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Abstract—In this paper, a novel algorithm that selects optimal
paths for conducting automated near-field measurements is pre-
sented. The resulting dataset of measurements can then be used
to model the complete near-field electromagnetic emissions of an
electronic device or predict the far-field emissions. The models
obtained using the training sets generated with the aid of the
proposed algorithm are substantially more accurate compared
to existing point-based methods. The algorithm is validated by
comparing it against an earlier adaptive sampling algorithm that
optimizes point-based measurement datasets.

Index Terms—Electromagnetic compatibility, near field scan-
ning, surrogate modelling, sequential sampling

I. INTRODUCTION

AS electronic devices grow and evolve in terms of func-
tionality and complexity, the risk of electromagnetic in-

terference (EMI) issues increases. Therefore it becomes crucial
to accurately measure/model the electromagnetic behavior of
printed circuit boards (PCBs). Over the last decade, near-field
(NF) scanning has emerged as an effective methodology to
study the electromagnetic behavior of electronic (sub-)systems
[1], [2]. NF scanning allows development of equivalent radia-
tion models [3], [4] from the NF patterns as well as calculation
of the far-field [5], [6]. Moreover, it does not require measure-
ments to be taken in a (semi)anechoic or reverberant chamber,
making it much cheaper for a manufacturer to assess the EMC
behavior of their product before performing a (pre-)compliance
test.

The time needed to perform a full NF scan varies according
to the size of the device, but will quickly take up to sev-
eral hours for a detailed data set and multiple frequencies.
An automated point-based algorithm was proposed in [7].
This algorithm models the electromagnetic NF of a device
using substantially less time than a regular (uniform) NF
scan. The overall NF pattern is characterized by performing
a minimum number of measurements and interpolating the
raw NF data into a high-resolution carthography model. The
algorithm selects the optimal points in the design space where
measurements should be done to obtain an adequate set for
the model.
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As an alternative, a line-based approach is considered in
this work. Such an approach generates optimal lines, or paths
along with measurements at pre-defined intervals to obtain a
training set for the model. The paths are generated with the
objective to perform space-filling exploration of the design
space, and exploit non-linear regions that can be hard to model.
These optimal lines not only provide better exploration and
exploitation for the model than the point-based algorithm,
but also lower the total path length of the complete NF
measurement.

The paper is organized as follows. Section II describes
the problem statement and goals. Section III briefly explains
Kriging models that are a popular model type for EMC appli-
cations [8], [9], [10], and are used in this work. The proposed
line-based sampling algorithm is introduced in Section IV.
Sections V and VI describe the simulation setup used for
the experiments, and the results, respectively. Section VII
concludes the paper.

II. GOAL STATEMENT AND PRELIMINARIES

The goal is to generate optimal measurement paths for
the probe to follow, resulting in (I) a dataset that is used to
train a more accurate Kriging model than the the point-based
algorithm and (II) a shorter travelling path than the point-
based algorithm. Each scan point, henceforth also called data
sample, is represented as (x, Fr(x), Fi(x)) where x is a vector
that contains the horizontal, vertical; and height coordinates
of the probe, and Fr(x) and Fi(x) represent the real and
imaginary components of the electric (E) or the magnetic (H)
field component, respectively. Each spatial coordinate in the
vector x is denoted by a superindex x(n). A model is trained
after obtaining data samples using a sampling algorithm. In
this work Kriging models, which are shortly described in the
next Section, are used.

III. KRIGING MODELS

Assume a set of n scan points X = (x1, ...,xn)′ in d
dimensions mapped to function values (y1, ..., yn)′.

A Kriging model consists of two components - a regressor
h(x), and a centred Gaussian Process (GP) Z. The GP Z
is constructed with variance σ2 and a correlation matrix ψ
through the residual:

Y (x) = h(x) + Z(x). (1)
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The n × p matrix F holds the regressor h(x) and consists
of basis functions bi(x) for i = 1...p,

F =

b1(x1) b2(x1) · · · bp(x1)
...

. . .
...

b1(xn) b2(xn) · · · bp(xn)

 .

