
Can Deep Reinforcement Learning Improve Inventory Management?
Performance on Lost Sales, Dual Sourcing and Multi-Echelon Problems

Joren Gijsbrechts
Católica Lisbon School of Business & Economics, Portugal

Robert N. Boute
Vlerick Business School and KU Leuven, Belgium

Jan A. Van Mieghem
Kellogg School of Management, Northwestern University, United States

Dennis J. Zhang
Olin Business School, Washington University in St. Louis, United States

December 17, 2018; Revised Jul. 29, 2019; Oct. 6, 2020; Jul. 2, 2021

Problem definition: Is Deep Reinforcement Learning (DRL) effective at solving inventory problems?

Academic/practical relevance: Given that DRL has successfully been applied in computer games and

robotics, supply chain researchers and companies are interested in its potential in inventory management.

We provide a rigorous performance evaluation of DRL in three classic and intractable inventory problems:

lost sales, dual-sourcing and multi-echelon inventory management.

Methodology: We model each inventory problem as a Markov Decision Process and apply and tune the

Asynchronous Advantage Actor Critic (A3C) DRL algorithm for a variety of parameter settings.

Results: We demonstrate that the A3C algorithm can match performance of state-of-the-art heuristics

and other approximate dynamic programming methods. While the initial tuning was computationally- and

time-demanding, only small changes to the tuning parameters were needed for the other studied problems.

Managerial implications: Our study provides evidence that DRL can effectively solve inventory problems.

This is especially promising when problem-dependent heuristics are lacking. Yet generating structural policy

insight or designing specialized policies that are (ideally provably) near optimal remains desirable.

Key words : Inventory Theory and Control, Logistics and Transportation, Supply Chain Management,

OM-Information Technology Interface

1. Introduction

In the nexus of business and technology, no topic is hotter today than machine learning and artificial

intelligence. We focus on deep reinforcement learning (DRL), the subfield of machine learning that

develops “prescriptions” or policies for sequential decision-making problems. DRL employs deep

neural nets to approximate the value or policy functions of Markov Decision Processes. This allows

DRL to circumvent the curse of dimensionality, inherent to dynamic programming. With the help

of DRL, programs have learned to play Atari games directly from image pixels [Mnih et al. 2015]

and recently AlphaGo has beat the best human players in Go, the most complex board game in

human history [Silver et al. 2016].

1

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
2 00(0), pp. 000–000, © 0000 INFORMS

Despite the on-going frenzy about these breakthroughs, applications of DRL in industrial con-

texts such as inventory management remain rather scarce. The true strength of these general

learning algorithms is that they provide a way to solve a diversity of problems rather than relying

on extensive domain knowledge or restrictive assumptions. In the inventory management literature

a variety of model-specific heuristics exist; it typically depends on the model assumptions which

heuristic performs best. In contrast, DRL algorithms are easily accessible and can be applied to

any sequential decision-making problem. As such, DRL could be perceived as a general purpose

technology that can serve many different purposes.

We test the use of DRL on three classic inventory problems. In lost sales inventory models

customers walk away or receive an expedited shipment at a premium cost when the desired product

is not available (and hence no backlogging is allowed). Under dual sourcing, inventory can be

replenished from a fast but expensive source and from a regular, cheaper source with longer lead

time. In the equivalent dual-mode problem, inventory can be replenished from a single source

using two complementary transportation modes. Multi-echelon inventory management includes

additional stages or echelons of the supply chain that can hold inventory, such as an intermediate

central warehouse between an upstream plant and downstream retailers.

These conceptually-simple problems have vexed supply chain management scientists for decades.

Little is known about the optimal policy structure and traditional solution methodologies such

as dynamic programming quickly become intractable due to the curse of dimensionality: their

size grows exponentially as replenishment lead times get longer. Heuristic policies are typically

problem-dependent and rely on restrictive assumptions, limiting their use in different settings. We

explore whether a general purpose technology like DRL provides an alternative.

We establish proof-of-concept with rigorous performance benchmarks to lost sales, dual-sourcing

or dual-mode, and multi-echelon inventory models. Our conclusion is nuanced: DRL can match

performance of state-of-the-art heuristics across a variety of problems, with limited changes to the

tuning parameters. Yet, finding good initial hyperparameter sets is computationally burdensome

while the resulting policies of DRL algorithms remain black boxes. Generating structural policy

insight or designing specialized policies that are (ideally provably) near optimal thus remains a

desirable research activity. At the same time, DRL provides promising results and has potential in

practice, especially when problem-dependent heuristics are lacking.

