as in Rasch model (Equation
1.1), but instead the βsk and the σk are. For the case there is one underlying
trait, the probability of a componential response is considered a function of the
person contribution θi and of the component-specific situational guilt-inducing
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power βsk:

P (Yisk = 1|θi) =
exp (θi + βsk)

1 + exp (θi + βsk)
(1.3)

The probability of a composite response is considered a function of the same
person contribution θi and of a weighted sum of the component-specific situ-
ational guilt-inducing powers, represented in the parameter βs0:

P (Yis0 = 1|θi) =
exp (θi + βs0)

1 + exp (θi + βs0)
(1.4)

with βs0 defined as in Equation 1.2

In Chapter 1, an extension of the MIRID is used that is developed by Butter
(1994). It allows for unequal but fixed discrimination values, and it is called
the OPLM-MIRID. The restriction to one underlying latent trait is not neces-
sary, but it turned out empirically that MIRIDs with only one such latent trait
have a reasonable good fit to the data. In Chapter 6, two estimation methods
for the MIRID and the OPLM-MIRID are compared: a conditional maximum
likelihood estimation (CML) and a marginal maximum likelihood estimation
(MML). For the former, we wrote a stand-alone program in Delphi 5, whereas
the latter estimation can be performed with PROC NLMIXED from SAS V8. In
addition, the robustness of the parameter estimates to violations of the normal-
ity assumption for the person parameter is investigated. Only small differences
were found concerning individual estimates for the person parameter. For the
item parameters, no differences were found. Also, a method is presented to test
the structure MIRID imposes to the data regarding the link between component
items and composite items.

As the assumption that no individual differences occur in the weights of the
components (σk) can be too strong, in Chapter 2, we have adapted the MIRID to
allow for individual differences in the weights of the components. This extension
is called the Random Weights MIRID (RW-MIRID). The RW-MIRID assumes
that the weights of some of the components are random effects, meaning that
they follow a normal distribution over persons, instead of being fixed effects.
This model can be estimated with PROC NLMIXED from SAS V8.
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2.2 The relational structure of concepts: using Local Item

Dependencies

In Chapter 3, a methodology to investigate and test the relational structure
of emotions is presented. Based on psychological knowledge, different plausible
relational structures were constructed for the dataset on guilt feelings. These
structures were translated into IRT models and tested against each other to
find the best fitting model, and by consequence, the best fitting theory.

The methodology is based on extant IRT models as described amongst others
by Kelderman (1984) and Hoskens and De Boeck (1997). The models are called
Local Item Dependency (LID) models. To explain the notion of LID, we start
with a basic assumption of most IRT models: the assumption of local stochastic
independence. This means that the dependence between the responses of an indi-
vidual is solely attributed to the underlying latent traits, without the responses
on the other items containing any additional information for the probability of
responses to the item in question, so that Equation 1.5 holds:

P (Yi = yi1, . . . , yiJ |θi) =
J∏

j=1

P (Yij = yij |θi) (1.5)

with Yi the vector containing all responses of person i, and θi the vector of
latent traits.

If Equation 1.5 does not hold, it is said that there is LID, because after
partialling out the latent trait(s), covariances between the items remain. Often,
LIDs are considered something to be avoided. However, we will demonstrate
that they can be informative about the relational structure of emotions.

LIDs can be incorporated into, for example the Rasch model, by adding fixed
effect parameters to the model that capture the interactions (another term for
dependency) between the items. Table 1.1 shows the basic model formulation
for the case there is a fixed interaction between a pair of items j and h.

TABLE 1.1. Model for fixed pairwise interaction.

Response pattern (yij , yih) Formula
(0,0) 1/v(θ)
(0,1) exp (θi + βj) /v(θ)
(1,0) exp (θi + βh) /v(θ)
(1,1) exp [(θi + βj) + (θi + βh) + βint] /v (θ)

Note: βint is the interaction parameter for the item pair, and v(θ) = 1 + exp (θi + βj) +

exp (θi + βh) + exp(2θi + βj + βh + βint).
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It is easy to see that when βint is positive, the probability of observing the
response pattern (1,1) increases and that when βint is negative, the probability
decreases, in comparison to the probability of the same event under the Rasch
model. The implication of this interaction model is that the item parameters βj

and βh are difficult to interpret, because they are no pure item effects anymore,
but instead they are also dependent on the interaction.

Different patterns of interactions –i.e. different relational structures– can be
defined by adding the corresponding fixed-effect interaction parameters to the
model. If the responses are in agreement with one of these theory-based patterns
of LIDs, two types of conclusions can be drawn. First, the corresponding theory
is supported by the data, so that we gain insight in the relational structure of
an emotion. Second, evidence for the internal validity of the questionnaire is
found, as the responses are in agreement with the theory in question.

Note that the componential and the relational approach can be combined as
well. This suggestion is mentioned at the end of Chapter 3. Although no such
analysis is reported here, we performed such an analysis for the data on guilt.
The results confirmed those from Chapter 1 and Chapter 3, but as explained, the
dependency as implied by the relational structure hampers the interpretation
of the parameters.

2.3 A marginal approach to model the effect of item covariates

All models described in the previous paragraphs are random-effect models, al-
though LID models contain elements from what is called the conditional model
approach (Diggle, Heagerty, Liang, & Zeger, 2002; Fahrmeir & Tutz, 2001).
Three characteristics of these models lead us to look for a different approach:
First, the item and the person parameters of the previously mentioned mod-
els cannot be separated from the dependency structure. A consequence is that
they cannot be interpreted separately from the dependency. Second, because
the parameters are affected by the dependency, one cannot study how the item
parameters depend on item covariates independent of the dependency struc-
ture. Third, if the dependency structure is misspecified, this can have serious
consequences for the other parameters (Thissen, Steinberg, & Mooney, 1989;
Tuerlinckx & Boeck, 2001; Yen, 1993). Therefore, we have explored marginal
model approaches which yields estimates that are not affected by the depend-
ency structure. The price to pay is that these models are less appropriate to
study individual differences and that the estimated item property effects are
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population-level effects instead of effects that apply to individual persons.
In Chapter 4, a marginal variant of the LLTM was formulated. This marginal

approach is rather new in the context of psychometric modeling. We chose for
the LLTM because it is a natural first step to the MIRID (see Section 2.1).
It is a future perspective to extend the marginal approach to the MIRID. The
marginal LLTM (M-LLTM) has two parts: (1) a model for the mean structure in
which the marginal probabilities are related to the item covariates by the logit
link function, and (2) a model for the associations between the observations,
called the association structure.

The mean structure of this marginal LLTM can be defined as in Equation
1.6.

Logit [P (Yij = 1)] =
K∑

k=1

qjkη∗k (1.6)

with k = 1, . . . , K the index for the item covariate,
qjk the value of item j on item covariate k,
and η∗k the effect of item covariate k on the marginal probabilities.

The association between two items j and h is denoted with the parameter
γijh. The person subscript is added, because the model in principle allows for
person-dependent association covariates. However, this extension is beyond the
scope of this dissertation. The formula for the association structure can be
written as follows:

f (γijh) =
M∑

m=1

zjhmαm (1.7)

with m = 1, ..., M the index for the association covariates,
zjhm the value of association covariate m for the association between the re-
sponses to the items j and h,
αm the effect of association covariate m,
and f (.) a link function to link the association parameter γijh to the association
covariates.
Higher-order generalizations of the association parameter to more than two
items can be denoted with subscripts added to z for all items involved in the
association in question. Note that the models to be discussed also allow for
person-specific association covariates. However, this extension is is beyond the
scope of this dissertation.
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Three different options for expressing the associations are discussed: marginal
correlations, marginal log odds ratios and conditional log odds ratios (the log
odds ratio conditional on zero responses for all other items). For each model, two
or more estimation techniques are discussed: a full-likelihood based approach
and an approach based on Generalized Estimation Equations (GEE, Hardin
& Hilbe, 2003; Liang & Zeger, 1986; Zeger & Liang, 1986). Advantages and
disadvantages of all approaches are described in Chapter 4.

The marginal approach has two major advantages: First, some marginal ap-
proaches yield consistent estimates for the parameters of the mean structure re-
gardless of the correct specification of the association structure. By consequence,
an incorrect assumption about the association structure will not bias the estim-
ates of the effects of the item covariates like is the case in random-effect models.
Second, these marginal models allow for a very flexible modeling of the associ-
ations between response in terms of item specific and person specific covariates.
These more complex patterns are a serious complication for the random-effect
models, since they would require the inclusion either of dependency parameters
or of multiple random effects. These marginal models can be used to investig-
ate the effect of covariates at the level of the population, independent of the
associations between item responses, while it is still possible to either explore
or even model these associations. Unfortunately, the effects can no longer be
interpreted as effects at the level of the individuals.

2.4 Embretson’s learning model as a framework

To model responses to action tendency questions and behavior questions, in
Chapter 5, a model was used that was originally formulated for learning (Em-
bretson, 1991). The action tendency is formally equivalent with the stage before
learning, and the behavior with the stage after learning. Individual differences
play a role in the first stage and in the change from the first stage to the second.
The equivalence with the learning model is only formal in that learning has a
positive effect, whereas the effect of inhibition (between the action tendency
and the behavior) is negative on average.

A specific feature of the model is that for items from the first stage only one
latent trait plays, whereas for items in the second stage, also a second latent
trait plays (learning ability, in our case inhibition). We have applied the model
in the following formulation:
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Logit [P (Yijk = 1 | αi, κi)] = αi + β
(want)
sk − d

(
κi + β

(do)
sk

)
(1.8)

with d = 1 for a do-item , and d = 0 for a want-item,
αi ∼ N(0, σ2

α) the personal VA action tendency or verbal aggression trait,
κi ∼ N(µκ, σ2

κ) the personal VA inhibition parameter, or inhibition trait. The
mean of κi (= µκ) is the overall inhibition effect,
β

(want)
sk the effect of the combination of a situation s and a kind of VA behavior k

on the tendency to behave in a verbally aggressive way,
and β

(do)
sk the inhibition effect of the combination of a situation s and a kind of

VA behavior k on the VA behavior.

The β
(do)
jk is an extension of Embretson’s learning model, as in her model, there

is only one item parameter for the two stages. Based on this model, we have
developed a framework to test whether inhibition is either person dependent or
item (situation and/or VA behavior) dependent or both.

3. Conclusions

We believe that the study of emotions through situational questionnaires can
benefit from item-response modeling. For several research questions, there will
be a close match between the question and a particular IRT model, so that one
can test this hypothesis using the model, and for other questions, an appropriate
model can be formulated. The availability of general model estimation tools like
PROC NLMIXED from SAS V8, associated with the framing of IRT models as
generalized (non)linear mixed models (McCulloch & Searle, 2001), contributes
to the flexibility of item response modeling. Several of our findings are made
possible thanks to the models we have used. Examples concern the role of guilt
components, the lack of individual differences in the role they play, and the
primarily individual (versus situational) nature of inhibition.

Finally, the exploration of marginal modeling for its potentialities has lead
us to the belief that it deserves further attention as a flexible and promising
approach, one that is underexplored and hardly used thus far to analyze ques-
tionnaire data.
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On this dissertation

The thesis is a collection of manuscripts that are either submitted or already
accepted for publication.

Chapters

In Chapter 1 a manuscript on the MIRID and the OPLM-MIRID in which the
componential structure of situational guilt feelings is investigated. The model
is estimated with a CML method that is also implemented in the MIRID CML
Program discussed in Chapter 6. The reference of the manuscript is:
Smits, D. J. M., & De Boeck, P. (2003). A componential model for guilt. Mul-
tivariate Behavioral Research, 38, 161-188.

Chapter 2 is manuscript that is accepted for a book. The reference is given
below. It describes the MIRID and the Random weights MIRID, which are both
illustrated with the data on situational guilt feelings and with the data on verbal
aggression.
Smits, D. J. M., & Moore, S. (accepted). MIRID: Latent item covariates with
fixed effects. In P. D. Boeck & M. Wilson (Eds.)(in preparation), Psychometrics
using logistic mixed models. New York: Springer-Verlag. (contract with Springer)

Chapter 3 is a manuscript on the relational structure of emotions. The refer-
ence is:
Smits, D. J. M., De Boeck, P., & Hoskens, M. (2003). Examining the struc-
ture of concepts: using interactions between items. Manuscript submitted for
publication.

Chapter 4 is a manuscript on the marginal approach for the Linear Logistic
Test Model. The reference is:
Smits, D. J. M., De Boeck, P., & Molenberghs, G. (2003). Marginal approaches
to the linear logistic test model. Manuscript submitted for publication.

Chapter 5 describes an approach to model the behavioral expression of emo-
tions based on the learning model of Embretson (1991). The verbal aggression



18

data were collected by Kristof Vansteelandt. The reference of the manuscript
is:
Smits, D. J. M., De Boeck, P., & Vansteelandt, K. (2003). The inhibition of
verbally aggressive behavior. Manuscript submitted for publication.

Finally, in Chapter 6 two estimation methods for the MIRID and the OPLM-
MIRID are compared and the robustness of the parameters to violations of
the normality assumption of the person parameter is investigated. For the CML
estimation of the MIRID a stand-alone program was written, which can be found
on the compact disc that accompanies the dissertation. The MML estimation
can be performed with PROC NLMIXED of SAS V8. The reference is:
Smits, D. J. M., De Boeck, P., & Verhelst, N. D. (in press). Estimation of the
MIRID: A program and a SAS based approach. Behavior Research Methods,
Instruments, and Computers.

The co-authors of the various manuscripts are the following:
Paul De Boeck, supervisor of the thesis
Machteld Hoskens, researcher at CTB, Monterey, CA
Geert Molenberghs, professor at the Center of Statistics of the Limburg Uni-
versity Center
Stephen Moore, Ph.D. student at UC Berkeley, CA
Kristof Vansteelandt, postdoctoral researcher at the K.U. Leuven
Norman Verhelst, Methodologist at CITO, The Netherlands.

Preliminary notes

Note that the notation, and the formulation of the models will differ between
the chapters. The reason is that the chapters are stand-alone manuscripts for
various journals and a book. We have followed notational requests for the book
and we have chosen the notation for the journal manuscripts to be as appropriate
as possible for the manuscript in question, taking into account also the notation
for similar models in the literature.

Also the estimation methods differ depending on the chapter. Two different
estimation methods are used throughout the dissertation: CML and MML. The
CML method is used in Chapter 1 and Chapter 6, whereas the MML method is
used in Chapter 2, 3, 4, 5, and 6. However, re-estimating the models of Chapter 1
with an MML method resulted in similar results as the ones obtained from



19

the CML estimation. For Chapter 6, the correspondence between the two is
discussed more in detail, as the comparison of the two estimation methods is
an important part of that chapter. All models used in this dissertation can be
estimated with an MML method, but this does not hold for the CML method.
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Chapter 1

A Componential IRT Model for
Guilt

Dirk J. M. Smits
Paul De Boeck

ABSTRACT Componential IRT models are often used to investigate the process

structure of a cognitive task in terms of its components. Although not yet used

for emotions, these models are also helpful to investigate the process structure of

emotions. We investigated the process structure of guilt with the OPLM-MIRID,

a particular type of componential IRT model. Based on a first exploratory study,

we selected 3 components that can be considered partial guilt responses. To test

this structure, we collected 10 descriptions of guilt-inducing situations. For each

situation, it was asked how guilty one would feel, and also three componential

questions were presented, one for each of the three selected components. The

inventory was administered to 270 high school students, 130 males and 140

females, all between 17 and 19 years old. The data were analyzed with the

OPLM-MIRID. All 3 components were found to contribute (α =.05) to the global

guilt response: norm violation, worrying about what one did, and a tendency

to restitute. The same kind of modeling seems appropriate to investigate the

structure of other emotions, and more in general to validate inventories with a

componential design. 1
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1.1 Introduction

Many psychological concepts turn out to be multifaceted and complex –in other
words, they are multi-componential. This seems true for intelligence as well as
for personality. A common way of proceeding with such concepts is to unravel
their structure with some form of multidimensional analysis. The most popu-
lar form is factor analysis, in which different factors are supposed to reflect the
components of a concept. A recent example is the decomposition of the concepts
associated with the Big Five into facets (Costa & McCrae, 1995, 1997; Costa,
McCrae, & Dye, 1991). For instance, when a factor analysis is performed on
the Conscientiousness items of the NEO–PI–R, six factors are found: Compet-
ence, Order, Dutifulness, Achievement Striving, Self-Discipline, and Delibera-
tion (Costa & McCrae, 1989, 1997). Another example is the factor analysis of
the Beck Depression Inventory–II. Two dimensions were found in self-reported
depression: cognitive-affective symptoms, and somatic symptoms (Beck, Steer,
& Brown, 1996; Osman et al., 1997).

Components derived on the basis of factor analysis of items for a given trait
can be understood as ways in which individuals differ in how they display the
underlying trait. Different dimensions refer to (a) different kinds of behavior or
(b) the same kind of behavior (or behavior outcome) in different types of situ-
ations (e.g., Ortony & Turner, 1990). For example, when intelligence is studied,
the dimensions refer to success (behavior outcome) in performing different kinds
of tasks (different situations). We will call components that are derived from a
multidimensional analysis dimensional components.

A different way of discerning components in a concept or a phenomenon is an
analysis in terms of the processes that lead to a behavior or a behavior outcome.
This approach has become quite popular for intelligence. A typical example is
the componential approach to intelligence as elaborated by Sternberg (1977a,
1977b, 1978) for response times. He has developed cognitive-process models to
predict the response time in intelligence tests from the time needed for the
processes –also called components– underlying the response. For example, for
analogy items, the processes or components he distinguished were encoding, in-
ference, mapping, and application. Embreston (1980, 1984) has developed sim-
ilar models for the probability of a correct response to the total task, with that
probability being predicted from several componential probabilities, each cor-
responding to a different process. The process outcomes are observed as subtask
outcomes, each referring to one process. For example, when solving an analogy
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item (father:mother :: uncle:?), one first has to find a rule, an activity
called rule generation (generation component), and one also has to evaluate the
response generated from the rule (evaluation component). The corresponding
first subtask would be ‘find the rule for . . . ,’ with the correct response being
‘the feminine of . . . ;’ the corresponding second subtask would be ‘the feminine
of uncle is (a) sister, (b) aunt, (c) niece, (d) cousin.’ Common features of this
kind of componential approach are that intermediate responses are discerned
from final responses and that the characteristics (response time, probability) of
the final responses are explained from the corresponding characteristics of the
intermediate responses. The intermediate processes are parts of solving the total
cognitive task: the time taken for the final response is seen as the sum of the
times taken for the intermediate processes (Sternberg, 1977b), and in Embret-
son’s (1980, 1984) case, the probability of success at the total task is seen as the
product of the success probabilities for the intermediate processes. Components
that are derived from a process analysis will be called process components.

The process approach and the dimensional approach can be seen as comple-
mentary in two respects. First, the dimensional approach, using factor analysis
or principal components analysis, can help to delineate domains of behaviors
that then can be analyzed further with a process approach. For example, In-
ductive Reasoning is a first-order intelligence factor; consequently, one may use
a process approach to study how inductive reasoning works (See, e.g., Stern-
berg, 1977b). Second, different processes may each refer to a different dimension,
each process being a source of individual differences, and therefore each may
show up as a factor in factor analyses. Although the dimensional approach by
definition needs multidimensionality to find different components, the process
approach does not. It makes perfect sense to analyze the processes behind a
one-dimensional phenomenon, with the individual differences in the underly-
ing processes all being based on one common trait, with the processes having
a distinct nature and being distinguishable empirically –for example, because
their response times add up to an observed response time that functions as a
dependent variable.

Most applications of the process approach have been in the cognitive do-
main. It makes sense, however, to consider the same approach for emotion and
personality. For example, there exist inventories for assessing guilt-proneness us-
ing items on feeling guilty (e.g., Ferguson & Crowley, 1997; Harder, 1995). On
the other hand, emotions such as guilt have been conceptually analyzed from
a process-componential approach (e.g., Gilbert, Pehl, & Allan, 1994; Wicker,
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Payne, & Morgan, 1983). The aim of our study was to investigate the process-
componential structure of guilt and to demonstrate the applicability of the
process approach to emotions. Our approach was very similar to the subtask
methodology just explained. The participants of the study were given situations
about which they had to answer several questions: the first kind of questions
concerned components that may contribute to feeling guilty (the equivalents of
subtasks), and the second kind concerned feeling guilty itself (the equivalent of
the total task). The set of situations with the associated questions about feeling
guilty and its components can be seen as a guilt-process inventory. Testing the
componential structure is a way of examining the internal validity of the invent-
ory. The type of internal validity we have in mind is what Embreston (1981)
described as construct representation, referring to the validity of the model for
the phenomena under study.

First, the process components of guilt will be described, subsequently we will
explain the model, and why it makes sense to use it for guilt proneness. The
kinds of components we will discuss are appraisals, covert reactions, and action
tendencies, but not physiological reactions, primarily because of methodological
reasons: it is difficult to investigate physiological reactions with the self-report
method we will use.

1.2 Components of Guilt

Emotions have been analyzed in terms of components, such as appraisals of the
situation, or emotivations –a term coined by Roseman, Wiest, and Schwartz
(1994) to denote ‘emotional motives or things wanted while having a feeling’
(See, e.g., Johnson-Laird & Oatley, 1989; Omdahl, 1995; Roseman, Antoniou, &
Jose, 1996; Roseman & Smith, 2001; Smith & Ellsworth, 1985; Smith & Lazarus,
1993)– covert reactions, and action tendencies (See, e.g., Frijda, Kuipers, &
Schure, 1989; Izard, 1993; Roseman et al., 1994). From a review of the literature,
five components of guilt were derived:

1. Guilt implies an appraisal in terms of responsibility. For example, Izard
(1978) stated that guilt only appears in situations for which one feels per-
sonally responsible (See also, Baumeister, Stillwell, & Heatherton, 1994,
1995; Frijda, 1986; Lindsay-Hartz, 1984; Lindsay-Hartz, De Riviera, &
Mascolo, 1995; Smith & Lazarus, 1993; Wicker et al., 1983).

2. Guilt implies an appraisal in terms of norm violation. For example,
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Lindsay-Hartz (1984) and Lindsay-Hartz et al. (1995) stated that a vi-
olation of a norm or the moral order precedes guilt. According to Lewis
(1987), being able to make moral judgments is a precondition of guilt feel-
ings (See also, Ausubel, 1955; Barrett, 1995). Opinions differ as to how
broad the notion of ‘norm’ should be understood. Norms can be moral,
religious, cultural, or personal. Most authors prefer a broad definition of
norms when it comes to explaining the basis of guilt (Baumeister et al.,
1995; Izard, 1978; Johnson-Laird & Oatley, 1989; Jones & Kugler, 1993;
Jones, Kugler, & Adams, 1995; Tangney, 1995; Wicker et al., 1983).

3. Guilt implies a negative self-evaluation as a covert reaction of the type ‘I
did something bad.’ The negative self-evaluation relates to an act and is
not a definite disapproval of the entire self:

. . . we feel like a bad person, yet we know that while we did a
bad thing, we are not really bad . . .

(Lindsay-Hartz et al., 1995, p. 288; See also, Ausubel, 1955; Barrett, 1995;
Baumeister et al., 1994; Frijda, 1986; Gilbert et al., 1994; Lindsay-Hartz,
1984; Tangney, 1995; Wicker et al., 1983).

4. While feeling guilty, one’s attention and inner thoughts are covert, rumin-
ative worrying reactions focused on the act much more than on the self.
Baumeister et al. (1994) defined guilt as related to a particular act, with
a consequence that the act stays in one’s mind while one reflects upon it
(See also, Barrett, 1995; Gilbert et al., 1994; Izard, 1978; Tangney, 1995).

5. Guilt implies the emotivations and action tendencies related to restitution.
One is inclined to confess, to undo one’s fault, to do after all what one
ought to do and did not do, to apologize, to compensate, etc. (Barrett,
1995; Baumeister et al., 1994, 1995; Lindsay-Hartz, 1984; Lindsay-Hartz
et al., 1995; Tangney, 1995). For example, Baumeister et al. (1994) and
Lindsay-Hartz (1984) stated that the motivation to make reparations or
at least to apologize is part of feeling guilty.

We make an a priori distinction between objective appraisal components
(1 and 2) and the other three components (3, 4, and 5). The first two compon-
ents are directly related to the situation, as an interpretation of the situation. In
the case of guilt, the situation is partly an event in which one is involved as an
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actual or potential actor. We assume that the first two components are object-
ive features of the situation—so to speak, parts of the situation (Lindsay-Hartz,
1984; Lindsay-Hartz et al., 1995; Wicker et al., 1983), so that the appraisal is
induced by the situation and not so much by a subjective appreciation. This
assumption was checked in a first small, exploratory study, preceding the main
study. Note that we do not claim at all that appraisals in general are objective
and induced primarily by the situation, and not even that these two are always
objective, but for the situations we studied, we believe they were.

The other three components can be understood as subjective reactions to the
interpretation based on the first two components: ‘If a norm is violated, and
if I am responsible for it, then the evaluation of what I did is negative, I keep
thinking of what I did, and I am inclined to restitute what I did wrong.’ We do
not insist on a strict distinction between subjective appraisals and emotivations
and action tendencies. The exact labeling is less important than the role they
play as guilt processes. Further, we do not claim to say anything about the
order in time between the components. They all can play a role in guilt feelings
at different moments. The only order that seems plausible is that the three
subjective reactions (Components 3, 4 and 5) play their role later in time then
the two objective interpretation or appraisal components (Components 1 and
2). The reason is that the first two components are considered features of the
situation.

Although we have identified Component 3 as a reaction and not as an inter-
pretation of the situation, we are not sure it can be differentiated empirically
from Component 2. That in guilt-inducing situations a negative self-evaluation
follows upon a personal norm violation seems highly plausible and is often doc-
umented in the literature (Barrett, 1995; Lindsay-Hartz, 1984; Lindsay-Hartz
et al., 1995; Tangney, 1995; Wicker et al., 1983). Therefore, the differentiation
between Component 2 and Component 3 was also explored in the exploratory
study. Their correlation may not be too high in order to distinguish between
both.

In the main study, we considered the Components 3, 4, and 5 the three sub-
jective components. They may be considered part of guilt as partial guilt re-
sponses. The two appraisal components were left out of consideration in this
second study as not being part of feeling guilty but as having an effect on guilt
through the three partial responses. However, if Component 3 cannot be differ-
entiated from Component 2 within the 10 situations we used, Component 2 is to
be preferred, because it is more often cited in the literature as a guilt component
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(Baumeister et al., 1995; Izard, 1978; Johnson-Laird & Oatley, 1989; Jones &
Kugler, 1993; Jones et al., 1995). Note that if these two components cannot be
differentiated, then they are also of the same type (objective interpretations or
subjective reactions to these interpretations).

It will be described now how we assume the more response-like components (3,
4 and 5) contribute to the global feeling of guilt. Basically, they are considered
as part of the guilt response. What this means more specifically is explained
now in three more specific assumptions.

First, for the partial responses as well as for the total response, the situations
are assumed to have a guilt-inducing power based on the appraisals. The guilt-
inducing power of a situation is seen as a compound that is built up from
component-specific guilt-inducing powers. The hypothesis is that a situation
makes one feels guiltier the more it makes one feel bad about what one did (or
failed to do), the more one keeps thinking of the act (or absence of it), and the
more one wants to restitute what one did wrong.

Second, the componential responses and the guilt response are conceived as
stemming from the inductive situational power transgressing a person’s threshold.
The threshold represents the sensitivity of the person. In principle, a person’s
threshold can differ depending on the kind of response: three componential re-
sponses and one guilt response.

Third, it is assumed that all four kinds of responses (the three componen-
tial responses and the guilt response) show individual differences that are based
upon one and the same kind of sensitivity, called guilt-proneness. The unidimen-
sionality of guilt is not an essential assumption but a provisional assumption.
Only if this assumption is rejected will a multidimensional view be taken. To rep-
resent individual differences, persons are thought of as having guilt thresholds.
These thresholds can differ from person to person, and hence they reflect guilt-
proneness. The lower the threshold, the higher is the guilt-proneness.

An inventory was constructed with a set of situations differing in degree
of guilt induction. In our main study, four kinds of questions were presented
to participants: (a) whether a negative self-evaluation would occur (supposing
that Component 3 can be differentiated from Component 2), (b) whether one
would keep thinking of what one did, (c) whether one would be inclined to
restitute what one did wrong, and (d) whether one would feel guilty. Normally,
componential responses are covert, but in order to study their relation with guilt
feelings, there is no other way then to make them overt, in this case by asking
for self-reports. This view on guilt feelings was formalized into a psychometric
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model in order to test the assumptions explicitly.

1.3 The Model

The model we used to analyze the data and to test the componential structure of
guilt is an adaptation of the MIRID (Model with Internal Restrictions on Item
Difficulty, Butter, De Boeck, & Verhelst, 1998). The adaptation was described
in Butter (1994) and is very similar to the original model. The model has the
following ingredients, which will be explained here for the case of guilt:

1. It is assumed that the probability for a person to feel guilty in a situation
depends on the person’s threshold for feeling guilty and on the situation’s
guilt-inducing power. The probability of feeling guilty is assumed to be a
function of the difference between both, with chances being higher than
1 out of 2 if the guilt-inducing power exceeds the guilt threshold. More
specifically, the logit of the probability of feeling guilty is modeled as
follows:

Logit [P (Xij = 1|θi)] = aj (βj − θi) (1.1)

with P (Xij = 1|θi) indicating the probability of person i (i = 1, . . . , I)
feeling guilty in situation j (j = 1, . . . , J), and logit[P (Xij = 1|θi)] =
ln {P (Xij = 1|θi) / [1− P (Xij = 1|θi)]}; with θi denoting the guilt threshold
of person i, called the person parameter ; with βj denoting the guilt-
inducing power of situation j, called the item parameter ; and with aj

being a weight for situation j, called the discrimination value, in order
to allow situational differences in how much the guilt probability depends
on the difference between βj and θi. The aj are not called parameters,
because they were not estimated in the strict sense, see further.

2. It is assumed that the total situational guilt-inducing power is a weighted
sum of contributions from different components, which can be expressed
as a linear function:

βj =
K∑

k=1

σkβjk + τ (1.2)

with σk denoting the weight of the contribution of the component of type
k (k = 1, . . . , K); with βjk denoting the kth type of contribution from
situation j; and with τ denoting an additive scaling parameter.



1. A Componential IRT Model for Guilt 31

As a result, the βj are no longer basic parameters as in Equation 1.1 of
the model, but instead the βjk and the σk are basic parameters.

3. The probability of a componential response is considered a function of the
common underlying threshold θi and of the component-specific situational
guilt-inducing power, represented in the parameter βjk :

Logit [P (Xijk = 1|θi)] = ajk (βjk − θi) (1.3)

with P (Xijk = 1|θi) indicating the probability of person i to show com-
ponential response k to situation j; with ajk indicating the weight of the
difference between the person threshold (θi) and the guilt-inducing power
of situation j with respect to component k (βjk).

Note that the βjk are situational parameters associated with the compon-
ents. Consequently, the components involved in the model (and not just
Component 1 and Component 2) may also be thought of as located in
the situation and not in the person. This is true for the guilt-inducing
powers, but not for the componential responses themselves. The compon-
ential responses are not situational but personal in two ways. First, the
responses depend also on the θi, the personal threshold, so that individual
differences will be displayed in the same situation. Second, the responses
also depend on the ajk. A lower discrimination weight is equivalent to a
larger random part in the responses. In our design, the random part per
component is not distinguishable from the person-by-situation interaction
for the component in question. Hence, the lower the ajk for a component,
the more the componential responses depend on the particular pairing of
a person and a situation.

1.3.1 Identification

Like in the Rasch model, the scale of the item parameters and the person
parameter is identified only up to an additive constant: if another origin were
chosen such that θi* = θi+ c, this could be compensated for by rescaling the
β-parameters (βj and βjk). The βjk have to be transformed into βjk* = βjk + c,
and the same holds for the βj , βj* = βj + c. Butter et al. (1998) described the
consequences this has for the additive scaling parameter and for the component
weights. The value of the new additive scaling parameter, τ*, follows from
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β∗j =
K∑

k=1

σkβjk + τ + c =
K∑

k=1

σk

(
β∗jk

)
+ τ∗ (1.4)

Solving this equation for τ∗, using the fact that β∗jk = βjk + c, gives :

τ∗ = τ + c

(
1−

K∑

k=1

σk

)
(1.5)

Given that linear weights are invariant under translations of the scale (See
also, Butter et al., 1998), the component weights σk are identified and remain
invariant under the scale transformations just described. To make the para-
meters identifiable, an identifiability constraint is needed. Although it seems
to follow from Equation 1.5 that the identifiability constraint may be imposed
on τ , this would not always solve the problem: if the sum of the weights σk

is equal to 1, then the parameter τ becomes invariant under scale transforma-
tions, resulting in a special case of the model which is not identified in terms
of its difficulties (βj and βjk) (Butter et al., 1998). Therefore, an identification
constraint is imposed on the βjk: the mean βjk is fixed to zero.

1.3.2 The discrimination values in the OPLM and the

OPLM-MIRID

The model just presented is the MIRID (Model with Internal Restrictions on
Item Difficulties) as described by Butter et al. (1998), except for the aj and the
ajk (discrimination values). The original MIRID has no discrimination values.
With the aj and the ajk, the model is called the OPLM-MIRID (Butter, 1994).

The name ‘OPLM-MIRID’ can be clarified by explaining the OPLM (One
Parameter Logistic Model; Verhelst & Glas, 1995. This model differs from the
Rasch model only in that it allows for different but fixed discrimination values.
Hence, in the OPLM and in the OPLM-MIRID, these discrimination values
are integer constants instead of parameters to be estimated. They are fixed a
priori to the estimation of the difficulty parameters (β), so that the items have
only one parameter. Therefore, like for the original MIRID, a CML formulation
(conditional maximum-likelihood; Molenaar, 1995) is possible, and basically the
same estimation equations can be followed as described by Butter et al. (1998).

Following a CML approach (Fischer, 1977, 1983, 1995; Molenaar, 1995) means
that the parameters are estimated by conditioning on the sum of the discrimin-
ation values of items the person agrees upon. In that way, given the sum-score,
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the probability of a specified response pattern can be estimated independently
of the value of the person parameter (the guilt-proneness of a person). The
CML approach provides an excellent basis for statistical testing (Fischer, 1977,
1983, 1995).

To determine the values for the aj and the ajk, the same approach as im-
plemented in the OPLM-program (Verhelst, Glas, & Verstralen, 1994) was fol-
lowed. Based on a heuristic, the OPLM-program can suggest a reasonable set
of discrimination values. This heuristic is based upon a least-squares procedure,
under the assumption that the person parameters of respondents with the same
unweighted sum score is approximately the same. Finally, the estimates of the
discrimination indices are transformed into positive integers with a maximal
range of 1 to 15. Given a user-specified geometric mean, OPSUG, a module
in the OPLM program, suggests a set of discrimination values. The higher the
chosen geometric mean, the larger the differences between the discrimination
values of the items can be, and also the higher is the risk of capitalization
on error. Therefore, the manual of the OPLM program (Verhelst et al., 1994)
suggests to start with a value not higher than 3.

1.3.3 MIRID and LLTM

MIRID differs from the Linear-Logistic Test Model (LLTM; Fischer, 1973, 1983,
1996). The structure of the LLTM for the guilt-inducing power regarding the
final response, given in Equation 1.6, is identical to the structure of Equation
1.2, and also, in the LLTM, item parameters are modeled as linear contributions,
but so-called complexity factor values (qjk) take the role of the βjk in (2). These
complexity factor values are a priori given, and hence are constants, whereas
the βjk are to be estimated parameters. The matrix Q describes the situations
a priori in terms of the components. The LLTM for the guilt-inducing powers
regarding the final response is given in Equation 1.6.

βj =
K∑

k=1

σkqjk + τ (1.6)

For all values of j and for Component x, if k = x, qjk 6= 0 and if k 6= x, qjk = 0.
In a similar way, Equation 1.6 applies to the componential guilt-inducing powers
as well.

In the LLTM, the so-called componential items are not treated differently
from the so-called total items, except for a difference in their q-vector: for com-
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ponential items, for only one value of k, qjk 6= 0, whereas for the other values of
k, qjk = 0. In contrast with the LLTM, the MIRID does not require any a priori
knowledge about the size of the componential contributions qjk (componential
guilt-inducing powers), as in contrast to the qjk-values, the βjk-values are para-
meters to be estimated. In other words, MIRID estimates the LLTM Q-matrix.
The weights of the contribution (σk) are parameters in both models, and as
such, they are to be estimated.

Applied to our guilt questionnaire, the LLTM has a serious drawback in that
exact knowledge about the components is needed. For example, we do not know
to which degree brooding (our fourth component) is elicited by each of the
situations (size of componential contributions qjk). The main advantage of the
MIRID is that these values can be estimated from the data. In emotion research,
this situation is common, because researchers do not have the required quant-
itative information about the components of emotions. Often the knowledge of
researchers is restricted to qualitative knowledge, meaning that they have an
idea about the components but do not know anything about the size of their
contributions to the emotion or about the degree to which these components
are elicited by situations. The size of the contribution can be estimated with
the LLTM as the basic parameters, but the components themselves cannot.

1.3.4 Estimation and testing

The parameters of the OPLM can be estimated with several IRT programs like
the previously mentioned OPLM program of Verhelst et al. (1994). For the es-
timation of parameters of the OPLM-MIRID, we used the MIRID program of
Butter (1994). Given that this program has problems running on the current
generation of computers, we also wrote a new Windows-oriented program (See,
Smits & De Boeck, 2003; Smits, De Boeck, Verhelst, & Butter, 2001) for estimat-
ing the item parameters under a CML formulation of the model via an iterative
Newton-Raphson procedure (Gill, Murray, & Wright, 1981), which is similar to
the approach Butter (1994) used in his program. Both programs lead to exactly
the same results. When preferring an MML (Marginal Maximum-Likelihood)
formulation of the models, one can estimate the parameters of the OPLM and
the OPLM-MIRID with the PROC NLMIXED procedure of SAS V8 (1999),
as explained in Rijmen, Tuerlinckx, De Boeck, and Kuppens (in press) and in
Smits and De Boeck (2003). Using these approaches, it was found that for this
application, all programs lead to similar results. Using PROC NLMIXED, a
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probit link function can be specified instead of a logit link function, so that
the normal ogive version of the MIRID (NO-MIRID) can be estimated. After
multiplying the component-item parameters and the additive scaling constant
by 1.7, similar results are again obtained for all item parameters.

The check on the chosen a priori discrimination values is a goodness-of-fit test
of the model taking the suggested a priori discrimination values into account.
The OPLM-MIRID was tested as follows: first, an OPLM was fitted to the
data, and, because the OPLM-MIRID is a restriction of the OPLM, the fit
of the OPLM-MIRID was then compared with the fit of the OPLM using a
likelihood-ratio test (as explained in Butter et al., 1998.

The fit of the OPLM was determined with two statistics: the R1c-statistic
and the DIMTEST procedure (Stout, 1987). Like the Martin-Löf test, the R1c-
statistic was developed to have power against violations of monotone increasing
item response functions (parallel if the discrimination values are equal, and
proportional to the discrimination values if they differ a priori). It is a com-
bination of Pearson chi-square tests of observed versus expected frequencies on
the item level, and it has an asymptotic χ2-distribution (Glas, 1988, 1989; Glas
& Verhelst, 1995). As Glas (1981, 1988) has shown, this statistic is equivalent
to the Martin-Löf T-statistic, but unlike the Martin-Löf T-statistic, the R1c-
statistic fits the framework of the generalized Pearson statistics. Because the
R1c-statistic is not very sensitive for violations of unidimensionality (Wollen-
berg, 1982), we also used the DIMTEST procedure (Stout, 1987; Stout, Douglas,
Junker, & Roussos, 1993; Stout, Nandakumar, Junker, Chang, & Steidinger,
1992) to test for unidimensionality. Only if the DIMTEST analysis did not re-
ject the hypothesis of unidimensionality and if the R1c-statistic did not reject
the OPLM with the chosen discrimination values, did we conclude that the
OPLM showed a reasonable fit.

1.3.5 Hypotheses

In terms of our MIRID approach, there are two hypotheses at the basis of the
study:

1. The same dimension θi –guilt-proneness– underlies all four kinds of re-
sponses: the three componential responses and the final response.

2. The guilt-inducing power (the item parameters for guilt) can be explained
as a linear function of the guilt-inducing powers for the componential guilt
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responses (the item parameters for the components), as implied by the
MIRID.

If the first hypothesis holds – that is, if the responses are unidimensional–
then the total score of the inventory, including the responses to all four kinds
of questions (weighted with the discrimination values ajk or aj), can be used as
a measure of situational guilt-proneness. If the first hypothesis does not hold,
then we will use a multidimensional variant of the MIRID (Butter, 1994), with
one dimension for each kind of questions. If the second hypothesis holds (inde-
pendently of the first) –that is, if the guilt-inducing powers can be decomposed
into componential contributions– then the internal validity of the inventory will
have been shown, given that the responses would then agree with a theory of the
basis for situational guilt feelings. An interesting feature of the psychometric
modeling method followed is that it combines theory and measurement, given
that the measurement model is also a process theory of guilt. Hence, the psy-
chometric model is not only a tool for measuring and investigating the internal
validity of an inventory, but also, more importantly, it is a formalization of a
psychological theory.

In the following, first the collection of the guilt-inducing situations is de-
scribed. The situations are needed to construct an inventory. Second, the ex-
ploratory study is described. It was set up to explore some properties of the
Components 1 and 2, and to find out whether the Components 2 and 3 can be
differentiated empirically. Third, the main study is described, which is set up
to test the componential theory of guilt using the OPLM-MIRID. The guilt-
inducing situations are used in both studies.

1.4 Collecting the situations

1.4.1 Method

To collect the situations, a group of young people (17 to 19 years old) was asked
to describe situations about which they had felt guilty. Because we wanted
to make use of the situations in the inventories, it was important that their
descriptions be as clear as possible. The descriptions should give a vivid and
explicit description of what happened.

We used an open format with two parts: a common part and a specific part,
referring to one of three different kinds of situations: (a) work or study situation,
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(b) personal relationships, and (c) leisure time.
The common part of the instructions was as follows: We would like you to

describe a situation you felt guilty about. To help you, we give you a set of ques-
tions, which can guide you describing the situations as completely as possible:

1. What happened?

2. Were other people involved?

3. Why did you feel guilty?

4. What were you thinking?

5. Were you thinking about yourself or about what you did?

6. When did you start feeling guilty?

7. How long did you feel guilty?

8. Why, in your opinion, the feeling disappeared, and did you do something
to let the feeling disappear?

The three specific questions were:

1. Could you describe a situation related to your work or studies?

2. Could you describe a situation related to your personal relationships?

3. Could you describe a situation related to your free time?

Under each of these three questions a half page was left to describe the requested
situation.

1.4.2 Participants

Forty-six 17- to 19-year-old, high school students, 20 males and 26 females, were
each given the task to describe three situations, one of each type.

1.4.3 Selection of the situations

Ten stories were selected using the following six criteria: (a) understandabil-
ity, (b) equal representation of each type of situation, (c) variation in content,
(d) variation in assumed guilt-inducing power, (e) conformity with the environ-
ment of 18-year-old persons, and (f) equal representation of stories stemming
from males of females.
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In order to use the descriptions in our study, all information about responses
from the person in the situation was deleted and only the information about
the situation was retained. We asked for information about the reactions (see
various questions) to make the task more natural for the respondents and to
check whether and to what degree guilt was evoked. We subsequently omitted
descriptions of reactions in order to avoid suggesting how other respondents
would respond to the situation when used in an item in the inventory. The ten
selected stories are listed in the Appendix, together with a keyword for each
situation. Hereafter, we will use these keywords to refer to the situations.

1.5 Exploratory study

This small study was set up to check whether components 1 and 2 were mainly
situational and whether components 2 and 3 could be differentiated. We asked
12 judges to judge each of the 10 situations with respect to the three components
on a two-point scale (1 = present, 0 = absent): responsibility (component 1),
norm violation (component 2), and negative self-evaluation (component 3).