The n× n correlation matrix ψ is defined as

ψ =

ψ(x1,x1) · · · ψ(x1,xn)
...

. . .
...

ψ(xn,x1) · · · ψ(xn,xn)

 ,

where ψ(xi,xj) is a chosen correlation function, parameter-
ized by a set of hyperparameters θ. The correlation function
is critical in order to train an accurate model. The Gaussian
correlation function was used for experiments in this paper,
which is defined as

φ(θ,xk,x) =
n∏
i=1

e−θi|x
(i)
k −x

(i)|2 , (2)

where i indexes the coordinates of the probe stored in vector
x, and the parameters θi are identified by the maximum
likelihood estimation. Further details can be found in [11].

IV. THE PROPOSED LOLA-VET ALGORITHM

In order to arrive at a balanced dataset that facilitates
training of accurate models, the measurement locations, or
paths must be carefully designed. The design space must be
sufficiently explored and regions must be identified where the
model might find it difficult to learn accurately. Therefore, the
paths must be space-filling, and also must visit, or exploit areas
of non-linearity in the design space. The information regarding
non-linearity of the design space is estimated using local-linear
approximations (LOLA [12]). The regions of the design space
requiring space-filling information are identified using Voronoi
tessellations and the sequential paths are generated by moving
along Voronoi edges (Voronoi Edge Traversal - VET [13]).
The exploration and exploitation components are described in
detail below.

A. Exploration

To start with, the paths must be space-filling and must
cover the design space evenly. Space-filling curves (Hilbert
and Peano curves) [14] are ideal choices to generate initial
paths for the probe to follow. Figure 1 shows a Hilbert curve
of order 3. It can be seen that the curve has excellent space-
filling properties. A measuring probe can start at (0,0), and
measure all the way following the curve till the end at (1,0).

The order of the curve can be selected based on the desired
density of measurements. In practise, it is hard to estimate the
order beforehand. For example, in the case of model-driven
optimization, achieving good model accuracy is crucial. The
number of data points required to reach a particular accuracy
is different for each problem. This necessitates an iterative
procedure of model training wherein additional data points are
selected for training the model in each iteration. Therefore, the
algorithm must be capable of iteratively generating additional
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Fig. 1: A Hilbert curve of order 3.

paths that perform exploration of the design space and exploit
regions of potential uncertainty.

An effective methodology to identify potential regions for
exploration involves using Voronoi tessellations [12], [15].
Figure 2 shows a Voronoi tessellation of a set of data points
X = {xi}10i=1. It can be observed that a Voronoi edge
forms the perpendicular bisector of any two adjacent data
points. Therefore, Voronoi edges form optimal paths for a
probe to follow in order to gather additional measurements
to supplement X .
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Fig. 2: A Voronoi tessellation of a set of points X = {xi}10i=1.

The probe can move from the current location (after moving
along the Hilbert curve, for example) to the nearest Voronoi
edge using an orthogonal projection. The probe can then
follow a sequence of Voronoi edges to reach a destination
point. The maximin criterion is commonly used to generate
space-filling points that maximize the minimum distance from
existing data points:

φX = max
X

min
xi,xj∈X

‖xi − xj‖. (3)

Maximizing the maximin or φX criterion will result in selec-
tion of points that are as far away from existing data points
as possible.
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In order to uniquely identify the sequence of edges forming
the path, each Voronoi edge is assiged a weight. The weight
is composed of exploration and exploitation components. The
exploration weight wEi of an edge ei is defined as:

wEi =
1

k

k∑
j=1

1

vol(rj)
, (4)

where k is the number of Voronoi cells sharing the edge ei
and vol(rj) is the (hyper)volume of the Voronoi cell rj . he
edge weights wEi are then normalized to the domain [0, 1].

B. Exploitation
The exploitation weight assigned to the edge ei is related

to the non-linearity nearby ei. In regions of the design space
where the behaviour of the system is linear, the model can
easily predict the output and fewer training data points are
needed nearby. In contrast, the model will need more data
points in regions where the output changes rapidly or non-
linearly.