We aspire to make the following contributions: (1) Provide proof-of-concept that deep reinforce-

ment learning can tackle a variety of inventory problems that have intractable dynamic programs;

(2) Numerically evaluate performance relative to the optimal dynamic program and to heuris-

tic policies and approximate dynamic programming methods; and (3) Provide a tutorial on how

DRL works. Our aim is thus not to contribute to DRL per se; but to demonstrate how DRL may

contribute to inventory management.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 3

2. Selected Literature reviews

We provide a brief introduction to well-performing heuristics on lost sales (Section 2.1), dual

sourcing (Section 2.2), and multi-echelon (Section 2.3) inventory models. These heuristics have

been developed and shown to perform well under the conventional assumptions: i.i.d. demand,

linear sourcing costs and deterministic lead times. As soon as one of these assumptions is relaxed

or other practice-specific constraints are added, the performance of these heuristics may suffer and

better performing policies are desired. This is precisely where numerical approximation methods

may provide a solution, which we review in Section 2.4.

2.1. Lost Sales Inventory Models

Arrow and Karlin [1958] show that in a single sourcing backlogging model with constant lead time,

inventory level (i.e., inventory on hand minus backorders) and outstanding orders can be collapsed

into one single number (i.e., the inventory position) and a single-dimensional base-stock policy is

optimal. They also indicate that this state-space reduction no longer holds when excess demand

is lost instead of backlogged. The optimal policy then depends on the entire inventory pipeline

vector such that the complexity grows exponentially in the lead time. Morton [1969] provides more

structural properties and bounds.

Base-stock policies generally perform poorly in lost sales inventory models [Zipkin 2008a], except

for large penalty costs, in which case optimal inventory levels are high and stock-outs are rare.

Huh et al. [2009] prove that base-stock policies are asymptotically optimal for large penalty costs.

[Goldberg et al. 2016] show that the Constant Order policy with only constant replenishment from

a single source [Reiman 2004] is asymptotically optimal for long lead times. Xin [2019] combines

these two asymptotic results to propose the Capped Base-Stock policy.

The Myopic policy generally performs well for the lost sales inventory model [Morton 1971, Zipkin

2008a]: it computes in each period t the order quantity that minimizes the expected costs in the

period when the order arrives (i.e. in period t+ l, with l representing the lead time) by recursively

computing the expected stock levels in period t+ l. These findings are more rigorously confirmed

by Brown and Smith [2014] who use the value of perfect information in combination with the

L\-convexity (read el-natural) property (which was proven by Zipkin [2008b]). They develop tight

lower bounds and show how myopic policies consistently perform close to optimality on the lost

sales problem even in settings where dynamic programming is intractable. Extensions such as the

Myopic 2-period policy [Zipkin 2008a] perform even better. Further increasing the myopic horizon

comes at the expense of increased computation time (similar to the dynamic program in which the

infinite horizon is used to choose actions). The one- and two-period myopic policies are essentially

approximate dynamic programming methods as they require, at each time epoch, the iteration (or

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
4 00(0), pp. 000–000, © 0000 INFORMS

evaluation) over all states that can be reached during the considered horizon [Xin 2019]. They thus

also suffer from the curse of dimensionality and are more computationally intensive than base-stock

or constant order policies. Inspired by Zipkin’s (2008b) finding that the value function of the lost

sales problem is L\-convex, Sun et al. [2016] develop a linear programming approximate dynamic

programming (LP-ADP) algorithm. We elaborate further on LP-ADP in Section 2.4.

2.2. Dual Sourcing Inventory Models

Dual sourcing or dual-mode replenishment has been studied since the pioneering inventory man-

agement models of the mid-twentieth century. Fukuda [1964] proved that the optimal policy follows

a base-stock structure when the lead time difference between both sources is exactly one period.

When the lead time difference exceeds one period, however, a base-stock policy is no longer opti-

mal [Sheopuri et al. 2010]. No simple structure prevails and the optimal policy depends on the

vector of outstanding orders [Whittemore and Saunders 1977]. As costs related to replenishments

within the expedite lead time do not impact the optimal policy [Sheopuri et al. 2010], the optimal

policy depends on the (lr − le) outstanding orders, in which lr and le respectively represent the

lead time of the regular slow and expedite supplier. These insights inspired the development of

various heuristic policies by collapsing the state vector to one or two inventory positions; c.f., Xin

and Van Mieghem [2021] for a contemporary review.