In order for an appraisal component to be almost exclusively situational in-
stead of being also a person-dependent reaction to the situation, all persons
should agree on their appraisal of the situations. This means that the intraclass
correlation coefficient ICC(2, k) (Shrout & Fleiss, 1979), or the inter-judge reli-
ability, needs to be very high over situations, and the absolute agreement must
be very high as well.

To test the differentiation of component 2 and 3, the correlation over situ-
ations was derived. If this correlation is close to 1, the two components are
not sufficiently differentiated for the purpose of constructing a componential
inventory.

The results concerning the situational character of component 1 are as follows:
The intraclass correlation coefficient for the first component was very high (.91),
and the absolute agreement was also high (for six situations, the agreement
between the judges was higher than 90%). Therefore, for our set of situations,
responsibility can be considered a rather objective appraisal, primarily based
on the situation descriptions. Consequently, responsibility will not be included
as a component in the main study.

The components 2 and 3 were less stable, meaning that the participants did
not agree as much as for component 1. The intraclass correlation coefficient was
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.64 for component 2 and .73 for component 3. The absolute agreement between
the judges was also not very high (only in two situations was the percentage of
agreement higher than 90%). This result is contrary to what we expected for
component 2. Because this component must be considered a personal reaction,
it is a candidate for inclusion in the next study.

It turns out that component 2 and component 3 can hardly be differentiated.
The correlation between the two components was as high as .98 (p < 0.001)
using the means over persons. Therefore, in the main study, component 3 will
be omitted and replaced by component 2. As mentioned earlier, this is because
component 2 is more often cited in the literature (Baumeister et al., 1995; Izard,
1978; Johnson-Laird & Oatley, 1989; Jones & Kugler, 1993; Jones et al., 1995).

1.6 Main study

The structure of guilt was examined using an inventory based on the ten pre-
viously selected situations, each followed by four questions: one for each of the
three components (2, 4 and 5) and one checking whether a respondent would
feel guilty in the situation. The questions related to the components are called
the componential items, and the guilt question is called the composite item.

It is common to use situation descriptions in an inventory (e.g., Ferguson &
Crowley, 1997). It is also common to use componential questions along with
a question about the (final) response under consideration. Componential ques-
tions are used in studies about the components of emotions (e.g., Frijda et al.,
1989; Wicker et al., 1983), although not in an assessment context.

The inventory was administered to a group of persons and the data were ana-
lyzed with the OPLM-MIRID. The analysis allows us to test the two previously
mentioned hypotheses: (a) unidimensionality over components, and (b) guilt-
inducing power as a weighted sum of componential guilt-inducing powers.

1.6.1 Method

The instructions for the questionnaire were as follows:
‘Please read the following stories and try to imagine you were the one this

was happening to. After each story the following four questions are presented.

1. Do you feel like having violated a moral, an ethic, a religious and/or a
personal code?
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2. Do you worry about what you did or failed to do?

3. Do you want to do something to restitute what you did or failed to do?

4. Do you feel guilty about what you did or failed to do?

Answer by circling the number of your choice. ‘0’ means ‘no’, ‘1’ means ‘not
likely’, ‘2’ means ‘likely’, and ‘3’ means ‘yes’. Answer all questions as well as
you can. The right answer is how you would feel in the given situation.’
Subsequently the ten situations were presented, each followed by the four ques-
tions just mentioned.

1.6.2 Participants

The inventory was administered to a group of 270 students between 17 and 19
years old: 140 females and 130 males from three high schools. Each school dis-
tributed the inventories to students. The students were given some time during
the day to fill in the inventories individually. Within 2 weeks, 268 completed
inventories were returned (138 from females and 130 from males).

1.6.3 Descriptive statistics

In Table 1.1, the mean and standard deviation are given for each item. As could
be expected, the means of the items varied mainly between situations rather
than between components. The intraclass correlation coefficients, ICC(3,k) (Shrout
& Fleiss, 1979), between the components and over the situations, and the ana-
logous coefficient between the situations and over the components were respect-
ively equal to .92 and .20. This means that clearly more variance was associated
with the kind of situation than with the kind of component.

1.6.4 Modeling

Because the MIRID (and the OPLM-MIRID) was formulated for binary data,
the data were coded for yes (‘0’ and ‘1’) and no (‘2’ and ‘3’). This was a natural
dichotomization, given that ‘1’ meant ‘not likely’ and ‘2’ meant ‘likely.’ The data
were fitted using the MIRID program of Butter (1994). This program follows a
CML approach to parameter estimation.

The unidimensional OPLM-MIRID can fit the data only if the OPLM (Ver-
helst & Glas, 1995; Verhelst et al., 1994) fits. The same discrimination values
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apply as for the OPLM, but the composite item parameters are restricted to be
a linear combination of the componential item parameters. As mentioned above,
discrimination values are suggested prior to estimation of the model parameters.
We chose a value of 2 for the geometric mean of the discrimination values, so
that variation in the discrimination values was rather low.

The discrimination values of the OPLM are given in Table 1.2. It can be seen
in Table 1.2 that the discrimination values varied primarily between the situ-
ations rather than between the components. When intraclass correlation coeffi-
cients ICC(3,k) (Shrout & Fleiss, 1979) were calculated between the components
and over the situations, and the analogous coefficient between the situations and
over the components, they turn out to be .62 and -.09. Some situations were
more discriminative than others with respect to the guilt-proneness of the parti-
cipants, whereas the different components and the composite items were about
equally discriminative.

The OPLM was not rejected: the log-likelihood value was -4098.745 and the
R1c-statistic was 117.105 (p = .48, df = 39). The assumption of unidimensional-
ity was tested independently using the DIMTEST procedure (Stout, 1987; Stout
et al., 1992, 1993). For calculating the DIMTEST statistics, 85.07% of the exam-
inees were included. The value for the T-statistic, measuring unidimensionality,
was .663 (p = .254), and the value for the more powerful T’-statistic, based
on refinements of the DIMTEST-procedure (Nandakumar & Stout, 1993), was
.814 (p = .208), meaning that our data can be considered unidimensional. A
second indication of the unidimensionality of the components, and hence, of the
inventory is the rather high Cronbach’s alpha of 0.87. This is a high value, given
that it is based on four rather different questions related to only 10 situations.

To check whether the OPLM-MIRID restrictions were reasonable for these
data, a likelihood-ratio test was used to compare the fit of the OPLM-MIRID
with the fit of the OPLM. Given that the OPLM-MIRID had a log-likelihood
value of -4102.875, the value of the likelihood-ratio test statistic G was
−2[−4102.875− (−4098.745)] = 8.26, whereas the critical χ2(6) value was 12.6
(α = .05). As a result, the OPLM-MIRID was not rejected and could be con-
sidered a reasonable model for the data.

The values for the item parameters of the componential items and their es-
timated standard errors are given in Table 1.3. A higher value within the same
column means a higher componential contribution to the guilt-inducing power.
Over columns, the componential weights also help to determine the contribu-
tion, given that each of the componential parameter values is multiplied by its



1. A Componential IRT Model for Guilt 43

T
A

B
L
E

1
.2

.
D

is
cr

im
in

a
ti

o
n

va
lu

es
o
f
th

e
co

m
p
o
n
en

t
it

em
s

a
n
d

th
e

co
m

p
o
si

te
it

em
s

in
th

e
O

P
L
M

a
n
d

th
e

O
P

L
M

-M
IR

ID

Si
tu

at
io

n
C

om
po

ne
nt

2
C

om
po

ne
nt

4
C

om
po

ne
nt

5
G

ui
lt

it
em

B
re

ak
-u

p
1

2
2

2
T
ru

m
pe

t
2

1
1

1
Sh

oe
s

1
2

2
2

M
ov

ie
3

3
2

2
D

is
cu

ss
io

n
2

2
2

2
Se

cr
et

2
2

2
2

Y
ou

th
m

ov
em

en
t

3
3

3
3

P
en

pa
l

3
2

2
3

Ja
ck

et
1

2
2

1
H

om
ew

or
k

3
3

3
3



44 Dirk J. M. Smits , Paul De Boeck

corresponding weight.
For example, the componential contributions for copying another person’s

homework were all three lower than those for not preventing an accident during
the activities of a youth movement group. By consequence, the young people
in our sample were less likely to feel guilty for copying homework then for not
having prevented an accident.

The estimated weights or the importance of the components for the guilt-
inducing power are given in Table 4, together with an estimation of their stand-
ard errors. The standard errors indicate that all components had a weight that
differed significantly from zero. Component 4 (worrying about what one did or
failed to do) seemed to be the component with the largest contribution.

The item parameters of the guilt items can be reconstructed from the estim-
ated componential parameters of the OPLM-MIRID (in Table 1.3 and 1.4). For
each situation, they are the weighted sum of the values for the three compon-
ents (Table 1.3), using the weights of the components and the additive scaling
parameter (Table 1.4). For example, the reconstructed item parameter (guilt-
inducing power) of the first situation for the guilt item amounts to (.245 * -.245)
+ (.591 * .507) + (.300 * .089) - .082 = .184. All reconstructed item parameters
(guilt-inducing power) are given in the last column of Table 1.4. Note that the
sum of the componential weights is only slightly larger than 1.00, namely 1.136,
and the intercept is nearly zero (-.082), so that the linear function approached
a weighted average.

Comparing the reconstructed values of the guilt item parameters (10 in total),
as estimated by the OPLM-MIRID, with the parameters of the guilt items, as
estimated by the OPLM without the MIRID restrictions, yielded a correlation
of .99.

We also fitted the 2PL model and its combination with the MIRID. For
the component item parameters as well as for the item weights (discrimina-
tion values or parameters), the correspondence between the sets of parameters
was very high. For the 2PL-MIRID and the OPLM-MIRID they were .99 for
the component item parameters and .85 for the item weights (whereas for the
OPLM, the weights were necessarily integer values). Most importantly, the es-
timates of the component weights were nearly the same in both approaches
(.245, .591, and .300 for the OPLM-MIRID, and .247, .545, and .315 for the
2PL-MIRID). Finally, the fit of the 2PL model was not significantly better
than the fit of the OPLM: the value of the likelihood-ratio test statistic G was
−2[−5221.5 − (−5201)] = 41, and the fit of the 2PL-MIRID was not signific-



1. A Componential IRT Model for Guilt 45

T
A

B
L
E

1
.3

.
It

em
p
a
ra

m
et

er
s

o
f

th
e

co
m

p
o
n
en

t
it

em
s

(a
n
d

th
ei

r
st

a
n
d
a
rd

er
ro

rs
)

a
n
d

re
co

n
st

ru
ct

ed
it

em
p
a
ra

m
et

er
s

o
f

th
e

co
m

p
o
si

te
it

em
s

a
s

es
ti

m
a
te

d
w

it
h

th
e

O
P

L
M

-M
IR

ID

Si
tu

at
io

n
C

om
po

ne
nt

2
C

om
po

ne
nt

4
C

om
po

ne
nt

5
C

om
po

si
te

it
em

B
re

ak
-u

p
-.
24

5
(.

11
8)

.5
07

(.
07

5)
.0

89
(.

06
7)

.1
84

T
ru

m
pe

t
-1

.5
36

(.
11

5)
-1

.9
71

(.
15

7)
-2

.0
62

(.
17

2)
-2

.2
42

Sh
oe

s
-.
74

5
(.

13
0)

-.
06

0
(.

06
2)

-.
32

1
(.

06
7)

-.
39

6
M

ov
ie

-.
12

2
(.

04
8)

.0
09

(.
04

7)
.0

53
(.

06
6)

-.
09

1
D

is
cu

ss
io

n
.5

63
(.

07
8)

.7
75

(.
08

1)
1.

09
4

(.
10

4)
.8

42
Se

cr
et

1.
27

2
(.

11
6)

1.
00

6
(.

09
5)

.8
30

(.
08

9)
1.

07
3

Y
ou

th
m

ov
em

en
t

.3
52

(.
05

5)
.6

04
(.

06
1)

.1
70

(.
05

1)
.4

12
P
en

pa
l

-.
19

3
(.

04
9)

-.
27

9
(.

05
8)

-.
10

8
(.

06
5)

-.
32

7
Ja

ck
et

-.
07

7
(.

12
3)

.8
14

(.
08

7)
1.

46
1

(.
13

3)
.8

19
H

om
ew

or
k

-.
62

3
(.

05
5)

-.
71

8
(.

05
3)

-.
54

1
(.

05
3)

-.
82

1



46 Dirk J. M. Smits , Paul De Boeck

TABLE 1.4. Weights of the components and their Standard Errors, estimated with
the OPLM-MIRID

Basic parameter Value SE
Component 2 (norm violation) .245 .107
Component 4 (worrying) .591 .118
Component 5 (restitution) .300 .118
Additive scaling parameter -.082 .033

antly better than the fit of the OPLM-MIRID: the value of the likelihood-ratio
test statistic G was −2[−5225.5− (−5203.5)] = 44. The critical χ2(39) value for
both likelihood-ratio test statistics is 54.6 (α = .05). Note that the log-likelihood
values for the OPLM and the OPLM-MIRID (-5201, -5203.5) are lower than the
previously mentioned log-likelihood values for the same models, as for the com-
parison with the 2PL models, we had to switch from the CML-framework to
the MML-framework, which implies restrictions on the person distribution.

1.7 Discussion

Given the results in Table 1.4, components 2, 4, and 5 must be seen as important
components. They are not only important, but in this study they are sufficient
to explain the guilt feelings. Together they give a full explanation of situational
guilt feelings as measured with this questionnaire.

Comparing this structure with the evidence in the literature, we came to the
following conclusions. (1) In our study, component 1 is not needed to explain
guilt, given that three other components are sufficient to explain the data. Com-
ponent 1 probably has an effect only through the other components. There is
no room left for responsibility to have an independent effect beyond norm viola-
tion, worrying, or an inclination to restitute. This view is shared by the authors
who stated that component 1 is part of the guilt-inducing situation and not
part of the guilt feeling itself (Lindsay-Hartz, 1984; Lindsay-Hartz et al., 1995;
Wicker et al., 1983).

(2) The fact that the components 2 and 3 could not be differentiated in
the exploratory study contrasts with the view of Lindsay-Hartz (1984) and
Lindsay-Hartz et al. (1995). In these articles, a very clear-cut distinction was
made between the two components. In our study, there is a nearly perfect cor-
relation between these components over situations, so that it did not make sense
to distinguish between them. Perhaps our set of situations is suboptimal for dif-
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ferentiating these two components, given that it is limited to only 10 situations.
(3) Component 4 is by far the most important component. This result is con-

sistent with the results of Ferguson and Crowley (1997). These authors made
the distinction between ruminative guilt and non-ruminative guilt. Ruminat-
ive guilt, as measured by the Test of Self-Conscious Affect–Modified [TOSCA-
M] –an adaptation of the TOSCA-scale to which a ruminative guilt response
was added (Tangney, Wagner, & Gramzow, 1989)– was found to be related to
other measures of guilt-proneness, such as the Personal Feelings Questionnaire–
2 [PFQ-2] and the Guilt Inventory [GI], whereas the non-ruminative guilt did
not highly load on the latent construct of guilt-proneness. The importance of
component 4 is supported by this study.

(4) We found no support in the literature for the configuration of exactly
the three components of guilt we retained. The findings of Tangney (1995)
and Izard (1978) are most closely related to those of our study. According to
Tangney (1995), guilt comprises the components 2 (norm violation), 3 (negative
self evaluation, which is in our study enclosed through component 2), 4 (covert
actions with focus on the act), and 5 (emotivations and action tendencies related
to the tendency to restitute). The difference with Izard (1978) is that in her
view component 1 is included. In sum, the view of Tangney (1995) is very much
in line with our findings, although we could not differentiate between norm
violation and negative self-evaluation (components 2 and 3). The difference
with Izard’s (1978) view is also minor, but from our results we would consider
feeling responsible a factor with an indirect effect on guilt through the other
three components instead of having a direct effect on situational guilt feelings.

The components discussed here are seen as contributions to the situational
guilt-inducing power. On the person’s side, there is only one dimension respons-
ible for the responses. In other words, the person’s thresholds for the compon-
ential responses are the same as the thresholds for guilt responses. No evidence
was found for multidimensionality. Our model is one in which different kinds of
componential proneness are the same as guilt-proneness. This model supports
the idea that the components are partial guilt responses rather than responses
external to guilt but that effect guilt.

As can be seen in Table 1.3, the contribution of the components varies from
situation to situation: for example, the discussion situation (hurting a friend
in a discussion) and the jacket situation (a jacket you borrowed is stolen) have
about the same guilt-inducing power (.842 and .819 respectively), but in the
discussion situation the feeling of norm violation (component 2) is stronger
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than in the jacket situation, whereas the reverse is true for the inclination to
restitute (component 5). Feeling guilty in the discussion situation has more
to do with the feeling that one has violated a norm than feeling guilty in the
jacket situation, whereas feeling guilty in the jacket situation has more to do
with wanting to restitute.

In modeling emotion data, the person parameter can be conceptualized as a
latent trait as the basis for individual differences among persons. The value of
each person on the latent trait can be estimated and then correlated with other
related measures –for example, to validate a questionnaire. An advantage of our
approach is that, on the one hand, situational aspects and their structure can
be studied, and, on the other hand, a latent trait estimate can be obtained.
Thus, the current approach can be useful for different research questions, from
research about the (situational) process structure of emotions to research about
the relations between different latent traits, to questions about the validity of
questionnaires and of the theory behind them.

We will look now at the modeling approach we have followed. An important
question is whether there are any advantages to using this kind of formal model.
In our opinion, there are at least three.

1. Using the MIRID (or OPLM-MIRID), it is possible explicitly to test the
process structure of an emotion. By using such a model, one can look very
closely at the underlying processes of feeling guilty, and one can determine
which components are necessary and sufficient to explain these feelings.
This reason is valid only as far as the self-report method can be trusted.
For guilt, however, it is hard to find an alternative method.

2. In the approach we followed, inventory construction, hypothesis testing
about the nature of an emotion, and measurement go hand in hand. Test-
ing the model is testing a hypothesis about guilt, based on a particular
design of the inventory, and testing the substantive model is also testing
a measurement model.

3. MIRID offers a rich kind of information: in terms of regression analysis,
one can state that not only the weights (σk) of the predictors can be es-
timated, but also the predictor values (βjk). The latter are very useful in
situations in which only a limited amount of information is available about
the predictors –for example, just their presence or absence– whereas noth-
ing is known about their degree or exact value. Further, a componential
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unidimensional or multidimensional, because the componential analysis is
concentrated on the item parameters.

An important condition for the model to be relevant is that a test design
(Embreston, 1985) is followed, with situational scenarios and componential
questions for each scenario. Most inventories do not have such a systematic
structure. A potential drawback of this type of design is its transparency. We
can only trust that the transparency does not prevent the participants from
responding honestly.

In this study we used only 10 situations to test our componential theory
of guilt and to construct an inventory. One should realize that our sample of
situations is small, as is the range of ages of persons in our study (17 to 19
years). These limitations as to the number of situations and the age of the
participants prevent us from making strong claims for generalization about the
process structure of guilt. Nevertheless, the approach we have taken is a new
and apparently promising way for examining and testing the process structure
of emotions, combining an individual-differences approach and a measurement
model with testing a general theory about the components of an emotion.

The componential approach we followed, complemented with a formal model,
is one that can be used for other emotions as well. Whether a model with a
unidimensional structure, a situational emotion-inducing power, and a personal
threshold would also apply to other emotions may be a fruitful empirical ques-
tion for future research to answer.

1.8 Appendix

The ten descriptions we selected in the first study, are listed below (translated
from Dutch to English), followed by the keyword used in the article:

1. You have been dating for some time a person you are not really in love
with. When you break up, you find out that he/she was in love with
you (and was taking the relationship very seriously). The break-up hurts
him/her considerably. (Break-up)

2. You have been a member of a brass band for some years now. As a result,
you learned to play trumpet for free. Now that you’re skilled enough, you
leave the band because you don’t like the members of the band any more.
(Trumpet)



50 Dirk J. M. Smits , Paul De Boeck

3. During the holidays, you are working as a salesperson in a clothing and
shoestore. One day, a mother with four children enters the store. One
of the kids wants Samson-shoes (Samson is a popular doll figuring in a
Belgian TV-series for children). The mother leaves the child with you
while she goes on to look for clothes for the other children. The child tries
on different types and sizes of shoes, but after a while the child gets tired
of fitting the shoes and refuses to continue. She picks a pair she has not
tried on before and you sell this pair to the mother afterward. The next
day, the mother wants to return the shoes because they do not fit. Your
boss takes back the shoes and reimburses the mother. The shoes have
been worn however, and they are dirty. Because of this, they cannot be
sold anymore. Your boss says that it doesn’t matter, and that everyone is
capable of mistaking the size of shoes. (Shoes)

4. A not so close friend asks you if you want to join him/her to go to the
movies. You tell him/her that you don’t feel like it, and want to spend a
quiet evening at home. That evening you do go out with a closer friend.
(Movie)

5. During a discussion, you make a stinging remark toward one of your
friends. You notice that it hurts him/her, but you pretend not to see
it. (Discussion)

6. A friend tells you something in confidence, and adds that he/she would
not like you to spread it around. Later, you do tell it to someone else.
(Secret)

7. You are a member of a youth movement. One day the group leaders hang a
rope between two trees, so you can glide from one tree to another. Jokingly,
some other members make the stop of the pulley unclear. You see them
doing it, but you do not help them. The following member, who wants to
glide to the other tree, did not see that the stop was made unclear. You
do not warn him/her. Halfway he falls from the rope, and he passes out.
(Youth movement)

8. You have a pen pal. You get bored of writing with him/her, and suddenly,
you stop corresponding with him/her. After one and a half year, he/she
writes you again, and again, but you do not respond. (Pen pal)
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9. You borrowed a jacket from a friend to wear when you go out. At the
party, you leave the jacket on a chair. When you are about to leave, you
notice the jacket has disappeared. In all probability, it has been stolen.
(Jacket)

10. One evening, you do not feel like doing your homework. The following day,
you copy the assignment of a friend who clearly has gone though a lot of
trouble finishing it. You get a good grade for your assignment, the same
grade as your friend. (Homework)
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Chapter 2

Latent item predictors with fixed
effects

Dirk J. M. Smits
Stephen Moore

ABSTRACT A nonlinear model, named the ‘Model with Internal Restrictions

on Item Difficulties’ (MIRID) is presented. It is a generalization of the LLTM, as

the item predictors are parameters to be estimated instead. Therefore, they will

be called ‘latent item predictors’ or ‘components’. Second, an extension of the

MIRID, named the Random Weights MIRID, is presented, in which the weights

of some components are assumed to be normally distributed over persons. Both

models are illustrated with an example on situational guilt feelings and with an

example on verbal aggression data.1

One of the basic models in item response modeling is the Linear Logistic
Test Model (LLTM, Fischer, 1973, 1977). In comparison with the Rasch model
(Rasch, 1960), the LLTM is based on a reduced number of item predictors.
In the Rasch model, item indicators are used as predictors, and therefore each
predictor weight is associated with only one item. These predictor weights are
often called difficulty parameters, or locations. In the LLTM item difficulties are
explained on the basis of item properties. The effect of an item is defined as the
weighted sum of item properties. These properties function as item predictors,
as predictors of the item effects. The weights of the properties express how
important the properties are in explaining the probabilities of a response. The
LLTM may be considered an item explanatory model.

1This manuscript is slightly adapted to fit in this thesis. For example, references to chapter
numbers in the book by De Boeck and Wilson are omitted.
Correspondence concerning this manuscript should be addressed to: Dirk J. M. Smits, K.U.
Leuven, Department of Psychology (H.C.I.V.), Tiensestraat 102, B-3000 Leuven, Belgium Ph:
003216/326133 Fax: 003216/325916 e-mail: Dirk.Smits@psy.kuleuven.ac.be
The research is financially supported by the IAP P5/24 from the federal OSTC, Belgium,
and by a GOA 2000/2-grant from the K. U. Leuven: ‘Psychometric models for the study of
personality’
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The requirement that the values of all item properties be known is both,
a strength and a limitation. The strength is that a fully specified hypothesis
can be tested, the weakness is that the hypothesis has to be fully specified.
In the current chapter, a model will be introduced with latent item predictors
(properties): The values of the item predictors do not have to be known a
priori, but they may have unknown values instead. These item predictors with
latent values will be called latent item predictors or components. Both terms will
be used interchangeable. The current model is called the Model with Internal
Restriction on Item Difficulties (MIRID, Butter, De Boeck, & Verhelst, 1998).
The MIRID can be considered a model containing latent item predictors with
fixed effects. It is considered an item explanatory model, as the LLTM but the
item properties are latent.

MIRID in its standard form will be explained in the first part of the chapter. In
the second part, an extension of MIRID will be explained in which the weights
of some of the components are randomly distributed over persons instead of
being fixed. This model is called the ‘Random Weights MIRID’ (RW-MIRID).
The RW-MIRID is an extension of MIRID that parallels the RW-LLTM as an
extension of the LLTM (Rijmen & De Boeck, 2002).

MIRID assumes a relationship between items. Some of the items are con-
sidered to be composite items in that it is hypothesized that they are based
on one or more elementary items. The more elementary items are component
items. The relations between all items are expressed in a relationship matrix
of items by component items (see Figure 2.1). A cell contains a ‘1’ if the item
denoted by the row, depends on the component item denoted by the column,
and a zero otherwise. The matrix relates items, and may not be considered a
property matrix.

Component 1 Component 2 Component 1 Component 2
item 1 item 2 item 4 item 5

item 1
item 2
item 3
item 4
item 5
item 6




1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1
0 0 1 1




FIGURE 2.1. Example of a relationship matrix

The items are grouped in two ways: item families and components. A compon-
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ent groups all items that rely solely on that component. Such items are called
component items. For example in Figure 2.1. Component 1 groups the items 1
and 4 and Component 2 groups the items 2 and 5. An item family groups a
composite item with the component items it is related with. An item family has
only one composite item, which is related to component items from all compon-
ents. Each component is represented in an item family with one and only one
component item, a different one depending on the item family. For example, in
Figure 2.1 there are two item families: (1) the items 1, 2, and 3, and (2) the
items 4, 5, and 6. This pattern of relations between items, and between items
and components is called here an item family structure. All model formulations
in this chapter will be based on this structure. However, MIRID models can be
formulated also for other kinds of relations between items, for example for a
hierarchical family structure in which lower-order composite items function as
component items in turn for higher-order composite items.

MIRID estimates the values of the latent item predictors (α), the latent coun-
terpart of the manifest values of the item predictors in the LLTM, and it also
estimates the fixed weights (β) of these predictors in determining the composite
item’s location. It will be explained that the values of the latent item predictors
are the item parameters of the component items. Although MIRID does not
directly estimate item parameters for the composite items, their locations or
difficulties are modeled indirectly as the linear combination of the the latent
item predictors.

The first application comes from a study on situational guilt feelings (Smits &
De Boeck, 2003). A brief description of the situational guilt study will illustrate
the item family structure described above. Subsequently, a formal representation
of the model will be given, followed by the results of the MIRID analysis of the
guilt data. As a second example, the chapter also illustrates MIRID using data
on verbal aggression.

In their study, Smits and De Boeck (2003) tested a componential theory of
situational guilt feelings by means of a questionnaire. The data are from 268
persons, 130 males and 138 females between the ages of 17 and 19. Situational
guilt feelings are assumed to rely on three components: (1) whether one feels
like having violated a moral, ethical, religious, or personal code in the situation,
(2) whether one worries about what one did or failed to do in the situation, and
(3) whether one wants to rectify what one did or failed to do in the situation.
The questionnaire contains 10 hypothetical situations (see Appendix 1), and the
participants were asked to respond to four questions per situation: one question
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for every component and one about guilt feelings.
This creates an item family structure: three component items and one com-

posite item per item family, all four about the same situation. The item about
feeling guilty in a situation is seen as a composite of the three component items
associated with the same situation. Each item family corresponds with one situ-
ation.

2.1 The model

2.1.1 The systematic component

Like most item response models, including the LLTM, the MIRID has a fixed-
effect part and a random-effect part in its systematic component (the one that
determines the response probabilities). To explain the formula for the fixed-
effect part, two new indexes are needed for the items: The index r (1, . . . , R)
denotes the components or the latent item predictors. The index s (1, . . . , S)
denotes the item family of which a component item or composite item is a part.
For the composite items, the index r will be set equal to R + 1. The index i (1,
. . . , I) denotes the item number, meaning that each value of i corresponds with
a particular combination of the indices r and s. The index p (1, . . . , P) denotes
the person.

In addition, two matrices will be introduced: a latent item predictor matrix
A and an componential weight matrix Ψ. The latent item predictor matrix A is
a matrix of items by latent item predictors. It contains the values (parameters)
of the latent item predictors: the αrs. See Figure 2.2 for a latent item predictor
matrix for the example of six items, as presented in Figure 2.1. In addition, a
constant predictor is added for the composite items. Each row of the matrix A

can be conceived of as a row-vector, and will be denoted by As.

Predictor 1 Predictor 2
Component 1 Component 2

Item family 1
Item family 2

(
α11 α21 1
α12 α22 1

)

FIGURE 2.2. Example of a latent item predictor matrix A

In order to see that Figure 2.2 presents the latent item predictor matrix, we
have expanded this matrix in Figure 2.3. The symbol A will further be used for
the restricted matrix as in Figure 2.2.
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Predictor 1 Predictor 2
Component 1 Component 2

Item family 1 item 1
item 2

(composite) item 3
Item family 2 item 4

item 5
(composite) item 6




α11 α21 0
α11 α21 0
α11 α21 1
α12 α22 0
α12 α22 0
α12 α22 1




FIGURE 2.3. Expanded latent item predictor matrix

The second matrix is the componential weight matrix Ψ, which is a matrix of
item type by latent item predictors. The item types are component item type 1
(referring to Component 1), component item type 2 (referring to Component 2),
. . . , component item type R (referring to Component R), composite item, see
Figure 2.4 for the example of six items as presented in Figure 2.1 and 2.2. The
matrix gives the weights of the predictors for each of the item types. Component
items (row 1 and 2) have a weight of one for the corresponding component, and
zero otherwise. This is reflected in an identity matrix in the upper left part.
Composite items have a weight for each of the components (β1, β2) and for the
constant (β0). A row of Ψ is denoted with Ψr.

Component 1 Component 2
Component item type 1
Component item type 2
Composite item




1 0 0
0 1 0
β1 β2 β0




FIGURE 2.4. Example of a componential weight matrix Ψ

The product of A and Ψ′ results in an item parameter matrix of item families
by item types. The item parameter matrix that corresponds to Figure 2.2 and
2.4 is shown in Figure 2.5. In this matrix, the item parameters for all items can
be found, organized per item family.

Component Component Composite
item type 1 item type 2 item

Item family 1
Item family 2

(
α11 α21 α11β1 + α21β2 + β0

α12 α22 α12β1 + α22β2 + β0

)

FIGURE 2.5. Example of an item parameter matrix
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The fixed-effect part of MIRID can now be formulated as:

(fixed-effect part)pi = β′i = AsΨ′
r (2.1)

As corresponds with the s-th row of the latent item predictor matrix A,
and Ψr corresponds with the r-th row of the componential weight matrix Ψ.
The products AsΨ′

r correspond to the cells in the item parameter matrix. For
example, A2Ψ′

1 is α12.
The fixed-effect part for the component item parameters is similar to the

fixed-effect part of a Rasch model, as for the component items β′i = αrs, see
Equation 2.1. This implies that the values of the latent item predictors are also
the item parameters of the corresponding component items. The fixed-effect
part for the composite items is a linear combination of the component item
parameters αrs with weights βr: β′i =

∑R
r=1 βrαrs + β0. The composite item

parameter is decomposed into the item parameters of the component items. In
other words the effect of a composite item is explained in terms of latent item
predictors and their weights.

As can be seen in Equation 2.1, the equation for the fixed-effect part is not
linear in its parameters anymore, since a product of two parameters is involved.
By consequence, the MIRID is not part of the family of generalized linear mod-
els, but it is a nonlinear model instead (McCulloch & Searle, 2001). Maris and
Bechger (2003) showed that the MIRID is a curved exponential family model,
which implies that, among other things, the conditional maximum likelihood
method can be used to estimate βr and αrs.

The random-effect part of the MIRID is the same as for the Rasch model.
It consists of θp0, called the random intercept or person parameter. We assume
θp0 ∼ N

(
0, σ2

θ

)
. The subscript 0 is used to differentiate the random intercept

from the other types of random effects to be presented later.

2.1.2 Conditional formulation of the full model

The conditional formulation of the MIRID for the odds of a response of 1 is
analogous to the corresponding formula for the Rasch model or the LLTM:

logit [P (Ypi = 1|θp0, β
′
i)] = θp0 − β′i (2.2)

with θp0 ∼ N(0, σ2
θ),

for the component items β′i = αrs,
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and for the composite items, β′i =
∑R

r=1 βrαrs + β0, with i as an index for the
pairs (s, r).

Equation 2.2 can be rewritten in terms of the previously used matrix notation
as follows:

logit [P (Ypi = 1|θp0,As,Ψr)] = θp0 −AsΨ′
r (2.3)

2.1.3 Identifiability of the MIRID

The well-known indeterminacy of the Rasch model has implications for the item
parameters of the MIRID (Butter et al., 1998). If we rescale so that β∗i = β′i +c,
then it follows that for the component items α∗rs = αrs+c and for the composite
items that α∗R+1,s =

∑R
r=1 βrαrs +β0 + c and also that α∗R+1,s =

∑R
r=1 βrα

∗
rs +

β∗0 , so that

β∗0 = β0 + c

(
1−

R∑
r=1

βr

)
(2.4)

The weights are invariant under translations of the scale, but the constant
is not. As for the Rasch model, a restriction is needed to render the model
identifiable. If

∑R
r=1 βr = 1, then β∗0 = β0, so that in this particular case,

fixing the constant will not solve the indeterminacy. The constant may not be
invariant under translations of the scale. Fixing the constant will render the
model identifiable only if

∑R
r=1 βr 6= 1. For the applications presented in this

chapter, we will fix the mean of the distribution of the person parameter to
zero. Another possibility is to fix one of the αrs or the mean αrs to a known
value.

For the identification of MIRIDs with other relations between the items then
the ones described by the item family structure, more restrictions may be needed
to render the model identifiable. Bechger, Verhelst, and Verstralen (2001) have
studied the identification of the Non-Linear Logistic Test Model, a larger family
of models of which the MIRID with an item family structure is a particular case.

A problem related to the identification is the existence of equivalent MIRIDs.
Bechger, Verstralen, and Verhelst (2002) described this problem for the LLTM,
and Maris and Bechger (2003) extended it to the MIRID. The MIRIDs for
different componential theories about an item set may be formally equivalent,
so that they cannot be differentiated. For example, if we modify the latent item
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predictor matrix A (see Figure 2.2) into A∗ and the componential weight matrix
Ψ (see Figure 2.4) into Ψ∗ as shown below, an equivalent MIRID is obtained.

Component 1 Component 2

A∗ =
Item family 1
Item family 2

(
α11 − α21 α21 1
α12 − α22 α22 1

)

Ψ∗ =
Component item type 1
Component item type 2
Composite item




1 1 0
0 1 0
β1 (β1 + β2) β0




The resulting item parameter matrix is shown in Figure 2.5. The problem
of equivalent MIRIDs is not surprising, since MIRID is a model with bilinear
terms, so that rotational invariance may play. Therefore, it is preferred to use
MIRID in a confirmatory way, which is implied when the item family structure
is imposed.

2.2 Applications of the MIRID

2.2.1 Results for the example on situational guilt feelings

We will reparameterize the model using the difference (β′i − θp0) instead of
(θp0 − β′i), so that the probability of feeling guilty for a certain person in a
specific situation is a function of the difference between a weighted sum of the
componential contributions and the personal guilt threshold. For the reverse
parameterization β′i − θp0, it holds that if the situational inductive power β′i
exceeds the personal threshold θp0, the probability of experiencing the compon-
tential or composite emotion becomes higher than .5.

The MIRID was fitted with the SAS V8 NLMIXED procedure (see, e.g.,
Wolfinger, 1999), using an adaptive Gaussian quadrature method as described
in Pinheiro and Bates (1995) with 15 quadrature points and Newton-Raphson as
optimization technique (see, e.g., Bunday, 1984; Gill, Murray, & Wright, 1981).
The program code is given in the Appendix 2. Note that based on the study of
Smits and De Boeck (2003), we knew that the Rasch model, and by consequence
also the MIRID, did not fit the data in absolute terms. However, for illustrative
purposes, we will use the MIRID here as if it fits. In the second part of the
chapter, a variant of the MIRID that allows for unequal but fixed discrimination
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values will be used, called the OPLM-MIRID (Butter, 1994; Smits & De Boeck,
2003).

The goodness-of-fit values of the original MIRID are 10549 (deviance), 10619
(AIC), and 10745 (BIC). These values are similar to the goodness-of-fit values
for the Rasch model: 10546 (deviance), 10628 (AIC), 10775 (BIC), meaning
that the MIRID fits the data about as well as the Rasch model. The values
for the item parameters of the component items are given in Table 2.1. High
values mean a high situational guilt inductive power. The values of the other

TABLE 2.1. Estimates and standard errors (S.E.) for the component item parameters
or latent item predictor values (situational guilt example)

Situation Norm Violation (S.E.) Worrying (S.E.) Rectify (S.E.)
1 -.089 (.144) 1.376 (.165) .519 (.153)
2 -2.701 (.222) -1.989 (.183) -2.140 (.199)
3 -.728 (.147) .125 (.141) -.394 (.151)
4 .101 (.141) .419 (.142) .356 (.151)
5 1.483 (.166) 1.971 (.181) 2.549 (.225)
6 2.805 (.232) 2.262 (.200) 1.942 (.191)
7 1.319 (.163) 1.976 (.182) .854 (.157)
8 -.136 (.144) -.283 (.142) .078 (.150)
9 .055 (.149) 1.901 (.186) 3.163 (.275)
10 -1.305 (.162) -1.530 (.162) -1.023 (.160)

parameters are given in Table 2.2. The effect of the composite items can be

TABLE 2.2. Estimates and standard errors (S.E.) for the componential weight para-
meters and variance of the person parameter (situational guilt example)

Parameter Value (S.E.)
β1(weight of norm violation) .497 (.103)
β2(weight of worrying) .549 (.131)
β3(weight of tendency to rectify) .025 (.094)
β0(constant) .203 (.082)
σ2

θ 1.124 (.120)

reconstructed based on the α from Table 2.1 and the β from Table 2.2. For
example, the reconstruction for the composite item of the third item family is
equal to (-.728 * .497) + (.125 * .549) + (-.394 * .025) + (.203) = -.100. As could
be expected from the goodness of fit, there is a good correspondence between the
item parameters of the component items and the composite items as estimated
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under the Rasch model and as estimated (component items) and reconstructed
(composite items) under the MIRID: the correlation between both is .999. The
correlation between the item parameters of the composite items as estimated
under a Rasch model for all 40 items and the composite item parameters as
reconstructed from the parameters of the just estimated MIRID is also .999.

Two of the componential weights are significant: the weights of norm violation
and worrying are significant.2 The weight of the second component is the largest,
meaning that for our set of situations ‘worrying about what one did’ is the most
important component of situational guilt feelings. The weight of composite item
constant (.203) is the extra effect of the composite item, but its interpretation
depends on centering issues. The interpretation is difficult in our case, since the
centering was based on θp0 by fixing its mean to zero and not on the latent
item predictors. Finally, it is clear that guilt sensitivity as an underlying latent
variable shows substantial individual differences (σ2=1.124). The variance is
statistically significant using the conservative Wald test for variances (Snijders
& Bosker, 1999; Verbeke & Molenberghs, in press).

2.2.2 Example on verbally aggressive behavior

In a data set on verbal aggression, we have four situations (4 from the 15 studied
in Chapter 5) and three different kinds of verbally aggressive reactions (cursing,
scolding, and shouting). The four situations are given in Appendix 1. Each
type of aggressive reaction is measured in two different ways, which were called
response modes: (1) whether one wants to display the corresponding reaction
in that situation (want-item), and (2) whether one actually would display the
reaction (do-item). Hence, the total number of items is 4 × 3 × 2 = 24. As
we are interested in whether actually displaying an aggressive reaction can be
explained by wanting to display that aggressive reaction, the items measuring
the want-response mode will be considered the component items, whereas the
items measuring the do-response mode are the composite items. In this example,
there is only one component: wanting as a component of doing as a composite.
We will call this component also the action tendency.

The combination of a situation and a kind of aggressive reaction defines an
item family that contains two items: a component item or want-item (e.g., ‘do
you want to curse in this situation?’) and a composite item or do-item (e.g.,

2Using the OPLM-MIRID also the weight of the third component was significant.
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‘do you curse in this situation?’). Each situation is associated with three item
families: one for each kind of verbally aggressive reaction. As mentioned in the
introduction, we want to know to which degree actually displaying an aggress-
ive reaction can be explained by wanting to display that aggressive reaction.
Therefore, we fitted a MIRID with wanting as a component. Note that we again
used the parameterization β′i − θp0, to be in line with the interpretation of β′i
as the inductive power from the situation for a certain behavior and θp0 as the
personal threshold.

The goodness-of-fit values for this MIRID are 8116.3 (deviance), 8146.3 (AIC),
and 8202.6 (BIC). These values approach the goodness-of-fit values for the Rasch
model (8073.8 (deviance), 8123.8 (AIC), and 8217.7 (BIC)), meaning that the
MIRID has a relatively good fit (based on the AIC and BIC). The values for the
item parameters of the component items are given in Table 2.3, and the values
for the other parameters are given in Table 2.4. There is a good correspondence
between the item parameters of the component items and the composite items
as estimated under the Rasch model and as estimated (component items) and
reconstructed (composite items) under the MIRID: the correlation between the
item parameters (estimated or reconstructed) of both models is equal to .987.
The correlation between the item parameters of the composite items as estim-
ated by a Rasch model for all items and the item parameters of the composite
items as reconstructed by the MIRID is also high: .991.

TABLE 2.3. Estimates and standard errors (S.E.) for the component item parameters
(verbal aggression example)

Situation Reaction Item Parameter Value (S.E.)
1 Curse α1,1 1.396 (.128)
1 Scold α1,2 .762 (.118)
1 Shout α1,3 -.015 (.116)
2 Curse α1,4 1.396 (.132)
2 Scold α1,5 .595 (.117)
2 Shout α1,6 -.308 (.119)
3 Curse α1,7 .459 (.116)
3 Scold α1,8 -.605 (.125)
3 Shout α1,9 -1.583 (.147)
4 Curse α1,10 1.098 (.123)
4 Scold α1,11 .055 (.117)
4 Shout α1,12 -.973 (.133)

The weight of the want-response mode or action tendency is quite large and
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TABLE 2.4. Estimates and standard errors (S.E.) for the componential weight para-
meters and variance of the person parameter (verbal aggression example)

Parameter Value (S.E.)
β1 (weight of want-response mode) 1.332 (.083)
β0 (constant) -.771 (.076)
σ2

θ 1.890 (.193)

highly significant, meaning that it has a serious predictive power for the do-
response mode (β1 = 1.332). It follows from the value of β1 that the do-items
are better differentiated with respect to their inductive power than the want-
items are. The effect of being a composite item (constant item predictor) is
negative (β0 = −.771).

Given these results, it must be further concluded that the inductive power
is lower for the actual behavior (do-items) than for the action tendency (want-
items): If a want-item has a negative α, the fact that β1 is larger than 1, and
that β0 is smaller than zero, necessarily leads to a lower inductive power for
the corresponding do-items. If a want-item has a positive α, the value of β0

compensates for a β1 of 1.332 up to values for α as high as 2.322. Finally, the
variance of the general underlying trait is quite large (σ2 = 1.890), and highly
significant when relying on the conservative Wald test for variances. In sum, the
verbally aggressive behavior (doing) seems to require a lower threshold than its
action tendency, and the pairs of the behaviors and situations (items) are better
differentiated in the actual expression (do-items) than in the action tendency
(want-items).