The best indicator of linear approximation of a function f
is the gradient of f :

∇|f(x)| =
(δ|f(x)|

δx1
,
δ|f(x)|
δx2

, ...,
δ|f(x)|
δxd

)
, (5)

where d is the dimensionality of the design space spanning
(x1, x2, ..., xd). Since the gradient of the yet-to-be modeled
function is not known in advance, it has to be estimated. To
estimate the non-linearity associated with a Voronoi cell, a
local neighborhood of V points is defined around each existing
data point:

N(xk) = {xkv}Vv=1, (6)
N(xk) ⊂ X \ {xk}. (7)

The neighbours are chosen such that they cover each direction
of the design space equally well. This enables the computation
of best local linear approximation |f̃ | at xk:

|f̃(x)| = |f(xk)|+ (∇|f(x)|)xk
(x− xk). (8)

Assuming A(v, dim) = (xdimkv − xdimk ) and b(v, 1) =
|f(xkv)| for v = 1, ..., V and dim = 1, ..., d, the term
(∇|f(x)|)xk

= A−1b is computed by fitting a hyper-plane
through xk, based on N(xk).

The non-linearity in and around the Voronoi cell corre-
sponding to data point xk can be measured by the metric:

G(xk) =

V∑
v=1

∣∣∣|f̃(xkv)| − |f(xkv)|
∣∣∣. (9)

The metric G is finally normalized as G̃ ∈ [0, 1]:

G̃(xk) =
G(xk)

G(x1) +G(x2) + ...+G(xN )
, (10)

where N is the total number of existing data points.
The exploitation metric associated with an edge ei is defined

as the average normalized non-linearity score of all Voronoi
cells rj sharing ei, subtracted from 1:

wXi = 1− 1

k

k∑
j=1

G̃(xj). (11)

The subtraction is necessary since Dijkstra’s shortest path
algorithm [16] is used to sequentially add edges. Since Di-
jkstra’s algorithm seeks to find a path that minimizes edge
weights, a lower weight must correspond to higher exploita-
tion. This necessitates a subtraction from 1 to invert the
weights ∈ [0, 1].

C. Combining Exploration and Exploitation

Equations (4) and (11) are combined to obtain a metric that
assigns a weight wi to each edge ei balancing exploration and
exploitation:

wi = wEi + wXi. (12)

Dijkstra’s shortest path algorithm [16] can now be used to
generate a sequence of ne edges forming a path from current
location to the newly generated destination point obtained us-
ing the maximin criterion. The algorithm will seek to minimize∑ne

i=1 wi, and hence will prefer longer edges (for exploration)
that traverse regions of non-linearity (for exploitation).

V. SIMULATION SETUP

In order to evaluate the new algorithm, two PCBs (Figs. 3a
and 3b) were simulated for 3 frequencies in an electromagnetic
3D solver [17], providing the near-fields, at a height of 4mm
above the PCB. The substrate (FR4) has a size of 10 by
10cm and is 1.5mm thick. One component, Hx, was chosen
to be “scanned” by the new and old algorithm. The real and
imaginary values are chosen to be modelled instead of the
magnitude and phase as argumented in [10]. Evaluation of the
new algorithm starts with the total scanning time. It consists
of the moving time, measuring time and model building time.
The moving time is calculated by multiplying the total path
of the probe determined by the new an old algorithm and a
typical speed of a practical scanner (0.03 m/s). The measuring
time (0.2s per point) is multiplied by the number of measuring
points. The model from the new algorithm is also evaluated
on its accuracy. This is done by using the error estimates
mentioned in Section VI.

(a) PCB VLine (b) PCB Random

Fig. 3: PCBs

VI. RESULTS

For the purpose of comparison with earlier algorithms, the
points-based LOLA-Voronoi algorithm was used to generate
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a set of 512 points. The near-field probe traverses the set of
points in order of generation of points. The proposed LOLA-
VET algorithm was used to generate a path consisting of 512
points to match the earlier setup. It is interesting to note that
each Voronoi vertex (as described in Sec. IV) counts as a ent
point. Additionally, the near-field probe is set to perform a
measurement every 10mm while traversing the path generated
by each algorithm.