Hua et al. [2015] show that the dual sourcing value function satisfies L\-convexity, similar to the

lost sales inventory model [Zipkin 2008b]. Inspired by this property, they show that the optimal

orders to the slow source are more sensitive to the longest outstanding orders, and the optimal

orders to the fast source depend more on the soon-to-arrive outstanding orders. By developing

upper and lower bounds on the slow source’s order and using a weighted average of these bounds

to determine the slow source’s orders, they generalize the VBS policy to the Best Weighted Bounds

policy. Chen and Yang [2019] exploit L\-convexity to develop an LP-ADP algorithm to dual sourcing

with supply uncertainty, identical to that of Sun et al. [2016] for lost sales inventory models.

2.3. Multi-Echelon Inventory Models

Multi-echelon models include multiple stages or echelons in the supply chain that can hold inven-

tory. For instance, central warehouses can pool inventory prior to allocating it to downstream

retailers. Seminal works such as Clark and Scarf [1960] and Federgruen and Zipkin [1984] charac-

terize the optimal policy structure under several strong assumptions such as, respectively, having

a serial system (i.e., no parallel stocking facilities) or no option to stock at intermediate terminals.

de Kok et al. [2018] provide an extensive review of the variety of multi-echelon inventory models

studied based on number of echelons, network structure, holding cost functions, etc. They also

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 5

mention that there is little hope to find the optimal policy structure in divergent multi-echelon

systems, such as the one we investigate.

We study the multi-echelon inventory model employed in Van Roy et al. [1997]. They adopt a

neuro-dynamic programming approach to solve a two-echelon model with one warehouse and mul-

tiple retailers. The model is a hybrid between backlogging and lost sales, as described in Section 7.

Closely related to this model are the partial lost sales and divergent network models studied in

Nahmias and Smith [1993, 1994].

2.4. Approximate Dynamic Programming

Markov Decision Processes (MDPs) provide a mathematical framework to solve sequential decision-

making problems with countable state and control spaces [Puterman 1994]. Traditional solution

methodologies such as linear programming (LP) or dynamic programming (DP) using either value

or policy iteration, generally do not scale well to large problem sizes. Therefore, several approximate

dynamic programming (ADP) methods have been developed as described in the seminal book

by Powell [2011]. We provide a selective review, starting from methods that heavily exploit the

problem structure to the most general purpose technologies available to date.

One branch of ADP methods exploits the problem structure. For example, for inventory models

with zero or one period lead time, Halman et al. [2009] and Chen et al. [2014] avoid the need to

iterate over the entire state space, speeding up the DP optimization and allowing the algorithm

to solve close to polynomial time. Because of their heavy reliance on the problem structure, Chen

et al. [2014] discuss the desire of more general purpose models. Our work may address this desire.

A second branch of ADP methods reduces the size of the problem by aggregating states, e.g.

by clustering states based on features. Fang et al. [2013] and Giannoccaro and Pontrandolfo [2002]

cluster the pipeline inventory into subsets by aggregating parts of the pipeline inventory. Based on

their expertise into the specific problem, Van Roy et al. [1997] manually select 23 features from a

multi-echelon supply chain to cluster the state space. These features include aggregations of parts

of the inventory vectors, the variance among retailer inventory levels, products of inventory levels

etc. It is often left up to the discretion of the user how to choose good cluster sizes, which can

be a formidable challenge. Keller et al. [2006] automate this state aggregation process by using a

neighborhood component analysis. While state aggregation can speed up computation, important

information can get lost. This is always the case when the optimal policy depends on each element

of the state, as in the three inventory problems that we study.

A third branch approximates the value or policy functions of MDPs to generate near-optimal

policies. Selecting a good approximation is challenging if little is known about the structure of the

optimal value or policy function. In inventory management, various function approximations are

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
6 00(0), pp. 000–000, © 0000 INFORMS

used, such as a linear combination of the state variables [Keller et al. 2006] or fitting a specific

quadratic function on the state variables [as in Sun et al. 2016, Chen and Yang 2019]. The latter

exploits the L\-convexity property of respectively the lost sales and dual sourcing model with supply

uncertainty to fit a specific L\-convex quadratic shape, as introduced by Murota [2003]. As it is

often infeasible to explore the entire state space when approximating the value function, efficient

sampling of states is required. Some methods rely on well-known heuristics to sample states: Sun

et al. [2016] use the myopic lost sales policy to sample states and Chen and Yang [2019] leverage

the Single/Dual Index and Tailored Base-Surge policies. Both then apply linear programming to

fit the approximation coefficients of the value functions using the sampled states.