2.3 Extension to Random weights MIRID

(RW-MIRID)

The MIRID assumes that the weights of the latent item predictors are the
same for all persons. However, as it makes sense plausible that people would
differ as to the weight of the components, it would be interesting to allow for
individual differences in the weights. For example, for some people worrying may
be more important, whereas for other people the tendency to rectify may be
more important, perhaps because they are more action-oriented. An extension of
the MIRID, which is called the Random Weights MIRID (RW-MIRID), allows
for the weights to be random variables. Except for its specific componential



2. Latent item predictors with fixed effects 69

structure, the RW-MIRID is very similar to a multidimensional 2PL model, as
in both the RW-MIRID and the 2PL person-specific parameters are the weights
of latent item predictors. In the multidimensional 2PL these are the latent traits,
and the item loadings (trait specific discriminations), respectively.

2.3.1 The systematic component

Each random weight, denoted by βpr, can be split into a mean (the fixed-effect
part βr) and a deviation from that mean (the random-effect part θpr). In the
remainder, the deviation from the mean will be considered the random weight.
To construct the formula for the RW-MIRID, the componential weight matrix
is now a person specific matrix, denoted with Ψp. In the example of Figure 2.6,
only the weight of the first latent item predictor is a random effect, all other
weights are fixed effects.

Component 1 Component 2
Component item type 1
Component item type 2
Composite item




1 0 0
0 1 0
βp1 β2 β0




FIGURE 2.6. Example of an componential weight matrix Ψp for the RW-MIRID

The formula for the RW-MIRID can be written as in Equation 2.5.

logit [P (Ypi = 1|θp0,As,Ψpr)] = θp0 −AsΨ′
pr (2.5)

where for the component items: AsΨ′
pr = αrs

and for the composite items: AsΨ′
p,R+1 =

∑R
r αrsβpr + β0.

with i as an index for the pairs (s, r), and βpr = θpr − βr.

Given that more than one random effect is included in the model, a mul-
tivariate normal distribution is assumed for θp, the vector of random effects.
Another way to extend the MIRID into a multidimensional model is the follow-
ing: Until now it is assumed that the same random intercept (θp0) applies to
the component items and the composite items. This is not necessary. There are
cases where dependent on the component a different random intercept (a dif-
ferent dimension) applies. Such a model is called the Multidimensional-MIRID
(MULTI-MIRID; Butter, 1994), but this extension will not be discussed in this
chapter. When the intercept of the composite items (βp0) and the overall ran-
dom intercept (θp0) are the only random effects, the model is equivalent with the
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learning model of Embretson (1991) for two stages: before and after learning.

2.4 Applications of the RW-MIRID

2.4.1 Example on situational guilt feelings

In the example on situational guilt feelings three components were present:
norm violation, a tendency to worry, and a tendency to rectify. Because we
have no a priori hypotheses about which component should have a random
weight, three different models were estimated and compared. In each model
a different component was assumed to have a random weight. As mentioned
earlier, the OPLM-MIRID will be used here, instead of the previously used
original MIRID. In contrast to the MIRID, the OPLM-MIRID allows for unequal
but fixed discrimination values. The same discrimination values as in Chapter 1
are used, and not those used earlier in this chapter. To determine the fit of
this OPLM-MIRID, it has to be compared with the One Parameter Logistic
Model (OPLM: Verhelst & Glas, 1995; Verhelst, Glas, & Verstralen, 1994), an
adaptation of the Rasch model that allows for fixed but unequal discriminations.

A nonadaptive Gaussian quadrature method with 15 quadrature points was
chosen for the estimation of the OPLM-MIRID. The goodness-of-fit values for
the OPLM-MIRID, and the three RW-OPLM-MIRIDs with one random weight
are given in Table 2.5.

TABLE 2.5. Goodness-of-fit values for OPLM-MIRID and the RW-OPLM-MIRID on
the situational guilt example

Model Deviance AIC BIC
OPLM-MIRID 10451 10521 10647
RW-OPLM-MIRID
Random weight for
Norm Violation 10449 10523 10656
Worrying 10451 10525 10658
Tendency to Rectify 10451 10525 10658

All of the goodness-of-fit values mentioned in Table 2.5 are similar to the
ones of the OPLM-MIRID, meaning that adding a random weight to the model
did really not enhance the fit. By consequence, for this sample of persons and
situations, it is not necessary to assume differences between persons for the
weights of any of the three components.
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2.4.2 Example on verbally aggressive behavior

In the example on verbally aggressive behavior, the model had only one com-
ponent. We assume that for some people what they want has a larger effect on
what they do than for other people. In contrast to the example on situational
guilt, the RW-MIRID was estimated using an adaptive Gaussian quadrature
method with 15 quadrature points. The adaptive method was used because
with a low number of items, the (slow) adaptive method is still doable for the
time it takes. The goodness-of-fit values for the RW-MIRID are 8027.5 (devi-
ance), 8061.5 (AIC), 8125.4 (BIC), which are clearly better than those for the
original MIRID: 8116.3 (deviance), 8146.3.1 (AIC), and 8202.6 (BIC), meaning
that for some people what they want weights heavier in what they do than for
other people.

The parameter estimates of the component items (values of the latent item
predictor) are given in Table 2.6, and the values for the other parameters are
given in Table 2.7. The variance of the weight is much smaller than the variance
of the overall random intercept (1.018 vs. 2.031). The correlation between both
is .098.

As in the MIRID with fixed component weights, again the action tendency
has a serious effect. The inductive power for the actual behavior is lower (for
the average person) than that for the action tendency, up to α-values of 1.782.
This is because the negative β0 (-1.032) compensates for a β1 larger than 1
in all combinations of situations and behaviors. A person with a weight of 1.5
standard deviations below the mean β1 does more than wanted below α-values of
-1.104. The reactions of a person who is situated 1.5 standard deviations above
the mean β1 does more than wanted for α-values higher than .493, so that in
six of the twelve situation-behavior combinations this person will do more than
wanted to do, and in six of the twelve situation-behavior combinations, the
action tendency will be inhibited in some way.

In sum, the results of the RW-MIRID confirm those of the fixed weight
MIRID, except for the fact that clear individual differences appear in the effect
the action tendency has on the behavior.

2.5 Concluding remarks

The main advantage of the MIRID and its variants, is that in cases where no
exact knowledge is available about the values of the components (latent item
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TABLE 2.6. Estimates and standard errors (S.E.) for the component item parameters
(example on verbal aggression)

Situation Reaction Item parameter Value (S.E.)
1 Curse α1,1 1.715 (.126)
1 Scold α1,2 .963 (.103)
1 Shout α1,3 .230 (.094)
2 Curse α1,4 1.736 (.135)
2 Scold α1,5 .811 (.099)
2 Shout α1,6 .016 (.096)
3 Curse α1,7 .719 (.096)
3 Scold α1,8 -.149 (.103)
3 Shout α1,9 -1.236 (.152)
4 Curse α1,10 1.340 (.115)
4 Scold α1,11 .440 (.093)
4 Shout α1,12 -.576 (.121)

TABLE 2.7. Estimates and standard errors (S.E.) for the componential weight para-
meters and variance/covariance of the person-dependent parameters (example on
verbal aggression)

Parameter Value (S.E.)
β1 (mean weight of Component) 1.579 (.118)
σ2

θp1
(variance of component weight) 1.018 (.216)

β0 (constant) -1.032 (.092)
σ2

θp0
(variance of overall intercept) 2.031 (.217)

cov(θp0, θp1) .141 (.147)

predictors), these values can be estimated.
An advantage specific to the RW-MIRID is that one can test whether the

assumption of fixed weights is reasonable. A better fit of the RW-MIRID with
random weights for one or more components would imply that there are differ-
ences in how important these components are.

Finally, the principle behind MIRID can easily be generalized to other basic
models, like for example the 2PL (Birnbaum, 1968) or the multidimensional
Rasch model. Because extending the MIRID by incorporating additional ran-
dom effects is straightforward, the MIRID is a flexible tool for the decomposition
of general concepts into more elementary aspects.
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2.6 Further reading

The MIRID was originally published by Butter et al. (1998), based on Butter
(1994). In Butter et al. (1998), a conditional maximum likelihood formulation
and estimation method was explained, complemented with a simulation study.
An application of the MIRID and an extension of the MIRID to the OPLM-
MIRID, originally described by Butter (1994), and the 2PL-MIRID can be found
in Smits and De Boeck (2003).

A comparison between two estimation methods for the MIRID and the OPLM-
MIRID –a conditional maximum likelihood estimation (Smits, De Boeck, Ver-
helst, & Butter, 2001) and a marginal maximum likelihood estimation, im-
plemented within PROC NLMIXED– can be found in Smits, De Boeck, and
Verhelst (in press) (which is Chapter 6 in this dissertation).

Bechger et al. (2001) embedded the MIRID in a more general model called
the non-linear logistic test model (NLTM). They derived the conditions the
NLTM has to fulfill in order for the model to be identified. Maris and Bechger
(2003) provide more specific conditions for the identifiability of MIRIDs with
various kinds of relations, other than the item family structure, as no additional
conditions are needed for MIRIDs with an item family structure, as explained
earlier. They also discuss that different componential theories about an item set
can lead to equivalent MIRIDs, which is true also for the LLTM (Bechger et al.,
2002).

Finally, Maris and Bechger (2003) mention that as the MIRID is a restriction
of the Rasch model, it is part of the curved exponential family, which implies,
among other things, that conditional maximum likelihood estimation is possible
for α and β. Also in the MIRID, the sum scores are sufficient statistics for the
person parameters (θp0).
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2.7 Appendix 1: Situations

2.7.1 Situations of example on guilt feelings

1. You have been dating for some time a person you are not really in love
with. When you break up, you find out that he/she was in love with
you (and was taking the relationship very seriously). The break-up hurts
him/her considerably. (Break-up)

2. You have been a member of a brass band for some years now. As a result,
you learned to play trumpet for free. Now that you’re skilled enough, you
leave the band because you don’t like the members of the band any more.
(Trumpet)

3. During the holidays, you are working as a salesperson in a clothing and
shoestore. One day, a mother with four children enters the store. One
of the kids wants Samson-shoes (Samson is a popular doll figuring in a
Belgian TV-series for children). The mother leaves the child with you
while she goes on to look for clothes for the other children. The child tries
on different types and sizes of shoes, but after a while the child gets tired
of fitting the shoes and refuses to continue. She picks a pair she has not
tried on before and you sell this pair to the mother afterwards. The next
day, the mother wants to return the shoes because they do not fit. Your
boss takes back the shoes and reimburses the mother. The shoes have
been worn however, and they are dirty. Because of this, they cannot be
sold anymore. Your boss says that it doesn’t matter, and that everyone is
capable of mistaking the size of shoes. (Shoes)

4. A not so close friend asks you if you want to join him/her to go to
the movies. You tell him/her that you don’t feel like it, and want to
spend a quiet evening at home. That evening you do go out with a closer
friend. (Movie)

5. During a discussion, you make a stinging remark toward one of your
friends. You notice that it hurts him/her, but you pretend not to see
it. (Discussion)

6. A friend tells you something in confidence, and adds that he/she would not
like you to spread it around. Later, you do tell it to someone else. (Secret)
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7. You are a member of a youth movement. One day the group leaders hang a
rope between two trees, so you can glide from one tree to another. Jokingly,
some other members make the stop of the pulley unclear. You see them
doing it, but you do not help them. The following member, who wants to
glide to the other tree, did not see that the stop was made unclear. You
do not warn him/her. Halfway he falls from the rope, and he passes out.
(Youth movement)

8. You have a pen pal. You get bored of writing with him/her, and suddenly,
you stop corresponding with him/her. After one and a half year, he/she
writes you again, and again, but you do not respond. (Pen pal)

9. You borrowed a jacket from a friend to wear when you go out. At the party,
you leave the jacket on a chair. When you are about to leave, you notice
the jacket has disappeared. In all probability, it has been stolen. (Jacket)

10. One evening, you do not feel like doing your homework. The following day,
you copy the assignment of a friend who clearly has gone though a lot of
trouble finishing it. You get a good grade for your assignment, the same
grade as your friend. (Homework)

2.7.2 Situations of example on verbal aggression

1. You are waiting at the bus stop and the bus fails to stop for you.

2. You miss your train because the clerk has given you faulty information.

3. The grocery store closes just as you are about to enter.

4. You use your last 10 cents to call a friend and the operator disconnects
you.
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2.8 Appendix 2: SAS programs

The SAS program for the MIRID is exemplified with the source code for the
guilt example. The α are renumbered using one index to simplify the SAS code.
They can easily be matched to the αrs as given in the formulas. The code used
is the following:

title ’MIRID guilt example’;

Proc NlMixed data=MIRID method=gauss
technique=NewRap Qpoints=15 Optcheck;
Parms alpha1-alpha30=1 Beta1-Beta3=1 Beta0=1 VarTheta=1;

ex=exp(-theta
/*Co: dummy variable denoting the type of item: 0 for component items, 1 for
composite items*/
/*COMPONENT ITEMS*/
+(1-Co)*
/*Component 1 = Norm Violation*/
(I1*alpha1+I2*alpha2+I3*alpha3+I4*alpha4+I5*alpha5
+I6*alpha6+I7*alpha7+I8*alpha8+I9*alpha9+I10*alpha10

/*Component 2 = Worrying*/
+I11*alpha11+I12*alpha12+I13*alpha13+I14*alpha14
+I15*alpha15+I16*alpha16+I17*alpha17+I18*alpha18
+I19*alpha19+I20*alpha20

/*Component 3 = Tendency to Rectify*/
+I21*alpha21+I22*alpha22+I23*alpha23+I24*alpha24
+I25*alpha25+I26*alpha26+I27*alpha27+I28*alpha28
+I29*alpha29+I30*alpha30)

/*COMPOSITE ITEMS
+Co*
/*Beta1 = weight for Norm Violation*/
(I1*alpha1*Beta1+I2*alpha2*Beta1+I3*alpha3*Beta1
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+I4*alpha4*Beta1+I5*alpha5*Beta1+I6*alpha6*Beta1
+I7*alpha7*Beta1+I8*alpha8*Beta1+I9*alpha9*Beta1
+I10*alpha10*Beta1

/*Beta2 = weight for Worrying*/
+I11*alpha11*Beta2+I12*alpha12*Beta2+I13*alpha13*Beta2
+I14*alpha14*Beta2+I15*alpha15*Beta2+I16*alpha16*Beta2
+I17*alpha17*Beta2+I18*alpha18*Beta2+I19*alpha19*Beta2
+I20*alpha20*Beta2

/*Beta3 = weight for Tendency to Rectify*/
+I21*alpha21*Beta3+I22*alpha22*Beta3+I23*alpha23*Beta3
+I24*alpha24*Beta3+I25*alpha25*Beta3+I26*alpha26*Beta3
+I27*alpha27*Beta3+I28*alpha28*Beta3+I29*alpha29*Beta3
+I30*alpha30*Beta3

/*constant*/
+Beta0));

/*INVERSE LOGIT TRANSFORMATION*/
p=ex/(1+ex);
model y∼binary(p);
Random Theta∼Normal(0, VarTheta) Subject=Person;
run;

Remember that in this application, we had 10 item families, 3 latent item pre-
dictors, and one item per component per item family. The dummy variables
I1-I30 are used to select the correct α, and the dummy variable ‘Co’ is used to
select the correct part of the formula: the part for the component items or the
part for the composite items.

Also the SAS program for the RW-MIRID is exemplified with the source code
for the guilt example. In the code it is assumed that the Component ’Worrying’
has a random weight. The code used is the following:

Title ‘RW-MIRID, the weight of Worrying is assumed to be random ’;
Proc NlMixed data=RWMIRID method=gauss noad
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technique=NewRap Qpoints=15 Optcheck;
Parms alpha1-alpha30=1 Beta1-Beta3=1 Beta0=1 VarTheta=1
CovThetaRWBeta2=1 VarRWBeta2=1;

ex=exp(-theta
/*Co: dummy variable denoting the type of item: 0 for component items, 1 for
composite items*/
/*COMPONENT ITEMS*/
+(1-Co)*
/*Component 1 = Norm Violation*/
(I1*alpha1+I2*alpha2+I3*alpha3+I4*alpha4+I5*alpha5
+I6*alpha6+I7*alpha7+I8*alpha8+I9*alpha9+I10*alpha10

/*Component 2 = Worrying*/
+I11*alpha11+I12*alpha12+I13*alpha13+I14*alpha14
+I15*alpha15+I16*alpha16+I17*alpha17+I18*alpha18
+I19*alpha19+I20*alpha20

/*Component 3 = Tendency to Rectify*/
+I21*alpha21+I22*alpha22+I23*alpha23+I24*alpha24
+I25*alpha25+I26*alpha26+I27*alpha27+I28*alpha28
+I29*alpha29+I30*alpha30)

/*COMPOSITE ITEMS
+Co*
/*Beta1 = weight for Norm Violation*/
(I1*alpha1*Beta1+I2*alpha2*Beta1+I3*alpha3*Beta1
+I4*alpha4*Beta1+I5*alpha5*Beta1+I6*alpha6*Beta1
+I7*alpha7*Beta1+I8*alpha8*Beta1+I9*alpha9*Beta1
+I10*alpha10*Beta1

/*Beta2 = Mean weight for Worrying*/
+I11*alpha11*Beta2+I12*alpha12*Beta2+I13*alpha13*Beta2
+I14*alpha14*Beta2+I15*alpha15*Beta2+I16*alpha16*Beta2
+I17*alpha17*Beta2+I18*alpha18*Beta2+I19*alpha19*Beta2
+I20*alpha20*Beta2
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/*Random weight part: as the mean is already modeled above, the random
weight of Worrying, as modeled here, is the deviation per person from this
mean weight (the deviation θp2). It has a mean of zero.*/
+I11*alpha11*RWBeta2+I12*alpha12*RWBeta2
+I13*alpha13*RWBeta2+I14*alpha14*RWBeta2
+I15*alpha15*RWBeta2+I16*alpha16*RWBeta2
+I17*alpha17*RWBeta2+I18*alpha18*RWBeta2
+I19*alpha19*RWBeta2+I20*alpha20*RWBeta2

/*Beta3 = weight for Tendency to Rectify*/
+I21*alpha21*Beta3+I22*alpha22*Beta3+I23*alpha23*Beta3
+I24*alpha24*Beta3+I25*alpha25*Beta3+I26*alpha26*Beta3
+I27*alpha27*Beta3+I28*alpha28*Beta3+I29*alpha29*Beta3
+B30*alpha30*Beta3

/*constant*/
+Beta0));

/*INVERSE LOGIT TRANSFORMATION*/
p=ex/(1+ex);
model y∼binary(p);
Random Theta RWBeta2 ∼Normal([0, 0],
[VarTheta, CovThetaRWBeta2, VarRWBeta2]) Subject=Person;
run;

To fit a OPLM-MIRID or a RW-OPLM-MIRID, the term ‘theta’ in the code
has to be replaced with the term ‘(a*theta)’, with ‘a’ corresponding to the
known discrimination value of the current item.
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Chapter 3

Examining the structure of
concepts: using interactions
between items

Dirk J. M. Smits
Paul De Boeck
Machteld Hoskens

ABSTRACT A framework is presented for modeling the relational structure of

concepts using IRT models with interactions between the items, so-called mod-

els with local item dependency (LID). The proposed approach works for unidi-

mensional as well as for multidimensional concepts. In order for the relational

structure of a concept to be analyzed, two types of items are used: items that

directly refer to the concept, and items that refer to the underlying components.

The dependencies (the LIDs) are included in the model to analyze the mutual

relations between the components and of the components with the concept. In

a study on guilt, it was found that a unidimensional model complemented with

situation-specific dependencies could explain the data that were gathered. Be-

cause of its flexibility, the approach is a promising tool for a structural analysis

of concepts. 1

3.1 Introduction

Psychological concepts often contain different components. For example, Mis-
chel and Shoda (1995) conceive of personality as “a stable system that mediates
how the individual selects, construes and processes social information and gen-

1Correspondence concerning this manuscript should be addressed to: Dirk J. M. Smits,
K.U. Leuven, Department of Psychology (H.C.I.V.), Tiensestraat 102, B-3000 Leuven, Bel-
gium Ph: 003216/326133 Fax: 003216/325916 e-mail: Dirk.Smits@psy.kuleuven.ac.be
The research is financially supported by a GOA 2000/2-grant from the K. U. Leuven: ‘Psy-
chometric models for the study of personality’
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erates social behaviors. (. . . ) This theory assumes individual differences in the
features of the situations that individuals select and the cognitive-affective medi-
ating units (such as encodings and affects) that become activated and interact
with and activate other mediating units (e.g., expectancies, goals, behavioral
scripts and plans) in the personality system” (quoted from Mischel & Shoda,
1995, p. 246). So, the concept of personality can be decomposed in subpro-
cesses or components. Another way of looking at the concept of personality is
less process-oriented and mainly dimensional instead, like for example the the-
ory of the Big Five (See, e.g., Costa & McCrae, 1987, 1989; McCrae & Costa,
1997, 1999). In this theory the personality of a person is described as a position
on each of the five, basic dimensions: Extraversion, Neuroticism, Openness to
experience, Agreeableness, and Conscientiousness. These dimensions are ortho-
gonal simple-structure factors. Each of these dimensions can in turn be ana-
lyzed into what is called facets. For example, for Conscientiousness the facets
are Competence, Order, Dutifulness, Achievement Striving, Self-Discipline, and
Deliberation (Costa, McCrae, & Dye, 1991; Costa & McCrae, 1995). Many
other psychological concepts can be decomposed into more basic aspects in a
similar way, including emotion concepts. In the appraisal theory, for example,
different emotions are supposed to be built upon different patterns of appraisals
and action tendencies, sometimes completed with other aspects such as bodily
feedback (e.g., Ellsworth & Smith, 1988; Frijda, 1986, 1993; Frijda, Kuipers, &
Schure, 1989; Frijda & Zeelenberg, 2001; Izard, 1993; Omdahl, 1995; Reisenzein
& Hofmann, 1993; Roseman, Antoniou, & Jose, 1996; Roseman & Smith, 2001;
Scherer, 1993, 1997; Smith & Lazarus, 1993; etc.). In this theory, appraisals and
action tendencies can be viewed as basic processes of emotions.

By decomposing psychological concepts into components, the structure of
these components can be investigated. A common way to unravel the structure
of such concepts is by using a multidimensional analysis. The most popular
technique used for this purpose has been factor analysis, as in the Big Five
theory.

If components are derived from factor analysis of items concerning a given
trait, then the factors can be understood as ways in which individuals differ in
how they show the underlying trait. The factors each can refer to a different
kind of behavior or to the same kind of behavior in different types of situations
(e.g., Ortony & Turner, 1990).

Factor analysis is not the only technique to decompose concepts with. Embre-
ston (1980, 1984), for example, developed the MLTM (Multicomponent Latent
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Trait Model). In the MLTM the probability of success on an item is modeled as
the product of the probabilities of success on items referring to different subpro-
cesses or components. Embretson’s approach is different from factor analysis,
but like factor analysis, it is a multidimensional technique, in that each of the
components is a source of individual differences.

Even when the existing individual differences are not multidimensional, a
concept may still be decomposable into more basic components. Different pro-
cesses can be necessary for a behavior to arise, without these processes showing
specific individual differences. For example, solving a mathematical problem,
like 3*(4+5), requires two different operations (4+5; 3*9) which both may be
based on the same ability. An example from a totally different domain is that
appraisals of a certain situation, for example, the situation being appraised as
blocking a goal, as due to others, and as unfair, all are associated with a certain
emotion, for example anger (Ellsworth & Smith, 1988; Fitness & Fletcher, 1993;
Frijda, 1986, 1993; Frijda et al., 1989; Ortony, Clore, & Collins, 1988; Scherer,
1993), without these appraisals being based on specific sources of individual dif-
ferences. In principle, the individual differences in the various appraisals under-
lying an emotion can all be based on the same underlying person characteristic,
like for example trait anger. This means that a concept, which contains differ-
ent components, can be unidimensional and is not necessarily multidimensional.
We are not proposing unidimensionality as the most plausible structure, but it
is a possibility, one may want to consider. In this article, we focus on an ap-
proach based on IRT (Item Response Theory), one that is especially appropriate
for relational concepts. By relational concepts, we mean concepts with several
components and with a possibly complicated pattern of relations between the
components and the global concept. Here we will conceive of these relations as
dependencies between the components, and between the components and the
global concept, beyond the effect of the one dimension or the multiple dimen-
sions that reflect the global concept; see Hoskens and De Boeck (1997) and
Hoskens and De Boeck (2001) for the unidimensional and the multidimensional
case respectively. These dependencies are called local dependencies, because
they are not explained by the global underlying dimensions, for example one
general underlying trait. Most often, these local dependencies are treated as
problematic, because they complicate the parsimony of a simpler model. We
will argue that local dependencies can tell us about the structure of a relational
concept, and that they can be used to test the validity of psychological theories
without explicitly including additional dimensions. This can be done by specify-
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ing different theories about the relations between components and the concept
and translating these relations into IRT models with local dependencies, so that
the theories can be tested through the corresponding models.

Local dependencies imply that subgroups of items will show higher or lower
intercorrelations than can be expected based on the underlying dimension(s)
as defined by the person parameters. It is possible to capture such dependen-
cies by fixed effect parameters (constant over all persons) so that there is no
need to add person parameters to the model (see section on the models). We
make a distinction between the multidimensionality as defined by the number
of person parameters and multidimensionality as captured by fixed dependency
parameters. We see two clear advantages to a local dependency approach. The
first advantage is theoretical and concerns the flexibility and fine-grained nature
of dependency models. The patterns of inter-item dependency that are dictated
by a theory can be quite complex. Including local dependency parameters is a
flexible way to translate a theory into a model without augmenting the number
of parameters too much. With local dependency models it is possible to spe-
cify in a direct way all kinds of networks of inter-item relations, also networks
that can hardly be specified by including more person parameters. The second
advantage is practical. It is often cumbersome to estimate models with a high
number of person parameters, whereas it is rather easy to estimate local item
dependency models.

First, the approach will be explained, and second, an application is described
with data collected about guilt feelings and components of these feelings. The
same approach can be followed for other kinds of feelings, but also for cognitive
abilities, with the components referring to more elementary cognitive processes.

3.2 Modeling the relational component structure using

interactions

The approach to be presented is a general one. Neither the models, nor the
design for the data it requires are new. It is our aim to present and illustrate
the application of both (models and design) as an approach to test psycholo-
gical theories in the test data, and as a way of studying the internal validity of
a test or a questionnaire. The models it is based on, are IRT models, and more
specifically, they are models for local item dependencies (Hoskens & De Boeck,
1997, 2001; Jannarone, 1986; Kelderman, 1984; Kempf, 1977; Thissen & Stein-
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berg, 1988; Thissen, Steinberg, & Mooney, 1989; Tuerlinckx & De Boeck, 2001,
2002; Wilson & Adams, 1995; Yen, 1993).

The design it requires implies two kinds of items: component items and com-
posite items (Embreston, 1981, 1984). Component items are items for a single
component that is assumed to underlie the concept, while composite items are
items for the total concept. The test of questionnaire consists of families of items
with the two types of items. An item family contains one composite item and
several component items, all based on a common item stem (in cognitive tasks)
or a common situation (in an inventory on emotions). Our application is based
on a questionnaire for situational guilt feelings, each item family is associated
with one situation (the common stimulus) and it comprises four items: three
component items each referring to a different component of situational guilt
feelings in the given situation, and one composite item that refers to the guilt
feeling itself. The guilt components studied are norm violation, brooding, and
a tendency to restitute. Therefore, the component items for each situation are:

• Do you feel like having violated a moral, an ethic, a religious and/or a
personal code in this situation? (norm violation)

• Do you worry about what you did or failed to do in this situation? (brood-
ing)

• Do you want to do something to restitute for what you did or failed to do
in this situation? (tendency to restitute)

and the composite item is:

• Do you feel guilty about what you did or failed to do in this situation?
(guilt feelings)

Together these four items constitute the item family for the situation in ques-
tion. The first three questions are based on a literature review on guilt (Barrett,
1995; Baumeister, Stillwell, & Heatherton, 1994, 1995; Caprara, Barbaranelli,
Pastorelli, Cermak, & Rosza, 2001; Frijda, 1986; Gilbert, Pehl, & Allan, 1994;
Izard, 1978; Lindsay-Hartz, De Riviera, & Mascolo, 1995; Smith & Lazarus,
1993; Tangney, 1995; Wicker, Payne, & Morgan, 1983) and on two pilot studies
mentioned in the Application section.

It is our aim to show how local item dependency models for data from a test
design as explained can be used to compare in a flexible way various theoret-
ically meaningful patterns of relations between component items and between
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component items and composite items. The flexibility concerns the specification
of the model as well as its estimation. The patterns of relations can be quite
complicated without serious consequences for the estimation, since the number
of person parameters does not increase.

3.3 The model

As a starting point, we take the Rasch model (Rasch, 1960) for binary data. In
this model, the probability of a response xvi to an item i (i = 1, . . . , I) by
person v (v = 1, . . . , V ) can be written as in Equation 3.1:

P (Xvi = xvi | θv, βi) =
e[xvi(θv−βi)]

1 + e(θv−βi)
(3.1)

In Equation 3.1 θv represents the person parameter or latent trait value of
person v; and βi represents the item parameter of item i, also called the item
difficulty. Note that the Rasch model assumes equal discrimination of all items.
This is not a necessary restriction for the models we will discuss; see Hoskens
and De Boeck (1997) for models with heterogeneous item discrimination. For
the interpretation we want to use, a reparameterization is needed, with βi − θv

instead of θv − βi, so that the signs need to be reversed. After a reversal of
the signs, and taking into account the guilt context, θv can be interpreted as
the person’s threshold for experiencing the three appraisals and guilt. The βi

can be interpreted as the inducing power from a situation with respect to the
corresponding appraisal or guilt.

The Rasch model relies, among other assumptions, on the assumption of con-
ditional independence or local stochastic independence (LSI). This assumption
means that the dependence between the responses of an individual is solely
attributed to the underlying trait, without the responses on the other items
containing any additional information for the probability of responses to the
item in question, so that Equation 3.2 holds:

P (Xv1 = xv1, . . . , xvI | θv) =
I∏

j=1

P (Xvi = xvi | θv) (3.2)

If Equation 3.2 does not hold, it is said that there is Local Item Dependency
(LID), because after partialling out the latent trait, covariances between the
items do remain. It should be noted that LID is always defined in terms of
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a given model. Because the assumption of LSI is often too strong, LID has
attracted some attention in the literature. What is called LID can be dealt with
in several ways (e.g., Andrich, 1985; Bradlow, Wainer, & Wang, 1999; Chen &
Thissen, 1997; Hoskens & De Boeck, 1997, 2001; Jannarone, 1986; Kelderman,
1984; Kempf, 1977; Thissen & Steinberg, 1988; Thissen et al., 1989; Tuerlinckx
& De Boeck, 2001, 2002; Wilson & Adams, 1995; Yen, 1993).

A major concern has been how to deal with LID so that the measurement
quality is preserved while using models without LID parameters. An efficient
solution is to group dependent items in a testlet, so that the number of items
correct defines categories of the superitem that corresponds to the testlet (An-
drich, 1985; Thissen & Steinberg, 1988; Thissen et al., 1989; Wilson & Adams,
1995; Yen, 1993).

A somewhat different approach that is less focused on measurement but con-
centrates on modeling instead is model extension. A prominent example of this
approach is the model of Bradlow et al. (1999), in which random effects, and
therefore new dimensions, are added to capture the dependencies. An alternative
for this approach is to use fixed LID parameters for the dependent items (Jan-
narone, 1986; Kelderman, 1984). We will follow this latter approach, because
we want to keep the explicit dimensionality restricted and the random-effect
approach needs an extra dimension per group of dependent items. However, for
other applications, the random-effect approach may be the one to be preferred.

Following Hoskens and De Boeck (1997) and when following this fixed-effect
LID approach, the interaction (another term for dependency) between items can
be constant or dimension dependent. Constant interaction is interaction that is
constant over all participants independent of their position on the latent trait,
whereas dimension dependent interaction depends on the position of a person
on the latent trait(s). For reasons of simplicity, we will concentrate here on
constant interaction. We have actually tested also dimension-dependent models,
but without success, since they did not explain our data any better. This means
that there are no individual differences in the degree of LIDs.

Table 3.1 shows the basic model formulation for the case there is constant
interaction between a pair of items i and j.

It is now easy to see that when βint is negative, the probability of observing the
response pattern (1,1) increases and that when βint is positive, the probability
decreases, in comparison to the probability of the same event under the Rasch
model. A negative vale of βint indicates a positive interaction, whereas a positive
value of βint indicates a negative interaction.
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TABLE 3.1. Model for constant pairwise interaction.

Response pattern (xvi, xvj) Adjusted formula
(0,0) 1/v(θ)
(0,1) exp (θv − βj) /v(θ)
(1,0) exp (θv − βi) /v(θ)
(1,1) exp [(θv − βi) + (θv − βj)− βint] /v (θ)

Note: βint is the interaction parameter for each item pair, and v(θ) = 1 + exp (θv − βi) +

exp (θv − βj) + exp(2θv − βi − βj − βint).

The implication of this interaction model is that the item parameters i and
j are difficult to interpret, because they are no pure reflections of the difficulty
anymore, but dependent on the interaction as well. This may be a reason to
prefer an alternative approach (see earlier discussion). However, for the reasons
explained earlier, we will pursue the fixed-effect LID approach.

3.3.1 Model estimation

All the models presented by Hoskens and De Boeck (1997) and the ones we will
present below can be estimated with existing IRT-programs like CONQUEST
(Wu, Adams, & M, 1997), LOGIMO (Kelderman & Steen, 1993), or MULTI-
LOG (Thissen, 1988). The Appendix of Hoskens and De Boeck (1997) describes
how the models can be estimated using these programs. It is also possible to
use SAS V8, PROC NLMIXED (Wolfinger, 1999) for the estimations (Rijmen,
Tuerlinckx, De Boeck, & Kuppens, in press).

3.3.2 Testing the fit of the model

If two models are nested, a likelihood-ratio test can be used. When the models
are not nested (the different structures to be presented are not all nested one
into the other), Akaike’s information criterion (AIC, Akaike, 1977) can be used.
The AIC is a measure of lack of fit. A model has a better fit than another does
if the AIC of the first model is lower than the AIC of the second. The index
contains a penalty for the number of parameters added: it equals the likelihood-
ratio value plus twice the number of parameters estimated. To test the absolute
goodness-of-fit, a bootstrap method (Efron & Tibshirani, 1993) will be used, as
explained in the section on Estimation.
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3.3.3 Specific interaction structures

Consider a questionnaire with the following structure: J item families (index
j = 1, . . . , J), each with K component items (k = 1, . . . , K) and a global or
composite item (k = 0). The items will be denoted with a double subscript jk,
Xjk. For example, Xjk with k 6= 0 refers to the component item k from family
j, while Xjk with k = 0 refers to the composite item from family j. Persons are
denoted with an index v (v = 1, . . . , V ), so that Xvjk is the response of person
v to item k from family j.

Different types of dependency patterns, also called interaction structures may
exist. We will describe four structures: a linear-sequence structure, a star struc-
ture, a cluster structure, and an item-family structure. The dependencies will
be represented with arrows, each arrow representing one dependency. The first
three structures are meant to apply within each of the item families, but their
degree may differ depending on the item family.

In a linear-sequence structure, the components have an order, so that they
interact only with adjacent items. Suppose further that the composite item
reflects an endpoint in the process, and that it interacts only with the ‘last’
component. The result is a linear-sequence structure as represented in Figure
3.1.

FIGURE 3.1. A linear-sequence structure: The size of the interactions between con-
secutive components and the concept can be different within and over item families
(item families are denoted with index j)

The ordering can be based on an order in time, but it may reflect as well a
chain-like overlap structure between the components and the end result, without
any reference to an order in time. Note that when a separate person parameter
or random effect would be used to model the dependencies to obtain a similar
model, as many person parameters as the number of adjacent pairs times the
number of item families would be needed. An analogous consideration applies
to the following types of structures.

In a star structure, each component item interacts only with the composite
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item. The corresponding component structure is represented in Figure 3.2.

 
X1j X2j 

XK-1,j 

XKj 

 

X0j
 

… 

FIGURE 3.2. A star structure: The size of the interactions of the components with
the concept can be different within and over item families (item families are denoted
with index j)

In a cluster structure the items are structured within clusters, and the in-
teraction occurs between all pairs of component items belonging to the same
cluster, while there are no interactions between clusters. It is further assumed
that the composite item is the only element of overlap between all clusters. An
example of the cluster structure is represented in Figure 3.3. An extension of
this structure which we will not consider because it does not yield better results,
is one with higher order interactions within the clusters.

In the item-family structure, pairwise interactions occur between all items of
the same item family. In Figure 3.4, an item-family structure is shown. Higher
order interactions are not considered for the same reason as for the cluster
structure.

The different structures each reflect a different psychology of the phenomenon
under investigation. In our application, the phenomenon is feeling guilty. A
linear-sequence structure suggests that feeling guilty is an end product of the
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FIGURE 3.3. Cluster structure: The size of the interactions within each cluster
between components and the concept can be different within and over item famil-
ies (item families are denoted with index j)

components norm violation, brooding, and tendency to restitute, and that these
components are ordered in a linear way in how they affect feeling guilty. For
example, authors like Frijda (1986) and Frijda et al. (1989), argue that appraisals
precede action tendencies, and that action tendencies are experienced before or
together with the emotion. This theory could lead to a structure in which the
feeling of having violated a norm (an appraisal) precedes brooding (a covert act),
whereas they both precede the tendency to restitute (an overt act), and guilt is
the end product, which correspond with a linear-sequence structure. Note that
not only a psychological order can lead to a linear-sequence structure, but that
also other orders like, for example, order of presentation in the questionnaire
can lead to a similar structure.

A star structure implies that the components each interact independently with
the feeling, and not with one another (unless through the underlying trait). A
cluster structure could mean that the dependency is organized into a cluster for
the appraisals (feeling of having violated a norm), and one for action tenden-
cies (brooding and the tendency to restitute), each complemented with feeling
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FIGURE 3.4. Item-family structure: The size of the interactions between the compon-
ents and the concept is equal within an item family, but can be different over item
families (item families are denoted with index j)

guilty. This distinction between appraisals and action tendencies is primarily
based on the work of Frijda (1986) and Frijda et al. (1989) who state that
appraisal an action tendencies can be separate emotion processes. Finally, an
item-family structure would suggest that guilt feelings and their components
show situational specificity to some extent, because each item family is defined
on the basis of a different situation. The basis for the dependency is the shared
situation. To approximate the corresponding structure using person parameters
would imply that in addition to the general dimension, as many dimensions are
defined (and estimated) as there are item families. In our application, there are
10 item families, but in other cases there may be more.

Various other kinds of structures may exist, but they will not be described
here. As mentioned earlier, in principle also higher-order interactions (e.g., triple
interactions) are possible, but because of their complexity and because they do
not yield a better fit, they will not be further considered here.

3.4 Application: Modeling of guilt feelings

3.4.1 Data and preliminary analysis

We have selected 10 situations for the application on guilt feelings in the fol-
lowing way: In a first pilot study, a sample consisting of 46 (20 males and 26
females) 18-year old subjects were asked to describe three situations they felt
guilty about, each stemming from a different domain of life: (1) work or study
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situation, (2) personal relationships, and (3) leisure time. In order to use the
descriptions in our study, all information about responses from the person in
the situation was deleted and only the information about the situation was re-
tained. Subsequently, ten stories were selected using the following six criteria:
understandability, equal representation of the three domains of life, variation in
content and assumed guilt inductive power, conformity with the environment
of 18-years old people, equal representation of stories stemming from males of
females. The selected situations are listed in the Appendix. In the article, we
will use the same numbers as used in the Appendix and a keyword to refer to
the situations.

Based on a second pilot study in which 12 judges rated the 10 selected situ-
ations on three appraisal components (self-responsibility, norm violation, and
negative self-evaluation), two of these were omitted. The first component, self-
responsibility, was omitted as it was found that the ratings were fairly constant
over all the judges. Apparently, for our set of situations, self-responsibility can be
considered a rather objective appraisal primarily based on the situation descrip-
tions, and not to be modeled as based on an individual sensitivity as is assumed
in the models we use. Second, the third component, negative self-evaluation,
was also not retained, because over situations, it showed an extremely high
correlation (.98) with norm violation, so that the two aspects could not be dif-
ferentiated. Since norm violation seems more important from the literature on
guilt, we decided to omit the negative self-evaluation appraisal. In sum, only one
appraisal component will be included, next to two action-tendency components:
brooding, and tendency to restitute.

The data we will analyze are from a much larger third study with 10 situations
and its four associated questions (one item family per situation). The question-
naire was completed by 268, 18-year old high-school students (130 males and
138 females) who answered on a four-point scale (0 = no, 1 = not likely, 2 =
likely, and 3 = yes) whether the corresponding appraisals, action tendency or
guilt-feeling would apply to them in the described situation. The data can be
dichotomized in a natural way by recoding ’0’ and ’1’ (’no’ or ’not likely’) into 0,
and ’2’ and ’3’ (’likely’ and ’yes’) into 1. The internal consistency of these data
as measured with Cronbach’s alpha was equal to .91 before dichotomization
and to .87 after dichotomization. In order to find out whether a model with one
general latent trait complemented with LIDs would make a chance, we did a
principal component analysis. For the non-dichotomized and the dichotomized
data, the eigenvalues for the first 12 principal components are mentioned in
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Table 3.2. From both PCAs, it may be concluded that there is a dominant first
component. Therefore, we will start out with a model that has only one person
parameter, but is supplemented with LIDs.

TABLE 3.2. Eigenvalues of the first 12 Principal Components of the non-dichotomized
and the dichotomized data

Principal Component Non-dichotomized data Dichotomized data
1 9.58 6.78
2 3.30 2.99
3 2.47 2.31
4 2.33 2.26
5 2.26 2.00
6 1.91 1.79
7 1.81 1.61
8 1.71 1.59
9 1.62 1.53
10 1.59 1.42
11 1.04 1.13
12 1.01 1.01

In the following, we will formulate various instantiations of the types of de-
pendency models we presented earlier. They are each based on a different hypo-
thesis and they all have only one underlying latent trait. After an analysis based
on these models and the selection of a best model, we will further present the
PCA results, to see whether they are in agreement with the selected dependency
model. Another way of proceeding would be to follow the specific suggestions
from the PCA. However, this would be a purely exploratory approach, whereas
we want to show the potential of the LID approach to compare theories that
imply different interaction structures. For a PCA to be a good exploratory tool
to indicate LIDs, it is required that the LIDs are strong enough in terms of
explained variance and that clear item structures can be delineated from the
PCA. Since we aim at illustrating a theory-based approach, we will continue
with LIDs that are defined a-priori, in order to compare their goodness of fit.

3.4.2 Modeling

We will investigate five different relational structures. The first is a baseline
structure without any interaction: the main-effects model, which is an inde-
pendence model, if abstraction is made of the one underlying latent trait. The
second structure is a linear-sequence structure. It is based on a sequential hypo-
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thesis of guilt feelings, with one component following the other, and with guilt
feelings as the end product. In this structure, each component interacts with the
subsequent component, and only the last component interacts with guilt. The
linear-sequence structure can have different variants depending on the sequence
of the components. The order we expect is that the appraisal (norm violation)
comes before the action tendencies and that the action tendency for a covert
act (brooding) precedes the action tendency for an overt act (restitution), and
that the feeling of guilt follows. This order is indicated as N-B-R-Guilt in Table
4. However, we also tried all possible orders with guilt in the last position. The
third structure is a star structure. It is based on the hypothesis of a convergent,
but independent activation of guilt from the various components. Each compon-
ent interacts with guilt feelings, but not with the other components. The fourth
structure is a cluster structure. It is based on the hypothesis that components
of a similar kind interact. This is a modification of the previous structure so
that components do not only interact with guilt feelings but also with compon-
ents of a similar kind. To define similarity of components, we group them into
appraisals and action tendencies (See, e.g., Frijda, 1986). As norm violation is
the only appraisal among the three components, norm violation would inter-
act only with guilt feelings, so that norm violation and guilt feelings form one
cluster. The remaining two components are action tendencies: brooding and a
tendency to restitute. They are assumed to interact with one another and with
guilt feelings, so that together with guilt feelings they constitute the second
cluster. Finally, the fifth structure is an item-family structure, with pairwise in-
teractions between all items belonging to the same item family. This structure is
based upon the hypothesis that guilt has a partially situation-specific meaning,
possibly varying in degree depending on the situation. This model has equal
interaction parameters within each item family as all items in the family refer
to the same situation, but the interaction parameters may differ from situation
to situation.