As illustration, Kriging models trained using the LOLA-
VET and LOLA-Voronoi algorithms are shown in Figs. 4 and
5. The path traversed can also be seen and it can be observed
that the lines added sequentially cover the space with sufficient
density.

Tables I and II list the model error estimates obtained
using cross-validation and a separate validation test set for
the proposed algorithm, and the LOLA-Voronoi algorithm.
Mean squared error (MSE), root relative squared error (RRSE),
and bayesian estimation error quotient (BEEQ) [18]. BEEQ
measures the improvement in error of the trained Bayesian
estimator ŷ over the prior mean ȳ, or of the updated estimate
ŷ of a recursive estimator over the predicted estimate ŷ.

Mathematically, BEEQ(ŷ) =
(∏n

i=1 βi

) 1
n

, where

βi =
‖yi − ŷ(xi)‖
‖yi − ȳ(xi)‖

, (13)

and yi is the actual response value. The ideal value of BEEQ
is 0 and the lower the better. The advantage of the metric
BEEQ is that the effects of very large or small magnitudes on
error estimates are nullified. The metrics RRSE and MSE are
popular in literature and are computed as:

RRSE(ŷ) =

√∑n
i=1(yi − ȳ(xi))2∑n
i=1(yi − ŷ(xi))2

, (14)

MSE(ŷ) =

∑n
i=1(yi − ŷ(xi))

n
. (15)

Table III presents statistics such as probe travel distance,
travel time, measurement time, modelling time, and total time
taken for LOLA-VET and LOLA-Voronoi-based approaches.
Modelling time includes the sampling time in addition to
the model training time. It can be seen that travel distance
and travel time are substantially lower for the LOLA-VET
algorithm. The LOLA-Voronoi algorithm is faster in selecting
samples than the LOLA-VET and this leads to faster modelling
times.

For each of the two cases (real and imaginary parts of
Hx), Tables I and II list the MSE, RRSE, and BEEQ scores
corresponding to the models trained using the LOLA-VET
and LOLA-Voronoi algorithms. All three scores should ideally
be 0; therefore, lower is better. It can be inferred from the
results in Tables I and II that Kriging models trained using the
proposed LOLA-VET algorithm outperform the ones trained
using data obtained from the LOLA-Voronoi algorithm on
a separate validation set - which is a true indicator of the
generalization ability of a model. For example, considering
the case of the real component corresponding to the VLine
microstrip at 1 GHz frequency, the MSE score of LOLA-VET
computed using the validation set is 0.000093 as opposed

Fig. 4: The Kriging model, and the measurement paths gen-
erated using the LOLA-VET algorithm for the imaginary
component of the VLine microstrip at 1 GHz frequency and
5mm measurement height.

Fig. 5: The Kriging model, and the measurement paths gen-
erated using the LOLA-Voronoi algorithm for the imaginary
component of the VLine microstrip at 1 GHz freqency and
5mm measurement height.

to 1.953256 corresponding to LOLA-Voronoi. There is an
improvement of multiple orders of magnitude in the model
obtained using LOLA-VET. Similarly, the RRSE score of
1.423883 corresponding to LOLA-VET is also more than two
orders of magnitude better than 205.962772, corresponding to
LOLA-Voronoi. The BEEQ score of 0.000001 corresponding
to LOLA-VET, obtained using cross-validation is also an order
of magnitude better than 0.000050, corresponding to LOLA-
Voronoi.

It is interesting to note that cross-validation scores of
LOLA-Voronoi are better than LOLA-VET in some cases.
There is a substantial difference in scores corresponding to
the LOLA-Voronoi algorithm between cross-validation and
the validation set. In contrast, the in-sample error (cross-
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TABLE I: VLine: Model error estimates for fixed number of measurements. CV refers to cross-validation and VS refers to a
validation set distinct from data used to train the models.