Linear programming approximate dynamic programming (LP-ADP) falls in the third branch of

ADP techniques. It assumes a specific functional approximation of the sample states using a well-

known heuristic and uses linear programming to obtain the coefficients of these value functions. This

approach circumvents the computational explosion characterizing traditional linear programming

to solve MDPs: the need to include the value function of each state in the objective while each

state-action pair requires a unique constraint. Instead, only the sampled states are included in the

objective function and only the sampled state-action pairs are included in the constraints. Solving

the LP then provides the coefficients of the approximating value functions, which then provides

a vehicle to evaluate the value function at unvisited states. An “LP-greedy” policy minimizes the

current cost plus the cost-to-go of the next stage. Both Sun et al. [2016] and Chen and Yang [2019]

report small savings in comparison to the sampling policies. We employ LP-ADP as a benchmark

in our numerical experiments.

Reinforcement learning (RL) is a mathematical framework to solve MDPs without requiring an

exact representation of the environment. An RL agent learns to maximize expected rewards by

interacting with an environment. Mathematically, RL algorithms develop a good approximation of

the value or policy function of the underlying MDP. Choosing a good functional approximation and

efficient sampling of states and actions is key. While there are RL algorithms that heavily exploit

problem structure, we focus on the recently developed general purpose RL algorithms. A major

benefit of these RL algorithms in comparison to problem-specific heuristics is that they can learn

policies in environments with less stylized or non-conventional assumptions. This is valuable in

settings where off-the-shelf inventory replenishment heuristics are not available or do not perform

well. A well-performing generic technology then adds value compared to tailor-made policies for

one specific company or business.

Although classic RL algorithms, such as temporal difference and Q-learning, had some success in

the past [Tesauro 1995, Kohl and Stone 2004, Watkins 1989], original RL approaches still suffered

from the lack of scalability [Strehl et al. 2006]. Therefore, in recent years, reinforcement learning

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 7

is combined with deep learning i.e., powerful function approximation using deep neural networks.

Deep reinforcement learning (DRL) thus uses deep neural networks to approximate the value or

policy functions of MDPs. Although both RL and DRL have been studied extensively in the

Computer Science and Operations Research literature [Sutton and Barto 1998, Mnih et al. 2015],

the accessibility of more computational power and recent algorithmic breakthroughs have sparked

new interest in DRL. The excellent performance of DRL in a set of Atari games reported in Mnih

et al. [2015] was an important milestone. By embedding target networks and experience replay in

deep Q-learning, the performance of DRL algorithms peaked. These algorithmic improvements add

an additional neural net and a large history of observations, respectively, which stabilizes learning.

It inspired many follow-up papers improving the performance of deep Q-learning further. Notable

extensions include the use of dueling networks [Wang et al. 2015], double Q-learning [van Hasselt

et al. 2015], prioritized experience replay [Schaul et al. 2015], or the rainbow implementation of

Hessel et al. [2017] that combines and compares these extensions.

Unlike Q-learning methods that approximate the value functions of the underlying MDP, policy-

based methods directly develop a policy. The REINFORCE algorithm of Williams [1992], for

instance, uses gradient ascent to develop a stochastic policy. Since the algorithm learns on-policy

(i.e., it only uses the most recent observations to update the policy) the samples are correlated and

non-stationary. This causes learning to be less stable as the policy may over-fit on certain regions of

the state-space. The Asynchronous Advantage Actor-Critic (A3C) algorithm that we will employ

uses parallel learners and a critic as a baseline to improve the speed and stability of the learning

process. We will elaborate further on this actor-critic approach in Section 3. When we started this

research project A3C was one of the most popular DRL algorithms due to its excellent performance

and fast training time [Mnih et al. 2016]. We show that with only minor modifications, it is capable

to develop good policies on three intractable inventory problems. Yet, as our numerical experiments

also confirm, A3C remains rather sensitive to the employed hyperparameters and not all models

converge to good policies. Follow-up papers have tackled these limitations. Notable breakthroughs

include trust region methods, such as Trust Region Policy Optimization and Proximal Policy

Optimization [Schulman et al. 2017a,b], that prevent the policy update from being too large. These

models are less sensitive to the hyperparameters while training is more stable and convergent.