Two models were used as control models, as a way to test for alternative
and methodological explanations. First, one of the linear-sequence structures
corresponds to the order of presentation of the items. If this model holds, the
order of presentation is a candidate for explaining the interactions, and the result
must be interpreted as an artifact. This model is called the order-of-presentation
model. Second, if the respondents want to be consistent for responses related
to the same situation, one may expect an item-family structure, but there is no
reason why the consistency should differ from situation to situation, while equal
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within a situation. Therefore, a model will be tested with only one interaction
parameter for all interactions within item families. If this model fits, the LIDs
could be due to a consistency style that is induced by the structure of the
questionnaire. This model is called the situational-consistency model. These
two alternative models were added to test plausible alternative sources of item
dependency that are not caused by guilt-related processes. In Figure 3.4.2, a
representation of the various interaction models is given. Only one variant of
the linear-sequence structure is shown, but the other variants are estimated as
well. For the item-family structure, only the first two item families are shown.
In the picture of the item-family structure, equal types of arrows refer to equal
interaction parameter values. For the other models, the interaction parameter
can also differ depending on the item family.

We have described six dependency models, but note that the order-of-presen-
tation model is a particular variant of the linear-sequence structure model,
and that the situational-consistency model is a special case of the item-family
structure model, so that there are in fact only four basic types of models. In
the remainder of this section, we will explain the parameterization of the four
basic types of models, based on Hoskens and De Boeck (1997). Writing the
probabilities for the various models, the denominator is always the sum over the
numerators for all possible response patterns of the item family. For all models
applied to the data, it is assumed that the items have equal discriminations.

The first interaction model is the linear-sequence structure. This model con-
tains three pairwise interaction effects per item family: two between component
items and one between a component item and the composite item. If we take the
example from Figure 3.4.2, then we obtain the parameterization for one item
family as shown in the upper part of Table 3.3. The table shows the formulas for
three response patterns. The index j denotes the situation the items are associ-
ated with, or in other words the item family, and the index k for the components
is given the values N, B, R, and G (N for norm violation, B for brooding, R
for tendency to restitute, and G for guilt); βNBj , βBRj , βRGj represent the
interaction parameters. As mentioned, in Table 3.3 only the parameterization
for the linear-sequence structure for three response patterns is given as a way
of presenting the model. The parameterization of the other response patterns is
straightforward using the following rules:

1. The item parameter is included in the numerator if for that item the
response is 1.
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FIGURE 3.5. The interaction models for guilt

2. A (pairwise) interaction parameter is included in the numerator if for the
items involved in the interaction, the item responses are both 1 and an
interaction is assumed between the two items.

3. The denominator v(θ) is the sum of all different terms appearing in the
numerators.

These rules hold also for the structures to be presented in the following.
The second interaction model is the star structure. Also this model contains

three pairwise interaction effects per item family: one between each compon-
ent and guilt feelings. The parameterization of this model is exemplified in the
second part of Table 3.3 for three response patterns. The principle for construct-
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ing the numerators and the denominators is the same as for the linear-sequence
structure model, but the interactions are different.

The third interaction model is the cluster structure. This model has four
pairwise interaction parameters per item family: one for norm violation and
guilt feelings, and three for all pairs of brooding, tendency to restitute, and
guilt feelings. The parameterization is exemplified for four response patterns in
the third part of Table 3.3.

The fourth interaction model is the item-family structure. The model has one
interaction parameter per item family, the same for all item pairs within the
item family. Its parameterization is illustrated in the fourth part of Table 3.3
for six response patterns.

For the models that appear promising, a restricted version will be estimated
as well: one with each kind of interaction parameter being constant over all
situations (item families), in order to test whether a common parameter value
can be generalized over situations. For the item-family structure model, the
restricted variant equals the situational-consistency model.

3.4.2.1 Estimation

All the models are estimated with Conquest (Wu et al., 1997). Conquest uses
an Expectation-Maximization algorithm (Dempster, Laird, & Rubin, 1977) fol-
lowing the approach of Bock and Aitken (1981). The integrals are approximated
numerically using a quadrature method with 20 quadrature points in the interval
-6 to 6. Furthermore, it is assumed that the person parameters are normally dis-
tributed over persons (Marginal Maximum Likelihood; Baker, 1992). Individual
person parameter estimates are obtained with Empirical Bayes estimation.

The main-effects model will be used as a reference. The AIC (Akaike, 1977)
will be used as a relative measure of fit. To further investigate the fit of the best
fitting models, the inter-item correlations of our data will be compared to the
inter-item correlations as expected from those models. Therefore, a bootstrap
methodology will be used (Efron & Tibshirani, 1993): Based on the parameter
estimates obtained under our models, we will generate 500 new datasets for each
model. These replicated data are used to derive the 95% confidence interval for
each inter-item correlation. The empirical pairwise inter-item correlations will
be compared with these 95% confidence intervals in order to see which model
leads to a similar pattern of inter-item correlations as our data. The proportion
of empirical inter-item correlations within the 95% confidence intervals will be
used as a goodness-of-fit measure. This measure will be derived for the set of
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all correlations, and for the set of within-situation correlations.

3.4.3 Results

In Table 3.4 the results for the different LID models are summarized. The three
best fitting models are indicated with an asterisk.

TABLE 3.4. Fit of the various models: main-effects model, linear-sequence structure,
star structure, cluster structure, item-family structure, and two control models

Model -2LogL Number of par. AIC
No interactions 10545.7 41 10627.7
Linear-sequence structures
N-B-R-Guilt 9805.8 71 9947.8
N-R-B-Guilt 9609.8 71 9751.8
B-N-R-Guilt 9860.4 71 10002.4
B-R-N-Guilt 9756.4 71 9898.4
R-N-B-Guilt 9611.0 71 9753.0
R-B-N-Guilt 9702.0 71 9844.0
Star structure 9481.1 71 9623.1
Cluster structure 9365.5 81 9527.5
Cluster structure
with int. constant over situations* 9432.8 45 9522.8
Item-family structure* 9329.3 51 9431.3
Control models
Order of presentation model See N-B-R-Guilt above
Situational-consistency model* 9366.5 42 9450.5

The main-effects model (no LIDs) fits the data clearly worse than all other
models. All the linear-sequence structures do clearly better, and among these
the one with the sequence reflecting the order of presentation (N-B-R) is cer-
tainly not the best, so that order of presentation can be ruled out as a basis
for the LID structure. As a sequence for the components, the N-R-B order
(norm violation, tendency to restitute, and brooding) seems the best. The star
structure does slightly better than the linear-sequence structure, but the cluster
structure outperforms both. Therefore, also the restricted variant with all in-
teraction parameters constant over situations was tested. The AIC-value of this
restricted variant is lower than the one of the non-restricted version. This model
corresponds with a within-cluster interaction structure that can be generalized
over the situations.

However, the best fitting model is the one with an item-family structure.
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Hence, the interactions can probably be attributed to a situational specificity
of guilt feelings, as all items in one item family share the same situation. The
control model with only one interaction parameter that is equal for all situations
yields a higher AIC-value than its non-restricted version mentioned above, but
the difference is only minor. From these results the cluster structure, as well as
the item-family structure seem reasonable structures for the concept of guilt.

In order to further investigate the goodness of fit of these three models, the
previously presented bootstrap methodology was followed. For the cluster struc-
ture, the 95% confidence intervals cover 87% of the empirical correlations in
total, but only 65% of the empirical correlations within the same situation. The
corresponding percentages for the situational-consistency structure are 87% and
70%, which is not much better than for the previous model. Finally, for the item-
family structure, the corresponding percentages are 89% and 92%. Clearly, the
item-family structure is superior in explaining the correlations. It is not only su-
perior, but the percentages are sufficiently high to conclude that the model has a
reasonable goodness of fit. Note that the within-situation correlations form only
8% of the total number of correlations, so that they do not have a strong impact
on the percentage of all correlations that fall within the confidence interval.

Many other models were fitted to the data as well, including models with
higher-order interactions and with dimension-dependent interactions (see earlier),
but by far not any of these did better than the item-family structure model.

The values for the item parameters and the interaction parameters of the
item-family structure are given in Table 3.5.

For an interpretation of the values, it should be noted that the mean of the
person parameters is set to zero for reasons of identification. Table 3.5 shows
the parameter estimates of the component items (norm violation, brooding, and
tendency to restitute) and of the composite items (guilt). Note that the lower
the value of β, the higher the inductive power of the situation is. The higher
the estimated value, the less the corresponding component or the less guilt is
elicited by the situation involved. The interaction parameters are all negative,
meaning that there is a positive interaction between the items. The lowest guilt
inducing situations (column 8, Table 5) are the situations 2 (trumpet) and 10
(homework), whereas the highest guilt inducing situations are the situations 1
(break-up) and 6 (secret), which are both about close relationships whereas the
situations 2 and 10 are not. As explained earlier, the item parameters cannot
safely be interpreted as difficulties, since they depend on the interaction. In
case the item parameters correspond with the item difficulties, a perfect neg-
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ative correlation with the proportions of 1-responses is expected. As the item
parameters of the item-family structure correlate only -.78 with the proportions
of 1-responses, one can conclude that in general, they resemble item difficulties,
but the correspondence is not perfect. Treating them as item difficulties could
be misleading.

In order to interpret the interactions in terms of Item Characteristic Curves
(ICCs), we have compared the ICCs of the main-effects model (Rasch model)
with these of the item-family structure. The ICCS show the probability of giving
a 1-response as a function of the latent trait. In the left panel, the ICCs of the
item-family structure are shown for all four items per item family. In the right
panel, the corresponding ICCs of the same items are plotted for the Rasch
model. A thicker line is used for the ICC of a composite item.

Note that the ICCs of the item-family structure are based on the sum of
probabilities for different response patterns. For example, the probability of
giving a 1-response to the first item is, according to the item-family structure,
equal to the sum of the probabilities of all response patterns which contain a
1-response for item 1, so P (Y v11 = 1|θ) = P (1000|θ)+P (1100|θ)+P (1010|θ)+
P (1001|θ) + P (1110|θ) + P (1011|θ) + P (1101|θ) + P (1111|θ), where P (1000|θ)
is P (YvN1 = 1, YvB1 = 0, YvR1 = 0, YvG1 = 0|θ), etc.

Comparing the ICCs in both panels, one can see that the ICCs for the item-
family structure are steeper than the ICCs for the Rasch model. This is because
all interactions are positive. The item-family structure allows that the slopes
differ depending on the situation, although the item weights are equal over all
items. It is shown by Tuerlinckx and De Boeck (2001) that one can approach
dependencies quite well with a model without dependencies, but with differ-
ing item weights, as in the 2PL model (although the marginal ICCs deviate
slightly from the logistic form). This may explain why in an analysis of our
data, item weights were needed if no LID parameters were included. However,
not taking LID into account leads to biased parameter estimates for the discrim-
ination parameters and the item parameters (Thissen et al., 1989; Tuerlinckx &
De Boeck, 1999; Yen, 1993). More important, although such a model may have
a good fit, it cannot reveal the theoretical inter-item dependencies we want to
study. It may be expected that as a consequence of estimating a model with
LID parameters, the variance of the person parameter is reduced. From Figure
3.9, it is clear that the scale of the person parameters shrinks when moving from
the Rasch model to the item-family structure. However, the relative position of
the persons remains the same: the correlation between the person parameters as
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FIGURE 3.6. ICCs for the items per item family: for the item-family structure (left
column) and the main-effects models (the Rasch model) (right column), item family
1 to 4

estimated with the Rasch model and the person parameters as estimated with
the item-family structure, is .99.

As mentioned earlier, from a PCA we obtained one dominant principal com-
ponent. The loadings of the items on this component were all positive and varied
from .63 to .27 for the non-dichotomized data, and from .58 to .15 for the dicho-
tomized data. Based on a scree test, one could choose either for a one-component
solution or for a 10-components solution (see eigenvalues in Table 2). After a
varimax rotation of the 10 components, the components can be interpreted as
situation components, as all items of one item family load primarily on one
and the same principal component. The highest cross-loadings were equal to
.26 and .25 for the non-dichotomized and the dichotomized data, respectively,
whereas the corresponding loadings of the items on their situational component
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FIGURE 3.7. ICCs for the items per item family: for the item-family structure (left
column) and the main-effects models (the Rasch model) (right column), item family
5 to 8

varied from .86 to .62 and from .84 to .50, respectively. A large majority of the
cross-loadings was smaller than .1.

Like in the item-family structure, the dominant unrotated component can be
interpreted a ‘guilt dimension’ on which all items have positive loadings. The
situation components correspond to the LID within item families. A correlation
of .60 was found between the LID parameter within each item family and the
average loading of the four corresponding dichotomized items on the corres-
ponding situation component (after a varimax rotation). Although a PCA on
binary items is problematic, a moderately good approximation of the selected
LID structure was obtained. Although the item-family structure translates eas-
ily in to a PCA structure, this is not necessarily the case, for example because
the number of PCA components would be higher or because there would be
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FIGURE 3.8. ICCs for the items per item family: for the item-family structure (left
column) and the main-effects models (the Rasch model) (right column), item family
9 and 10

too much overlap between the PCA components. It is an empirical result that
the PCA could have told us what the kind of structure was, but this is not by
definition so.

3.5 Discussion and conclusions

Using a unidimensional model complemented with patterns of LID, it was found
that two theory-based kinds of structures were clearly better in capturing the
dependencies: a cluster structure with appraisals separated from action tenden-
cies, and an item-family structure with pairwise dependencies between all items
that share the same situations. The item-family structure was the best choice
of the two. The cluster structure only had a slightly higher AIC-value, and it
did equally well in explaining the inter-item correlations overall, but it failed
in explaining the correlations within the same situation. In a similar way, the
control model for the item-family structure, the model with an equal LID para-
meter for all item families, is inferior to the item-family structure, because also
this structure explains less well the correlations within the same situation.

The item-family structure implies that sensitivity to guilt cannot be perfectly
generalized over situations, because of the situational specificity implied in the
structure. It seems important to understand not only the abstract notion of
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FIGURE 3.9. Person parameters of the Rasch model versus person parameters of the
item-family structure (empirical Bayes estimates)

guilt, but also its specific situational appearances. The fine-grained IRT ap-
proach with LID models combines the global and the specific. The item-family
structure gives us the opportunity to model situational specificity, while still
based on a general latent trait. The LID model captures the specifics without
detracting from the global view. The multidimensional equivalent of unidimen-
sionality complemented with LIDs would be a structure with a large number of
dimensions, one for the general latent trait, and in addition as many as there
are situations (for the item-family structure), and even more for the other de-
pendency patterns.

Testing LID models, as we did, is a way of unraveling a concept into its
underlying processes while allowing for situational specificity. It is also a way of
investigating the internal validity of the questionnaire. Different psychological
theories seem plausible for the data we have gathered. If the responses are in
agreement with one of these theories, two types of conclusions can be drawn.
First, the theory is supported by the data, so that we gain insight in guilt
phenomena. Second, evidence for the internal validity of the test is found, as
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the responses are in agreement with a psychological theory. In our case, the
conclusion is that the structure of guilt is situation specific to some extent.

However, it can not be excluded that the structure we found stems from
response consistency within situations, but also in that case, LID modeling is
an efficient way of dealing with the phenomenon in question, without expanding
the explicit dimensionality of the model. Especially for applications with many
situations, LID modeling is a way to keep the number of person parameters low.

The approach we followed is similar to a structural equation modeling (SEM,
Everitt & Dunn, 1991; Du Toit, Du Toit, Jöreskog, & Sörbom, 1999) approach
with correlated error terms for what we called the LIDs. However, classical SEM
requires aggregates of items for a successful modeling (Marsh & O’Neill, 1984),
so that a less microscopic view will be obtained. Using SEM for binary data, one
can model the mean structure and the covariance structure of the data (Muthen
& Muthen, 1998-2001). Therefore, tetrachoric correlations are used, which are
based on a normal distribution underlying the binary response. As such, they
correspond to normal ogive IRT-models that are similar to logistic IRT models
used here.

The item-family structure is closely related to the ‘testlet model’ of Brad-
low et al. (1999) and to the bifactor model of Gibbons and Hedeker (1992).
These models are attractive alternatives for item sets with a clearly clustered
structure, as it turned out to be the case in our results. However, when the de-
pendency pattern is more complicated, or when a rather simple structure has to
be compared with more complicated ones, as in our study, it may be appealing
to choose an approach that does not increase the number of random effects.
The approach we have followed corresponds to what is called the conditional
approach in the statistical literature as an alternative for the random-effect
approach and the marginal approach (Diggle, Heagerty, Liang, & Zeger, 2002;
Fahrmeir & Tutz, 2001).

In the kind of LID models we have used any pattern of inter-item dependencies
can be specified, also types of patterns that deviate from the type that can be
explained by common underlying sources, unless one would want to define such a
source for every interdependent pair. It turned out for our data that the pattern
that was supported from the data is one that can be explained from a common
underlying source for each situation, but this is an empirical finding and not a
necessity.

The price to pay using LID models is that the item parameters are more diffi-
cult to interpret. According to the Rasch model, an item parameter corresponds
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to the value on the person parameter scale where a person has a .5 probability
of answering the item correctly. However, due to the LIDs, this interpretation
is not valid any more, since the probability also depends on the responses to
other items. Because of this interpretational difference, one cannot compare
item parameters of both models. However, one can compare the ICCs of both
models as in Figure 3.4.2. From this comparison, it may be concluded that all
ICCs of the item-family structure are steeper and closer to one another within
an item family. This is due to the positive dependence between items referring
to the same situation. Second, taking the .5 probability as the location of the
ICCs, for some item families, one can see a shift to the left of the ICCs of the
item-family structure in comparison to the Rasch model (item family 2 and 10)
whereas for some other item families, one can see a shift to the right (item family
5, 6 and 7). Situations 2 and 10 are the weakest when it comes to inducing guilt
(column 8, Table 3.5), whereas situations 5, 6 and 7 are among the strongest.
The effect is less clear in the other strong situation (item family 1). This shift of
the ICCs means that the guilt inducing power of a situation is overestimated by
the Rasch model for strong guilt situations and underestimated for weak guilt
situations.

To conclude, LID models can be used independent of the dimensionality (num-
ber of person parameters), in that LID parameters can always be added. LID
modeling is an easy way of restricting the number of person parameters or ran-
dom effects, taking into account dependencies beyond those from latent traits
that are explicitly incorporated in the model. Two important advantages of the
LID approach are its flexibility in the formulation of all kinds of theory-based
dependencies and the easy way of estimating these dependencies. For the do-
main of emotion research, the LID approach can help to clarify the fine-grained
structure of emotions and how they are related to appraisals and action tend-
encies.

3.6 Appendix

The ten descriptions we selected in the first study are listed below (translated
from Dutch to English):

1. You have been dating for some time a person you are not really in love
with. When you break up, you find out that he/she was in love with
you (and was taking the relationship very seriously). The break-up hurts
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him/her considerably. (Break-up)

2. You have been a member of a brass band for some years now. As a result,
you learned to play trumpet for free. Now that you’re skilled enough, you
leave the band because you don’t like the members of the band any more.
(Trumpet)

3. During the holidays, you are working as a salesperson in a clothing and
shoestore. One day, a mother with four children enters the store. One
of the kids wants Samson-shoes (Samson is a popular doll figuring in a
Belgian TV-series for children). The mother leaves the child with you
while she goes on to look for clothes for the other children. The child tries
on different types and sizes of shoes, but after a while the child gets tired
of fitting the shoes and refuses to continue. She picks a pair she has not
tried on before and you sell this pair to the mother afterwards. The next
day, the mother wants to return the shoes because they do not fit. Your
boss takes back the shoes and reimburses the mother. The shoes have
been worn however, and they are dirty. Because of this, they cannot be
sold anymore. Your boss says that it doesn’t matter, and that everyone is
capable of mistaking the size of shoes. (Shoes)

4. A not so close friend asks you if you want to join him/her to go to
the movies. You tell him/her that you don’t feel like it, and want to
spend a quiet evening at home. That evening you do go out with a closer
friend. (Movie)

5. During a discussion, you make a stinging remark toward one of your
friends. You notice that it hurts him/her, but you pretend not to see
it. (Discussion)

6. A friend tells you something in confidence, and adds that he/she would not
like you to spread it around. Later, you do tell it to someone else. (Secret)

7. You are a member of a youth movement. One day the group leaders hang a
rope between two trees, so you can glide from one tree to another. Jokingly,
some other members make the stop of the pulley unclear. You see them
doing it, but you do not help them. The following member, who wants to
glide to the other tree, did not see that the stop was made unclear. You
do not warn him/her. Halfway he falls from the rope, and he passes out.
(Youth movement)
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8. You have a pen pal. You get bored of writing with him/her, and suddenly,
you stop corresponding with him/her. After one and a half year, he/she
writes you again, and again, but you do not respond. (Pen pal)

9. You borrowed a jacket from a friend to wear when you go out. At the party,
you leave the jacket on a chair. When you are about to leave, you notice
the jacket has disappeared. In all probability, it has been stolen. (Jacket)

10. One evening, you do not feel like doing your homework. The following day,
you copy the assignment of a friend who clearly has gone though a lot of
trouble finishing it. You get a good grade for your assignment, the same
grade as your friend. (Homework)
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ABSTRACT Binary data stemming from questionnaires are often analyzed

with Item Response Theory (IRT) models, like the LLTM (Linear Logistic Test

Model, Fischer, 1977; Fischer & Molenaar, 1995). The parameters of the LLTM

have an interpretation conditional on the value of the person parameter. When

interested in the effect of certain variables at the level of the population, or when

only interested in the item difficulty structure of a questionnaire, a marginal ver-

sion of the LLTM can be used instead. With marginal models, the effects of the

item covariates can be investigated separately from the correlations between

the responses. In contrast to the more common random-intercept LLTM, the

correlations between the responses can be modeled in a very flexible way, and

violations of the assumed association structure do not necessarily influence the

estimated effects of the item covariates. Three different ways of approaching the

associations between the responses are discussed: marginal correlations, condi-

tional log odds ratios, and marginal log odds ratios. Finally, the approach is

illustrated with an example on guilt feelings.1
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4.1 Introduction

Social scientists often make use of data stemming from questionnaires to invest-
igate their research questions. There are various possibilities for the response
format of a questionnaire, but many are categorical. We will discuss modeling
techniques for categorical response data, in particular for binary data (Yes/No,
Correct/Incorrect, etc.), although the technique can be easily extended to poly-
tomous data. An approach that is quite popular for modeling binary data in
such a context is Item Response Theory (IRT). In most IRT models it is assumed
that the probability for a person to give a 1-response to an item is a function of
a person-specific parameter and an item-specific parameter. The simplest model
of IRT is the Rasch model (Rasch, 1960), which comprises one parameter per
person, often called the ability, and one parameter per item, often called the
item difficulty. The response a person gives to a certain item is explained based
on an effect specific to the person and an effect specific to the item. In some IRT
models, for example in the Linear Logistic Test Model (LLTM, Fischer, 1977;
Fischer & Molenaar, 1995), the item effects are explained based on some known
item properties or item covariates. The responses are explained in terms of a
person effect and the effects of some known item covariates. In fact, the Rasch
model can be seen as a special case of the LLTM in which the item covariates
are dummy variables for each item.

When formulated within a marginal maximum likelihood framework (Baker,
1992), the LLTM can be conceived as a generalized linear mixed model or a
random-effect model (McCulloch & Searle, 2001): The person parameters are
assumed to be normally distributed with a certain mean and a certain variance,
whereas the effects of the item covariates are fixed. The person parameter is a
random effect and, more in particular, a random intercept. Therefore, we will
call this model the random-intercept LLTM (RI-LLTM). An explicit expression
for the RI-LLTM is:

logit [P (Yij = 1| θi)] = θi +
K∑

k=1

qjkηk (4.1)

with i = 1, . . . , I the index for the person,
j = 1, . . . , J the index for the item,
k = 1, . . . , K he index for the item covariate,
θi the person effect or random intercept: θi ∼ N

(
µθ, σ

2
θ

)
,

qjk the value of item j on item covariate k,
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and ηk the effect of item covariate k.

The effects of the item covariates denote the influence of the covariates con-
ditional on the value of the random intercept. In other words, the effects of
the item covariates are to be interpreted as an effect at the level of the indi-
vidual. The effects of the item covariates are individual-level effects, and not
population-level effects (Diggle, Heagerty, Liang, & Zeger, 2002; Fahrmeir &
Tutz, 2001; Hardin & Hilbe, 2003; Neuhaus, Kalbfleisch, & Hauck, 1991; Zeger,
Liang, & Albert, 1988). The same holds for other IRT models with random
effects. Also for all general linear mixed models using conditional maximum
likelihood (CML) (Baker, 1992) a similar interpretation of the effects of the
item covariates holds. In the CML formulation, the likelihood is conditional on
the sufficient statistic for the person parameter, the sum score of the person.
The result is a conditional model, but without any assumption about the form
of the distribution of the person parameter. Therefore, the effects of the item
covariates correspond to the effect of an item covariate conditional on the sum
score of the person. Since there is a one-to-one mapping between the person
parameters and the values of the sufficient statistic, the effects of the covariates
have the same meaning as in the RI-LLTM with an MML formulation.

4.2 Marginal Models

For models with a nonlinear link function and with random affects, such as
the logistic model, the effect of covariates on the mean over individuals (the
population-level effect) is not equal to the mean effect of the covariates for each
of the individuals (the individual-level effect) (Diggle et al., 2002; Fahrmeir &
Tutz, 2001; McCulloch & Searle, 2001; Neuhaus et al., 1991; Snijders & Bosker,
1999). Models explicitly designed for population-level effects are marginal mod-
els. Marginal models are useful when inferences about the population(s) are the
focus of interest. Therefore they are sometimes also called population-averaged
models. The term ‘marginal’ emphasizes that the mean response is the marginal
probability of giving a 1-response to a certain item. This can be linked to the
common practice in classical test theory to use the percentage correct for an
item as an estimator of the probability of a correct response. This percentage
correct is a marginal statistic. In contrast, the random-effect models have para-
meters for the effects of covariates on the conditional probabilities conditional
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on the value(s) of the random effect(s).
Marginal models ought not to be confused with a so-called marginal maximum

likelihood (MML) formulation of a model (Baker, 1992; Bock & Aitken, 1981;
Bock & Lieberman, 1970). The MML formulation is an integration over terms
that contain conditional covariate effects and random effect(s). The covariate
effects correspond to the mean over the effects and not to the effect on the
mean.

As will be explained later, some marginal models have the very attractive
feature that the estimates of the covariates effects are consistent regardless
of the correct specification of the association structure, whereas others do not.
Marginal models that result in consistent estimates regardless of the correct spe-
cification of the association structure, provide a very flexible way to deal with
this association structure. The structure of the item difficulties can be invest-
igated independent of the structure of the individual differences. Our primary
motivation to look at marginal models is to estimate the item difficulty struc-
ture when one may expect associations between items beyond those that can
be explained by an underlying latent trait (the random intercept), as will be
illustrated in the application. It is not surprising that such associations would
occur in an LLTM concept. In the LLTM the item effects are explained in terms
of item covariates. These covariates often define groupings of items on the basis
of common properties. These properties may be a source of extra correlation.

However, as is already mentioned, the estimates of a marginal model are
different from those of a random-effect model. As will be explained later, the
marginal effects have a reduced value in comparison with the conditional effects.
However, it is not true that marginal model parameters are ‘biased’ relative to
random-effect model parameters. In fact, the true population parameters are
different between marginal models and random-effect models.

4.2.1 Model

The marginal modeling approach is described, among others, by Aerts, Geys,
Molenberghs, and Ryan (2002), Diggle et al. (2002), and Fahrmeir and Tutz
(2001). The marginal version of the LLTM (M-LLTM) consist of two parts:
(1) a generalized linear model in which the marginal probabilities are related to
the item covariates by the logit link function, called the mean structure (See,
Equation 4.2), and (2) a model for the associations between the observations,
which is often also a generalized linear model, called the association structure
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(See, Equation 4.3). For example, one can assume equal correlations, a different
correlation for each item pair, etc.

The formula for the mean structure of the M-LLTM can be written as follows:

logit [P (Yij = 1)] =
K∑

k=1

qjkη∗k (4.2)

with η∗k the marginal effect, to be distinguished from the conditional effect ηk

in Equation 4.1. Another difference is the omission of the random intercept θi.
The fact that ηk 6= η∗k results from the omission of θi. Note that the models that
will be discussed, also allow for person covariates. However, as this possibility
is beyond the scope of the current manuscript, it will not be discussed here any
further.

As for the associations structure, one has to decide first on how the associ-
ation structure is formalized: in terms of marginal correlations, conditional log
odds ratios (log odds ratios conditional upon zero-responses on all other items),
or marginal log odds ratios (not conditional upon responses on other items).
These are the more common parameterizations. Other options exist, but will
not be discussed here. In all three just mentioned approaches, the association
parameters (correlations or log odds ratios) can be considered a function of
some association covariates. Denoting the association parameter for two items
j and h with γijh, the formula for the association structure can be written as
follows:

f (γijh) =
M∑

m=1

zjhmαm (4.3)

with m = 1, ..., M the index for the association covariates,
zjhm the value of association covariate m for the association between the re-
sponses to the items j and h,
αm the effect of association covariate m,
and f (.) a link function to link the association parameter γijh to the association
covariates.

Higher-order generalizations of the association parameter to more than two
items can be denoted with subscripts added to z for all items involved in the
association in question. Note that the models to be discussed also allow for
person-specific association covariates. This feature will not be discussed here
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any further as it is beyond the scope of the current manuscript.
In the literature, three association structures are commonly used: (a) an in-

dependence structure, which means that no association is assumed between the
responses, so that αm = 0, for all m; (b) an exchangeable association structure,
which means that all pairwise associations are equal, so that γijh = α for all
pairs j 6= h, whereas all higher order associations are equal to zero, and (c) an
unspecified association structure, which means that all pairwise associations can
have a different value, so that γijh = αjh, whereas all higher order associations
equal zero. Other association structures can be constructed as well, depending
on a specific hypothesis one has about the association structure.

4.2.2 Estimation

To estimate the M-LLTM, two choices are to be made: (1) which kind of as-
sociation parameter one wants to use (correlations or log odds ratios), and (2)
which kind of estimation approach one prefers. For the latter, two options will
be discussed: a full-likelihood based approach and a Generalized Estimation
Equations based approach (GEE). The former can be used for marginal correl-
ations and conditional log odds ratios, and the latter for marginal correlations
and marginal log odds ratios.

Various software tools are available for the estimation. Different association
structures can be easily estimated with one and the same software tool. For ex-
ample, PROC GENMOD in SAS V8; XtGee in Stata, Oswald in S-Plus; ALR,
Geepack, or Yags in R, Mareg (Fieger, Heumann, & Kastner, 1996; Kastner,
Fieger, & Heumann, 1997; Kastner, Heumann, & Fieger, 1999) can be used for
the estimation of the M-LLTM. See Horton and Lipsitz (1999) and Ziegler and
Grömping (1998) for more information about programs that can be used for the
estimation of M-LLTM.

To summarize, the central idea is to model the marginal expectation of each
binary variable in terms of item covariates (mean structure, Equation 4.2) and
the associations between responses in terms of association covariates (associ-
ation structure, Equation 4.3). Both sets of covariates can show some overlap,
but they do not have to.

Before discussing the different options to model and to estimate the M-LLTM,
we will first discuss the relation between conditional and marginal parameter
estimates, and second, an approach with a hybrid parameterization that com-
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bines a random-intercept model with a separate association structure specified
in terms of conditional log odds ratios. This hybrid model is in spirit close to
the ‘mixed model’ of Fitzmaurice and Laird (1993), see later.

4.3 Comparison with other models

4.3.1 Marginal and conditional parameters

The effects of the item covariates as estimated with the RI-LLTM are condi-
tional parameters (conditional on the random intercept), denoted with ηk as
in Equation 4.1. They can be related to the effects of the same item covari-
ates as estimated with the M-LLTM, called marginal parameters and denoted
with η∗k as in Equation 4.2. Neuhaus et al. (1991) showed that the marginal
parameters (η∗k) are always closer to zero than or equal to the corresponding
conditional parameters (ηk) (equality holds only if ηk = 0) and that the dis-
crepancy between ηk and η∗k increases with the variance of θ. Zeger et al. (1988)
derived an approximate relation between the two:

η∗k ≈
(
1 + c2σ2

θ

)−1/2
ηk (4.4)

where the variance of θ is equal to σ2
θ , and c = 16

√
3/ (15π), so that c2 ≈ .346

(See also, Diggle et al., 2002; McCulloch & Searle, 2001). For normal-ogive
models, η∗k =

(
1 + σ2

θ

)−1/2
ηk (Snijders & Bosker, 1999) meaning that c = 1

for these models, whereas for logistic models 1/c is close to the well-known
multiplicative factor 1.7 to approach a normal-ogive model with a logistic model.

4.3.2 Random-effect models

In random-effect models such as the RI-LLTM, one conditional equation suffices
to model both the effects of the item covariates and the association structure of
the data (Equation 4.1). Extensions of the RI-LLTM into random-slope versions
(Rijmen & De Boeck, 2002) are more flexible with respect to the association
structure, whereas they still explain the effects of the item covariates and the
association structure with one equation. Also the random effects testlet model of
Bradlow, Wainer, and Wang (1999) is of this type. In all random-effect models, it
is assumed that given the person parameter, there are no remaining associations
between the responses. This assumption is called ‘local stochastic independence’
(LSI, Lord & Novick, 1968). This assumption is violated if more complicated
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associations between the responses exist that cannot be explained with random
effects. Neglecting the residual associations leads to a distortion of the parameter
estimates (Thissen, Steinberg, & Mooney, 1989; Tuerlinckx & Boeck, 2001; Yen,
1993).

4.3.3 Conditional models

Also conditional models are an alternative that can take into account these re-
maining associations (Diggle et al., 2002; Fahrmeir & Tutz, 2001; Hoskens &
De Boeck, 1997, 2001; Verhelst & Glas, 1993, 1995; Wilson & Adams, 1995).
Conditional models are models in which observed variables are modeled condi-
tional upon one or more other observed random variables (Fahrmeir & Tutz,
2001). The term ‘conditional’ refers here to conditioning on the observed values
of other random variables. This may not be confused with the term ‘conditional’
when referring to covariate effects in a random-effect model. In the latter case
conditional means conditional on the random effect(s). Unfortunately, these
models suffer from two problems: First, they are not upward compatible in that
the item parameters do not have the same interpretation as there LSI counter-
parts (Ip, 2002; McCullagh & Nelder, 1989). The condition of reproducibility,
which is that the joint distribution of a subset of responses depends only on
the parameters specific for the selected subset, is not fulfilled since the effect
parameters cannot be reproduced independent of the association structure. For
example, the item parameter is not equal any more to the value on the person
parameter scale that corresponds with the .5 probability of giving a 1-response,
since the probability of giving a 1-response depends also on the dependency
parameters. Second, these models for local item dependencies inherit the prob-
lem mentioned for the random-effect models, that the estimates of covariate
effects are distorted when actually the item responses are dependent beyond
what can be expected based on the random effects and the local item depend-
ency parameters (misspecification of the association structure).

4.3.4 Hybrid models

A solution for both problems can be found in a hybrid models as developed
by Ip (2002), starting from a log-linear representation of the multinomial dis-
tribution of the responses (see also, Fitzmaurice & Laird, 1993; Fitzmaurice,
Laird, & Rotnitzky, 1993; Molenberghs & Ritter, 1996). For two binary items,



4. Marginal approaches to the Linear Logistic Test Model 127

the probability distribution function is shown in Equation 4.5.

P (Yi1 = yi1, Yi2 = yi2|θi) = (4.5)

P (00|θi)
(1−yi1)(1−yi2) P (10|θi)

yi1(1−yi2) P (01|θi)
(1−yi1)yi2 P (11|θi)

yi1yi2

where P (00|θi) is a short notation for P (yi1 = 0, yi2 = 0|θi), and P (00|θi) +
P (10|θi)+P (01|θi)+P (11|θi) = 1. Taking the log on both sides, and regrouping
terms leads to the following parameterization (Ip, 2002):

log [P (Yi1 = yi1, Yi2 = yi2|θi)] = yi1ωi1 + yi2ωi2 + yi1yi2ωi12 − κ(θi) (4.6)

where ωi1 = log [P (10|θi) /P (00|θi)], ωi2 = log [P (01|θi) /P (00|θi)], κ (θi) =
− log [P (00|θi)], and ωi12 = log [P (00|θi) P (11|θi) /P (10|θi)P (01|θi)]. This
model is called the generalized log-linear model (GLLM, Holland, 1990; Laird,
1991). For a given θi, the GLLM belongs to the exponential family of distri-
butions with the canonical parameters ωi = (ωi1, ωi2, ωi12) (Andersen, 1980;
Lehmann, 1983).

The GLLM can be used to specify many different IRT models: models that
allow for local item dependencies, and models that do not allow for local item
dependencies. For example, setting ωi12 equal to zero, and modeling ωij as
θi +

∑K
k=1 qjkηk, the RI-LLTM model is obtained. Setting ωi12 equal to γ, the

constant interaction model of Kelderman (1984) and Hoskens and De Boeck
(1997) is obtained. A generalization of Equation 4.6 to more than two items
can be found in Ip (2002). It is clear that the effects of the item covariates
are influenced by the specified association structure. For example, if the model-
based probability of giving the same response to both items (00 or 11) increases
due to a local item dependency, also the interaction parameter ωi12 will increase,
resulting in lower probabilities for the response patterns with different responses
(10 and 01). Since ωi1 and ωi2 equal the log odds of 10 versus 00 and of 01 versus
00 respectively, it is clear that they are both affected by the local dependency
of the items 1 and 2.

Ip (2002) solved this problem with a mixed parametrization, in terms of mean
parameters and canonical parameters. ωi1 and ωi2 are transformed into their
respective mean parameters, µi1 = P (Yi1 = 1|θi) and µi2 = P (Yi2 = 1|θi) and
ωi12 is retained, resulting in a hybrid parameterization in terms of (µi1, µi2, ωi12)
(see also, Fitzmaurice & Laird, 1993; Fitzmaurice et al., 1993; Molenberghs &
Ritter, 1996). The model is called hybrid, because of its mixed parameterization
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in terms of mean parameters and canonical parameters. This model is a partly
but not a fully marginal model. The mean parameters are not marginal over
the random effect, but they are marginal over the responses to other items, and
therefore they are invariant under the association structure. The association
structure is isolated in a separate aspect of the model. The effect parameters
are therefore both conditional parameters (conditional on the random effect)
and free of the problems associated with the conditional local item dependency
models.

The hybrid model for the LLTM reads as follows: logit (µij) = θi+
∑K

k=1 qjkηk,
logit (µih) = θi +

∑K
k=1 qhkηk, and ωijh =

∑M
m=1 zjhmαm.

The advantage of this parameterization is that the effects of the item cov-
ariates are not influenced by the specified association structure (Ip, 2002). It
offers the possibility of modeling the item difficulty structure independent of
the association structure as reflected in the local item dependencies. As such, it
is an attractive approach that meets our concern of studying the item difficulty
structure in a way that is not dependent on the specific association structure.
However, a serious disadvantage is that no closed form solution exists for the
joint distribution in terms the marginal and canonical parameters (Fitzmaurice
et al., 1993; Ip, 2002). A consequence is that the estimation becomes compu-
tationally cumbersome if the number of items, or the number of association
parameters is large.

4.4 Association structure

Seven characteristics will be used to compare the different kinds of M-LLTM
that will be discussed below.

1. The availability of fit characteristics. For the full-likelihood based ap-
proaches, one can use likelihood based measures of goodness of fit, for
example the deviance, the AIC (Akaike’s Information Criterion, Akaike,
1977), the BIC (Bayesian Information Criterion, Schwartz, 1978). How-
ever, for the GEE approaches, these statistics cannot be used.

2. The kind of association parameter used (marginal correlations, conditional
log odds ratios, or marginal log odds ratios).

3. The interpretability of the association parameters.
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4. The constraints on the association parameters. For some models, the para-
meter space of the association parameters is constrained by the marginal
probabilities. This is the case for all models using marginal association
parameters (marginal correlation and marginal log odds ratios), but the
degree of the constraints differs.

5. Consistency of the effects estimates. Some approaches yield consistent es-
timates regardless of the correct specification of the association structure,
whereas others do not.

6. Feasibility depending on the number of items. Some approaches are com-
putationally feasible only for a small number of items, whereas other ap-
proaches can be used for moderate to high number of items.

7. Reproducibility. The issue is whether the joint distribution of a subset of
responses depends on the whole parameter set (not reproducible) or only
on the parameters specific for the selected subset (reproducible). Models
that are not reproducible require that all subjects receive the same number
of items, at least by design.

For all models to be discussed as instantiations of these two approaches, the
seven characteristics are summarized into Table 4.1. We will first discuss full-
likelihood based approaches, and next the Generalized Estimation Equations
(GEE) based approaches.

A feature related to the fifth characteristic (the consistency of the estimates
of the effects of the item covariates) is the estimation of the error variance of
the effects of the covariates. Even for marginal models that result in consistent
estimates for the effects of the item covariates, regardless of the correct specific-
ation of the association structure, it holds that the model-based estimates of the
error variances will be biased if the association structure is not correctly spe-
cified. To solve this problem so-called sandwich estimators (e.g., Hardin & Hilbe,
2003; Liang & Zeger, 1986; Pan, 2001a; Royall, 1986; White, 1982) or jackknife
estimators (e.g., Kastner & Ziegler, 1999; Lipsitz, Dear, & Zhao, 1994) are de-
veloped, which do not suffer from this misspecification problem. The sandwich
estimator is sometimes called the ‘empirical variance estimate,’ since it combines
the variance estimate from the model with a variance matrix constructed from
the data. For marginal models in which a misspecification of the association
structure affects the parameters of the mean structure, the sandwich estimator
does not solve the just mentioned misspecification problem.
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4.4.1 Full-likelihood based approaches

4.4.1.1 The Bahadur model

A first attempt to model the mean structure and the association structure sep-
arately was undertaken by Bahadur (1961). In his model, the joint distribution
of a response pattern is expressed in terms of marginal probabilities, pairwise
correlations, and higher-order correlations. The joint distribution for a response
pattern Y = y can be written as:

J∏

j=1

µ
yj

j (1− µj)
(1−yj) (4.7)


1 +

∑

j<h

ρjhejeh +
∑

j<h<l

ρjhlejehel + . . . + ρ12...Je1e2 . . . eJ




where µj = E (yj) = P (yj = 1); ej = (yj − µj) / [µj (1− µj)]
1
2 ; and ρjh =

E (ejeh) = r (yj , yh) , . . . , ρ12...J = E (e1e2 . . . eJ).
Thus, the joint distribution can be evaluated in closed form in terms of the
2J − J − 1 marginal correlations and higher order moments. One can put re-
strictions on the different patterns of correlations by setting some of the pairwise
and higher-order correlations to zero. A drawback of this approach is that the
marginal correlations among binary responses are constrained in complicated
ways by the marginal probabilities. By consequence, modeling the marginal
probabilities in terms of some item covariates, will not lead to a model in which
the marginal correlations are independent of the item covariate effects as would
be convenient (Diggle et al., 2002; Fahrmeir & Tutz, 2001; Fitzmaurice et al.,
1993). A general study of this phenomenon is given in Declerck, Aerts, and
Molenberghs (1998). Note that this model is not mentioned in Table 4.1, as to
our knowledge, it is of interest primarily for theoretical reasons.