Test Scenario Real Imaginary
LOLA-VET LOLA-Voronoi LOLA-VET LOLA-Voronoi

MSE RRSE BEEQ MSE RRSE BEEQ MSE RRSE BEEQ MSE RRSE BEEQ
1 GHz: CV 0.000000 0.045278 0.000001 0.000005 0.029324 0.000050 0.000000 0.047452 0.000000 0.000000 0.035481 0.000039
1 GHz: VS 0.000093 1.423883 - 1.953256 205.962772 - 0.000061 0.891768 - 1.514987 140.854572 -
5 GHz: CV 0.000000 0.091909 0.000001 0.000000 0.040392 0.000066 0.000000 0.077698 0.000001 0.000000 0.051602 0.000066
5 GHz: VS 0.000676 5.411250 - 0.262579 106.648970 - 0.003225 6.609814 - 0.375374 71.309880 -
10 GHz: CV 0.000002 0.169900 0.000001 0.000000 0.050157 0.000078 0.000000 0.093468 0.000001 0.000000 0.042811 0.000059
10 GHz: VS 0.000145 1.805933 - 0.295264 81.506724 - 0.000027 0.960168 - 0.073044 49.990882 -

TABLE II: Random: Model error estimates for fixed number of measurements. CV refers to cross-validation and VS refers to
a validation set distinct from data used to train the models.

Test Scenario Real Imaginary
LOLA-VET LOLA-Voronoi LOLA-VET LOLA-Voronoi

MSE RRSE BEEQ MSE RRSE BEEQ MSE RRSE BEEQ MSE RRSE BEEQ
1 GHz: CV 0.000002 0.082148 0.000001 0.000001 0.033868 0.000054 0.000004 0.132532 0.000000 0.000003 0.076511 0.000064
1 GHz: VS 0.000049 0.447719 - 0.126396 22.797146 - 0.000056 0.552489 - 0.041983 15.134458 -
5 GHz: CV 0.000005 0.166639 0.000001 0.000001 0.065960 0.000138 0.000004 0.173212 0.000001 0.000000 0.141729 0.000098
5 GHz: VS 0.002079 3.730148 - 0.029769 14.114880 - 0.000482 1.899029 - 0.134288 31.701443 -
10 GHz: CV 0.000001 0.103441 0.000000 0.000000 0.049760 0.000192 0.000192 0.148280 0.000001 0.000000 0.042805 0.000209
10 GHz: VS 0.000422 1.900076 - 0.125790 32.807638 - 0.000825 2.756580 - 0.159989 38.397190 -

validation score) tracks very well the generalization error
(error on the validation set) in the case of the LOLA-VET
algorithm, which is a true indicator of model quality. This
serves to emphasize the goodness of data obtained using the
LOLA-VET algorithm. Combining the results from all tables,
it can be concluded that the LOLA-VET algorithm gains more
information about the environment, and leads to models more
accurate than those obtained by the LOLA-Voronoi algorithm
while moving the probe far less. The only disadvantage of the
new approach is that it is comparatively slower than LOLA-
Voronoi algorithm in selecting samples. For example, the time
taken to perform the sampling and train the real and imaginary
Kriging models for the case of the Vline microstrip (1 GHz)
is 1920s for LOLA-VET as compared to 1256s for LOLA-
Voronoi. Therefore, the improvement in accuracy comes at a
cost of sampling time. In comparison a standard uniform scan
of this size would take up to 3600 seconds.

In summary, the proposed LOLA-VET algorithm leads to
models that are substantially more accurate than the point-
based LOLA-Voronoi sampling algorithm. The LOLA-VET
algorithm also gains more information per unit travelled
distance as compared to the LOLA-Voronoi algorithm. The
LOLA-Voronoi algorithm is faster than LOLA-VET algorithm
in sampling or selecting new points.

VII. CONCLUSION

The paper presents a novel algorithm that generates optimal
paths for conducting automated measurements. The algorithm
automatically balances exploration of the design space and
exploitation of regions of uncertainty. The measurements ob-
tained using a probe traversing the generated paths can be
used to train a model of the electromagnetic NF of an elec-
tronic device. Experiments performed on a test problem and
comparisons with an existing approach validate the proposed
algorithm.
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