A vast literature exists on optimizing the hyperparameters of machine learning algorithms. We

adopt a random search approach (see also Section 4). Bergstra and Bengio [2012] show (both

empirically and theoretically) that random search outperforms naive grid search, without being

more complex to implement. In random search samples are randomly drawn from specified intervals;

as such, it is arguable even more easy to implement than a grid search, in which the modeller

specifies a grid of potential values from which the hyperparameters are picked. Bergstra et al.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
8 00(0), pp. 000–000, © 0000 INFORMS

[2013] demonstrate how random search may be improved upon by using more complex tuning

approaches. Bayesian models, for instance, rely on a probability model to estimate how different

hyperparameter combinations will perform. We opted for a random search approach as it has several

key benefits compared to more complex methods, as also outlined by Bergstra and Bengio [2012]

and Bergstra et al. [2015]: (1) simplicity: random search only requires the modeller to define the

interval on which one should sample without building an additional optimization framework; (2)

parallelization: Bayesian models require observations (i.e., outcomes of the algorithm) to be able

to estimate the performance of each hyperparameter (i.e., to develop the surrogate objective). This

requires at least some runs to be made sequentially to perform the Bayesian update. In random

search all runs can be parallelized; (3) unbiased analysis: random search generates independent

and identically distributed samples. The resulting unbiased samples facilitate visualization of the

results and avoid over-fitting on local minima.

Supervised machine learning models thrive on the availability of more data than ever, elevating

their performance to higher levels. The relation between data and the performance of RL algorithms

is more nuanced. DRL algorithms are used to generate policies for complex problems without

requiring the availability of data; all that is needed is an environment to interact with. For instance,

while Alpha Go learned to play the game of Go by using data of games of human experts [Silver

et al. 2016], its update Alpha Zero learned from scratch [Silver et al. 2017] solely by playing the

game against itself, effectively generating data through self-play. Even though DRL algorithms

may require millions of training iterations, they do not require excessive amounts of training data,

as long as a model of the environment exists that generates the random variables of the problem.

Evidently, the model (or simulation engine) may need data to keep generating the random variables.

In many practical settings the distribution of the uncertainty is unknown and must be derived

from historical samples. We refer to Levi et al. [2015] for an excellent discussion on the impact of

using empirical samples rather than the true distribution on the classic Newsvendor problem.

There are only limited applications of DRL to inventory management. Oroojlooyjadid et al.

[2017] applied deep Q-learning to the Beer Distribution Game. While our paper also applies DRL

to inventory problems, it differs from this working paper in two distinctive ways. First, we pro-

vide optimality gaps on three different inventory problems whose stochastic dynamic program

become quickly intractable. Second, we show the versatility of DRL by applying it to three different

inventory problems with limited modification of the algorithm, thereby demonstrating that DRL

resembles a general purpose technology.

3. DRL Solution Approach to Lost Sales Inventory Replenishment

Deep Reinforcement Learning provides a way to approximate and solve large Markov Decision Pro-

cesses for which traditional dynamic programming methods are intractable. We will demonstrate

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 9

in this section how the Asynchronous Advantage Actor-Critic (A3C) algorithm operates. We use

the lost sales inventory model as our focal problem and show in later sections how dual sourcing

and multi-echelon problems can be plugged into the same framework, showing the versatility of

the algorithm.

Consider the periodic-review inventory replenishment of a single item over an infinite horizon. In

the conventional lost sales model, inventory can be replenished at unit cost c with lead time l. At

the beginning of any period t, the order quantity, qt ≥ 0, must be decided knowing the last observed

inventory on hand, It−1, and outstanding receipts or “pipeline” vector Qt−1 = (qt−l, qt−l+1, · · · , qt−1).
We note that this formulation assumes strictly positive lead times. If l= 0, there are no outstanding

orders as the order qt−l = qt is immediately received and added to the on-hand inventory. Finally, the

unknown demand dt is realized and subtracted from the on-hand inventory. Excess demand is lost

so that inventory evolves as It = [It−1 + qt−l− dt]+ and the pipeline vector as Qt = (qt−l+1, · · · , qt).
The lost sales problem can be modeled as a Markov Decision Process with state St = (It−1,Qt−1)

at time t. As orders placed in period t− l are available at the beginning of period t, they can be

added to the ending inventory of period t− 1 such that the state vector becomes l-dimensional:

St = (s0 = It−1 + qt−l, s1 = qt−l+1, s2 = qt−l+2, · · · , sl−1 = qt−1). Let St denote the set of admissible

states at time t. The action vector for the lost sales problem is one-dimensional consisting of the

units ordered at = (qt). We opt for a vector notation to accommodate for the multi-dimensional

action spaces in dual sourcing and multi-echelon models in Sections 6 and 7, respectively. After

taking action at, the cost ct incurred in period t consists of sourcing costs, per-period holding cost

h for each unit held in inventory-on-hand or per-period shortage cost p per unit of lost demand:

ct(St, at) = qtc+h[It]
+ + p[dt− It−1− qt−l]+. (1)

Let At denote the set of admissible order policies πt = {at+j : j = 0,1, · · · }. The objective is to find

an admissible order policy that minimizes the expected present value Ct of future costs. Assuming

henceforth sufficient regularity including countable, compact state and action spaces, this cost

when starting from state St and following policy πt is:

Cπtt (St) =
∞∑
j=0

γjEπtct+j(St+j, at+j)

where γ ∈ (0,1) is the discount factor and Eπt is the expectation operator when following policy πt.

Define the optimal value function v(St) as the infimum of Cπtt (St). Assuming sufficient regularity

and countable states and actions, the value functions are obtained when following an optimal policy

by solving the celebrated recursive Bellman equations [Bellman 1954]:

v(St) = min
at∈At

ct(St, at) + γ
∑

S′∈St+1

P(St+1 = S′|St, at)vt+1(S
′)

 .

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
10 00(0), pp. 000–000, © 0000 INFORMS

Input Hidden layer + Activation Output layer + Softmax

(0)
(1)

(n)

So
ftm

ax

“Actor”
“Critic”v(St)

w1,1,0

w1,1,1

w1,1,l-1

Σsiw1,1,i + b1

a0 =
a1 =

an =

ai =

s0 = It-1 + qt-l

s1 = qt-l+1

s2 = qt-l+2

sl-1 = qt-1

b1

π(St) = Pr(ai|St)
St = {s0,s1,...,sl-1}

We provide visualization for the general case
with strictly positive lead time. Note that the
pipeline does not exist if l equals zero.

(i)ai =

(i+1)ai+1=

(qt)i=0

l-1

Figure 1 Visualization of a simple neural net of the A3C where the input dimension is l, one hidden layer is used

and n actions can be chosen. The output consists of (1) a value v(St) (estimated by the “critic”) when

using (2) a stochastic policy over the action space π(St) = P(at|St) (estimated by the actor using a

softmax function on the last layer that normalizes all values into a probability vector).

Despite their simple appearance, solving these Bellman equations can quickly become problematic

as their problem complexity suffers from the triple curse of dimensionality [Powell 2011], which is

driven by the dimension of (1) the l-dimensional state space; (2) the uni-dimensional action space;

and (3) the transition probability matrix, dependent on the size and number of possible demand

realizations. Note that we assume integer or discrete demand; continuous only makes it harder.

To cope with the curse of dimensionality, the dimensions of the problem can be reduced by

applying approximate dynamic programming. As discussed in Section 2.4, one ADP branch includes

reinforcement learning. In their simplest form, value-based methods such as tabular Q-learning

[Watkins 1989] store estimated values of v(S) in lookup tables. In Q-learning, action-value functions

Q(St, a) represent the future expected cost of taking action a from state St and then following the

best-known policy from state St+1. Note that the Q-values only differ in the first step from the

value function v(S). These Q-values can iteratively be improved: Qt+1(St, at) = (1−α)Qt(St, at) +

α(ct + γmaxa∈AEQ(St+1, a)), in which α represents the learning rate that trades off how much

the new observation ct + γmaxa∈AEQ(St+1, a) is used to update the initial estimate Qt(St, at).

New states and actions can be explored by following ε-greedy methods that trade off following the

best-known policy, with probability (1− ε) against exploring new actions, with probability ε.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 11

More sophisticated value-based methods use parametric approximations of the values v(S) to

circumvent the curse of dimensionality when storing all function values in lookup tables. Neural

networks are an example of approximators of non-linear functions. Neural nets have an input layer,

several hidden and activation layers in sequence, and an output layer. Figure 1 illustrates a neural

net with one hidden layer. Its input is the l−dimensional state vector St = (s0 = It−1 + qt−l, s1 =

qt−l+1, s2 = qt−l+2, · · · , sl−1 = qt−1). A layer’s output is a linear function of its input followed by

a non-linear “activation layer.” The value of the first node of the hidden layer is
l−1∑
i=0

w1,1,isi + b1

where the weights of the red edges (w1,1,1 · · ·w1,1,l) and the bias b1 are tuning parameters. The

activation layer adds non-linearity to the linear function. For example, a positive-part operator,

called “rectified linear unit” ReLU, only passes positive node values to the next layer. Concatenating

layers provides powerful approximations to non-linear value functions. Traditional neural networks

use mostly one or two layers while recent deep learning employs a larger number of hidden layers.