4.4.1.2 Models with a log-linear form

An alternative to Bahadur’s representation is the log-linear specification, which
assumes that the joint distribution of a response pattern Yi is specified as
follows (following the parameterization of Fitzmaurice & Laird, 1993): Suppose
that all individuals receive the same number of items (J) with a binary response
format. The resulting response pattern of a person is Yi = (yi1, . . . , yiJ)T .
Second, assume that for every item we have the values of K item covariates
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(qjk). Assume that the marginal distribution of a binary response yij is:

f (yij |qjk) = µ
yij

ij (1− µij)
1−yij (4.8)

= exp {yij − log [1 + exp (νij)]}

where νij = log
(

µij

1−µij

)
=

∑K
k=1 qjkη∗k and µij = E (yij) = P (yij = 1|qjk, η∗k)

Now, the joint distribution of a response pattern Yi is of log-linear form:

f (Yi, Ψi, Ωi) = exp
[
ΨT

i yi + ΩT
i wi −A (Ψi, Ωi)

]
(4.9)

where Ψi and Ωi are vectors of canonical parameters:
ΨT

i = (ψi1, . . . ψiJ)T with ψij = logit [P (yij = 1 | yil = 0, l 6= j)]: the condi-
tional probability given that the remaining responses yil, l 6= j are all zero and
ΩT

i = (ωi12, . . . , ωiJ−1 J , . . . , ωi12...J)T can be interpreted in terms of conditional
log odds ratios as

ωijh = log
[

P (yij=1, yih=1 | yil=0, l 6=j,h)P (yij=0, yih=0 | yil=0, l 6=j,h)
P (yij=1, yih=0 | yil=0, l 6=j,h)P (yij=0, yih=1 | yil=0, l 6=j,h)

]

is a sum of log odds ratios given that the remaining responses yil, l 6= j, h are
all zero, wi = (yi1yi2, . . . , yiJ−1yiJ , . . . , yi1yi2 . . . yiJ)T is a R x 1 vector of all
second and higher-order cross products of responses of a certain person i, and
A (Ψi, Ωi) is a normalizing constant: exp [A (Ψi, Ωi)] =

∑
exp

(
ΨT

i yi + ΩT
i wi

)
,

where the summation is over all 2J possible values of Yi.
This representation will be used for the following two models. The general

strategy for both is to transform Ψi to marginal probabilities for modeling the
effects of the item covariates, whereas Ωi is used to account for the pairwise
and higher-order associations between the responses. Note that the subscript i

for the person is retained as the models based on this representation allow for
person-specific covariates for the mean structure, as well as for the association
structure.

The mixed parameter model of Fitzmaurice and Laird (1993)

In this model, the associations are formalized in terms of conditional log odds ra-
tios. Fitzmaurice and Laird (1993) developed a full likelihood-based method for
analyzing correlated binary data, in which the associations between responses
are modeled in terms of conditional log odds ratios (see definition of Ωi). The
joint distribution of a response pattern Yi is assumed to follow Equation 4.9.
The Ψi are transformed into marginal probabilities, but to specify the associ-
ations between the responses, conditional log odds ratios are used. Unlike the
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approach of Zhao and Prentice (1990) (next paragraph), the third and higher-
order associations are not restricted to be zero. This model is called the mixed
parameter model as for the specification of the model both marginal and canon-
ical parameters are used.

The mixed parameter model allows for varying degrees of dependence among
the responses and also for setting certain association parameters to zero or
explaining the association parameters in terms of association covariates. For
a discussion of the likelihood equations and an algorithm for estimating the
parameters of this model, we refer to Fitzmaurice and Laird (1993).

A first advantage of this approach (see Table 4.1), is that it is a likelihood
based approach and therefore likelihood-based fit statistics can be used. Second,
unlike the correlations in the Bahadur model and in the quadratic exponential
model (see next paragraph), the conditional log odds ratios are not constrained
by the marginal probabilities (Fitzmaurice et al., 1993). Third, the estimates
for the effects of the item covariates are consistent if the mean structure is cor-
rectly specified, regardless of whether the association structure (Ωi) is correctly
specified. This has to be contrasted with the random-effect approach and with
the subsequent approach based on marginal correlations, in which the item dif-
ficulty structure (mean structure) parameters are affected if the associations
among the responses are not correctly specified by the model.

There are also some limitations related to this model: First, the association
parameters do not have an attractive or meaningful interpretation. They rep-
resent the log odds ratio given that all other responses are zero. However, if the
primarily point of interest is the effects of the item covariates, the interpretabil-
ity issue of the association parameters is of no importance (Fitzmaurice & Laird,
1993). In such a case a simple model for the association structure suffices. When
the investigator is also interested in the association structure, using marginal
log odds ratios is to be preferred. Second, computations grow exponentially with
the number of items, and quickly become impractical (Fahrmeir & Tutz, 2001).
Third, the mixed parameter model is not ‘reproducible,’ meaning that the joint
distribution for a subset of items depends on the whole parameter set, and not
only on the parameters specific to this subset. If Y∗

i is a J∗ × 1 subset of the
response vector Yi of subject i, where J∗ < J , then

f (Y∗
i ) 6= exp

[
Ψ∗Ti y∗i + Ω∗Ti w∗

i −A (Ψ∗i , Ω∗i )
]

(4.10)

where Ψ∗Ti , Ω∗Ti , and w∗
i are the corresponding subsets of ΨT

i , ΩT
i , and wi
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respectively. Hence, omitting an item will change the interpretation of all con-
ditional log odds ratio parameters. By consequence, the model is only applic-
able when every subject received the same number of items, at least by design
(Fitzmaurice et al., 1993).

The quadratic exponential model of Zhao and Prentice (1990)

Zhao and Prentice (1990) proposed a model called the quadratic exponential
model in which the third and higher-order associations are set to zero (see also,
Gourieroux, Monfort, & Trognon, 1984). It connects as a special case to the
model of Fitzmaurice and Laird (1993). In the quadratic exponential model, the
association structure is reduced to pairwise associations and modeled in terms of
marginal correlations. The canonical parameters Ωi and Ψi are mapped through
a one-to-one transformation to the moment parameters (µi,Σi), i.e. the vector
of marginal probabilities and the covariance matrix. The moment parameters
(µi,Σi) are modeled in terms of item covariates and association covariates,
which both yield a marginal interpretation.

Zhao and Prentice (1990) derived pseudo maximum likelihood estimates for
the effects of the item covariates (η∗k) and for the effects of association cov-
ariates (αm), which are consistent and asymptotically normal under regularity
conditions (Gourieroux et al., 1984).

This approach has two major advantages: First, it is a likelihood based ap-
proach, so that one can use likelihood-based fit statistics like the deviance,
the AIC, and the BIC. Nested models can be compared with likelihood-ratio
tests. Second, the association parameters are modeled in terms of marginal cor-
relations, which are easy to interpret. However, the approach has also serious
drawbacks: As for the Bahadur model, also for the quadratic exponential model
it holds that the marginal probabilities constrain the marginal correlations in
complicated ways if the number of items is larger than 2 (J ≥ 2) (Diggle
et al., 2002; Fahrmeir & Tutz, 2001; Fitzmaurice et al., 1993; Ziegler, Kastner,
& Blettner, 1998). Second, the consistency properties for the effects of the item
and association covariates depend on the correct specification of both the mean
and the association structure (Fitzmaurice et al., 1993; Zhao & Prentice, 1990).
Thus, a misspecification of the marginal association structure can lead to incor-
rect estimates of the effects of the item covariates. Therefore, this model does
not meet our concerns. Third, like for the mixed parameter model, this proced-
ure is computationally feasible only for small numbers of items. Fourth, since
the canonical parameters depend on the number of responses, the subjects need
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to receive the same number of items (Fitzmaurice et al., 1993; Zhao & Prentice,
1990) (See Table 4.1).

4.4.1.3 Other full-likelihood based approaches

Note that it is not our aim to give an exhaustive enumeration of all existing
marginal models for correlated binary data that can be estimated with a full-
likelihood based method. In this paragraph two additional, interesting models
will be mentioned. The first model is developed by Ekholm, Smith, and Mc-
Donald (1995), Ekholm, McDonald, and Smith (2000), and Ekholm, Jokinen,
McDonald, and Smith (in press). In this model, associations are modeled in
terms of dependency ratios, which can be interpreted as the probability of ob-
serving 1-responses on all items involved in the association compared to the
probability of observing a 1-response on each item as can be expected based on
an independence model, for example the dependency ratio between two items 1
and 2 equals P (y1 = 1, y2 = 1) /P (y1 = 1) P (y2 = 1). However, as this model
does not allow for a flexible modeling of the association structure in terms of
item-specific association covariates, it will not be discussed here any further.
A second model to be mentioned is the Dale model described in Dale (1986)
for bivariate data and extended by Molenberghs and Lesaffre (1994, 1999) to
multivariate data. Similar to one of the GEE-approaches to be discussed be-
low, the Dale model models associations in terms of marginal log odds ratios.
As the model specification is, except for the estimation method, close to the
GEE approach with marginal log odds ratios, it will not be discussed here any
further.

4.4.2 Generalized estimation equations based approaches

An alternative to the full-likelihood based methods was given by Liang and
Zeger (1986), Zeger and Liang (1986). 2 They developed a multivariate ana-
logue of quasi-likelihood methods as described in Wedderburn (1974) which
can lead to computational more simple procedures to estimate the effects of
the item covariates and the association covariates. These quasi-likelihood meth-
ods are called Generalized Estimation Equations (GEE). They require only the

2Another non-likelihood method, called empirical generalized least squares, was developed
by Koch, Landis, Freeman, Freeman, and Lehnen (1977). However, this approach requires
that each covariate pattern is non-sparse, which is not feasible for covariates with many levels
or continuous covariates. As such, it will not be discussed here.
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specification of the form of the mean function and the way in which the vari-
ance of the responses depend upon the mean, but a complete specification of
the likelihood function is not required. Therefore, these methods use only part
of the information, in contrast to full-likelihood based approaches. In all com-
monly used GEE approaches the associations are modeled in terms of marginal
association parameters: marginal correlations or marginal log odds ratios.

There exist different kinds of GEE. Two kinds will be discussed: first-order
GEE (GEE1) and second-order GEE (GEE2). Almost all GEE1 approaches
focus on the estimation of the effects of the item covariates (the first moments).
The effects of the item covariates on the marginal probabilities are modeled
while using working assumptions about the association structure (the second
moments). The working assumptions about the association structure specified
in terms of association covariates do not need to be correct, nor can they be
tested. They are only used to reach more efficient estimates for the effects of
the item covariates. A critical feature of GEE1 is that the effects of the item
covariates and the effects of the association covariates are treated as orthogonal
to one another, even when they are not (Liang, Zeger, & Qaqish, 1992), resulting
in consistent estimates for the effects of the item covariates regardless of the
correct specification of the association structure.

The GEE2 approaches, on the other hand focus on both, the effects of the item
covariates and the effects of the association covariates. The effects of the item
covariates and the effects of the association covariates are jointly estimated, and
as such they can both be tested. The joint estimation results in more efficient
and consistent estimates for both kinds of effects provided that the model for the
mean structure and the association structure are correctly specified. The reason
is that GEE2 approaches do not treat the two kinds of effects as orthogonal. For
GEE2, working assumptions about the third and fourth moments are necessary,
but the correctness of these working assumptions does not affect the consistency
of the estimates for the effects of item covariates and association covariates.
However, the correctness of the working assumption does affect the efficiency of
the estimates (Hall & Severini, 1998; Prentice & Zhao, 1991).

The GEE approach in general has three major disadvantages: First, not all
information available in the data is used for the estimation of the model: For
GEE1, only information about the first moments (the means and the variances)
is used, and for GEE2, only information about first and the second moments
(the pairwise associations) is used. Information about higher order associations
is neglected. The implication is that the efficiency of the estimates is reduced. A
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second and more serious drawback is that one leaves the framework of the full-
likelihood methods, and therefore the likelihood-based fit statistics (deviance,
AIC, BIC) no longer apply. Instead, the fit of different models is commonly
investigated by looking at the significance of the effects of the covariates, based
on Wald type arguments. Recently, some fit statistics specific for GEE are de-
scribed in literature (e.g., Barnhart & Williamson, 1998; Horton et al., 1999;
Pan, 2001a, 2001b, 2002; Rotnitzky & Jewell, 1990; Williamson et al., 2003;
Zheng, 2000). Most of them are developed for the GEE1 approach with the
working assumptions on marginal correlations as association parameters, and
they are not developed yet for models with working assumptions on marginal
log odds ratios, such as the model of Carey, Zeger, and Diggle (1993). A gen-
eralization toward these models is desirable. Third, as already mentioned, all
GEE approaches use marginal association parameters. For binary data, they are
constrained to a certain degree by the marginal probabilities (Fitzmaurice et al.,
1993; Liang et al., 1992; Ziegler et al., 1998). Note that these constraints are not
specific for GEE approaches, but hold for all models using marginal association
parameters. Fourth, most GEE1 approaches provide no information about the
association structure. In contrast, GEE2 approaches do provide this informa-
tion, but the price to pay is that they do not yield consistent estimates of the
item covariates effects regardless of the correct specification of the association
structure. Furthermore, for GEE2 it holds that, due to the non-orthogonality
of the effects of the item covariates and the effects of the association covari-
ates, the sandwich estimator for the error variance of the effects of the item
covariates and the effects of the association covariates is not always robust to
misspecification of the association structure (Hardin & Hilbe, 2003), although
for GEE1 it is. Finally, for moderate to high number of items, GEE2 becomes
computationally infeasible, as large matrices have to be calculated and inver-
ted (due to the inclusion of third-order and fourth-order moments). However,
GEE2 is still computationally less cumbersome than the full-likelihood based
approaches (Fitzmaurice et al., 1993; Liang et al., 1992) (see Table 4.1).

In the next paragraphs, we will discuss four approaches: GEE1 and GEE2,
each combined with either marginal correlations or marginal log odds ratios as
association parameters. As a fifth approach, an extension of the GEE1 approach
combined with logistic regressions will be discussed that does allows for the
estimation of the association parameters, and is computationally feasible for
large numbers of items.
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4.4.2.1 GEE1 and GEE2 with marginal correlations as association
parameters

Liang and Zeger (1986), Zeger and Liang (1986) focus primarily on the effects of
the item covariates and follow a GEE1 approach. The associations between the
responses are considered nuisance elements in the model. A quasi-score equa-
tion is derived for the estimation of the effects. For binary data the estimating
equation for the effects, denoted with U (η∗), is the following:

U (η∗) =
N∑

i=1

QT
i ∆iV

−1
i (yi − µi) = 0 (4.11)

where Qi is a J×K matrix with the values of the J items to the K item covari-
ates, yi is the response pattern of person i, µi = E (yi) = (µi1, µi2, . . . , µiJ)T ,
∆i is the diagonal of the variance-covariance matrix: diag

(
σ2

yi1
, . . . , σ2

yiJ

)
, and

Vi is a working assumption about the covariance matrix of the responses, to be
chosen by the investigator. One can express this working covariance matrix as
follows:

Vi = ∆1/2
i <i(α)∆1/2

i (4.12)

where <i is a J × J working correlation matrix, and α represents a vector
of parameters associated with the specified model for <i. Different correlation
structures can be expressed as h (<i) = Ziα =

∑M
m=1 zijhmαm, with j and h

as item indices, Zi is a matrix containing the values of the association covari-
ates (to be distinguished from the item covariates), α is the vector containing
the effects of the association covariates, and h(.) is a link function to link the
correlation matrix to the association covariates, for example the Fischer-Z trans-
formation. Note that the subscript i for the person is retained in the Equations
4.11 and 4.12 as the GEE based models allow for person-specific covariates for
the mean structure, as well as for the association structure.

The association structure as modeled with the association covariates, is only
a working assumption, used to reach more efficient estimates for the effects of
the item covariates. They are not the primary interest of this approach. The
parameters of the association structure (α) are replaced by a J

1
2 -consistent

estimator, based on the Pearson residuals and the working assumption, under
the assumption that η∗ is known (Liang & Zeger, 1986; Prentice, 1988; Zeger
& Liang, 1986; Ziegler et al., 1998). Iterating between the estimation equation
for η∗ and the estimator for α leads to estimates for the effects of the item
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covariates and the association covariates. However, as the estimates for α are
not jointly estimated with the η∗ and depend strongly on the assumed working
assumptions that do not need to be correct, nor can be tested, the estimates
of the effects of the association covariates cannot be interpreted as reflecting
the real association structure. As a consequence, most software packages do not
estimate the error variances for the effects of the association covariates.

Two attractive features of this GEE1 approach are that it yields consistent es-
timates for the effects of the item covariates regardless the association structure
is correctly specified or not, and that it is not required that every respondent
receives the same number of items.

The just described GEE1 framework has been extended by Zhao and Prentice
(1990) and Prentice and Zhao (1991) toward an approach in which effects of
the item covariates and effects of the association covariates are jointly estimated
(GEE2). It leads to estimation equations of the form:

N∑

i=1

(
∂µi

∂η∗ 0
∂σi

∂η∗
∂σi

∂α

)T (
Vi Ci

CT
i Bi

)−1 (
yi − µi

si − σi

)
= 0 (4.13)

where si is the vector containing the elements sijh = (yij − µij) (yih − µih), σi

is the vector containing the elements σijh = E (sijh), Vi is the working variance
covariance matrix defined as in Equation 4.12, Ci is the working covariance
matrix of yi and si, and Bi is the working covariance matrix of si (Fitzmaurice
et al., 1993; Prentice & Zhao, 1991).

The main advantages of this GEE2 approach is that the associations are
modeled in terms of marginal correlations, which yield an easy interpretation.
A serious drawback is that the estimates of the item covariate effects may fail
to be consistent when the association structure is incorrect, even if the model
for the mean is correctly specified. Other (dis)advantages are described in the
general paragraph on GEE and in Table 4.1. Note that although these GEEs
with marginal correlations are actually a moment-based version of the Bahadur
model, the constraints on the marginal correlation are less and weaker than for
the Bahadur model.

Recently, an alternative to GEE2, called Extended Generalized Estimation
Equations (EGEE) is developed that does not suffer from the just described
consistency problem (Hall, 1999, 2001; Hall & Severini, 1998). In fact, this
method is a special case of GEE1 (Hall, 2001). Since the convergence of this
method is not as reliable as other GEE1 approaches (Hall, 1998) and as this
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method is not currently implemented in available software packages (Hardin &
Hilbe, 2003), it will not further be discussed here. Instead, another GEE1-based
approach with the desired consistency feature, one with marginal log odds ratios
as association parameters will be described, as it too allows for the estimation
of the effects of the association covariates (and its error variances), converges
more reliably, and is implemented indeed in available software packages. This
approach will be presented as a fifth one, after the common GEE1 and GEE2
for marginal log odds ratios are described.

4.4.2.2 GEE1 and GEE2 with marginal log odds ratios as association
parameters

An alternative measure for the association between two binary responses are
the marginal log odds ratios defined as,

γijh = log
[
P (yij = 1, yih = 1) P (yij = 0, yih = 0)
P (yij = 1, yih = 0) P (yij = 0, yih = 1)

]
(4.14)

This log odds ratio is called a marginal log odds ratio because the odds ratio
is not conditional on the other items. Its use was suggested by Lipsitz, Laird,
and Harrington (1991). Marginal log odds ratios can be seen as a compromise
between the conditional log odds ratios, which are unconstrained but which have
interpretations that depend on the number of items, and marginal correlations,
which are severely constrained by the marginal probabilities. The constraints
on marginal log odds ratios are weaker and their interpretation is independent
of the number of items (Diggle et al., 2002; Hardin & Hilbe, 2003).

Apart from the likelihood-based estimation method of Molenberghs and Lesaf-
fre (1994) (Dale model), several GEE approaches are developed to model and to
estimate the association structure in terms of marginal log odds ratios (See, e.g.,
Lipsitz et al., 1991; Liang et al., 1992; Carey et al., 1993). If only information is
requested about the mean structure, again GEE1 can be used to estimate the
effects of the item covariates, see the previous paragraph. The characteristics of
this approach are indicated in Table 4.1. When also interested in the association
structure of the data, again, one cannot interpret the working assumption about
the associations between the responses as a real association structure. Instead,
GEE2 can be used for the estimation of the association structure (e.g., Zhao &
Prentice, 1990; Liang et al., 1992). However, GEE2 has some serious drawbacks
as mentioned in the general discussion of GEE and as indicated also in Table
4.1 for GEE2 with marginal correlations.
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4.4.2.3 GEE1 combined with logistic regressions

Following the suggestions by Firth (1992) and Diggle (1992) mentioned in the
discussion of the paper of Liang et al. (1992), Carey et al. (1993) have developed
an approach that is closely related to GEE1, that can handle large numbers of
items and that yields consistent parameters estimates of the mean structure even
when the association structure is misspecified, while still the parameters of the
association structure (second moments) can be estimated. At first sight, this
is in contradiction with the GEE1 approach, but as orthogonality is assumed
between the effects of the item covariates and the effects of the person covariates
and the effects of the item covariates are estimated with a GEE1 whereas for
the estimation of the effects of the association covariates a logistic regression is
used, the method is sometimes classified as a GEE1 approach.

For the simplest case, in which there is a constant marginal log odds ratio for
all item pairs (γ), the approach alternates between two steps:

1. For a given γ, the effects of the item covariates (η∗k) are estimated as in a
marginal logistic regression model using a GEE1.

2. For a given set of η∗k, the log odds ratio parameter γ is estimated using
a logistic regression of yij on each yih (h > j), while using the term
log

[
P (yij=1, yih=0)
P (yij=0, yih=0)

]
as an offset (regression coefficient = 1), see Carey

et al. (1993) for more details.

The algorithm is referred to as alternating logistic regressions (ALR) and is
implemented in PROC GENMOD of SAS V8, in the Oswald package for S-Plus
(Smith, Robertson, & Diggle, 1996), and in the ALR package for R (Carey,
2002). In the first step of the ALR algorithm, a GEE1 is used for the estimation
of the effects of the item covariates (η∗k). The resulting estimates are consistent
even if the association structure is misspecified. Furthermore, these estimates
are reasonably efficient if the association structure is well approximated. In a
second step of the ALR algorithm, an offset logistic regression is used to estimate
the effects of the association covariates. In practice, the algorithm developed by
Carey et al. (1993) converges quickly when ordinary logistic regression estimates
are used as starting values for the effects of the item covariates and when zero
is used as a starting value for the effects of the association covariates (Carey
et al., 1993).

The main advantages of this approach are the following (See Table 4.1): First,
because of the use of marginal log odds ratios, all parameters have a straightfor-
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ward interpretation. Second, the ALR approach results in consistent estimates
for the effects of the item covariates regardless of the correct specification of the
association structure. Third, unlike the GEE2 approach, the ALR approach is
computationally feasible for large numbers of items.

The approach has also some limitations: Beside the limitations stemming from
the fact that the method is a GEE method, one other limitation is that for binary
data with three or more items, also this method suffers from the fact that the
marginal log odds ratios are constrained by the marginal probabilities (Liang
et al., 1992; Ziegler et al., 1998), although the constraints are only moderate in
comparison with those when marginal correlations are used (Diggle et al., 2002;
Hardin & Hilbe, 2003).

4.5 Application

We will demonstrate the use of the M-LLTM estimated with two methods: the
approach of Fitzmaurice and Laird (1993) (full-likelihood based, mixed para-
meter M-LLTM) and the ALR approach of Carey et al. (1993) (GEE1, ALR
M-LLTM). The dataset to illustrate these methods consist of responses from
268 persons to 40 items of a situation-response questionnaire. The question-
naire comprises 10 situations. For each of the ten situations, questions were
asked regarding four different guilt-related reactions: (1) whether one would
feel as if a norm is violated in the situation, (2) whether one would brood about
what happened in the situation, (3) whether one would feel the tendency to
rectify what happened in the situation, and (4) whether one would feel guilty in
the situation. These four reactions will be called norm violation, brooding, tend-
ency to rectify and guilt, respectively. As we wanted to fit also a full-likelihood
based model, we reduced the number of items by a random selection of three
situations resulting in 12 items: four questions for each of the three situations.
For more than 12 items the mixed parameter M-LLTM turned out computa-
tionally too demanding for a Pentium IV computer with 512 Mb memory. For
the GEE1 based ALR M-LLTM and the RI-LLTM, we did not encounter the
same problem so that the full dataset was used to estimated the model. Because
the analyses based on all data led to similar conclusions as the one for the 12
items, we will report only on the data for three of the situations, so that we can
compare the three methods. The three situations were:

1. You have been dating for some time a person you are not really in love



4. Marginal approaches to the Linear Logistic Test Model 143

with. When you break up, you find out that he/she was in love with
you (and was taking the relationship very seriously). The break-up hurts
him/her considerably.

2. You have been a member of a brass band for some years now. As a result,
you learned to play trumpet for free. Now that you’re skilled enough, you
leave the band because you don’t like the members of the band any more.

3. During the holidays, you are working as a salesperson in a clothing and
shoestore. One day, a mother with four children enters the store. One
of the kids wants Samson-shoes (Samson is a popular doll figuring in a
Belgian TV-series for children). The mother leaves the child with you
while she goes on to look for shoes for the other children. The child tries
on different types and sizes of shoes, but after a while the child gets
tired of fitting the shoes and refuses to continue. She picks a pair she
has not tried on before and you sell this pair to the mother afterward
without having checked whether they fit. The next day, the mother wants
to return the shoes because they do not fit. Your boss takes back the shoes
and reimburses the mother. The shoes have been worn however, and they
are dirty. Because of this, they cannot be sold anymore. Your boss says
that it does not matter, and that everyone is capable of mistaking the size
of shoes.

To begin with, we fitted a random-intercept Rasch model on the 12 items:
Fitting a Rasch model, the person parameter (random intercept) can be inter-
preted as the guilt sensitivity of the corresponding person, and the difficulty
parameter as the guilt inducing power of the situation (with a parameterization
so that the item parameter is added instead of subtracted in the logit). This
model has been compared with a RI-LLTM, with the situations and the type
of question as item covariates, assuming there are no interactions between both
kinds of item covariates. Three dummy covariates were defined for the four re-
actions and also two dummy variables for the three situations. The combination
of the fourth reaction (guilt) with the first situation functions as the reference
level. Both models were fitted with PROC NLMIXED from SAS V8, using an
adaptive Gaussian quadrature method with 20 quadrature points as described
in Pinheiro and Bates (1995). Table 4.2 shows the deviance, the AIC, and the
BIC.

From Table 4.2, one can conclude that the RI-LLTM has a comparatively
good fit (lower AIC and BIC). In Table 4.3, one can see that all item covariates



144 Dirk J. M. Smits , Paul De Boeck , Geert Molenberghs

T
A

B
L
E

4
.2

.
G

o
o
d
n
ess-o

f-fi
t

sta
tistics

fo
r

th
e

ra
n
d
o
m

-in
tercep

t
R

a
sch

m
o
d
el,

th
e

R
I-L

L
T

M
,
th

e
m

ix
ed

p
a
ra

m
eter

m
a
rg

in
a
l
R

a
sch

m
o
d
el,

a
n
d

th
e

m
ix

ed
p
a
ra

m
eter

M
-L

L
T

M

M
odel

D
eviance

A
IC

B
IC

random
-intercept

R
asch

m
odel

3420
3447

3493
R

I-L
LT

M
3430

3444
3469

M
ixed

param
eter

M
arginal

R
asch

m
odel,

exchangeable
associations

967
993

1039
M

ixed
param

eter
M

-L
LT

M
,
exchangeable

associations
975

989
1015

M
ixed

param
eter

M
-L

LT
M

,
situational

associations
690

710
746



4. Marginal approaches to the Linear Logistic Test Model 145

have a significant effect. Note that because the guilt question and situation 1 are
used as reference levels, we have no estimates for their effects and their value is
fixed to zero. The results indicate that one is less inclined to make the appraisal
of norm violation (-.77), and to feel a tendency to rectify (-.26), than to feel
guilty. On the other hand, brooding (.29) seems to be more likely than feeling
guilty.

As both the random-intercept Rasch model and the RI-LLTM assume that
the associations between the items can be explained by one person parameter
with the same weight for all items, the closest corresponding marginal Rasch
model and M-LLTM assume a constant association between all item pairs. This
is called an exchangeable association structure. Furthermore, Neuhaus (1993)
showed that a RI-LLTM and a M-LLTM with an exchangeable association struc-
ture have about the same estimation efficiency and power to detect effects of
item covariates.

Next, we have estimated the marginal Rasch model and the M-LLTM, both,
with a likelihood-based approach: the mixed parameter M-LLTM (Fitzmaurice
& Laird, 1993), and with a GEE1 approach: the ALR M-LLTM (Carey et al.,
1993). The mixed parameter M-LLTM is estimated with WinMareg (Kastner
et al., 1997), whereas the ALR M-LLTM is estimated with PROC GENMOD
from SAS V8. Standard errors of all effects are estimated with the sandwich
estimator (Carey et al., 1993; Fitzmaurice & Laird, 1993; Hardin & Hilbe, 2003;
Royall, 1986; White, 1982). Note that we did not include any third-order or
higher-order associations, as they can only be estimated with the approach of
Fitzmaurice and Laird (1993), and not with the GEE approach.

The deviance, AIC and BIC for the mixed parameter marginal Rasch model
and the mixed parameter M-LLTM are mentioned in Table 4.2. They may not
be compared with those of the random intercept models. According to these
criteria, the marginal Rasch model has a similar fit as the M-LLTM, both with
exchangeable associations, which confirms the results obtained with the corres-
ponding random-intercept models. For the ALR M-LLTM or the ALR Rasch
model, no fit indices are mentioned, as this approach is not likelihood based,
and measures like the deviance, AIC, BIC are therefore not available. As the
estimates for the item covariates are very similar to those obtained with a third
marginal approach, a discussion of the effects is postponed until this third ap-
proach and its goodness of fit is described.

When interested in the association structure, a structure with a constant
log odds ratio for all item pairs can seem too restrictive for this application.
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Alternatively, an association structure with equal between-situation associations
and situation dependent but homogeneous within-situation associations is more
realistic, as a shared situation can introduce an additional dependency between
the responses. This association model can be formalized as follows:

γjh = αoverall + Ijh (αs) (4.15)

Ijh is an association covariate which is equal to one if the items j and h are
about the same situation, and zero otherwise so that the αs (s = 1, . . . , S) are
the parameters to model the association induced by situation s. The αoverall

parameter is meant to reflect the overall association independent of the situ-
ational structure. For three situations, this model allows for four different values
for the pairwise associations γjh: three values for the within-situation associ-
ations (one for each situation: αoverall +α1, αoverall +α2 and αoverall +α3), and
one value for all pairwise associations between items from different situations
(αoverall). We will call this model the M-LLTM with a situational association
structure. This model has a clearly better goodness-of-fit than the one with an
exchangeable structure, as can be seen in Table 4.2.

As the results for the effects of the item covariates are similar for all three
marginal approaches, they will be discussed together. We will use the term
‘log odds ratios’ for both the conditional log odds ratios (mixed parameter M-
LLTM) and the marginal log odds ratios (ALR M-LLTM). In Table 4.3, one
can see that all M-LLTM covariates have a significant effect. Note that the
estimates from all three M-LLTM approaches are smaller than those from the
RI-LLTM, as expected. Applying Equation 4.4, the RI-LLTM effects can be
transformed into their M-LLTM counterparts. This leads to results that differ
not more than .02 from the effect estimates that are directly obtained with the
marginal approaches.

The better approximation of the association structure has not really an effect
on the estimated effects of the item covariates (Table 4.3), which is expected
because consistent estimates for the parameters of the mean structure are ob-
tained even if the association structure is not correctly specified (Carey et al.,
1993; Fitzmaurice & Laird, 1993).

The association parameters for the M-LLTM with an exchangeable associ-
ation structure and the situational M-LLTM are given in Table 4.4. Note that
the association parameter estimates for the mixed parameter M-LLTM are dif-
ferent from the association parameters estimated for the ALR M-LLTM, because
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in the mixed parameter M-LLTM the associations are modeled with conditional
log odds ratios, whereas in the ALR M-LLTM the associations are modeled with
marginal log odds ratios. Three conclusion can be drawn from Table 4.4: (1) If
the items belong to different situations, their association (log odds ratio) is still
positive (.06 and .09), which is in agreement with a random-intercept model.
(2) The associations are higher within the same situation. For example, the log
odds ratio for situation 1, as derived from the mixed parameter M-LLTM, is
equal to .06 + .93 = .99 (or .09 + 1.22 = 1.31 for the ALR M-LLTM). This
finding is an indication that the assumption of local stochastic independence
of the RI-LLTM is violated. This is precisely the kind of situation where the
M-LLTM is useful, since it is far more flexible than a random-effect model when
it comes to the association structure. With the M-LLTM these additional asso-
ciations can be modeled rather easily, whereas for the RI-LLTM, this is more
difficult as one either has to include local item dependency parameters into the
model or one has to include as many random effects as there are situations plus
one for the intercept. (3) In Table 4.4, one can see that the situation seems to
influence the dependencies between responses and differently so depending on
the situation.

TABLE 4.4. Association parameters estimates from the mixed parameter M-LLTM
(conditional log odds ratios) and from the ALR M-LLTM (marginal log odds ratio)
with exchangeable association structure, and with situational association structure
(SE = standard error)

Log odds ratio mixed par. M-LLTM ALR M-LLTM
exch. sit. exch. sit.

parameter α SE α SE α SE α SE
αoverall .35 .02 .06 .02 .78 .09 .30 .11
α1 .93 .08 1.22 .19
α2 1.40 .12 2.19 .28
α3 1.13 .08 1.69 .19

A serious drawback of the marginal models is that they do not provide a
basis for the measurement of persons on one or more underlying latent traits.
However, there are certainly circumstances where one wants to test a general
theory about how item responses depend on features of the items. This is when
a marginal modeling approach is useful, especially if local item dependencies
are possible. Additionally, the approach can be also informational about the
association structure, also when the dimensionality is rather high, so that also
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inferences can be made about the structure of individual differences, although
without measuring these differences.

4.6 Conclusions

Although binary data are often modeled with IRT models, for research ques-
tions concerning population effects or for research questions regarding the item
difficulty structure without person measurement purposes, the marginal models
with GEE as an estimation approach are a valuable and flexible alternative.
An interesting kind of flexibility is that one can allow for complex patterns
of associations between responses. These more complex patterns are a serious
complication for the random-effect models, since they would require either the
inclusion of dependency parameters or multiple random effects. For a small
number of items even a full likelihood approach as that one by Fitzmaurice and
Laird (1993) can be recommended, whereas for larger number of items, the GEE
approach, and especially the ALR approach, provides a valuable alternative.
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Chapter 5

The inhibition of verbally
aggressive behavior

Dirk J. M. Smits
Paul De Boeck
Kristof Vansteelandt

ABSTRACT We studied the inhibition of verbal aggression defined as not

displaying verbal aggression, while one would want to. The approach we used

was based on a situation-response questionnaire containing 15 anger provoking

situations and three verbal aggressive reactions. Two questions were asked for

each combination of a situation and a reaction: one about wanting to react in

a verbally aggressive way and one about actually displaying the reaction. This

questionnaire was administered to 316 participants. The data were analyzed with

inhibition conceptualized as a trait. Trait inhibition was negatively correlated

with external measures of Anger Out and positively with Control of Anger Out.1

5.1 Introduction

Verbal aggression is a rather common but problematic behavior (Infante & Ran-
cer, 1996). It is a common behavior because it is a rather easy and not very
dangerous expression of anger, as only words or sounds are involved. As for
how problematic verbal aggression is one should differentiate between verbal
aggression to oneself or to others. Cursing at oneself, for example, is a possible
reaction to one’s own behavior when this behavior is considered negative and
attributed to oneself. For an outsider this verbal aggression may still be inter-
preted as unfriendly and as an indication that the verbally aggressive person

1Correspondence concerning this manuscript should be addressed to: Dirk J. M. Smits,
K.U. Leuven, Department of Psychology (H.C.I.V.), Tiensestraat 102, B-3000 Leuven, Bel-
gium Ph: 003216/326133 Fax: 003216/325916 e-mail: Dirk.Smits@psy.kuleuven.ac.be The re-
search is financially supported by a GOA 2000/2-grant from the K. U. Leuven: ‘Psychometric
models for the study of personality’
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is easily irritated or bad-tempered. When directed at others, it can seriously
hurt other people, and it may arouse a mutual aggressive reaction and further
escalation (DeTurck, 1987; Fitness & Fletcher, 1993; Infante, 1987; Infante &
Rancer, 1996; Roloff, 1996).

Not all aggressive inclinations a person experiences are expressed (Averill,
1982, 1983; Kassinove, Sukhodolsky, Tsytsarev, & Solovyova, 1997). One may
withhold an aggressive reaction for several reasons, often even without any
conscious reflection, for example, because the other person has a higher so-
cial rank (Allan & Gilbert, 2001). Here, we are interested in withholding one’s
verbal aggression defined as wanting to be verbally aggressive (curse, scold,
shout), while not behaving accordingly, as ‘wanting’ without ‘doing’. According
to King, Emmons, and Woodley (1992), this wanting without doing can be due
to two kinds of inhibition: (1) behavioral inhibition, which may be considered
as an inhibition of the overt expression of emotional experiences, and (2) emo-
tional inhibition, which may be considered as control over naturally occurring
emotional reactions. Inhibition has the advantage that it prevents the prob-
lems that may follow from verbal aggression, but it may create new problems.
For example, inhibiting verbal aggression by turning one’s anger (emotional
inhibition) inwards instead of expressing it may have consequences for one’s
health (Begley, 1994; Culbertson & Spielberger, 1996; Engebretson, Matthews,
& Scheier, 1989; Greenglass, 1996; Julkunen, 1996; Martin et al., 1999; Venable,
Carlson, & Wilson, 2001). One can assume that avoiding negative consequences
is a primary cause for inhibition (see, e.g., Averill, 1982, 1983; Beatty & McCro-
skey, 1997). For example, one can inhibit the tendency to be verbally aggressive
to avoid being disliked by others, or to avoid an aggressive counterreaction of
others (Deffenbacher, Oetting, Lynch, & Morris, 1996; Fitness & Fletcher, 1993;
Infante & Rancer, 1996).

To situate and delineate the logic of our study, we first make a conceptual
analysis of verbal aggression in terms of its constituents. Verbal aggression will
be conceptualized here as based on three constituents: the anger feelings, the
verbal aggressive action tendency and the verbal aggressive act (see Figure 5.1).
The anger feelings are assumed to feed the tendency to be verbally aggressive
(Averill, 1983; Cornell, Peterson, & Richards, 1999; Fitness & Fletcher, 1993;
Frijda, 1986; Kassinove et al., 1997; Kinney, Smith, & Donzella, 2001), and the
action tendency in turn is at the basis of the act (Frijda, 1986). This view implies
two links: between the feeling and the action tendency, and between the action
tendency and the act.
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First, the link between the feeling and the action tendency is not necessar-
ily a sequence, nor is it necessarily causal (Kuppens, Van Mechelen, Smits, &
De Boeck, in press). An alternative view is that the tendency is a part of the
feeling (Frijda, 1986, 1993; Frijda, Kuipers, & Schure, 1989; Rubin, 1986). The
reason for distinguishing between the feelings and the tendency is that different
factors may affect the feelings and the tendency. Some factors in the person or
in the situation may affect the tendency without affecting (the other part of)
the feeling, and vice versa. For example, one way to understand coping with
anger is that it is of importance for the kind of tendency to which the anger
feelings lead. We do not further specify the link between the feelings and the
action tendency, other than that the tendency is based on or is part of the
feelings, without the feeling necessarily imply the action tendency, since factors
may play that counteract the action tendency, but not the (other part of the)
feeling. These factors inhibit the action tendency in or following the feelings.
They constitute the action tendency inhibition (see Figure 5.1).

Second, the link between the tendency and the act is one with the action
tendency at the basis of the act, but again without the tendency leads necessarily
to the act. Also here other factors may play. For example, one may fear the
reactions of others. These factors can inhibit the act given the action tendency.
They constitute the behavioral inhibition (Figure 5.1).

In fact an earlier kind of inhibition may play. One that inhibits the anger
feelings, so that the two links we discussed become irrelevant, since the anger
feelings do not even arise. This kind of inhibition is called emotional inhibition
(Figure 5.1). This emotional inhibition and the behavioral inhibition are the
two kinds of inhibition King et al. (1992) discuss.

We will concentrate on behavioral inhibition and therefore on the link between
the action tendency and the behavior. Various situations will be presented,
and the participants in the study will be asked whether they would want to
be verbally aggressive (want to curse, want to scold, and want to shout) and
whether they would actually display the corresponding behavior (curse, scold,
shout).

Following the previous conceptual analysis as depicted in Figure 5.1, the basis
for either displaying verbal aggression or not is twofold: the action tendency and
the behavioral inhibition. We will now link the action tendency and behavioral
inhibition to factors in the person and in the situation.
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FIGURE 5.1. Conceptual analysis of the verbal aggression process

5.1.1 Person factors

As for the verbal aggression (VA) action tendency, an evident person factor is
trait anger. Trait anger can be defined as the disposition to experience anger,
or in other words, the relative stable individual differences in the tendency to
experience anger (Forgays, Forgays, & Spielberger, 1997; Spielberger, Jacobs,
Russell, & Crane, 1983). Therefore, we hypothesize that trait anger is positively
correlated with the VA action tendency, as indicated in Table 5.1. We have no
basis to expect also a correlation with behavioral inhibition.

A second type of factors, one that may play a role in both the action tendency
and the behavioral inhibition, refers to coping with anger. In the literature on
anger, a taxonomy of coping style variables has been discussed and studied
(Averill, 1983; Boddeker & Stemmler, 2000; Deffenbacher et al., 1996; Forgays
et al., 1997; Spielberger, Johnson, & Jacobs, 1982; Spielberger et al., 1983, 1985;
Spielberger, Krasner, & Solomon, 1988). A first coping with anger variable is
Anger Out, or the tendency to express one’s anger outwards. The VA action
tendency is an important step toward the outward expression, so that a positive
correlation is expected between Anger Out and the VA action tendency (Kinney
et al., 2001) (see Table 5.1). Furthermore, we expect a negative correlation
between Anger Out and behavioral inhibition, since the behavioral inhibition
counteracts the the outward expression.

A second coping with anger variable is Anger In, the contrast of Anger Out
in that it refers to the tendency to turn one’s anger inwards (e.g., bottling anger
up, boiling inside). In literature this concept is often denoted as the regulation
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of the anger by suppressing it (Begley, 1994; Greenglass, 1996; Julkunen, 1996;
Schwenkmezger & Hank, 1996). This implies that the VA action tendency is
counteracted and therefore we expect a negative correlation with this action
tendency (see Table 5.1). Given that anger is turned inwards so that the outward
action tendency is prevented, there seems no reason to inhibit the expression
of this action tendency. Therefore, we have no basis to expect a correlation
between Anger In and behavioral inhibition (see Table 5.1).

A third variable is Anger Control. It refers to the control of one’s anger.
Van Elderen, Maes, Komproe, and Kamp (1997) have distinguished between
Anger Out Control, and Anger In Control. Anger Out Control is the extent to
which one controls the externalization of anger. Therefore, it may be expected to
correlate negatively with the VA action tendency, and positively with behavioral
inhibition (the opposite pattern as for Anger Out). Anger In Control is the
extent to which one controls the internalization of anger. This is a new concept
in the literature on coping with anger. Because Anger In Control refers to control
of the internalization, we have no basis to expect correlations with the VA action
tendency and the behavioral inhibition (see Table 5.1).

A third type of person factors refers to the aggressive style. The aggressive
style can be direct or indirect (Averill, 1983; Dehghani & Lange, 1993; Lange,
Dehghani, & De Beurs, 1995; Ramanaiah, Conn, & Schill, 1987). Direct Ag-
gression can be defined as the physical or verbal expression of aggression, which
can be recognized as such by others. An example from the Buss Durkee Hos-
tility Inventory (Buss & Durkee, 1957; Lange, Hoogendoorn, Wiederspahn, &
Beurs, 1995) is ‘When angry, I say mean things.’ Therefore, we expect that
Direct Aggression is positively correlated to the VA action tendency and that
it is negatively correlated to the behavioral inhibition (see Table 5.1). Indirect
Aggression is covert and would therefore correlate positively with the VA action
tendency, which is also covert (Averill, 1982; Frijda, 1986). An example item of
the Buss Durkee Hostility Inventory (Buss & Durkee, 1957; Lange et al., 1995)
is ‘I’m more often irritated then people know.’ We do not expect a correlation
with behavioral inhibition (see Table 5.1), as the indirect style is not necessarily
a consequence of inhibition.

5.1.2 Situation variables

From the situational perspective, differences in the VA action tendency may
be seen as related to how frustrating a situation is, and to the value of the
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aggressive act. The value can be of an instrumental or of an expressive kind.
In sum, three situational factors will be linked with the situational activation
of a VA action tendency: how frustrating the situation is, how instrumental
the aggressive action in question is, and how well it serves as an expression of
feelings within the situation.

As far as inhibition is considered situational, it may be linked to problems
verbal aggression may lead to. First, one of the most common problems is dis-
like from the part of others or loss of being liked, as a consequence of the fact
that being verbally aggressive in the situation would hurt other people (Infante,
1987). Second, verbal aggression may also be inhibited because it is a transgres-
sion of norms one has, with as a consequence a negative self-evaluation (Infante,
1987; Campbell & Muncer, 1987; Roloff, 1996). Therefore, we expect that situ-
ational effects on inhibition are related to expected dislike from others and to
expected negative self-evaluation in the situation in question. To support the
interpretation of these relations, correlations will be derived of expected dis-
like and expected negative self-evaluation with ratings of how much someone
in the situation would feel hurt by a verbally aggressive act, and with ratings
of how much a norm would be violated in the situation, respectively. Since all
these ratings are situation specific, their means over judges may be considered
situational properties.

It may be expected as well that more objective properties, such as presence of
the person to whom the VA behavior is directed and the presence of witnesses
may play a role, for example because they are necessary conditions for the VA
behavior to have an effect on dislike from the part of others.

Studying the inhibition of verbal aggression is of interest in several respects:
First, since verbal aggression is a rather light form of aggression it is more open
to observation and to self-report than more serious types of aggression. It is less
socially undesirable to report and it is also more common, so that the oppor-
tunity to study its inhibition is much broader than for the more severe types of
aggression. Second, verbal aggression pertains to daily life and may determine
a broad range of relationships one has with colleagues, family members, and
friends. It may have an effect on these relationships more often than more seri-
ous forms of aggression. The effect it has may be smaller, and therefore it may
be less important in total, but it is more widespread and it pertains more to
daily life than do stronger forms of aggression.
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5.1.3 An indirect self-report approach

We will study behavioral inhibition without asking direct self-report questions
on behavioral inhibition. A direct approach would be an inventory with items
as: ‘How much do you feel inhibited to curse in this situation?’. Instead we ask
two questions, one whether one would want to react with verbal aggression,
and one on whether one would actually display verbal aggression. The easiest
indirect measure of inhibition is the difference between the two responses, but
several problems are associated with difference scores (Bereiter, 1963; Embret-
son, 1991, 2000; Lord, 1963). Therefore, we chose a modeling approach inspired
by Embretson (1991), to be explained in the section on modeling.

An inventory will be presented with a description of 15 possible frustrating
situations. For each of these three verbally aggressive behaviors will be presen-
ted: cursing, scolding, and shouting. Including more than three would seriously
expand the number of items. For each combination of a situation and a beha-
vior, two questions were asked: a ‘want’ question (‘Would you want to curse /
scold / shout in this situation?’), and a ‘do’ question (‘Would you curse / scold /
shout in this situation?’). In total 90 items will be presented: 45 want-items and
45 do-items. The construction of the inventory is in line with the facet meth-
odology (Canter, 1985; Guttman, 1981; Guttman & GreenBaum, 1998; Shye,
Elizur, & Hoffman, 1994). A further explanation is given in the method section.

5.2 Theories, formal models, and validation approach

5.2.1 Theories

The theories will be focused on the discrete events of experiencing a VA tend-
ency (wanting to curse, scold, shout) and displaying a VA behavior (cursing,
scolding, shouting). The theories we will present are theories for the probability
of these events. In the inventory, the participants will be asked whether they
agree these events would occur in the corresponding situations. The basic as-
sumptions of all theories we will formulate to explain the probabilities are that
(1) people differ in the strength of their VA action tendency, called the personal
VA action tendency, which will be considered a VA trait (Beatty & McCros-
key, 1997; Infante, 1987; Infante & Rancer, 1996; Kinney et al., 2001), and that
(2) situations differ in how much they activate the VA action tendency, which
will be considered the situational VA activation. We assume throughout that
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the situational VA activation may depend on the behavior type (curse, scold,
shout), and therefore, the term situational VA behavior activation will be used.
The probability of a person’s VA action tendency for a given behavior and situ-
ation is considered a function of the sum of the personal VA action tendency
and the situational VA behavior activation:

probability of VA action tendency for a given VA behavior in a given
situation =
f(personal VA action tendency + situational VA behavior activation)

Note that three simpler formulations of the same theory are possible: with
the situational VA behavior activation being reduced to situation main effects,
to behavior main effects, or to the combination of both. Because these three
formulations will turn out to be inferior from the data analysis, we will not
further consider them.

The first behavioral inhibition theory we formulate is a null theory, in which
it is assumed that no inhibition at all occurs. It will be used as a base-level
theory, as a reference point for other more complicated theories.The probability
of displaying the behavior is considered identical to the probability of having
the corresponding action tendency:

probability of a given VA behavior in a given situation =
f(personal VA action tendency + situational VA behavior activation)

The second theory is the constant inhibition theory. It differs from the null
theory in that a constant inhibition holds for all persons, and for all combin-
ations of situations and VA behavior types. The probability of displaying a
VA behavior is lowered in comparison with the probability of having the cor-
responding VA action tendency. A constant effect (constant VA inhibition) is
subtracted, when not the tendency but the act is considered:

probability of a given VA behavior in a given situation =
f(personal VA action tendency + situational VA behavior activation - constant
VA inhibition)

The third theory is the situational inhibition theory, implying that each situ-
ation may have its own inhibitory effect for each VA behavior, without any
individual differences. The inhibition is assumed to depend on the combination
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of the situation and the behavior, although the latter is not expressed in the
label for the theory:

probability of a given VA behavior in a given situation =
f(personal VA action tendency + situational VA behavior activation - situational
VA behavior inhibition)

The effect is hypothesized to be negative, which is why a term ‘situational VA
behavior inhibition’ is subtracted. In principle also three subset theories can be
formulated: one with situational main effects on inhibition, one with behavioral
main effects on inhibition, and one with both kinds of main effects. However, all
of these are empirically inferior to the more global situational inhibition theory,
so that they will not be considered any further.

The fourth theory is the complement of the former, and is called the personal
inhibition theory. All inhibition is assumed to stem from the person, independent
of the situation and the VA behavior:

probability of a given VA behavior in a given situation =
f(personal VA action tendency + situational VA behavior activation - personal
VA inhibition)

Also the personal effect is hypothesized to be negative, or more correctly,
its mean is hypothesized to be negative, so that we subtract a term called
‘personal VA inhibition.’ However, as this theory implies individual differences,
some people may actually turn out to display more verbally aggressive behavior
then they want: The variance around the mean may be so large that some show
an effect opposite to the mean effect.

The fifth and final theory is the combined theory, stating that the inhibi-
tion depends both on the person and the combination of a situation and a VA
behavior. This theory is a combination of the two former theories:

probability of a given VA behavior in a given situation =
f (personal VA action tendency + situational VA behavior activation - situ-
ational VA behavior inhibition - personal VA inhibition)

In principle a sixth theory is possible, one that allows for person-by-situation-
by-behavior interactions. Such a theory would be a theory with so much flex-
ibility that it could explain everything concerning inhibition. It is a so-called
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saturated theory and it cannot be rejected by the data. As such it will not
further be considered.

We will relate the external person variables and the external situation vari-
ables to the corresponding theoretical concepts from the theories: the external
person variables and the VA action tendency and the personal VA inhibition,
the situational properties and the situational VA behavior activation and the
situational VA behavior inhibition.

5.2.2 Formal models

In this section, it will be described how we model the data based on the theories
we just described. All models we will use are models for the expected value of
a binary dependent variable, or in other words, the probability of a response.
This probability is first transformed as follows:

logit [P (Y = 1)] = ln {P (Y = 1) / [1− P (Y = 1)]},
which is a way to obtain an unbounded, real valued, dependent variable (Menard,
2001), as in the linear regression model. The logistic dependent variable,
logit [P (Y = 1)], is modeled then as a linear function of a number of predict-
ors. It is possible to allow regression weights to vary over persons, according to
some distribution, which is mostly the normal distribution. These models are
logistic regression models because of the logistic transformation, and they are
mixed models because some of the regression weights may vary over persons.
In the literature on Generalized Linear Mixed Models (McCulloch & Searle,
2001), these varying effects are called random effects, while the other are called
fixed effects. Many item response models are logistic mixed models (Rijmen,
Tuerlinckx, De Boeck, & Kuppens, in press). For example, in the Rasch model
in its marginal maximum likelihood formulation (Baker, 1992) the predictors
are item indicators (equal to 1 for the item in question, and equal to 0 for the
other items), while the weights of the indicators are the item parameters, and
the intercept is a normally distributed latent trait (an intercept that varies over
persons).

5.2.2.1 Basic model: for the want-items

We will first describe the model for the want-items. This model will be part of
the model for the do-items as well.

In all theories we have explained, it is assumed that persons can have different
values for the personal VA action tendency. We will denote the value of this
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tendency as αi, with i as an index for the person (i = 1, . . . , I). It is further
assumed that α is normally distributed (a normal random variable). Further,
also the combination of a situation and a type of behavior plays a role, with an
effect denoted as β

(want)
jk . Index j is used for situations (j = 1, . . . , J) and index

k is used for the behavior type (k = 1, . . . , K). The β
(want)
jk are the regression

weights or the effects that each refer to one pair of a situation and a behavior:

Logit
[
P

(
Y

(want)
ijk = 1 | αi

)]
= αi + β

(want)
jk (5.1)

with αi ∼ N(µα, σ2
α) as the personal VA action tendency.

Equation 5.1 has an identification problem, since the mean of the β
(want)
jk can

compensate for the mean of the αi, since adding a constant to every β
(want)
jk and

subtracting the same constant from every αi results in exactly the same values
for the logits. Therefore, the mean of αi (µα) is fixed to zero.

The model as described in Equation 5.1, is better know as the Marginal
Maximum-Likelihood formulation of the Rasch model (Baker, 1992), a basic
model of item response theory (Baker, 1992; Fischer & Molenaar, 1995). The αi

corresponds with the ability, and if we reparameterize the βjk as β∗jk = −βjk,
the β∗jk correspond with the item difficulties.

5.2.2.2 Model for the do-items

Given that we wanted to investigate the inhibition of VA behavior, not only
want-items are needed, but also do-items. Remember that each do-item corres-
ponds to a want-item, and that it shares the same situation and behavior with
that item. The general idea is that the same factors that play in the want-item
also play in the do-item, plus more. The additional factors are related to beha-
vioral inhibition. In all cases the want-items and the do-items will be analyzed
simultaneously, using the two types of models (for the want-items and for the
do-items) as two submodels of one overall model for the whole dataset.

In the null theory there is no inhibition, so that the model for the do-items
is exactly the same as for the want-items:

Logit
[
P

(
Y

(do)
ijk = 1 | αi

)]
= αi + β

(want)
jk (5.2)

In the constant inhibition theory, inhibition is assumed to be constant value,
independent of the person and the combinations of a situation and a behavior.
Therefore, the model reads as:
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Logit
[
P

(
Y

(do)
ijk = 1 | αi

)]
= αi + β

(want)
jk − τ (5.3)

with τ as the inhibition constant.
In the situational inhibition theory, inhibition is assumed to be situation and

behavior dependent. This can be modeled by subtracting a parameter that is
specific for the combination of a situation and a behavior:

Logit
[
P

(
Y

(do)
ijk = 1 | αi

)]
= αi + β

(want)
jk − δjk (5.4)

with δjk as the situation and VA behavior specific inhibition parameter. The
mean δjk is the overall inhibition effect.

In the personal inhibition theory, it is assumed that the inhibition of VA
behavior is a source of individual differences. Therefore, for the do-items a
person-dependent parameter κi will be subtracted. Like for the personal VA
action tendency, this parameter is assumed to be normally distributed over
persons:

Logit
[
P

(
Y

(do)
ijk = 1 | αi, κi

)]
= αi + β

(want)
jk − κi (5.5)

with κi ∼ N(µκ, σ2
κ) as the personal VA inhibition parameter. The mean of κi

is the overall inhibition effect. It is expected that µκ > 0. The larger the value
for κi, the stronger is the personal VA inhibition.

Finally, the combined theory is a combination of the two previously men-
tioned theories. In the combined theory, inhibition is both person dependent,
and situation and behavior specific. This model is presented in Equation 5.6:

Logit
[
P

(
Y

(do)
ijk = 1 | αi, κi

)]
= αi + β

(want)
jk − δjk − κi (5.6)

with κi ∼ N(µκ, σ2
κ).

In a similar way as the model in (5.1), the model in (5.6) has an identification
problem. The mean of the δjk can compensate for µκ. Therefore, µκ is fixed to
zero. By consequence, the mean of the δjk indicates the overall inhibition effect.

We expect that the model for the combined theory is the best model. There-
fore, we will describe the validation in terms of external variables as if this
model applies.
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5.2.3 Validation approach

To validate the previously mentioned theories, the parameters of the formalized
theories can be correlated with the external variables that are discussed earlier.
Here, we will link these external variables explicitly to the various parameters.
We do not expect very high correlations with the external person variables
for the following reasons: First, only three behaviors are included. Second, the
personal effects refer only to verbal aggression while the external variables are
more general. As such, correlations with an absolute value in the range of .10 to
.35, like the trait-behavior correlations (Mischel, 1968; Mischel & Peake, 1982;
Kenrick & Funder, 1988) are expected. Finally, as for the correlation with the
situation properties, the situations are rather similar in that they all are of the
kind that verbal aggression can be expected, so that a restriction of range may
attenuate the correlations.

In terms of the parameters, we expect the following correlations. First, the
personal VA action tendency is estimated through αi, and it is expected to
be correlated positively with the following trait measures: Trait Anger, Anger
Out, Direct Aggression, and Indirect Aggression, and negatively with Anger
In and Anger Out Control. Second, the personal behavioral inhibition is es-
timated through κi, and it is expected to be positively correlated with Anger
Out Control, and negatively with Anger Out and Direct Aggression. Third, the
situational VA behavior activation is estimated through βjk, and it is expected
to be positively correlated with how frustrating the situation is and with the
expressiveness and instrumentality of the VA behavior in the situation. Fourth,
as far as inhibition is considered situational, it is estimated through δjk, and
it is expected to be correlated positively with expected dislike from others and
with expected negative self-evaluation in the situation in question. In addition,
we will include two measures for the presence of other persons: one to measure
the presence of witnesses, and one to measure the presence or absence of the
person to whom the VA behavior is directed. Both are expected to correlate
positively with situational VA behavior inhibition.
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5.3 Method

5.3.1 Subjects

The participants were 316 first-year psychology students at the home univer-
sity of the authors. Participation in the study was a partial fulfillment of a
requirement to participate in research. The sample consists of 73 males and
243 females, which reflects the proportion of the two sexes among psychology
students. The average age was 18.4 (sd = 1.2).

5.3.2 Measures and procedure

The data collection was part of a larger study by the third author. Only the
characteristics relevant for the present study are mentioned here.

5.3.2.1 Situation-response questionnaire

Fifteen situations were taken from two situation-response inventories of Endler
and Hunt (1968). The situations were constructed for a student population from
which the sample in the present study is drawn. Endler and Hunt (1968) selected
situations students may be familiar with through direct or indirect experience.
The 15 situations are listed in the Appendix.

Six reactions were selected: want to curse, want to scold, want to shout, curse,
scold, and shout.

The 15 situations were crossed with the six reactions yielding 90 items in
total. The items were presented in random order to the students. For each item
three response categories were provided (0 = no, 1 = to some extent, and 2 =
to a strong extent). For the data analysis, the response categories 1 and 2 are
grouped because we were interested in whether or not the VA behavior occurs
and not so much in its intensity.

5.3.2.2 External person variables

Three questionnaires on anger, anger expression, and aggression were used as
measures of external subject characteristics: the Zelf-Analyse vragenlijst (ZAV,
Van Der Ploeg, Defares, & Spielberger, 1982), which is the Dutch adaptation
of the State-Trait Anger scale (STAS, Spielberger, 1980), to have a measure of
Trait Anger; the self-expression and control scale (SECS, Van Elderen et al.,
1997), an adaptation of the Anger Expression Scale (AX) of Spielberger et al.
(1982) containing the subscales Anger In, Anger Out, Control Anger In, and
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Control Anger Out; and the Buss-Durkee Hostility Inventory-Dutch (BDHI-
D, Lange et al., 1995). The latter inventory contains three subscales labeled
Direct Aggression, Indirect Aggression, and Social Desirability. As the Social
Desirability scale is very short (5 items) and has a rather low internal consist-
ency (Cronbach’s alpha = .50; Lange et al., 1995), it will be excluded from the
analyzes.

5.3.2.3 VA behavior - situations characteristics

Ten judges evaluated all situations on several properties: (1) the amount of
frustration elicited by the situation, (2) how well the VA behavior in general
expresses the feelings elicited by the situation, (3) how instrumental the VA
behavior is in each of the situations, (4) expected dislike from others, (5) expec-
ted negative self-evaluation, (6) the degree in which VA behavior hurts others,
(7) norm violation, (8) the presence of witnesses, and (9) the presence of the
person to whom the VA behavior is directed. Note that for the judgments of
the situations, no distinction was made depending on the type of VA beha-
vior. All judgments were made on a 4-point scale varying from 0 to 3. For each
property, the mean of the ten judges was used as a measure. The reliability
of the judgments for the nine features are the following .87 (frustration), .73
(expressiveness), .92 (instrumentality), .80 (dislike form others), .83 (negative
self-evaluation), .85 (hurt others), .85 (norm violation), .92 (witness), and .97
(presence of person to whom the VA behavior is directed). These coefficients
are the Cronbach’s Alphas for internal consistency.

5.3.2.4 Analysis

The data of the situation-response questionnaire were analyzed with PROC
NLMIXED (Wolfinger, 1999) from SAS V8 (1999). A quasi Newton-Raphson
optimization technique was used, together with a nonadaptive Gauss-Hermite
quadrature approximation as described in Pinheiro and Bates (1995) with 15
quadrature points to estimate the parameters of the different models. The fit of
the different models can be compared using two information criteria: the AIC
statistic (Akaike’s information criterion; Akaike, 1977) and the BIC statistic
(Bayesian information criterion; Schwartz, 1978). Given that both information
criteria contain a penalty for the number of parameters, an optimal balance
between model fit and model parsimoniousness is obtained. The lower the value
of these statistics, the better the model fits the data. The specific values of each
person on both person dependent parameters (αi and κi) were be obtained by
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requesting Empirical Bayes Estimates.
Subsequently, the values for the external trait measures –i.e. the sum scores

on subscales of the ZAV, the SECS, and the BDHI-D– were correlated with
the estimated values of the personal VA action tendency (αi), and the personal
VA inhibition (κi). The nine situational properties were correlated with the
estimated values of the situational VA behavior activation (βjk) and with the
situational VA behavior inhibition (δjk).

TABLE 5.1. Expected correlations between αi, κi and external person variables

TA AO AI CAO CAI DA IDA
αi + + - - . + +
κi . - . + . - .

‘+’ indicates a positive correlation, ‘-’ indicates a negative correlation, ‘.’ means that no

specific hypothesis is formulated about the correlation.

αi: person parameter for the action tendency;

κi: person parameter for the behavioral inhibition;

TA = Trait Anger (ZAV); AO = Anger Out (SECS); AI = Anger In (SECS); CAO = Control

Anger Out (SECS); CAI = Control Anger In (SECS); DA = Direct Aggression (BDHI-D);

IDA = Indirect Aggression (BDHI-D).

5.4 Results

5.4.1 Modeling the situation-response questionnaire

The models that are presented earlier will be used to analyze the data. The
values of the fit statistics for all models are listed in Table 5.2.

TABLE 5.2. Fit statistics of the models
Model AIC BIC
Null model 30354 30527
Constant inhibition 29762 29938
Situational inhibition 29647 29989
Personal inhibition 29077 29261
Combined 28968 29317

As can be seen in Table 5.2, all the models with inhibition included fit the
data clearly better than the null model. Within the group of inhibition mod-
els, the models containing a person-dependent inhibition parameter fit clearly
better than the models without personal VA inhibition. The effect of adding
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situational inhibition is much smaller (AIC), or even opposite (BIC). According
to the AIC values, the combined model has the best fit. However, according
to the BIC value, the personal inhibition model has a somewhat better fit.
This difference is due to the stronger penalty the BIC gives to the number of
parameters. Hence, depending on how important one considers it for a model
to be parsimonious, either the combined model (less parsimonious) or the per-
sonal inhibition model (more parsimonious) should be preferred. We opt for
the personal inhibition model, since this model is more parsimonious, and since
the two types of situation-by-behavior parameter estimates (the estimates of
βjk and δjk) of the combined model were correlated rather strongly (-.56) and
showed an analogous, but opposite, pattern of correlations with the situational
properties. Therefore, we don’t have a strong basis to differentiate empirically
between the situational VA activation and the situational VA inhibition. The
values of the model parameters of the personal inhibition model are given in
the Tables 5.3, and 5.4.

TABLE 5.3. Situational VA behavior activation parameter estimates for the personal
inhibition model

Par. Est. SE Par. Est. SE Par. Est. SE
β1,1 .65 .11 β6,1 1.51 .12 β11,1 .57 .11
β1,2 .06 .11 β6,2 .75 .11 β11,2 .34 .11
β1,3 -1.04 .12 β6,3 -.13 .11 β11,3 -.31 .11
β2,1 .89 .11 β7,1 -1.05 .12 β12,1 .34 .11
β2,2 .70 .11 β7,2 -1.89 .13 β12,2 -.96 .12
β2,3 -.19 .11 β7,3 -2.62 .16 β12,3 -1.36 .12
β3,1 1.54 .12 β8,1 .13 .11 β13,1 1.58 .12
β3,2 .14 .11 β8,2 -.74 .11 β13,2 .59 .11
β3,3 -.14 .11 β8,3 -1.56 .13 β13,3 -.44 .11
β4,1 .56 .11 β9,1 .42 .11 β14,1 1.48 .12
β4,2 -.49 .11 β9,2 -.84 .12 β14,2 .11 .11
β4,3 -1.20 .12 β9,3 -1.92 .14 β14,3 -.19 .11
β5,1 1.27 .11 β10,1 .63 .11 β15,1 -.81 .12
β5,2 .54 .11 β10,2 -.08 .11 β15,2 -1.14 .12
β5,3 .27 .11 β10,3 -.98 .12 β15,3 -2.26 .15

The first index refers to the situation (see Appendix), the second to the type of VA behavior

(curse=1; scold=2; shout=3).

For the interpretation of the estimates given in Table 5.3, one has to keep
in mind that the higher βjk, the higher the situational VA behavior activation.
The βjk vary from -2.62 to 1.58. Their mean value is equal to -.16, meaning
that on the average (over all situations and behaviors) a person with an average
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VA action tendency has a probability of .54 of wanting to display VA behavior.
The mean βjk per kind of VA behavior are .65 for wanting to curse, -.19 for
wanting to scold, and -.94 for wanting to shout. These estimates correspond
with mean probabilities of .66, .45 and .28 for respectively wanting to curse,
wanting to scold, or wanting to shout for a person with a mean action tendency.
In Figure 5.2, the probabilities of the VA behavior activation for the person
with an average VA action tendency are plotted per kind of VA behavior, for
the 15 situations. It is clear from the figure that there is a lot of variability in
the action tendencies, primarily depending on the situation.
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FIGURE 5.2. Probability of wanting to curse, wanting to scold, wanting to shout for
the average person in all 15 situations

The estimates for the personal VA action tendency (αi) and the personal
VA inhibition (κi) are summarized in Table 5.4. To interpret the parameters of
Table 5.4, one has to keep in mind that the higher κi, the higher the personal
VA inhibition, and the higher αi, the higher is the personal VA action tendency
of the subject. Both variables have a variance significantly different from zero
(p < .0001). Note that the test of the variance estimate by using its standard
error is a conservative test, since the variance is bounded by zero (Snijders
& Bosker, 1999; Verbeke & Molenberghs, 2000, in press). The variance of the
personal VA action tendency is larger than the variance for the personal VA
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inhibition, meaning that people differ more in action tendency than they differ
with respect to inhibition. The correlation between the action tendency and
inhibition is .42 (p < .001), meaning that the inhibition is stronger for a stronger
action tendency. Also the mean of the personal VA inhibition (.73) is highly
significant (p < .001). As a result, in the average situation the person with the
mean action tendency and the mean personal inhibition, has a probability of
.29 of displaying VA behavior (averaged over the three types of VA behavior),
which is about .2 less than the probability wanting to display the VA behavior.

TABLE 5.4. Estimates of distributional parameters for the personal inhibition model

Distributional parameter Estimate SE
Var(α) 1.95 .14
µκ .73 .06
Var(κ) 1.03 .10
Cov(α,κ) .59 .10

We also looked for gender differences in the means of the person dependent
parameters. For example, replacing αi by α∗i + β(male)Gender, with ‘Gender’
coded as male=1; female=0, leads to a model which can be used for detecting
gender differences in the mean of the personal verbal aggression activation. We
fitted two different models: one in which we allowed for gender differences in the
mean of the personal verbal aggression activation and one in which we allowed
for gender differences in the mean personal VA inhibition, as a model which
allows for both kinds of gender differences is not identified. The first model did
not have a better fit than the original personal inhibition model without gender
differences (AIC=29079, BIC=29267), and the latter only had a slightly better
fit (AIC=29057, BIC=29245), meaning that there are no gender differences in
the mean of the personal verbal aggression activation, and some small gender
differences in the mean of the personal VA inhibition. The difference between
the means is .69. The inclusion of this gender difference has no further effects
on the results, so that we have reported only the results of the joint analysis.

5.4.2 Correlations with external person variables

The correlations between the parameter estimates and the external variables
are given in Table 5.5. Comparing Table 5.5 with Table 5.1, it can be concluded
that except for Anger In, all expected correlations are significant, and if no
correlation is expected, the empirical correlation is not significant. For Anger In,



176 Dirk J. M. Smits, Paul De Boeck , Kristof Vansteelandt

the opposite pattern was found, as it does correlate significantly with inhibition
but not with the action tendency. It seems that Anger In suppresses the act
given the action tendency, rather than to prevent an outward action tendency.
Anger In seems to be a way of coping with aggressive action tendencies (while
preventing their expression) rather than with anger itself (by turning it inwards).

TABLE 5.5. Correlations between person-dependent parameters and external person
variables

TA AO AI CAO CAI DA IDA
αi 0.17∗∗ 0.14∗ 0.08 -0.12∗ -0.09 0.21∗∗ 0.21∗∗

κi 0.08 -0.20∗∗ 0.18∗∗ 0.14∗ 0.08 -0.16∗∗ 0.04

* p < .05 (two-tailed)

** p < .01 (two-tailed)

5.4.3 Correlations with external situational variables

The situational VA behavior activation as estimated through βjk was positively
correlated with frustration (.38), with instrumentality (.43), and with express-
iveness (.44), all p < .01. From a multiple regression analysis, it can be concluded
that together they explain 36% of the variance in the βjk (adjusted R2=.31).

As we opt for a model without situational VA behavior inhibition, we cannot
relate dislike from others and negative self-evaluation to a situational inhibition
parameter. Correlating the situational VA behavior activation with dislike from
other and with negative self-evaluation to, a correlation of -.50 was found for
dislike from others and a correlation of -.40 for negative self-evaluation, both
p < .01. The correlation of situational VA behavior activation with the presence
of a witness is -.19 (n.s.), and with the presence of the person to whom the VA
behavior is directed is -.41 (p < .01). From a multiple regression analysis, it
can be concluded that together, all situational properties explain 51% of the
variance in the βjk (adjusted R2=.42).

Finally, the correlation between expected dislike from others and expected
hurting others is .78, and the correlation between expected negative self-evaluation
and norm violation to .74; both p < .01.
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5.5 Discussion

The model we selected assumes that the VA action tendency in a certain situ-
ation is a function of the person and of the combination of a situation and a
behavior. When it comes to actually displaying the VA behavior, also inhibition
plays a role, but this inhibition depends only on the person and not on the
combination of a situation and a type of VA behavior. Although the combined
model is an intuitively appealing model and has a better fit when the penalty
for number of parameters is not high, the personal inhibition model is preferred
for two reasons: First, it is a more parsimonious model with about the same fit.
Second, for the combined model the correlations of situational VA inhibition
with the situational properties expected dislike from others and expected neg-
ative self-evaluation are about the opposite of the correlations of situational VA
activation with same situational properties. Moreover, the estimates of both
parameters have a high negative correlation. It turned out difficult to differ-
entiate between the situational action tendency and the situational inhibition,
which detracts for the attractiveness of the combined model.

A similar problem did not occur for the two types of individual differences.
The variances of the personal VA action tendency and the personal VA in-
hibition are significant, meaning that VA behavior depends on two person-
dependent processes or traits: the personal VA action tendency, supplemented
with a trait for the inhibition of verbal aggressive inclinations (personal VA
inhibition). The two have a moderate positive correlation, so that the action
tendency is compensated somewhat by the inhibition. People with a higher ag-
gressive tendency tend to have a somewhat stronger inhibitory tendency. Com-
paring the correlations of these two person-dependent parameter estimates with
the external person variables (see Table 5.5), one can see that they have a dif-
ferentiated pattern of correlations. The personal VA action tendency (αi) is
primarily correlated with Direct and Indirect Aggression, and with Trait An-
ger, whereas the personal VA inhibition is primarily correlated with Anger Out
(negatively) and Anger In (positively). It seems that the inhibition is primarily
related with the direction of the anger (in or out), whereas the action tendency
is related to aggressiveness, whether of a direct or indirect kind.

The results also shed light on the external variables, especially on the coping
with anger variables and the aggressive style variables. From the correlations
with the action tendency and with the behavioral inhibition, interpretations
can be made about the activating and the inhibitory nature of the variables.
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A positive correlation with the action tendency suggests an activating role,
and when the correlation with behavioral inhibition is negative, this activating
role is of a general kind as it includes the behavioral expression. A negative
correlation with the action tendency suggests an inhibitory role, but one that
is important earlier in the scheme of Figure 5.1 than behavioral inhibition.
When the correlation with behavioral inhibition is positive at the same time,
the inhibitory role is a rather general one, as it includes inhibition in an earlier
and a later stage.

First, Trait Anger seems to have an activating role in the earlier part of the VA
scheme, since it is not negatively correlated with behavioral inhibition. Second,
Anger Out and Anger In seem primarily related to behavioral inhibition. To have
an Anger Out coping style means to follow one’s verbal aggression tendency and
not to inhibit that tendency. To have an Anger In coping style means to inhibit
one’s verbally aggressive inclinations, so that they are not expressed. As far
as verbal aggression is concerned, both styles seem to concern what happens
with the action tendency: expression (Anger Out) or inhibition (Anger In), and
not so much with the action tendency itself. One might have expected that
an aggressive action tendency as such fits an Anger-Out style and contradicts
an Anger-In style, but this is much less the case than that these styles are
associated with the expression of the action tendency. As for Anger Out Control,
the inhibitory role is rather general, as expected, but the correlations are low.
The additional control variable (Control Anger IN) does not show significant
correlations. Third, the aggression style variables are of an activating kind. The
Direct, as well as the Indirect aggression style are positively correlated with the
action tendency. The difference is that a direct aggression style also activates
the expression of the action tendency, while the indirect style does not.

It is remarkable that the VA action tendency and the VA behavioral inhibition
are correlated positively, although not very highly. This finding can be related
to the frequency of occurrence: the more people feel the urge to act verbally ag-
gressive, the more they will find themselves in situations in which this tendency
or the resulting behavior will be inhibited. The fact that the correlation is not
very high, means that the action tendency and inhibition are two related, but
also separate processes that can be influenced by different factors.

Gender differences were only found for personal VA inhibition, resulting in a
model in which females in general show a somewhat stronger inhibitory tendency
than males do. This difference in strength of inhibitory tendency between males
and females, can be explained based on the finding of Crane-Ross, Tisak, and
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Tisak (1998) that females, more than males, indicated that aggressive behavior
is less acceptable, and a more of a cause for, amongst other things, concerns
with respect to negative self-evaluation and negative effects on others.

The situational part of the personal inhibition theory comprises only a VA
activation component. No situational inhibition component is included in the
personal inhibition theory. Nevertheless, the situational VA action tendency
is not only positively related to how frustration the situation is, and to the
instrumental and expressive value of the behavior (as expected), but also a
negative correlation with expected dislike form others and expected negative
self-evaluation was found. This suggest that the situation may have an inhib-
itory effect earlier in the scheme of Figure 5.1. Expected dislike from others
and expected negative self-evaluation, are exactly the kind of situational prop-
erties that may stimulate inhibition. Consequently, one can argue that these
properties had their influence already on action tendency inhibition. As our
approach cannot distinguish between the situationally induced action tendency
and situationally induced action tendency inhibition, both are summarized in
one parameter, the situational VA action tendency. Overall, it seems that situ-
ationally induced inhibition mainly occurs earlier, at the level of the action
tendency, whereas there is still a substantial type of person-induced inhibition
that plays a role later, in preventing the expression of an action tendency.

Finally, note that the estimation of both the action tendency and the behavi-
oral inhibition are based on a limited number of behaviors in a restricted set of
situations. As already mentioned in the introduction, this may limit the mag-
nitude of the correlations with the more general external trait measures. On the
other hand, working with a limited number of behaviors and situations allowed
us to make a fine-grained analysis, one that looks at individual situations and
behaviors, and one that can elegantly grasp the conceptual difference between
action tendencies and the resulting behaviors, as well as the differences between
effects induced by the person versus effects induced by the particular situation-
behavior combination.

One should also realize that not only our sample of situations and behaviors is
small, but that also the age range in our study is limited (about 16 to 20 years).
These limitations as to the situations, the types of VA behavior, and the age
of the participants prevent us from making strong claims on verbal aggression
and its inhibition in general. Nevertheless, the approach we followed seemed
successful in capturing the personal and situational aspects of verbal aggression
and its inhibition.
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5.6 Conclusion

Although the research has limitations (self report data, restricted population,
only 15 situations, 3 types of verbally aggressive behaviors), it seems that
our approach was successful in modeling and understanding the data from a
situation-response questionnaire, including its external validation. The two ba-
sic concepts, the verbal aggressive action tendency and the inhibition of verbal
aggressive behavior seem slightly correlated and each have interesting correla-
tions with external variables. Inhibition seems to be related to coping with anger
and the action tendency to be verbally aggressive on the other hand is related
to trait anger, direct and indirect aggression style, and to several situational
properties.

5.7 Appendix

1. Someone has lost an important book of yours.

2. You have just found out that someone has told lies about you.

3. You are driving to a party and suddenly your car has a flat tire.

4. You arrange to meet someone and he/she does not show up.

5. You are trying to study and there is incessant noise.

6. You are waiting at the bus stop and the bus fails to stop for you.

7. You are in a restaurant and have been waiting a long time to be served.

8. You are very tired and just asleep when awakened by some friends passing
by.

9. The grocery store closes just as you are about to enter.

10. Someone has splashed mud over your new clothes.

11. Someone makes an error and blames it on you.

12. You are reading a mystery novel and find that the last page of the book
is missing.

13. You miss your train because the clerk has given you faulty information.
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14. You are typing a term paper and your typewriter breaks.

15. Someone pushes ahead of you in a theater ticket line.
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cross-situational consistency. Psychological Review, 89, 730-755.

Pinheiro, J. C., & Bates, D. M. (1995). Approximation to the log-likelihood
function in the nonlinear mixed-effects model. Journal of Computational and
Graphical Statistics, 4, 12-35.

Ramanaiah, N. V., Conn, S. R., & Schill, T. (1987). On the content satura-
tion of the Buss-Durkee hostility inventory scales. Psychological Reports, 61,
591-594.

Rijmen, F., Tuerlinckx, F., De Boeck, P., & Kuppens, P. (in press). A
nonlinear mixed model framework for IRT models. Psychological Methods.

Roloff, M. E. (1996). The catalyst hypothesis: conditions under which co-
ercive communication leads to physical aggression. In D. D. Cahn & S. A.
Lloyds (Eds.), Family violence from a communication perspective (p. 20-36).
Thousand Oaks, CA: Sage.

Rubin, J. (1986). The emotion of anger: some conceptual and theoretical
issues. Professional Psychology: Research and Practice, 17, 115-124.

Sas OnlineDocTM Version 8. (1999). Carey NC, USA: SAS Institute Inc.

Sas System V8 for windows (Computer program). (1999). Carey NC, USA:
SAS Institute Inc.

Schwartz, G. (1978). Estimating the dimension of a model. The Annals of
Statistics, 6, 461-464.

Schwenkmezger, P., & Hank, P. (1996). Anger expression and blood pressure.
Stress and emotion: Anger, anxiety, and curiosity, 16, 241-259.

Shye, S., Elizur, D., & Hoffman, M. (1994). Introduction to facet theory:
content design and intrinsic data analysis in behavioral research. Applied
social research methods, Vol. 35. Thousand Oaks, CA, US: Sage Publications,
Inc.

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduc-
tion to basic and advanced multilevel modeling. London: Sage Publishers.

Spielberger, C. D. (1980). Preliminary manual for the state-trait anger scale
(STAS). Tampa, Florida: University of south Florida.



186 Dirk J. M. Smits, Paul De Boeck , Kristof Vansteelandt

Spielberger, C. D., Jacobs, G. H., Russell, S. F., & Crane, R. S. (1983).
Assessment of anger: the state-trait anger scale. In J. N. Butcher & C. D.
Spielberger (Eds.), Advances in personality assessment (Vol. 2, p. 20-36).
Hillsdale, New Jersey: Lawrence Erlbaum Associates Inc.

Spielberger, C. D., Johnson, E. G., Russell, S. F., Crane, R. S., Jacobs, G. H.,
& Worden, T. J. (1985). The experience and expression of anger: Construc-
tion and validation of an anger expression scale. In M. Chesney & R. H.
Roseman (Eds.), Anger and hostility in cardiovascular and behavioral dis-
orders (p. 5-29). New York: McGraw-Hill.

Spielberger, C. D., Johnson, E. H., & Jacobs, G. A. (1982). The anger
expression (AX) scale. Tampa, Florida: University of south Florida.

Spielberger, C. D., Krasner, S. S., & Solomon, E. P. (1988). The experience,
expression and control of anger. In M. P. Janisse (Ed.), Health psychology:
individual differences and stress (p. 89-108). New York: Springer-Verlag.

Van Der Ploeg, H. M., Defares, P. B., & Spielberger, C. D. (1982). Zelf
analyse vragenlijst (ZAV) [Dutch version of the state-trait anger scale]. Lisse,
The Netherlands: Swets & Zeitlinger.

Van Elderen, T., Maes, S., Komproe, I., & Kamp, L. van der. (1997). The
development of an anger expression and control scale. British Journal of
Health Psychology, 2, 269-281.

Venable, V. L., Carlson, C. R., & Wilson, J. (2001). The role of anger and
depression in recurrent headache. Headache, 41, 21-30.

Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal
data. New York: Springer-Verlag.

Verbeke, G., & Molenberghs, G. (in press). The use of the score test for
inference on variance components. Biometrics.

Wolfinger, R. (1999). Fitting non linear models with the new nlmixed proced-
ure. SUGI 24 Conference proceedings, Paper 287. Cary, NC.



Chapter 6

Estimation of the MIRID: A
program and a SAS based
approach
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ABSTRACT The MIRID CML program is a program for the estimation of the

parameter values of two different componential IRT models: the Rasch-MIRID

and the OPLM-MIRID (Butter, De Boeck, & Verhelst, 1998; Butter, 1994). To

estimate the parameters of both models, the program uses a CML approach. The

model parameters can also be estimated with a marginal maximum likelihood

approach which can be implemented in the PROC NLMIXED procedure of SAS

V8.

Both, the MIRID CML program and the MML SAS approach are explained and

compared in a simulation study. The results showed that they did about equally

well in estimating the values of the item parameters, but that there are some

differences in the estimation of the person parameters, as could be expected

from the differential assumptions regarding the distribution of the persons. The

SAS MML approach is much slower than the MIRID CML program, but it is

more flexible on the other hand. 1
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6.1 Introduction

Butter et al. (1998) described the Model with Internal Restrictions on Item
Difficulties (MIRID) as a componential model for binary data. In the MIRID,
parameters of some items are defined to be a linear combination of the para-
meters of other items. The model requires that two sets of items are defined:
component items and composite items. A composite item is an item that meas-
ures a concept that can be decomposed into components. A component item
is an item that measures one of these components. The item parameters of
the composite items are decomposed into parts attributed to the component
items (the item parameters of the component items). For example, ‘10*(5+3)’
as a composite item has two component items: ‘5+3’ and ‘10*8’. The first com-
ponent is of the addition type, the second of the multiplication type. One can
formulate many different items along the same line using different basic num-
bers, for example the composite item ‘7*(6+8)’, and its component items ‘6+8’,
‘7*14’. The componential approach applies to the affective domain as well. For
example, feeling guilty in a given situation may stem from feeling that a norm
is violated, from a tendency to brood about what one did, and from a tendency
to restitute what one did wrong, each related to the same given situation (Smits
& De Boeck, 2003). The question “Do you feel like having violated a moral, an
ethic, a religious and/or a personal code in situation A?” is a component item
of the norm violation type and it is associated with the composite item “Do
you feel guilty in situation A?”. For the approach to work, for each composite
item associated with a particular cognitive task or with an affective situation,
a number of component items has to be formulated with respect to the same
cognitive task or situation.

In general, J item families (j=1, . . . , J) are defined, so that within each
family there is one composite item, to be conceived of as a dependent variable,
and K component items, one for each of the K component types (k=1, . . . , K),
to be conceived of as the independent variables. For the composite items, k is
set to zero. The total number of items is equal to J*(K+1).

Suppose we have a questionnaire with five item families and three types of
components, then the total number of items equals 5 * (3 [number of compon-
ents] + 1 [composite item]) = 20. The structure of such a questionnaire is given
in Table 6.1.

The crucial assumption of the MIRID is that the item parameter of a compo-
site item is a linear function of the item parameters of the associated component
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items (Butter et al., 1998): the MIRID models the composite item parameters
as a linear function of the component item parameters:

βj0 =
K∑

k=1

σkβjk + τ (6.1)

βj0 is the item parameter of the composite item from item family j,
βjk is the item parameter of the component item of type k from item family j,
σk is the weight of the component item parameters of type k in determining the
composite item parameters,
τ is a normalization constant.

Equation 6.1 is a building block for IRT models with an item threshold (dif-
ficulty) parameter. This MIRID principle can be built into various types of
IRT models. It imposes in all cases a restriction on the model of which it is a
part. We restrict the discussion here to the Rasch model (Rasch, 1960), yielding
a Rasch-MIRID, and to the OPLM (One Parameter Logistic Model, Verhelst
& Glas, 1995; Verhelst, Glas, & Verstralen, 1994), yielding the OPLM-MIRID
(Butter, 1994; Smits & De Boeck, 2003). Like the Rasch model, the OPLM is a
model with fixed item discrimination values, but unlike the Rasch model, these
fixed values can differ over items.