In contrast to value-based methods, policy-based methods directly develop a policy. A determin-

istic policy prescribes for each state a single action. A stochastic policy prescribes for each state

a probability distribution over all actions that specifies the probability that each action should

be taken. At the juncture of value-based and policy-based methods, actor-critic methods com-

bine both techniques by relying on an actor who develops a policy that is evaluated by a critic.

We will explore the power of one such actor-critic method, namely the Asynchronous Advantage

Actor-Critic (A3C) algorithm.

In what follows, we use notation θ to define the set of all parameters that must be fine-tuned

during training of the model, i.e., all weights of the edges and biases of the global neural net

(θg) and of the local nets (θi) of each parallel learner i. (We describe the use of the global and

local nets in the next paragraph.) Given set θg, A3C generates for every state St a stochastic

policy: π(St;θ
g) = P(at|St) (i.e., a probability distribution over all actions) and one value function

vπ(St;θ
g) (representing the expected future discounted cost of following the stochastic policy). In

our experiments, we use a fully connected network, implying that all nodes between layers are

connected and the actor and critic use the same hidden layers. This delivered good performance

on our inventory problems, but it does not necessarily need to be the case. The output of the

actor passes a “softmax” function that normalizes the output layer values into a proper probability

vector that defines the stochastic policy, as shown in Figure 1.

The A3C algorithm employs a special structure where n parallel learners each have an individual

neural net with parameter set θi, ∀i∈ {1, · · · , n}. Together, yet asynchronously, the learners update

the global neural net with parameter set θg. The total set of trainable parameters of the model

θ thus includes both θi, ∀i ∈ {1, · · · , n} and θg. (We will later show that we use the local net

with parameter set θi to compute the gradient of the loss function but apply the update on the

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
12 00(0), pp. 000–000, © 0000 INFORMS

global net with parameter set θg.) Each learner i interacts independently with its own copy of

the environment by using its own neural net. The agents learn and update the global network

through a training buffer of m periods of observed states, actions and costs as follows: During the

k-th buffer, the current policy πk is simulated for m subsequent periods starting at state Sm(k−1).

During the simulation, each parallel learner keeps track of the incurred costs (cm(k−1), · · · , cmk),
the actions taken (am(k−1), · · · , amk), the visited states (Sm(k−1), · · · , Smk) and the resulting state

at the end of this episode (Smk+1). Given these records, each learner computes its loss function for

training iteration and buffer k, denoted by Lossk and to be defined in detail soon. Each learner i

then computes the gradients of the total loss with respect to the parameters θi of its own local

neural net and iteratively adjusts the parameters of the global net θg using a stepsize α> 0 in the

direction of the gradient to reduce the loss:

θgk+1 = θgk−α∇θiLossk/||∇θiLossk||.

This process happens asynchronously, meaning that updates to the weights of the global network

are made immediately whenever an agent has simulated its buffer and computed its gradient.

The weights of the global network are thus continuously updated by using the gradients from the

local learners. Once the global network is updated, the weights of the global network are then

copied back to the local learner. The motivation for using parallel learners is that each learner is

interacting with its own copy of the environment, which reduces the probability of over-fitting on

specific state regions. To avoid exploding gradients, a clipping function bounds the gradients. The

step size depends on the used optimization method. We employ Adam, developed by Kingma and

Ba [2015], which dynamically adapts the step size based on the past updates.

The total loss function used is the sum of three specific losses that we now define:

Loss = Value Loss + Policy Loss + Entropy Loss.