In the Rasch model, each item (composite item and component item) has its
own item parameter, so that the Rasch model models the probability for person
i of giving a correct answer to item jk, as in Equation 6.2.

P (Yijk = 1|θi, βjk) =
exp (θi − βjk)

1 + exp (θi − βjk)
(6.2)

θi is the person parameter of person i, often called the ability,
βjk is the item parameter associated with item jk with k now varying from 0
to K.

We can group the item parameters into a column vector β with (variable)
length R = J(K + 1). We can construct an indicator vector xjk per item jk

with a length R equal to that of the item parameter vector β. The cells contain
a ‘1’ for the item parameter of the current item and a ‘0’ otherwise, such that
a multiplication of transposed xjk, denoted by x′jk, with the item parameter
vector β results in the item parameter of item jk. All item indicator vectors
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can be grouped into one design matrix X, with the rows of this matrix equal to
the x′jk. As a result, Equation 6.2 can be reformulated into Equation 6.3. This
formula will be used when explaining how to estimate models with SAS. In the
same section an example of the item design matrix for the Rasch model and for
the Rasch-MIRID will be given (see Figure 6.1).

P (Yijk = 1|θi, β) =
exp

(
θi − x′jkβ

)

1 + exp
(
θi − x′jkβ

) (6.3)

Building the MIRID principle into the Rasch model, the item parameters
of the composite items are restricted to be a linear combination of the item
parameters of the component items. The formula for the Rasch-MIRID is given
in Equation 6.4. Remember that k = 0 for composite items.

P (Yijk = 1|θi, βjk, σk, τ) =
exp (θi − βjk)

1 + exp (θi − βjk)
with k = 0, . . . ,K (6.4)

with βj0 =
K∑

k=1

σkβjk + τ ; (composite items)

βjk = βjk (component items)

For the Rasch-MIRID, a new item parameter vector β needs to be construc-
ted, which contains the item parameters of the component items and in the last
position the normalization constant, so that R = JK + 1. The item indicator
vector x′jk differs according to the kind of item. For the component items, it
is similar to the item indicator vector of the Rasch model: ‘0’ in all positions
except for a ‘1’ in the position that corresponds to the item parameter of item
jk. For the composite items, the item indicator vector contains the weight of the
components at the positions of the component item parameters of the same item
family as the composite item, and a ‘1’ in the last position. As a consequence,
the multiplication of x′jk with β results in βjk for the component items and in∑K

k=1 σkβjk + τ for the composite items. The last column of X indicates the
kind of item: for component items it contains a ‘0’ and for composite items a
‘1’. An example of such an item design matrix is given in the section about the
estimation of the Rasch-MIRID with SAS (see Figure 6.2). The formula for the
Rasch-MIRID corresponds to Equation 6.3, but with a modified item design
matrix X and a modified item parameter vector β.
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The OPLM differs from the Rasch model in that a priori and fixed degrees
of discrimination are included, that may differ depending on the item. These a
priori values are the elements ajk of the item discrimination vector a. Similarly,
the OPLM-MIRID differs from the Rasch-MIRID, again only in that the a priori
and fixed degrees of discrimination may differ depending on the item. The model
equation for the OPLM and the OPLM-MIRID is given in Equation 6.5:

P (Yijk = 1|θi,β) =
exp

[
ajk

(
θi − x′jkβ

)]

1 + exp
[
ajk

(
θi − x′jkβ

)] (6.5)

In the next paragraphs, a program for estimating the model parameters of
Rasch-MIRID and the OPLM-MIRID will be presented. The program is based
on a CML formulation (Conditional Maximum Likelihood, see, e.g., Baker,
1992; Fischer & Molenaar, 1995; Verhelst, 1993) of the Rasch-MIRID and the
OPLM-MIRID. Apart from this, also SAS V8 can be used for the estimation of
the model parameters of these models, assuming a normal distribution for the
person parameter (Wolfinger, 1999) and following a MML approach (Marginal
Maximum Likelihood, see, e.g., Baker, 1992; Fischer & Molenaar, 1995; Ver-
helst, 1993). Both the MIRID CML program and the SAS procedure for MML
will be explained next. In a final section, both approaches will be compared in
a small simulation study.

6.2 The MIRID CML program

The MIRID CML program (Smits, De Boeck, Verhelst, & Butter, 2001) is a
Windows-based program. It is written in Borland Delphi 5.0 and tested under
Windows 95, 98, 2000 and NT 4.0. About 8 MB of free disk space is needed to
install the program.

6.2.1 Model estimation

Four models can be estimated with the MIRID CML program: the Rasch model,
the Rasch-MIRID, the OPLM and the OPLM-MIRID. The item parameter
values and their standard errors are estimated, using a CML approach, and
the Davidon-Fletcher-Powell (a quasi Newton-Raphson optimization technique,
Bunday, 1984) or the Newton-Raphson optimization technique (Gill, Murray,
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& Wright, 1981; Bunday, 1984). Using a CML approach, the item parameters
are estimated by conditioning upon the examinees’ sufficient statistics (sum
of a priori degrees of discrimination for succeeded items). Once the item pool
is calibrated, the person parameter estimate corresponding to each sufficient
statistic can easily be obtained. A weighted maximum likelihood estimation
procedure was implemented for the estimation of the person parameters and
their standard errors (Warm, 1989).

6.2.2 Input

Before starting the estimation, one needs to specify the name of the data file, the
number of persons, and the number of items in the data file, the discrimination
values of the items, and the name of the output file. The data files need to be
in plain text format. The requested structure of the data files is such that the
rows are formed by the persons and the columns are formed by the items. All
responses are typed one next to the other, without any spacing between them.
The order of the items (columns) is: first, all component items of component
type 1, ordered according to the item family they belong to, next all component
items of component type 2 in the same order, and so on, and finally all composite
items again in the same order.

As the data sets need to satisfy a rather rigid structure, a module is included
in the program to rearrange data files with a different ordering.

6.2.3 Output

During the estimation process, a screen with the current value of the log-
likelihood function of the model is shown, so that the state of convergence can
be followed. After the estimation procedure has reached the convergence cri-
terion, the output is automatically displayed in the built-in text editor. First,
the estimated parameter values are shown: the item parameters of the compon-
ent items (the βjk), and the linear coefficients (the σk and τ), all with their
standard errors. Person parameters estimates are optional, and, when reques-
ted, they are followed by their standard errors in a separate section after the
item parameter estimates. As mentioned earlier, the program provides Warm
estimates (Warm, 1989). Warm estimates of the person parameter can also be
obtained, for example by using another CML IRT program, such as LPCM-Win
(Fischer, Ponocny-Seliger, Ponocny, & Parzer, 1998), or OPLM (Verhelst et al.,
1994).
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Second, information is given about the fit of the estimated model. If the es-
timated model is a Rasch-MIRID or an OPLM-MIRID, the fit of this model
is compared with the fit of the corresponding basic model (the Rasch model,
and the OPLM, respectively) using a likelihood-ratio test, since because of the
MIRID principle, the MIRID variants are nested within the corresponding ori-
ginal model. A more specific test will be presented in the section on the SAS
MML approach.

6.2.4 Simulation module

The program also contains a module to simulate data. In addition, error can be
added to an existing dataset, as explained in detail in the manual (Smits et al.,
2001).

6.2.5 Availability

Two versions of the program are available: one for computers running Windows
95 or Windows NT 4.0, and one for computers running Windows 98 or Windows
2000. Except for some animations, the two versions are equivalent. The program
can be obtained by e-mailing the author (Miridprogram@hotmail.com), or by
sending two 3.5 inch high density diskettes and a self-addressed stamped diskette
mailer to Dirk Smits, Department of Psychology (H.C.I.V.), Tiensestraat 102,
B-3000 Leuven, Belgium. The MIRID CML program comes with a manual in a
PDF file.

6.3 The SAS MML-approach

The parameters of the Rasch model, the Rasch-MIRID, the OPLM, and the
OPLM-MIRID can also be estimated using SAS V8. For a discussion on how
to use SAS for IRT models see Rijmen, Tuerlinckx, De Boeck, and Kuppens
(in press). The SAS software package includes a procedure, called PROC NL-
MIXED, to fit nonlinear mixed models. Nonlinear mixed models are regression
models that are non-linear in the predictors, for example because of a logit
link, and with regression weights that are of a mixed nature depending on the
predictor: fixed effects or random effects. When the non-linearity is due to the
link function, as in the Rasch model and the OPLM, the models are generalized
linear models. In the Rasch-MIRID and the OPLM-MIRID, there is a second
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type of non-linearity, because of the product of the parameters σk and βjk, see
Equations 6.1 and 6.4, so that they are not part of the family of generalized lin-
ear models. All item parameters can be considered fixed effects and the person
parameter can be regarded as a random intercept, normally distributed over
persons.

For all four models, PROC NLMIXED estimates the item parameters and the
parameters of the person parameter distribution (and their standard errors) by
using an approximation of the likelihood function based on a normally distrib-
uted random intercept. This means that PROC NLMIXED uses a Marginal
Maximum Likelihood approach (MML, see e.g. Baker, 1992; Verhelst, 1993) to
estimate all these parameters. The item parameters are estimated by integrat-
ing the likelihood function over a prespecified person parameter distribution,
here the normal distribution. PROC NLMIXED estimates also the mean of the
person distribution (if not fixed for identification reasons) and either the stand-
ard deviation or the variance, and their standard errors. Also individual person
parameter estimates can be obtained by requesting empirical Bayes estimates.
Various integral approximations, optimization techniques, and approximations
for the first and second derivatives of the likelihood function are available in
PROC NLMIXED, some of which will be discussed below.

Information about the fit of the estimated model is given by the maximized
value of the log-likelihood function (transformed into a deviance), as well as
by the information criteria of Akaike (AIC, Akaike, 1977) and Schwarz (BIC,
Schwartz, 1978). These statistics can be used to compare the fit of different
models (SAS OnlineDocTM Version 8). A more specific test that requires the
estimation of several model variants, will be presented later.

In the remainder of this section, the structure of the data set and the SAS
statements will be explained briefly.

6.3.1 Input

The structure of the input file needed for an analysis is the following:

1. There is a separate row for each observation (for each person by item
combination).

2. The first column contains a label for the person.

3. The second column contains the observations for the person by item com-
bination in question. Although not required by the program, we will use
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a fixed order for the items within each person: the same order as for the
MIRID CML program.

4. Finally, there is a column containing the discrimination value of the item
that is involved in the observation (discrimination vector a).

The remaining columns of the input file contains the design matrix X. For
the models considered here the design matrix is identical for all persons, and
therefore it is repeated for each person. For the Rasch model and for the OPLM,
the design matrix is defined as follows (See also section about the Rasch model):

1. There is one row for each item and as many columns as there are item
parameters.

2. An element of a row equals ‘1’ if the corresponding item parameter is
needed for the item corresponding the row in question, and ‘0’ otherwise
(see item indicator vector x′jk).

Since in the Rasch model, there is one item parameter per item, for each
person this results in an identity matrix with the same number of columns as
the number of items. An example with 20 items and 284 persons is presented in
Figure 6.1. The 20 items are organized in five item families and three types of
components. The additional column with discrimination values is omitted since,
for the Rasch model, these values are all equal.

For the Rasch-MIRID and the OPLM-MIRID the design matrix is defined as
follows:

1. There is one row for each item and as many columns as there are com-
ponent item parameters plus one.

2. An element of a row equals ‘1’ if the corresponding component item para-
meter is needed for the item corresponding the row in question, and ‘0’
otherwise (see item indicator vector x′jk). Again, this part of the design
matrix is an identity matrix, but only for the component items (item in-
dicator vector x′jk). Note that since we cannot include the weights σk in
the SAS design matrix for the composite items, they are replaced with
ones. In the SAS code representing the likelihood formula, the weights
will be explicitly added, so that for the composite items, this modified
item indicator vector containing only ones and zeros will be multiplied by
σk times the component item parameters βjk.
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pp1   1 1 0 0 0 ... 0 0 0 0 
pp1   0 0 1 0 0 ... 0 0 0 0 
pp1   0 0 0 1 0 ... 0 0 0 0 
pp1   0 0 0 0 1 ... 0 0 0 0 
... 
pp1   0 0 0 0 0 ... 1 0 0 0 
pp1   1 0 0 0 0 ... 0 1 0 0 
pp1   1 0 0 0 0 ... 0 0 1 0 
pp1   0 0 0 0 0 ... 0 0 0 1 
pp2   1 1 0 0 0 ... 0 0 0 0 
pp2   1 0 1 0 0 ... 0 0 0 0 
pp2   0 0 0 1 0 ... 0 0 0 0 
pp2   0 0 0 0 1 ... 0 0 0 0 
 
... 
 
pp284 0 0 0 0 0 ... 0 1 0 0 
pp284 0 0 0 0 0 ... 0 0 1 0 
pp284 0 0 0 0 0 ... 0 0 0 1 

Person label 

Responses of person 1 to item 
1 to 20, followed by the 
responses of person 2, … 

Design matrix: ‘1’ if index of 
β equals the item represented 
by the row, ‘0’ otherwise. 

Column for β21 

Column for β30 

Person 1, Item 2 

Person 1, Item 20 

 

FIGURE 6.1. Example of a SAS data set for the Rasch model

3. An additional column is needed to denote the kind of item. The elements
of this column equal ‘0’ if the item is a component item and ‘1’ if the item
is a composite item (last element of x′jk, denoted as X0 in SAS code).

For a dataset containing 20 items and five item families and with three types
of components, the input file for a Rasch-MIRID with the responses and the
design matrix looks as in Figure 6.2. The additional column with discrimination
values is omitted since, for the Rasch-MIRID, these values are all equal.

The structure of the input file for the OPLM and the OPLM-MIRID are the
same as for the Rasch model and the Rasch-MIRID, respectively, except for the
additional column with a priori discrimination values.

6.3.2 SAS statements (see SAS OnlineDocTM , 1999)

First, the DATA procedure has to be called to read the data file. In this pro-
cedure, the directory and name of the data file, and the names of variables
(columns) it contains are to be specified. For the Rasch model, the SAS code
can be found in Listing 1, and for the Rasch-MIRID, the code can be found in
Listing 2. For the OPLM and for the OPLM-MIRID, the DATA procedure is
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pp1   1 1 0 0 0 0 ... 0 0 0 0 0 0 
pp1   0 0 1 0 0 0 ... 0 0 0 0 0 0 
pp1   0 0 0 1 0 0 ... 0 0 0 0 0 0 
... 
pp1   1 0 0 0 0 0 ... 0 1 0 0 0 0 
pp1   0 0 0 0 0 0 ... 0 0 1 0 0 0 
pp1   1 0 0 0 0 0 ... 0 0 0 1 0 0 
pp1   1 0 0 0 0 0 ... 0 0 0 0 1 0 
pp1   0 1 0 0 0 0 ... 1 0 0 0 0 1 
pp1   1 0 1 0 0 0 ... 0 1 0 0 0 1 
pp1   1 0 0 1 0 0 ... 0 0 1 0 0 1 
pp1   1 0 0 0 1 0 ... 0 0 0 1 0 1 
pp1   0 0 0 0 0 1 ... 0 0 0 0 1 1 
pp2   1 1 0 0 0 0 ... 0 0 0 0 0 0 
pp2   1 0 1 0 0 0 ... 0 0 0 0 0 0 
pp2   0 0 0 1 0 0 ... 0 0 0 0 0 0 
pp2   0 0 0 0 1 0 ... 0 0 0 0 0 0 
 
... 
 
pp284 0 0 0 1 0 0 ... 0 0 1 0 0 1 
pp284 0 0 0 0 1 0 ... 0 0 0 1 0 1 
pp284 0 0 0 0 0 1 ... 0 0 0 0 1 1 

Person label 

Responses of person 1 to item 
1 to 20, followed by the 
responses of person 2, … 

Design matrix for the 
component items. 

Person 1, component 
item referring to 
component 1 in item 
family 2 

Person 1, item 
referring to 
component 3 in item 
family 3 

Design matrix for the 
composite items 

Column denoting type 
of item: 0 = component 
item, 1 = composite item 

Columns for β11 to β53 

Person 1, composite 
item of item 
family 4 

FIGURE 6.2. Example of a SAS data set for the RASCH-MIRID

identical to that for the Rasch model or the Rasch-MIRID respectively, except
for one additional column: the additional column with discrimination values.
The discrimination value must be mentioned in the INPUT statement. The
code can be found in the Listings 3 and 4, respectively.

Subsequent to the DATA procedure, PROC NLMIXED should be called. To
construct the SAS code for the Rasch model and the OPLM Equations 6.3 and
6.5 should be used. SAS needs the formula for the probability of giving a correct
answer to an item. The dummy variables X correspond to the vectors x′jk and
are used to select the parameters needed for the current item. Since the SAS
code does not use vector (or matrix) notations, and not a summation either, the
vector multiplication of the item indicator vector x′jk with the item parameter
vector β needs to be spelled out completely.

The PROC NLMIXED will be explained now, and for the model-specific
part, we will first use the Rasch model for the example with 20 items, three
components and five item families. Later, also the model specifications for the
other three models will be presented. As it would be to difficult to specify the
β’s with two indices in the SAS code, we will replace the indices j and k with
one index r, r = 1, . . . , R. If we order the component item parameters similar
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to the order of the component items in the dataset, it is easy to link the βr to
the original βjk.

The statements for the Rasch model are mentioned in Listing 5. We will now
go through the statements and explain them statement by statement.

Applying PROC NLMIXED, some choices are to be made about the estima-
tion procedure. These choices can be discussed independent of the model to be
estimated.

6.3.2.1 General options

The first general option is ‘METHOD=’. It is used to specify the method for
integral approximation. We choose for the Gauss-Hermite quadrature approx-
imation (GAUSS) as described in Pinheiro and Bates (1995) in combination
with the ‘NOAD’ option, so that the quadrature points are centered at zero for
each random effect and so that the current random-effects variance matrix is
used as the scale matrix. This is also the default integration method.

With the general option ‘QPOINTS=’ the number of quadrature points used
during the evaluation of the integral can be specified. In combination with the
Gauss-Hermite quadrature approximation of the integral, this number equals
the number of points used in each dimension of the random effects (we have
only one, for the intercept). We choose to set this option equal to 20, to obtain
a reasonable precision in describing the distribution of the random effects, and
so that the estimation time is not increased too much.

The general option ‘TECHNIQUE=’ in combination with ‘UPDATE=’ can
be used to determine the optimization technique. Eight different techniques are
available: among which conjugate gradient (CONGRA), Newton-Raphson op-
timization (NEWRAP), Newton-Raphson optimization with ridging (NRRIDG)
and quasi Newton-Raphson (QUANEW, which is the default option). For the
quasi Newton-Raphson, in addition the ‘UPDATE=’ option is needed. Eight dif-
ferent possibilities are available, but not all update methods can be combined
with all optimizers. Here and in the simulation study, a quasi Newton-Raphson
approach, together with the Davidon-Fletcher-Powell update of the inverse Hes-
sian matrix is used. This approach is also implemented in the MIRID CML
program and, in contrast to the original Newton-Raphson optimization method
that involves the calculation of the second derivatives of the log-likelihood func-
tion which is very time consuming, the quasi Newton-Raphson optimization
techniques need only the first derivatives to be calculated. The default value for
the ‘UPDATE’ option is the Double Broyden, Fletcher, Goldfarb and Shanno
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(DBFGS) update of the inverse Hessian matrix. For the other available options
and alternatives, see SAS OnlineDocTM (1999).

6.3.2.2 Model specific statements

To specify a model, three statements are needed: PARMS, MODEL, and RAN-
DOM. The ‘PARMS’ statement identifies all model parameters and their start-
ing values. Between the ‘PARMS’ and the ‘MODEL’ statement, the model
equation is given (ex= . . . , p=ex/(1+ex)). The ‘MODEL’ statement defines
the dependent variable and how it depends on the result of the model equation.
In our case the response variables are Bernoulli variables with the probability
as described in Equation 6.2, which is the ‘p’ from the SAS code: y ∼ bin-
ary(p). In the ‘RANDOM’ statement, the distribution of the random effect is
specified (theta ∼ normal(0,VarTheta)). Only a normal distribution is suppor-
ted by SAS, and the variance can either be specified a priori, or it can be defined
as a parameter to be estimated. In our case, we constrain the mean of the per-
son distribution to be zero, to render the model identifiable, and we define the
variance as a parameter to be estimated. Also the standard deviation (and its
standard error) can be obtained as follows (theta ∼ normal(0, StdTheta**2)).
The ‘SUBJECT’ option within the ‘RANDOM’ statement is needed to specify
when the random effect obtains new realizations. As in the Rasch model each
person has its own person parameter, the person variable defines the realizations
of the random effect (SUBJECT=Person).

In order to fit a Rasch-MIRID to the data set mentioned above, only the
statements referring to the specific model (PARMS and the model equation)
differ. The SAS statements are given in Listing 6.

For the OPLM and OPLM-MIRID, the ‘PARMS’ statement is equal to the
one of the Rasch model or the Rasch-MIRID, respectively. In the INPUT state-
ment the degrees of discrimination need to be added. The SAS statements rep-
resenting the model equation of the OPLM are given in Listing 7.

To demonstrate the flexibility of PROC NLMIXED, we will introduce a
second way to test the MIRID structure besides the comparison with the basic
model. One can test the MIRID structure with PROC NLMIXED by freeing
one of the composite item parameters at a time and re-estimate the new model.
These new models should not have a better fit than the original MIRID. The
relaxation can be made for more than one item family at the time. A likelihood-
ratio test can be used to test the difference in fit. If we free the first composite
item parameter, the previous code for the Rasch-MIRID for example, should be
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modified into Listing 8.
As a result, the MIRID restrictions do not apply for the composite item of

the first item family. This procedure of leaving one or more out is a way of
testing whether the weights σk are equally valid for all composite items. That
the weights would not be equal for all composite items is the most likely source
of misspecification of the MIRID.

6.3.3 Output

The output of PROC NLMIXED contains the estimates of all parameters (the
item parameters, the weights, the normalization constant and the variance of
the person parameter distribution), the corresponding standard errors, a Wald
test for testing the significance of the parameter estimates, and the value of the
first derivative for the current parameter after the final iteration. In addition,
four relative fit statistics are given: the deviance, defined as -2*log-likelihood
value, the AIC value (Akaike’s Information Criterion, Akaike, 1977), the AICC
value (a finite-sample corrected version of AIC, Burnham & Anderson, 1998),
and the BIC value (Schwartz’ information criterion, Schwartz, 1978).

Note that the Wald test in PROC NLMIXED for the variance estimates does
not give the correct p-value. The reference distribution that is used for the null
hypothesis is a normal distribution, while a variance cannot be smaller than zero.
An appropriate way of testing whether there are individual differences (random
versus fixed intercept) is described by Verbeke and Molenberghs (2000) in terms
of a likelihood ratio test. The reference distribution of this likelihood ratio test
is a mixture of two χ2-distributions, one with zero degrees of freedom and one
with one degree of freedom, leading to p-values which are half the size of the
p-values obtained under the classical χ2

1 approximation to the null distribution
(Verbeke & Molenberghs, in press). As the Wald test asymptotically equals the
previously mentioned likelihood ratio test, a similar result applies for the PROC
NLMIXED output. As a consequence, the correct p-value is half the size of the
one mentioned in the PROC NLMIXED output.

As PROC NLMIXED provides the deviance for each model, and as the Rasch-
MIRID is a restriction of the Rasch model, and the OPLM-MIRID of the OPLM,
one can test the fit of the MIRID against the more general model using a
likelihood-ratio test.
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6.4 The MIRID CML program and the SAS MML

approach compared

To compare the MIRID CML program with the SAS MML approach implemen-
ted in PROC NLMIXED, 140 datasets were simulated under the Rasch-MIRID,
in which 2 features were varied: the number of persons, and the kind of distri-
bution from which the person parameters were sampled. 80 data sets contained
200 persons and 60 contained 100 persons. The person parameters were sampled
from three different distributions: a normal distribution with a mean of zero and
a standard deviation of one (40 data sets with 200 persons, and 20 with 100
persons), a truncated normal distribution (20 data sets with 200 persons, and
20 with 100 persons), with the negative half omitted from the previous distri-
bution, and a bimodal distribution, obtained by sampling half of the values for
the person parameters from a normal distribution with mean 0, and the other
half from a normal distribution with mean 4 (the standard deviations of both
were equal to 1) (20 data sets with 200 persons, and 20 with 100 persons). All
140 datasets contained 40 items, 10 item families, and 3 types of components.
The component item parameters (β), the weights (σ), and the normalization
constant (τ) were sampled from a normal distribution with mean equal to zero
and a standard deviation equal to one. Note that as we will use the group of
data sets containing 200 persons and stemming from a normal distribution as
reference condition, 40 datasets were included. In this small simulation study,
we concentrated on the Rasch-MIRID, as the MIRID is our primarily point of
interest and as the OPLM-MIRID is very similar to the Rasch-MIRID.

To differentiate amongst the different conditions, the following names will be
used: (1) the “normal group”, denoting the datasets containing 200 persons,
with the person parameters sampled from a normal distribution (40 data sets),
(2) the “truncated group”, denoting the datasets containing 200 persons, with
the person parameters sampled from a truncated normal distribution (20 data
sets), (3) the “bimodal group”, denoting the datasets containing 200 persons,
with the person parameters sampled from a bimodal distribution (20 data sets).
(4) The remaining three groups are named similarly, but the number of persons
(100) is added as a suffix resulting in the “normal 100 group” (20 data sets), the
“truncated 100 group” (20 data sets), and the “bimodal 100 group” (20 data
sets).

All data sets were analyzed with the MIRID CML program and PROC NL-
MIXED using the previously mentioned options. In both, the MIRID CML



6. Estimation of the MIRID: A program and a SAS based approach 203

program and PROC NLMIXED, we used a Quasi Newton-Raphson optimiza-
tion technique together with the Davidon-Fletcher-Powell update method for
the inverse Hessian matrix. In SAS, we choose the starting values for the com-
ponent item parameters, the weights, and the normalization constant to be one,
while in the MIRID CML program, first, a Rasch model was fitted and the val-
ues for item parameters obtained under the Rasch model are the basis for the
starting values for all parameters of the Rasch-MIRID (based on a regression
of the composite item parameters on the component item parameters). In this
way, we obtained estimates for all item parameters and their standard error.
An estimate for the variance of the person parameter distribution was only ob-
tained by PROC NLMIXED (starting value = 1). Subsequently, estimates of
the individual person parameters were calculated. The MIRID CML program
uses a weighted likelihood approach (Warm, 1989) to estimate the values for the
person parameters, often called Warm estimates. This results in one value for
each possible sum score from the complete questionnaire. In PROC NLMIXED
from SAS V8, empirical Bayes Estimates can be obtained for the individual
realizations of a random effect -here the person parameter.

We expect the MIRID CML program to be superior with respect to the
goodness-of-recovery for the data sets generated from a non-normal distribu-
tion: the data sets stemming from a bimodal distribution and the data sets
stemming from a truncated normal distribution for the person parameter. The
misspecification of the distribution should affect primarily the estimates of the
person parameters. The MIRID CML and the Warm estimation method used in
the MIRID CML program for the estimation of the person parameters make no
assumptions about the distribution of the person parameters, whereas PROC
NLMIXED in SAS imposes a normal prior distribution for these parameters,
which does not correspond with the generating distribution. This effect should
especially be visible in datasets with a smaller number of persons. More specific-
ally, we expect PROC NLMIXED to result in an underestimation of the variance
of the person parameter distribution for the bimodal distribution and the trun-
cated normal distribution. For the data generated under a normal distribution
an equal goodness-of-recovery is expected, but there could be an underestima-
tion of variance of the random effect distribution as produced by PROC NL-
MIXED. As to the Warm estimates, we do not expect them to perform poorly in
any condition, as Hoijtink and Boomsma (1996) found for example that Warm
estimates perform reasonably well for sets of at least 15 items.

The fit of the models will be examined with five different statistics, re-
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lated to the different kinds of parameters (the component item parameters, the
weights, and the person parameters): First, as the component item parameters
are defined up to an additive constant, the estimated values for the compon-
ent item parameters will be correlated with the generating values. The higher
these correlations, the better is the goodness-of-recovery for these parameters.
Second, the ratio between the variances of the estimated versus the generating
values for the component item parameters is calculated. The ratio of the vari-
ances is needed to detect differences in variance, which cannot be detected by a
correlation. The closer this ratio is to one, the better is the goodness-of-recovery.
Third, we calculated the mean squared differences between the original and the
estimated values for the weights of the component item parameters only, because
these parameters remain invariant under scale transformations (Butter et al.,
1998). The higher the mean squared differences, the worse is the goodness-of-
recovery of the model. Fourth, as the person parameters are defined up to an
additive constant, the estimated values (Warm estimates or empirical Bayes es-
timates) for the person parameters are correlated with the generating values.
The higher these correlations, the better is the goodness-of-recovery for these
parameters. Fifth and finally, the variance of the generating person parameters
is compared directly to the variance of the Warm estimates, the variance of the
empirical Bayes estimates, and the variance of the random effect distribution as
estimated by PROC NLMIXED. The latter estimate is direct, while the former
to require an estimation of the model first.

A more extensive and more extensively documented simulation study about
estimating the parameters of the Rasch-MIRID can be found in the article of
Butter et al. (1998).

6.4.1 Results

In Table 6.2 the mean correlation between the estimated and the generating
item parameters values over all datasets of the same kind are given, together
with their standard deviations. Two-tailed Fischer Z transformations were made
before testing the differences between the mean correlations. The standard de-
viations mentioned in Table 6.2 are the standard deviations of the correlations
before the Fischer Z transformations.

To test the differences between the different conditions, we performed an ana-
lysis of variance for split plot designs on the Fischer Z transformed correlations,
with the kind of generating distribution and the number of persons as between-
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TABLE 6.2. Mean correlations between generating and estimated parameter values of
the component-item parameters over all data sets of the same kind

Data Set MIRID CML prog. PROC NLMIXED N
Mean cor. (Std) Mean cor. (Std)

Normal .986 (.005) .986 (.005) 40
Truncated .987 (.004) .984 (.014) 20
Bimodal .974 (.009) .974 (.009) 20
Normal 100 pers .974 (.008) .974 (.007) 20
Truncated 100 pers .972 (.008) .972 (.008) 20
Bimodal 100 pers .961 (.013) .961 (.013) 20

subject factors and the estimation method (PROC NLMIXED vs MIRID CML
program) as a within-subject factor. Only the main effects of the two between-
subject factors turned out to be significant. From post-hoc t-tests, we can con-
clude that the difference between the normal and the truncated normal group
is not significant, whereas the bimodal group does significantly worse. As to
the number of persons, the goodness-of-recovery is significantly worse when the
number of persons decreases from 200 to 100. The one within-subject factor
does not yield a significant difference. Both approaches (PROC NLMIXED vs
MIRID CML Program) do about equally well.

In Table 6.3, the mean values of the ratio of the variance of the component
item parameters as estimated by both approaches, compared to the variance
of the generating item parameters over all data sets of the same kind, are dis-
played. To test the differences between the different conditions, we performed
an analysis of variance (split plot design) on the variance ratios, with the same
design as for the previous ANOVA. Again, only the main effects of the two
between-subject factors turned out to be significant. Both approaches perform
somewhat less well if the person parameter distribution deviates from the nor-
mal distribution, and if the number of persons decreases. In addition, according
to the F-tests per single data set, the ratios never differ significantly from 1 (all
p-values are even larger than .24).

In Table 6.4, the mean values for the mean squared differences between the
original and the estimated weights of the component item parameters over the
different data sets of one kind are shown. Using PROC NLMIXED, the estimates
for one dataset deviated strongly from the generating values. Excluding this one
data set, the mean of the mean squared difference and its standard deviation
drops to the values displayed in Table 6.4. An analysis of variance with the same
design as the previous ANOVAs revealed no significant effects.
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TABLE 6.3. Mean ratios of variances between generating and estimated parameter
values of the component-item parameters over all data sets of the same kind

Data Set MIRID CML prog. PROC NLMIXED N
Mean ratio (Std) Mean ratio (Std)

Normal 1.034 (.075) 1.034 (.075) 40
Truncated 1.076 (.086) 1.073 (.081) 20
Bimodal 1.061 (.092) 1.055 (.093) 20
Normal 100 pers 1.048 (.164) 1.048 (.164) 20
Truncated 100 pers 1.139 (.189) 1.141 (.189) 20
Bimodal 100 pers 1.158 (.216) 1.158 (.230) 20

TABLE 6.4. Means of the mean squared differences between generating and estimated
weights of the component item parameters over all data sets of the same kind

Data Set MIRID CML prog. PROC NLMIXED N
Mean sq. dif. (Stdev) Mean sq. dif. (Stdev)

Normal .033 (.049) .027 (.031) 40
Truncated .031 (.029) .031 (.028) 19
Bimodal .055 (.060) .053 (.060) 20
Normal 100 pers .052 (.100) .050 (.095) 20
Truncated 100 pers .098 (.237) .099 (.244) 20
Bimodal 100 pers .126 (.314) .115 (.269) 20

To summarize, we were not able to find differences in goodness-of-recovery
between the MIRID CML program and the PROC NLMIXED MML approach
for the component item parameters and the weights. Therefore, both approaches
can be concluded to perform equally well for the estimation of the item para-
meters and the weights.

As for the person parameters, the estimated values were correlated with the
generating values. The means of the correlations and the corresponding standard
deviations are displayed in Table 6.5. An analysis of variance on the Fischer Z
transformed correlations with the same design as for the previous ANOVAs
revealed a significant main effect for the kind of distribution and a significant
interaction effect between the kind of distribution and the kind of estimation
method. Based on post-hoc tests, the correlations are lower for the truncated
distributions. For this distribution also a small difference is found between the
two estimation methods (.841 vs .832, and .852 vs .845, for 200 and 100 persons
respectively), although it is not significant. Note that in one of the datasets of
the bimodal group, no Warm estimates could be computed due to computational
problems.

Finally, the variance of the originally simulated person parameters was com-
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TABLE 6.5. Mean correlations between generating and estimated person parameters
over all data sets of the same kind

Data Set MIRID CML prog. PROC NLMIXED N
W.E. (Std) E.B.E. (Std)

Normal .931 (.009) .933 (.009) 40
Truncated .841 (.021) .832 (.020) 20
Bimodal .963 (.007) .967 (.007) 19
Normal 100 pers .929 (.015) .931 (.015) 20
Truncated 100 pers .852 (.025) .845 (.025) 20
Bimodal 100 pers .961 (.008) .964 (.007) 20

W.E. = Warm estimates; E.B.E. = empirical Bayes estimates

pared with the variance of the Warm estimates, with the variance of the empir-
ical Bayes estimates, and with the variance of the person parameter distribution
as estimated by PROC NLMIXED. In Table 6.6 the mean difference between
the estimated variance and the variance of the simulated person parameters is
shown. Each mean difference is also tested against zero. A positive value reflects
an overestimation of the variance and a negative value reflects an underestim-
ation.

An analysis of variance with the same design as for the previous ANOVAs re-
vealed two significant main effects (kind of distribution and estimation method)
and three significant interaction effect (all interactions with the estimation
method). A post hoc analysis revealed that all row-wise differences, except for
one, in Table 6.6 are significantly different. The variance of the Warm estimates
overestimates the variance of the generating values in the normal group and
in the truncated normal group. In the bimodal group, there is a slight under-
estimation. The variance as estimated from the empirical Bayes estimates, is
always underestimated, especially for the smaller number of persons. A similar
underestimation, but much smaller, is found for the estimate of the random
effect variance from PROC NLMIXED. However, in three of the six rows the
difference with zero is not significant.

We also investigated the absolute deviations from the variance of the originally
simulated parameters. An analysis of variance with the same design as for the
previous ANOVAs revealed two significant main effects (kind of distribution
and estimation method) and one significant interaction effect (between the kind
of distribution and the estimation method). The PROC NLMIXED estimate
of the random effect variance is always the closest to the expected variance,
except for the bimodal 100 group, where the variance of the Warm estimates is
the closest to the expected variance. The bias of the empirical Bayes estimates
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is always the largest, except in the normal group where it is equal to the bias
in the Warm estimates.

6.4.2 Discussion

First, it was expected that the CML approach would do better in recovering
the generating parameter values when the data were generated from a non-
normal person parameter distribution, but there was actually no effect for the
item parameters and the weights. The difference we found concerns the per-
son parameters. It was very small in terms of correlations, and restricted to
the datasets with a truncated distribution. The difference was larger for the
estimated variance of the person parameters.

In general, the direct estimation of the variance of the person parameter dis-
tribution from PROC NLMIXED gave the best results. The variance of the
empirical Bayes estimates underestimates the variance of the generating para-
meters in all kinds of datasets, also those generated from a normal distribution.
As expected, the estimated variance is smaller for the datasets generated from
the two non-normal distributions than for the datasets generated from the nor-
mal distribution, except for the variance as estimated by PROC NLMIXED in
the bimodal 100 group.

In contrast, the Warm estimates overestimate the variance in the normal
and in the truncated group, and underestimate the variance in the bimodal
groups. Both were not predicted. The underestimation in the bimodal groups
can be related to the fact that Warm estimates are negatively biased for large,
positive θ-values (Warm, 1989). Since there are more such values expected for
the data generated with the bimodal distribution, the effect of the negative
bias is expected to be relatively large, which explains the underestimation of
the variance. The overestimation of the variance in the normal sample and the
truncated sample is similar to the results obtained by Hoijtink and Boomsma
(1996) with a normal generating distribution. We did not find any explanation
in literature for this overestimation.

Despite the differences found, we cannot conclude one approach to be better in
general than the other. Nevertheless, we can conclude that for our data MIRID
CML, supplemented with the Warm estimates, should be preferred if estimates
for the person parameters are requested. Warm estimates showed equal (for the
normal and the truncated group) or less bias (for the bimodal group) in terms
of overestimation or underestimation of the variance of the person parameter
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distribution than the empirical Bayes estimates. If one does not need individual
estimates, both approaches are inferior to the estimate obtained by from PROC
NLMIXED for the variance of the random effect.

A remarkable difference between the MIRID CML program and PROC NL-
MIXED was the time needed for the estimation of the models: the MIRID CML
program, which first fits the Rasch model and only then the Rasch-MIRID, takes
two to three minutes for a single simulated data set. With PROC NLMIXED,
we fitted only the Rasch-MIRID and this took 15 to 30 minutes for a single
simulated data set, not including the empirical Bayes estimates for the random
effect.

A major advantage of the SAS approach is that PROC NLMIXED is a very
broad procedure that can be used for fitting many other generalized linear
and non-linear models with fixed and random effects (see e.g. Rijmen et al., in
press). One can for example test the MIRID structure with PROC NLMIXED
by freeing one of the composite item parameters at a time and re-estimating
the new models, as explained earlier. The price to pay for this generality is
computing time.

6.5 Conclusions

Both approaches are useful for fitting MIRIDs, and do (about equally) well ac-
cording to the goodness-of-recovery statistics for the item parameters and the
weights. Taking the person parameters into account, small differences between
both approaches are found: the CML approach supplemented with Warm es-
timates can be preferred when individual estimates of the person parameter
are requested, and PROC NLMIXED can be preferred when an estimate of the
variance of the person parameter distribution suffices.

A major advantage of PROC NLMIXED is that it is very flexible because of
the many different options, and the many different model variants it can fit. On
the other hand, PROC NLMIXED is rather time consuming. The MIRID CML
program is less flexible as it has less options and can fit only MIRIDs, but it is
faster.
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6.6 Listings

6.6.1 Listing 1: SAS statements for reading data for the Rasch

model

Comments are written between /*. . . */:

DATA Rasch; /*name of the data set within the SAS

environment*/

INFILE ’c:\data\Rasch.dat’; /*name and location of

datafile*/

INPUT Person $ y X1-X20;

/*Variables: Person: person label (followed by $ because

person is a string (character)), y: responses, X1-X20 are

the dummy variables that form the columns of the design

matrix*/

RUN;

6.6.2 Listing 2: SAS statements for reading data for the

Rasch-MIRID

Comments are written between /*. . . */:

DATA RaschMirid; /*name for SAS data set*/

INFILE ’c:\data\raschmirid.dat’; /*name and location of

data file*/

INPUT Person $ y X1-X15 X0;

/*Variables: Person: person label, y: responses, X1-X15:

dummy variables for component item parameters, X0: dummy

variable denoting the composite item*/

RUN;

6.6.3 Listing 3: SAS statements for reading data for the OPLM

Comments are written between /*. . . */:
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DATA Oplm; /*name of the data set within the SAS

environment*/

INFILE ’c:\data\oplm.dat’; /*name and location of

datafile*/

INPUT Person $ y X1-X20 A;

/*Variables: Person: person label (followed by $ because

person is a string (character)), y: responses, X1-X20 are

the dummy variables that form the columns of the design

matrix, A: discrimination values*/

RUN;

6.6.4 Listing 4: SAS statements for reading data for the

OPLM-MIRID

Comments are written between /*. . . */:

DATA OplmMirid; /*name for SAS data set*/

INFILE ’c:\data\oplmmirid.dat’; /*name and location of data

file*/

INPUT Person $ y X1-X15 X0 A;

/*Variables: Person: person label, y: responses, X1-X15:

dummy variables for component item parameters, X0: dummy

variable denoting the composite item, A: discrimination

values*/

RUN;

6.6.5 Listing 5: SAS statements for estimating the Rasch model

Comments are written between /*. . . */:
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PROC NLMIXED DATA=Rasch METHOD=gauss NOAD QPOINTS=20

TECHNIQUE=QuaNew UPDATE=dfp;

/*Specification of data and estimation procedure*/

PARMS Beta1-Beta20=1 VarTheta=1; /*Parameters and their

starting values*/

ex=exp(theta-X1*Beta1-X2*Beta2-X3*Beta3-X4*Beta4-X5*Beta5

-X6*Beta6-X7*Beta7-...-X18*Beta18-X19*Beta19-X20*Beta20);

p=ex/(1+ex); /*Formula of Rasch model, see Equation 6.3*/

MODEL y ∼ binary(p); /*the Rasch model is a model for

binary data*/

RANDOM theta ∼ normal(0,VarTheta) SUBJECT=Person;

/*specification of distribution of the random intercept θ:

The persons are normally distributed with mean zero and

variance equal to VarTheta. The subject option specifies

over which variable the random effects are distributed. If

the option OUT=SAS-data set is specified, empirical Bayes

estimates for the realizations of the person parameter are

calculated and stored in the specified SAS data set*/

RUN;
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6.6.6 Listing 6: SAS statements for estimating the Rasch-MIRID

Comments are written between /*. . . */:

PROC NLMIXED DATA=RaschMIRID METHOD=gauss NOAD QPOINTS=20

TECHNIQUE=QuaNew UPDATE=dfp;

/*Specification of data and estimation procedure*/

PARMS Beta1-Beta15=1 Sigma1-Sigma3=1 Tau=1 VarTheta=1;

/*Specification of the parameters of the Rasch-MIRID and

their starting values; Beta1-Beta15 are the component item

parameters, Sigma1-Sigma3 are the weights of the three

types of components and Tau is the normalization constant*/

ex=exp(theta+(1-X0)*(-X1*Beta1-X2*Beta2-X3*Beta3-X4*Beta4

-X5*Beta5-...-X14*Beta14-X15*Beta15)

/*part specific to component items*/

+X0*(-X1*Beta1*Sigma1-X2*Beta2*Sigma1-X3*Beta3*Sigma1

-X4*Beta4*Sigma1-X5*Beta5*Sigma1-X6*Beta6*Sigma2

-X7*Beta7*Sigma2-X8*Beta8*Sigma2-X9*Beta9*Sigma2

-X10*Beta10*Sigma2-X11*Beta11*Sigma3-X12*Beta12*Sigma3

-X13*Beta13*Sigma3-X14*Beta14*Sigma3-X15*Beta15*Sigma3

-Tau));

/*part specific to composite items*/

p=ex/(1+ex); /*inverse logit transformation*/

MODEL y ∼ binary(p); /*the Rasch-MIRID is a model for

binary data*/

RANDOM theta ∼ normal(0,VarTheta) SUBJECT=Person;

RUN;

6.6.7 Listing 7: SAS statements for model equation of the OPLM

Comments are written between /*. . . */:

ex=exp(A*(theta-X1*Beta1-X2*Beta2-X3*Beta3-X4*Beta4

-X5*Beta5-X6*Beta6-X7*Beta7-...-X18*Beta18-X19*Beta19

-X20*Beta20));

p=ex/(1+ex);
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6.6.8 Listing 8: SAS statements for estimating a Rasch-MIRID

in which the first composite item parameter is freed

Comments are written between /*. . . */:

PROC NLMIXED DATA=RaschMIRID METHOD=gauss NOAD QPOINTS=20

TECHNIQUE=QuaNew UPDATE=dfp;

/*Specification of data and estimation procedure.*/

PARMS Beta1-Beta15=1 Sigma1-Sigma3=1 Tau=1 VarTheta=1

CompBeta1=1;

/*CompBeta1 is the freed composite item parameter of the

first item family*/

ex=exp(theta+(1-X0)*(-X1*Beta1-X2*Beta2-X3*Beta3-X4*Beta4

-X5*Beta5-...-X14*Beta14-X15*Beta15)

/*part specific to component items, nothing changes*/

+X0*(-X1*CompBeta1-X2*Beta2*Sigma1-X3*Beta3*Sigma1

-X4*Beta4*Sigma1-X5*Beta5*Sigma1-X7*Beta7*Sigma2

-X8*Beta8*Sigma2-X9*Beta9*Sigma2-X10*Beta10*Sigma2

-X12*Beta12*Sigma3-X13*Beta13*Sigma3-X14*Beta14*Sigma3

-X15*Beta15*Sigma3-Tau));

/*part specific to composite items: X1*Beta1*Sigma1-

X6*Beta6*Sigma2-X11*Beta11*Sigma3 is omitted and replaced

by X1*CompBeta1 */

p=ex/(1+ex); /*inverse logit transformation*/

MODEL y ∼ binary(p);

RANDOM theta ∼ normal(0,VarTheta) SUBJECT=Person;

RUN;
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Uitgebreide samenvatting

Emoties vormen een belangrijk deel van ons dagdagelijks bestaan. Diverse aspec-
ten ervan werden reeds bestudeerd en staan beschreven in verscheidene artikels
en boeken, waaronder hun ontstaan, biologische basis en herkomst, neurologisch
en hormonaal substraat, structuur, gedragsmatige eigenschappen, uitdrukkings-
wijzen, en nog vele andere. Een veelheid aan methodes werd ontwikkeld om al
deze aspecten te onderzoeken. In deze dissertatie focussen we ons op de zelf-
rapporteringsmethode. Ons doel is aan te tonen dat bepaalde data-analyse tech-
nieken die ontwikkeld zijn voor cognitief onderzoek, ook nuttig kunnen zijn om
de structuur en de expressie van emoties te onderzoeken. We beperken ons tot
twee negatieve emoties, met name het schuldgevoel en woede. Vier verschillen-
de benaderingen om de componentiële en de relationele structuur van emoties
te onderzoeken zullen worden voorgesteld. Deze worden elk gëıllustreerd met
een analyse van data over schuldgevoelens. Daarnaast beschrijven we één be-
nadering om de gedragsmatige expressie van emoties te modelleren. Deze zal
gëıllustreerd worden een analyse van data over verbale agressie.

In het eerste deel van deze samenvatting beschrijven we de inhoudelijke re-
sultaten. In het tweede deel beschrijven we de verschillende modellen die we
gebruikten.

1. Onderzoek naar emoties

1.1 Componentiële theorieën over emoties

Verscheidene theorieën over de componentiële structuur van emoties stellen dat
emoties gekenmerkt worden door en tevens van elkaar onderscheiden kunnen
worden aan de hand van een specifiek patroon van componenten. Deze bena-
dering is het meest uitgesproken in de zogenaamde appraisal-literatuur. App-
raisaltheorieën stellen dat een emotie ontstaat doordat de omgeving door het
individu beoordeeld of ‘appraised’ wordt in relatie tot de eigen doelen en noden
(e.g., Ellsworth & Smith, 1988; Kuppens, Van Mechelen, Smits, & De Boeck,
in press; Ortony, Clore, & Collins, 1988; Omdahl, 1995; Reisenzein & Hofmann,
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1993; Roseman, 1984; Scherer, 1993, 1997, 1999; Smith & Ellsworth, 1985).
De basisgedachte van deze theorieën is dat elke emotie gekenmerkt wordt door
een specifiek patroon van beoordelingen of appraisals. Echter, sommige auteurs
stellen dat niet alleen appraisals, maar ook actietendensen (de neiging om een
bepaalde actie te ondernemen) belangrijke componenten zijn van emoties, daar
men emoties ook kan karakteriseren aan de hand van de specifieke actieten-
dens(en) waarmee ze geassocieerd zijn (e.g., Fischer, 1991; Frijda, 1986; Frijda,
Kuipers, & Schure, 1989; Lazarus, 1991; Oatley & Jenkins, 1996; Skiffington,
Fernandez, & McFarland, 1998). Dit alles kunnen we als volgt samenvatten:
we veronderstellen dat elke emotie gekenmerkt wordt door een specifiek pa-
troon van appraisals en actietendensen. Appraisals en actietendensen zullen
allebei omschreven worden met de term componenten van emoties. In tegen-
stelling tot wat beweerd wordt in sommige appraisaltheorieën veronderstellen
we niet dat appraisals en actietendensen de enige componenten van emoties
zijn. Vele andere aspecten, zoals bijvoorbeeld lichamelijke gewaarwordingen en
veranderingen, kunnen evenzeer een belangrijke rol vervullen (Berkowitz, 1990;
Izard, 1993), maar daar deze zich moeilijk tot niet laten vatten met de zelf-
rapporteringsmethode gaan we daar niet verder op in.

In appraisaltheorieën worden emoties expliciet gelinkt aan de situatie waarin
ze ervaren worden. Bijvoorbeeld, een situatie die als gevaarlijk kan ervaren wor-
den, kan tot angst leiden, en een situatie waarin men gelooft een norm te hebben
overtreden, kan gevolgd worden door schuldgevoelens. Door gebruik te maken
van een situationele benadering gecombineerd met appraisals kunnen emotio-
nele responsen op de situatiesverklaard worden. Afhankelijk van de gevolgde
benadering kunnen we ook inzicht verwerven in de interactie tussen personen
en situaties.

1.1.1 De componentiële structuur van emoties: het schuldgevoel

In Hoofdstuk 1 wordt een benadering voorgesteld om de componentiële struc-
tuur van emoties te onderzoeken. Voor deze benadering is het noodzakelijk dat
situaties van elkaar verschillen in de mate waarin ze deze componenten en emo-
ties induceren. Let wel, het gaat hier om andere verschillen dan hoofdeffecten,
dit wil zeggen dat er geen perfecte correlatie mag bestaan tussen componenten
over situaties. Verder veronderstellen we dat mensen onderling verschillen in
de mate waarin ze gevoelig zijn voor bepaalde componenten en emoties. Dit is
echter geen noodzakelijke veronderstelling voor de huidige benadering. De be-
nadering werd toegepast op een dataset over situationele schuldgevoelens. De
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data werden verzameld in het kader van mijn licentiaatsthesis en worden in deze
verhandeling gebruikt om verscheidene modelleringstechnieken te illustreren en
de mogelijkheden ervan te onderzoeken.

Eerst beschrijven we kort het werk verricht voor mijn licentiaatsthesis. Op
basis van een literatuuronderzoek werd een situationele theorie over schuldge-
voelens opgesteld. Volgens deze theorie was het schuldgevoel gebaseerd op drie
appraisals en twee meer actiegerichte componenten. De drie appraisals zijn ver-
antwoordelijkheid, normovertreding en negatieve zelf-evaluatie. De twee meer
actiegerichte componenten zijn piekeren (covert) en de neiging om goed te ma-
ken wat men verkeerd deed of naliet te doen (overt). In een eerste studie werden
situaties verzameld waarin personen zich schuldig gevoeld hadden. Hieruit wer-
den tien situaties geselecteerd met behulp van criteria zoals begrijpelijkheid en
variatie in inhoud. In een eerste verkennende studie vonden we dat de compo-
nent verantwoordelijkheid in alle situaties vrij hoog werd ingeschat, en dat er
weinig verschillen tussen mensen waren met betrekking tot deze beoordelingen.
Daarom beschouwden we verantwoordelijkheid als een meer objectieve apprai-
sal, voornamelijk gebaseerd op de situaties en niet bëınvloed door persoonsken-
merken. Omdat we interindividuele verschillen verwachtten in de schuldgevoe-
ligheid, verkozen we subjectieve appraisals boven objectieve. Dit leidde ertoe
dat verantwoordelijkheid niet als component in het hoofdonderzoek werd opge-
nomen. Let wel, we beweren niet dat verantwoordelijkheid geen component kan
zijn van het schuldgevoel. Het kan een component zijn die geen interindividuele
verschillen vertoont, of het kan zijn dat de tien situaties niet optimaal zijn om
zulke verschillen aan het licht te brengen. Een tweede resultaat was dat de corre-
latie tussen de appraisals normovertreding en negatieve zelf-evaluatie zeer hoog
was (.98), zodat het niet mogelijk was om beide componenten te relateren aan
het schuldgevoel, daar het onmogelijk zou zijn om de bijdragen van beide compo-
nenten van elkaar te onderscheiden. Omdat de appraisal normovertreding in de
literatuur als een belangrijkere appraisal beschouwd wordt, behielden we deze
en werd de appraisal negatieve zelf-evaluatie weggelaten uit het hoofdonder-
zoek. De drie componenten die we behielden zijn normovertreding (appraisal),
piekeren en de neiging om het goed te maken (actietendensen).

Het hoofdonderzoek, gebaseerd op heranalyse voor deze verhandeling (dit
geldt voor al wat volgt) leidde tot de volgende bevindingen: (1) De interindi-
viduele verschillen in het schuldgevoel en de componenten van dit schuldgevoel
kunnen met één onderliggende dimensie beschreven worden, met name de ge-
voeligheid van een persoon voor de componenten van het schuldgevoel en voor
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het schuldgevoel zelf. (2) De drie componenten worden in verschillende mate
uitgelokt door de verschillende situaties: Sommige situaties bevorderen de ene
component, terwijl andere situaties andere componenten bevorderen. (3) Deze
drie componenten volstonden om de situationele schuldgevoelens te voorspellen.
(4) Piekeren was de belangrijkste component, gevolgd door de neiging om het
goed te maken en tenslotte normovertreding. Piekeren en de neiging om het
goed te maken zijn meer actiegericht (respectievelijk covert en overt), terwijl
normovertreding een pure appraisal is. Dit resultaat suggereert dat het schuld-
gevoel meer is dan louter een appraisal of een beoordeling van een situatie. Deze
bevinding stemt overeen met de argumentatie van Frijda et al. (1989).

In de vorige analyse veronderstelden we dat het belang van een component
voor een emotie dezelfde is voor alle personen of met andere woorden een fixed
effect is. We veronderstelden dat alle interindividuele verschillen veroorzaakt
worden door de positie van de personen op de onderliggende dimensie of trek
(één latente trek was voldoende, component-specifieke trekken waren niet no-
dig). Echter, zoals uitgelegd in Hoofdstuk 2, kan het belang van een component
verschillen van persoon tot persoon. Dit leidt tot een interactie tussen personen
en situaties, daar situaties verschillen van elkaar met betrekking tot de compo-
nenten die ze uitlokken, en personen van elkaar verschillen in het belang dat
deze componenten hebben voor de resulterende emotie. Een voorbeeld: voor
sommige mensen is normovertreding belangrijker, terwijl voor anderen de nei-
ging om het goed te maken belangrijker is. Dit betekent dat de basis van het
schuldgevoel (of de betekenis van het schuldgevoel) anders is naargelang de per-
soon in kwestie. Het gevolg is dat verschillende personen zich in andere situaties
schuldig zullen voelen (gegeven dat de situaties verschillen met betrekking tot
de componenten). Daar we geen a priori hypotheses hadden over voor welke
componenten het belang persoonsafhankelijk is, toetsten we dit voor alledrie.
De hypothese dat er geen individuele verschillen zijn in het belang van een
component kon voor geen van de drie componenten verworpen worden. Daarom
kunnen we de structuur van het schuldgevoel, zoals hier gemodelleerd, beschou-
wen als een algemene structuur die gelijk is voor alle personen. Daar er geen
interindividuele verschillen gevonden werden, buiten diegene beschreven door
de algemene onderliggende trek, kan men tentatief concluderen dat schuldge-
voelens gebaseerd zijn op slechts één onderliggende gevoeligheid. Deze conclusie
zal echter gewijzigd worden in hoofdstuk 3 over de relationele structuur van
emoties.
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1.1.2 Relationele structuur van emoties

In Hoofdstuk 3 wordt een benadering voorgesteld om de relaties tussen com-
ponenten en tussen de componenten en de emotie te onderzoeken. Deze wordt
opnieuw gëıllustreerd met de data over situationele schuldgevoelens. Verschillen-
de relationele structuren werden opgesteld en ten opzichte van elkaar getoetst.
We gebruiken dezelfde componenten als in de vorige studie, namelijk normover-
treding, piekeren en de neiging om het goed te maken.

De volgende structuren werden bestudeerd: een lineaire-sequentie-structuur,
een ster-structuur, een cluster-structuur en een item-familie-structuur. Hoewel
de verschillende structuren in causale termen zullen beschreven worden, heb-
ben we geen evidentie voor causale verbanden. De associaties kunnen dus ook
gebaseerd zijn op andere dan causale relaties. Een lineaire-sequentie-structuur
houdt in dat de componenten van het schuldgevoel en het resulterende schuld-
gevoel op een lineaire wijze geordend kunnen worden met betrekking tot hoe ze
elkaar en het resulterende schuldgevoel bëınvloeden. Een ster-structuur impli-
ceert dat alle componenten het schuldgevoel bëınvloeden, maar niet elkaar. Een
cluster-structuur impliceert dat er clusters van componenten bestaan die elkaar
en ook de emotie bëınvloeden, zonder dat er relaties bestaan tussen componen-
ten die tot verschillende clusters behoren. Voor de dataset over schuldgevoelens
definieerden we de clusters op basis van het type component: één cluster wordt
gevormd door normovertreding (appraisal) en het schuldgevoel, en een tweede
cluster door piekeren, de neiging om het goed te maken (actiegerichte com-
ponenten) en het schuldgevoel. Het schuldgevoel vormt dus de overlap tussen
de twee clusters. Tenslotte, een item-familie-structuur houdt in dat alle com-
ponenten en de emotie in gelijke mate met elkaar gerelateerd zijn binnen een
situatie. Deze mate kan echter verschillen van situatie tot situatie. Deze laatste
structuur paste het beste bij de data, beter dan structuren met relaties tussen
de componenten of tussen de componenten en de emotie (bovenop de algemene
schuldgevoeligheid). Dit betekent dat er buiten de interindividuele verschillen
gebaseerd op de onderliggende schuldgevoeligheid, ook situatie-specifieke inter-
individuele verschillen bestaan. Dit vervolledigt de eerder vermelde tentatieve
conclusie.

1.1.3 Abstractie makend van interindividuele verschillen

In Hoofdstuk 4 maken we abstractie van interindividuele verschillen door ge-
bruik te maken van een marginale benadering. De reden hiervoor is dat de af-
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hankelijkheden die we gebruikten bij het bestuderen van de relationele structuur
enerzijds de resultaten kunnen verstoren indien ze niet in het model opgenomen
worden en anderzijds de interpretatie van hoofdeffecten bemoeilijken indien ze
wel in het model opgenomen worden. Wanneer we abstractie maken van in-
terindividuele verschillen door gebruik te maken van een marginale benadering
hebben de afhankelijkheden niet langer deze effecten. De prijs die men hier-
voor betaalt is dat de effecten effecten zijn op het niveau van de populatie en
niet op het niveau van de persoon. De benadering wordt gëıllustreerd met een
deel van de schuld-data (slechts drie situaties). De antwoorden op de items die
het schuldgevoel en de verschillende componenten meten, werden voorspeld op
basis van een effect van de situatie en een effect van het itemtype (normover-
treding, piekeren, de neiging om het goed te maken en het schuldgevoel). Het
schuldgevoel wordt dus niet ontleed in componenten zoals in Hoofdstuk 1 en 2,
maar wordt op gelijkaardige wijze behandeld als de componenten, namelijk als
een itemtype. Alle effecten waren significant. Bovenop de gemiddeldenstructuur
werden ook de relaties tussen de items gemodelleerd in overeenstemming met
een item-familie-structuur. Deze structuur voor de associaties tussen de items
werd ondersteund door de data.

1.2 Emotioneel gedrag: verbale agressie

Een andere, meer inhoudelijke topic van deze dissertatie is het verband tussen
de actietendens en het emotioneel gemotiveerd gedrag. Een specifiek gedrag,
nauw verbonden met woede, zal onderzocht worden, met name verbale agres-
sie. De keuze voor een actietendens gerelateerd aan woede werd ingegeven door
twee redenen: Ten eerste ervaart men vaker woede dan schuldgevoelens (Zelen-
ski & Larsen, 2000). Bijgevolg is er meer gelegenheid om de actietendensen en
de ermee gepaard gaande gedragingen te onderzoeken. Ten tweede wordt woede
regelmatig beschreven als een actiegerichte emotie, die bijvoorbeeld tot verbale
agressie kan leiden (Averill, 1983; Cornell, Peterson, & Richards, 1999; Kassi-
nove, Sukhodolsky, Tsytsarev, & Solovyova, 1997; Kinney, Smith, & Donzella,
2001). Gedragingen geassocieerd met het schuldgevoel daarentegen zijn minder
duidelijk afgebakend en meer covert. Bijgevolg zijn ze moeilijker te observeren.
We verkozen verbale agressie boven de ernstigere vormen van agressie, omdat
deze vorm gewoner en minder sociaal onwenselijk is. Hoewel het effect van ver-
bale agressie kleiner kan zijn dan het effect van bijvoorbeeld fysieke agressie,
kan het toch een belangrijk fenomeen zijn wegens zijn meer ‘gewone’ karakter.
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Verbale agressie kan schade toebrengen aan allerhande relaties en een bron zijn
van veel conflicten.

Drie verbaal agressieve (VA) gedragingen werden geselecteerd: vloeken, schel-
den en het uitschreeuwen. Voor elk VA gedrag werden twee vragen gesteld aan
de proefpersonen: één over de actietendens (het willen stellen van VA gedrag in
de situatie), genaamd een willen-item, en één over het effectief gestelde gedrag,
genaamd een doen-item. We onderzochten in welke mate het gedrag afhangt
van de actietendens, of inhibitie een rol speelt en of er situationele en gedrags-
afhankelijke en/of interindividuele verschillen zijn wat betreft inhibitie.

De resultaten worden vermeld in twee verschillende hoofdstukken. De resul-
taten vermeld in Hoofdstuk 2 zijn de volgende: (1) De VA actietendens heeft
een duidelijk voorspellende kracht voor het VA gedrag. (2) Doen-items werden
moeilijker bevonden dan willen-items, zodat men kan stellen dat er sprake was
van inhibitie. (3) Er zijn interindividuele verschillen in het gewicht van zich
verbaal agressief willen gedragen bij de predictie van VA gedrag.

In Hoofdstuk 5 wordt inhibitie meer in detail onderzocht. De volgende the-
orie over verbale agressie en de inhibitie ervan werd opgesteld: De neiging om
zich verbaal agressief te gedragen en de inhibitie van dit gedrag kan bëınvloed
worden door gedragspecifieke factoren, situatiespecifieke factoren, persoonspe-
cifieke factoren of door factoren die eigen zijn aan een combinatie van twee van
de voorgaande factoren. De persoonspecifieke factoren kunnen beschouwd wor-
den als trekken (een actietendenstrek en een inhibitietrek). De situatiespecifieke
en de gedragspecifieke factoren zijn kenmerken zoals de zichtbaarheid van het
gedrag of de mate waarin een situatie frustrerend is, enz.

We vonden dat de VA actietendens gebaseerd is op een latente trek (verbale
agressietrek) en dat kenmerken eigen aan de combinatie van VA gedragingen en
situaties ook een rol spelen. Inhibitie daarentegen wordt vooral bepaald door
interindividuele verschillen (inhibitietrek), en minder door de situatie of het
gedrag in kwestie. De benadering werd gevalideerd door de verbale agressie-
trek en de inhibitietrek te correleren met de volgende gerelateerde metingen: de
scores van de proefpersonen op de Trait Anger schaal van Spielberger (1980),
op de schalen Anger In, Anger Out, Anger In Control en Anger Out Control
van de Zelf-Expressie en Controle Schaal van Van Elderen, Maes, Komproe,
and Kamp (1997) –een aanpassing van de Anger Expression Schaal van Spiel-
berger, Johnson, and Jacobs (1982)–, en op de Directe Agressie schaal en de
Indirecte Agressie schaal uit de Buss-Durkee Hostility Inventory-Dutch (Lange,
Hoogendoorn, Wiederspahn, & Beurs, 1995). De parameters specifiek voor de
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combinatie van VA gedrag en situaties werden gecorreleerd met verscheidene
situationele eigenschappen zoals de aanwezigheid van getuigen, de mate waarin
de situatie frustrerend is, enz. De verbale-agressie-trek was voornamelijk gecor-
releerd met Trait Anger, Directe Agressie en Indirecte Agressie. Inhibitie bleek
voornamelijk gerelateerd aan coping met woede: het was negatief gecorreleerd
met Anger Out en positief met Anger In en Anger Out Control. Tussen de ver-
bale agressietrek en de inhibitietrek ervan was er een zwakke correlatie. De VA
actietendens gëınduceerd door de combinatie van de situatie met het VA gedrag
was positief gecorreleerd met de mate waarin de situatie als frustrerend ervaren
werd en met de instrumentaliteit en expressiviteit van het gedrag in de situatie.
Negatieve correlaties werden gevonden met verwachte antipathie van anderen
en negatieve zelf-evaluatie.

Samengevat kunnen we stellen dat onze benadering vrij succesvol was in het
modelleren en inzichtelijk maken van de data van deze situatie-response vra-
genlijst, alsmede in de externe validatie ervan. De twee basisconcepten, de VA
actietendens en de inhibitie van VA gedrag, vertoonden beide interessante cor-
relaties met externe variabelen.

2. Het modelleringsperspectief

Als formele basis voor het juist beschreven inhoudelijk onderzoek naar de struc-
tuur van emoties en emotioneel gedrag, kozen we voor een modelleringsbenade-
ring gebaseerd op Item Response Theorie (IRT). Deze is voornamelijk ontwik-
keld voor het modelleren van data van cognitieve testen. Een belangrijk doel
van deze dissertatie is daarom aantonen dat deze benadering ook gepast is voor
data van situatie-response vragenlijsten over emoties en aan emotie gerelateerd
gedrag. Omwille van praktische redenen beperken we ons tot binaire data. Een
bijkomende uitbreiding zou nodig zijn voor het modelleren van multi-categoriale
data.

De meeste IRT modellen veronderstellen dat de kans om een 1-antwoord op
een item te geven een functie is van twee soorten parameters: persoonspecifieke
parameters (meestal random effecten) en itemspecifieke parameters (meestal
fixed effecten). Het meest eenvoudige IRT model is het Rasch model (Rasch,
1960). Dit model bevat één parameter per item, die men vaak de moeilijkheid
van dat item noemt. Daarenboven bevat het Rasch model ook één parameter
per persoon, die men gewoonlijk de vaardigheid of de waarde van een persoon
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op de latente trek noemt. Hier wordt de persoonsparameter beschouwd als een
random effect, maar een fixed effect is ook mogelijk, zoals in een joint maximum
likelihood formulering. Deze is echter niet aan te raden wegens consistentie-
problemen.

Het antwoord van een persoon op een item wordt bijgevolg verklaard door
een effect specifiek voor het item en een effect specifiek voor de persoon. De
modelvergelijking van het Rasch model is de volgende:

P (Yij = 1|θi) =
exp (θi + βj)

1 + exp (θi + βj)
(7.1)

met i = 1, . . . , I de index voor de persoon,
j = 1, . . . , J de index voor het item,
θi de persoonsparameter,
βj de itemparameter,
en Yij het antwoord van persoon i op item j.

Wanneer men emoties bestudeert met situatie-response vragenlijsten, dan
kan men de persoonsparameter interpreteren als een emotie-specifieke drem-
pel van de persoon of als de gevoeligheid van de persoon voor de emotie. De
itemparameter kan gëınterpreteerd worden als de emotie-inducerende kracht van
een situatie. Deze interpretatie geldt pas nadat de persoonsparameters met -1
vermenigvuldigd zijn. Dit resulteert in de parameterisatie βj − θi in de plaats
van θi +βj . Uit deze herparameterisatie kan men afleiden dat indien de emotie-
inducerende kracht van een situatie groter is dan de emotie-specifieke drempel
van een persoon, de kans dat deze persoon de emotie zal ervaren groter is dan
.5. De meest gebruikte parameterisatie is echter θi − βj , waarbij men θi kan
interpreteren als de vaardigheid van persoon i en βj als de moeilijkheid van
item j.

Alle modellen die we in deze dissertatie gebruikten zijn gebaseerd op het
Rasch model. Ze zijn verdere uitbreidingen of modificaties van dit model. Vier
benaderingen tot modellering werden onderzocht op hun mogelijkheden voor
het bestuderen van emoties in situaties, en van interindividuele verschillen in
emoties.
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2.1 MIRID: een model voor de decompositie van concepten

In de paragraaf over de componentiële structuur van emoties werd een com-
ponentiële theorie voor situationele schuldgevoelens voorgesteld. Deze theorie
werd getoetst aan de hand van een dataset afkomstig van een situatie-response
vragenlijst. Om zulke componentiële theorieën te toetsen gebruikt men vaak
het Lineair Logistisch Test Model (LLTM, Fischer, 1973, 1977). Het LLTM
veronderstelt echter dat men de waarde van elke component in elke situatie
kent, iets wat niet altijd het geval is. Daarom werd een nieuw IRT model ont-
wikkeld: het Model met Interne Restricties op Item Moeilijkheden (MIRID,
Butter, De Boeck, & Verhelst, 1998). Het MIRID veronderstelt een bepaalde
relatie tussen items, niet in de correlationele betekenis, maar in de zin dat het
effect dat een item heeft op de response-kansen een functie is van het effect
dat andere items hebben. Het MIRID stelt dat sommige items composiet-items
zijn, dit wil zeggen dat ze gebaseerd zijn op meer elementaire items. De groep
meer elementaire items noemen we component-items. Voor de schuld-data bij-
voorbeeld is het item: ‘Pieker je in deze situatie?’ een component-item en het
item ’Voel je je schuldig in deze situatie?’ een composiet-item. De itemparame-
ter van een composiet-item wordt gemodelleerd als een lineaire combinatie van
itemparameters van component-items. We veronderstellen dus dat de schuld-
inducerende kracht van een situatie een gewogen som is van de bijdragen van
de verschillende componenten. Dit kan men zoals in de volgende lineaire functie
uitdrukken:

βs0 =
K∑

k=1

σkβsk + τ (7.2)

met s = 1, . . . , S de index voor de situatie,
k = 1, . . . , K de index voor het type van de component, k = 0 voor composiet-
items,
σk het gewicht of de bijdrage van component k. Dit kan men interpreteren als
het belang van de component,
βsk de bijdrage van situatie s aan component k,
en τ een schaalconstante.

Indien we het principe dat geformuleerd is in Vergelijking 2 in het Rasch
model inbouwen, dan zijn de βj niet langer de basisparameters van het model.
De βsk en de σk vervullen nu deze rol. In het geval er slechts één onderliggende
dimensie is, is de kans op een bepaalde componentiële response een functie van
de persoonspecifieke bijdrage θi en de component-specifieke situationele schuld-
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inducerende kracht βsk:

P (Yisk = 1|θi) =
exp (θi + βsk)

1 + exp (θi + βsk)
(7.3)

De kans op een bepaalde composiet-response is een functie van dezelfde per-
soonspecifieke bijdrage θi en een gewogen som van de component-specifieke
situationele schuld-inducerende krachten, voorgesteld door de parameter βs0:

P (Yis0 = 1|θi) =
exp (θi + βs0)

1 + exp (θi + βs0)
(7.4)

met βs0 gedefinieerd als in Vergelijking 2

In Hoofdstuk 1 wordt een uitbreiding van het MIRID, genaamd het OPLM-
MIRID, gebruikt. Dit OPLM-MIRID is ontwikkeld door Butter (1994). Het
verschil met het gewone MIRID is dat deze uitbreiding toestaat dat de discri-
minatiewaarden van elkaar verschillen, maar wel a priori gefixeerde constanten
zijn. De beperking dat er slechts één onderliggende latente trek is, is geen nood-
zakelijke beperking, maar MIRIDs met één latente trek vertoonden een goede
fit voor deze dataset. In Hoofdstuk 6 worden twee schattingsmethoden voor het
MIRID en het OPLM-MIRID met elkaar vergeleken: een methode gebaseerd
op een conditionele maximum likelihood formulering (CML) en een methode
gebaseerd op een marginale maximum likelihood formulering (MML). Voor de
eerste methode werd een programma ontwikkeld in Delphi 5. De tweede schat-
tingsmethode kan gëımplementeerd worden in de PROC NLMIXED procedure
van SAS V8. Daarenboven werd de robuustheid van de parameterschattingen
voor schendingen van de normaliteitsassumptie van de persoonsparameter on-
derzocht. Tussen beide benaderingen waren slechts kleine verschillen wat betreft
de schatting van de persoonsparameters, terwijl we voor de itemparameters geen
verschillen vonden. Tenslotte stellen we in Hoofdstuk 6 een methode voor om de
structuur die MIRID aan de data oplegt (component-items versus composiet-
items) te toetsen.

De assumptie dat de gewichten van de componenten fixed effecten zijn, kan
in bepaalde toepassingen te streng zijn. Daarom hebben we in Hoofdstuk 2 het
MIRID aangepast zodat interindividuele verschillen in de gewichten in rekening
kunnen worden gebracht. Deze uitbreiding noemen we het MIRID met Random
Gewichten (RW-MIRID). Het RW-MIRID veronderstelt dus dat de gewichten
van sommige componenten random effecten zijn. Dit wil zeggen dat ze een
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normale verdeling volgen over personen. Dit model kan geschat worden met
PROC NLMIXED.

2.2 De relationele structuur van concepten: het gebruik van

Locale Item Afhankelijkheden

In Hoofdstuk 3 stellen we een methodologie voor om de relationele structuur
van emoties te onderzoeken en te toetsen. Op basis van psychologische kennis
ontwikkelden we verscheidene plausibele relationele structuren voor de schuld-
data. Deze structuren werden vertaald naar IRT modellen en ten opzichte van
elkaar getoetst om zo het best passende model te vinden en bijgevolg ook de
best passende theorie.

De methode is gebaseerd op bestaande IRT modellen die onder andere be-
schreven werden door Kelderman (1984) en Hoskens en De Boeck (1997). De
modellen worden modellen voor Locale Item Afhankelijkheden (LIA) genoemd.
Om deze notie uit te leggen starten we met een basisveronderstelling van de
meeste IRT modellen: de assumptie van locale stochastische onafhankelijkheid.
Dit betekent dat het model veronderstelt dat alle afhankelijkheden tussen de
antwoorden van een individu enkel en alleen kunnen toegeschreven worden aan
de onderliggende latente trek(ken). De ant-woorden die de persoon geeft op
andere items mogen geen bijkomende informatie bevatten voor de kansen van
de verschillende mogelijke antwoorden op het huidige item. Dit wordt uitgedrukt
in Vergelijking 5:

P (Yi = yi1, . . . , yiJ |θi) =
J∏

j=1

P (Yij = yij |θi) (7.5)

met Yi de vector die alle antwoorden van persoon i bevat,
en θi de vector die de latente trekken of persoonsparameters bevat.

Indien Vergelijking 5 niet opgaat, dan zijn er LIA, want er blijven afhanke-
lijkheden tussen de items bestaan nadat de latente trek(ken) in rekening zijn
gebracht. Vaak beschouwt men zulke LIA als iets dat moet vermeden worden.
We zullen echter aantonen dat LIA informatief kunnen zijn met betrekking tot
de relationele structuur van emoties.

We kunnen LIA in, bijvoorbeeld, het Rasch model incorporeren door fixed
effect parameters, die de interacties tussen items (een andere term voor afhan-
kelijkheid) vatten, aan het model toe te voegen. In Tabel 1 staat de vergelijking
voor een model met een vaste interactie tussen de items j en h.
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TABLE 7.1. Model voor vaste paarsgewijze interactie.

Response patroon (yij , yih) Vergelijking
(0,0) 1/v(θ)
(0,1) exp (θi + βj) /v(θ)
(1,0) exp (θi + βh) /v(θ)
(1,1) exp [(θi + βj) + (θi + βh) + βint] /v (θ)

Noot: βint is de interactieparameter voor het itempaar, en v(θ) = 1 + exp (θi + βj) +

exp (θi + βh) + exp(2θi + βj + βh + βint).

Men kan makkelijk zien dat indien βint positief is, de kans op het antwoord-
patroon (1,1) verhoogt en indien βint negatief is, deze kans verlaagt, dit alles in
vergelijking met de kansen onder het Rasch model. Dit interactiemodel leidt er
wel toe dat de interpretatie van de itemparameters βj en βh moeilijk wordt: deze
parameters zijn geen zuivere weerspiegeling meer van de moeilijkheidsgraad,
daar ook de interactie hierin meespeelt.

Verschillende interactiepatronen –i.e. verschillende relationele structuren– kun-
nen gedefinieerd worden door de overeenstemmende fixed effect parameters aan
het model toe te voegen. Indien de afhankelijkheden in de data overeenstemmen
met één van zulke op basis van een theorie opgestelde LIA-patronen, dan kan
men twee conclusies trekken: Ten eerste wordt de theorie ondersteund door de
data en bijgevolg krijgen we inzicht in de relationele structuur van een emotie.
Ten tweede vinden we zo evidentie voor de interne validiteit van de vragenlijst
daar de antwoorden overeenstemmen met een psychologische theorie.

De componentiële en de relationele benadering kunnen ook gecombineerd wor-
den. Dit wordt op het einde van Hoofdstuk 3 gesuggereerd. Hoewel zo’n analyse
niet vermeld wordt in Hoofdstuk 3, voerden we deze uit op de schuld-data. De
resultaten hiervan bevestigden deze van Hoofdstuk 1 en 3. Aan de andere kant
bemoeilijken de afhankelijkheden, gëımpliceerd door de relationele structuur, de
interpretatie van de andere parameters.

2.3 Een marginale benadering van het effect van item covariaten

Alle modellen die we in de vorige paragrafen beschreven zijn modellen met
random effecten. Sommige LIA-modellen bevatten ook wel elementen van wat
men conditionele modellen noemt (Diggle, Heagerty, Liang, & Zeger, 2002; Fah-
rmeir & Tutz, 2001). Drie eigenschappen van deze random-effect modellen zorg-
den ervoor dat we naar een andere benadering uitkeken. De eerste eigenschap is
dat de itemparameters en de persoonsparameters niet kunnen gescheiden wor-
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den van de afhankelijkheidsstructuur. Bijgevolg kunnen ze ook niet los van de
afhankelijkheden gëınterpreteerd worden. Een tweede eigenschap is dat aange-
zien de parameters aangetast worden door de LIA, men niet kan onderzoeken
hoe ze zich verhouden tot item covariaten die onafhankelijk zijn van de LIA. Een
derde eigenschap is dat indien de afhankelijkheidsstructuur in random-effect mo-
dellen niet correct gespecificeerd is, dit ernstige gevolgen kan hebben voor alle
andere parameters (Thissen, Steinberg, & Mooney, 1989; Tuerlinckx & Boeck,
2001; Yen, 1993). Daarom verkenden we een marginale modelbenadering die tot
parameterschattingen kan leiden die niet bëınvloed worden door de afhankelijk-
heidsstructuur. De prijs die we hiervoor moeten betalen is dat deze modellen
minder geschikt zijn om interindividuele verschillen te onderzoeken en dat de
effecten van de itemcovariaten effecten zijn op het niveau van de populatie in
plaats van effecten die gelden voor specifieke personen.

In Hoofdstuk 4 wordt een marginale variant van het LLTM geformuleerd. De-
ze marginale benadering is nieuw in de context van psychometrische modellen.
We kozen voor het LLTM omdat dit een natuurlijke eerste stap is naar het
MIRID (zie sectie 2.1), maar in de toekomst willen we deze marginale benade-
ring uitbreiden naar het MIRID. Het marginaal LLTM (M-LLTM) bestaat uit
twee delen: (1) een model voor de gemiddelden, waarin de itemcovariaten gere-
lateerd worden aan de marginale kansen door middel van de logit-link functie,
genaamd de gemiddeldenstructuur, en (2) een model voor de associaties tussen
de observaties. Dit noemen we de associatiestructuur.

De gemiddeldenstructuur van het M-LLTM kan gedefinieerd worden als in
Vergelijking 6.

Logit [P (Yij = 1)] =
K∑

k=1

qjkη∗k (7.6)

met k = 1, . . . , K de index voor de itemcovariaat,
qjk de waarde van item j op itemcovariaat k,
en η∗k het effect van itemcovariaat k op de marginale kansen.

De associatie tussen twee items j en h duiden we aan met de parameter γijh.
Het subscript i voor de persoon werd toegevoegd omdat het model in principe
ook persoonspecifieke covariaten toestaat. Deze uitbreiding valt echter buiten
het bereik van deze dissertatie. De vergelijking voor de associatiestructuur kun-
nen we als volgt opschrijven:

f (γijh) =
M∑

m=1

zjhmαm (7.7)
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met m = 1, ..., M de index voor de associatiecovariaten,
zjhm de waarde van associatiecovariaat m voor de associatie tussen de antwoor-
den op de items j en h,
αm het effect van associatiecovariaat m,
en f (.) een linkfunctie waarmee de associatieparameter γijh gelinkt wordt aan
de associatiecovariaten.

Hogere orde generalisaties van de associatieparameter naar meer dan twee
items kunnen aangeduid worden door een index aan z toe te voegen voor elk
item dat betrokken is in de desbetreffende associatie.

Drie verschillende mogelijkheden om de associaties te modelleren worden be-
sproken: marginale correlaties, marginale log odds ratios en conditionele log od-
ds ratios (de log odds ratio gegeven dat men op alle ander items nul antwoordt).
Voor elk model bespreken we twee schattingsmethoden: een likelihood-methode
en een methode gebaseerd op gegeneraliseerde schattingsvergelijkingen (GEE,
Hardin & Hilbe, 2003; Liang & Zeger, 1986; Zeger & Liang, 1986). Voor- en
nadelen van alle benaderingen worden beschreven in Hoofdstuk 6.

De marginale benadering heeft twee belangrijke voordelen. Ten eerste leiden
sommige marginale benaderingen tot consistente schattingen van de parameters
van de gemiddeldenstructuur, onafhankelijk van het feit of de associatiestruc-
tuur correct gespecificeerd is of niet. Een incorrecte specificatie van de associa-
tiestructuur zal bijgevolg de schattingen van de itemcovariaten niet bëınvloeden,
wat wel het geval is bij random-effect modellen. Ten tweede kan men in deze
marginale modellen de associaties tussen de items op een erg soepele wijze mo-
delleren aan de hand van item- en persooncovariaten. Deze complexe patronen
vormen een ernstig probleem voor random-effect modellen, want om deze te mo-
delleren moet men ofwel extra fixed effect parameters aan het model toevoegen,
ofwel het model uitbreiden met meerdere random effecten. Men kan marginale
modellen dus gebruiken om het effect van variabelen op het niveau van de po-
pulatie te schatten, onafhankelijk van de associaties tussen de antwoorden op de
items, terwijl het tegelijkertijd mogelijk blijft om deze associaties te verkennen
en zelfs te modelleren. De effecten kan men echter niet meer interpreteren als
effecten op het niveau van het individu.

2.4 Een kader gebaseerd op het leermodel van Embretson

In Hoofdstuk 5 gebruikten we een model dat oorspronkelijk geformuleerd was
om een leerproces te vatten (Embretson, 1991) om zelf-rapporteringsdata over
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actietendensen en gedrag te modelleren. De actietendens is in deze toepassing
formeel equivalent met het stadium voor het leren optreedt, en het gedrag met
het stadium na het leren. Interindividuele verschillen spelen een rol in het eer-
ste stadium en in de overgang van het eerste naar het tweede stadium. Deze
equivalentie met het leermodel is slechts formeel, want leren heeft gewoonlijk
een positief effect, terwijl het effect van inhibitie (tussen de actietendens en het
gedrag) gemiddeld gezien negatief is, tenminste voor zover het gaat om verbale
agressie.

Een specifieke eigenschap van het model is dat voor items uit het eerste
stadium slechts één latente trek meespeelt, terwijl voor items uit het tweede
stadium de tweede latente trek (leervaardigheid of hier inhibitie) ook een rol
speelt. We pasten dit model toe in de volgende formulering:

Logit [P (Yijk = 1 | αi, κi)] = αi + β
(willen)
sk − d

(
κi + β

(doen)
sk

)
(7.8)

met d = 1 voor doen-items, en d = 0 voor willen-items,
αi ∼ N(0, σ2

α) de persoonspecifieke VA actietendens of m.a.w. de verbale agres-
sietrek,
κi ∼ N(µκ, σ2

κ) de persoonspecifieke VA inhibitie parameter of inhibitietrek.
Het gemiddelde van κi (= µκ) is het algemene inhibitie-effect,
β

(willen)
sk het effect van de combinatie van een situatie s en een type VA gedrag k

op de neiging om zich verbaal agressief te gedragen,
en β

(doen)
sk het effect van de combinatie van een situatie s en een type VA ge-

drag k op het VA gedrag.

De β
(doen)
jk is een uitbreiding van het leermodel van Embretson, want in haar

model is er slechts één itemparameter voor beide stadia. Gebaseerd op het model
in Vergelijking 8, werkten we een kader uit om te kunnen toetsen of inhibitie een
effect is dat afhangt van de persoon, van het item (combinatie van een situatie
en een bepaald type VA gedrag) of van beide.

3. Conclusies

We geloven dat het bestuderen van emoties aan de hand van situationele vragen-
lijsten voordeel kan halen uit het gebruik van IRT modellen. Voor veel onder-
zoeksvragen zal er een sterke overeenkomst bestaan tussen de vraag en een spe-
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cifiek IRT model, zodanig dat men de gestelde hypothese(s) kan toetsen. Voor
andere onderzoeksvragen waarvoor geen overeenkomstig model voorhanden is,
kan men een gepast model formuleren. De beschikbaarheid van erg algemene
modelschattingssoftware zoals PROC NLMIXED uit SAS V8 –indien men IRT
modellen als gegeneraliseerd (niet) lineaire modellen beschouwd (McCulloch &
Searle, 2001)– draagt zeker bij tot de flexibiliteit van IRT. Verscheidene van
onze bevindingen werden mogelijk gemaakt door de gebruikte modellen. Voor-
beelden hiervan zijn de rol van de verschillende schuldcomponenten, het feit dat
zij geen interindividuele verschillen vertonen en het voornamelijk persoonsge-
bonden (versus situatiegebonden) karakter van inhibitie.

Het verkennen van de mogelijkheden van de marginale modelbenadering, over-
tuigde ons ervan dat deze benadering, hoewel ze heden amper geëxploreerd en
gebruikt is in de psychometrie, verder aandacht verdient voor het analyseren
van data van vragenlijst, daar ze erg flexibel en veelbelovend is.
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