The loss function and its gradient are computed for each parallel learner i and applied asyn-

chronously to the global net. The value loss measures the quality of the value function approxi-

mation by the difference between the future discounted cost and the approximated value function

at each observed state in the episode buffer. The future discounted cost of a state Sp = Smt−k in

the t-th episode buffer consists of the costs observed k steps until the end of the episode buffer,

C(k)
p =

k∑
i=0

γicp+i, plus the infinite-horizon discounted costs after the episode buffer, which is approx-

imated by the value function in the last period of the buffer, γk+1vπt(Stm+1;θ
i). The value loss is

then defined as the sum of the squared errors of all states (Sm(t−1), · · · , Smt) within the episode

buffer. We use a value regularization term βV (which we fixed at 0.25) to prevent over-fitting:

Value Loss = βV

m∑
p=0

(
−vπt(Sm(t−1)+p;θ

i) +C
(m−p)
m(t−1)+p + γm−pvπt(Smt+1;θ

i)
)2

.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 13

The policy loss is used to improve the policy by selecting “better” actions. For each action taken

at period p during the episode t, we compute the differences between the cost of this action plus

the discounted value of the next state (ct(St, at)+γvπt(St+1)) and the value function at the current

state (vπt(St)). This difference can be positive, which means that the action is not optimal using

the current value function, zero, or negative, which means the current action is better than the

action suggested by the policy. Therefore, minimizing this difference helps to choose better actions

with respect to the current value function. We use Generalized Advantage Estimation [Schulman

et al. 2015], in which the observed differences within the episode buffer are once again discounted.

Generalized advantage estimation uses an additional weighing parameter λ ∈ [0,1] which we keep

fixed at 1 as it provides good performance in our setting. Since, at a given state, each action is only

taken with a certain probability, the loss is corrected by multiplying by the log of the probability

of selecting action at:

Policy Loss =
m∑
i=0

(
logP(am(t−1)+i|Sm(t−1)+i)

k∑
p=0

γp
(
cm(t−1)+i + γvπt(Sm(t−1)+i+1;θ

i)− vπt(Sm(t−1)+i;θ
i)
))

.

Finally, the entropy loss is used to avoid the A3C algorithm over-fitting and converging to local

optima. Minimizing entropy ensures that the model keeps the right balance between exploring new

actions and exploiting actions that are known to perform well. The entropy for each episode buffer

is defined as the entropy of the probability function over actions taken, which is the logarithm of the

probability mass function over actions taken: P(ai|si) logP(ai|Si). This entropy is minimized when

all actions have the same probability and is equivalent to encouraging the algorithm to explore

new actions. An entropy regularization term βE determines how much exploration is added to the

loss function:

Entropy Loss = βE

m∑
p=0

P(am(t−1)+p|Sm(t−1)+p) logP(am(t−1)+p|Sm(t−1)+p).

4. How to tune a DRL algorithm?

Thanks to the open nature of the machine learning community, the code for many deep reinforce-

ment learning algorithms is freely available. While this should greatly facilitate their application,

it is our experience that the cumbersome tuning process may demotivate researchers to explore

the potential of DRL methods. Indeed, determining the suitable hyperparameters of the A3C algo-

rithm (summarized in Table 1) is a non-trivial and very time-consuming task because evaluating

hyperparameter sets is expensive and noisy. Therefore, we share our experience on how to achieve

good performance for three different inventory problems, together with our code, which will be

shared along with the publication of this paper. This may help other researchers to directly build

on our experience when applying DRL to other operations problems.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
14 00(0), pp. 000–000, © 0000 INFORMS

For our initial models, we tested various hyperparameter settings and kept track of well-

performing hyperparameter values. To further improve the results, we stored the best models

(i.e., trained neural networks) and restarted from these models using different entropy factors and

learning rates. This further improves already well-performing models and uses less exploration

and more exploitation as training progresses. This labor intensive tuning process motivated us

to develop an automated tuning strategy without manual intervention, which we also tested to

compute optimality gaps for the lost sales and dual sourcing problems. In addition, we selected a

set of well-performing hyperparameter values that we used for a more extensive sensitivity analysis

(in Section 5.2).

Building on our experience of manually tuning various model instances, we developed the fol-

lowing automated tuning process for the A3C algorithm: First, we decided to keep the following

hyperparameters fixed: four layers in the neural network with widths 150, 120, 80 and 20, respec-

tively; each layer followed by a ReLU activation; value regularization 0.25; four parallel learners;

and clipping rate 40. These hyperparameters did perform well and any manual tuning deviations

did not result in any significant improvement. Equivalently, the computational effort to further

optimize those parameters did not outweigh their benefits in our experience. Therefore, they pro-

vide a good starting point. Of course, it is possible that changes to these hyperparameters can

perform equally well or better in other settings.

Second, we took 200 random sample points of the remaining three hyperparameters—i.e., the

length of the buffer, the entropy regularization rate and the learning rate—over pre-defined ranges.

While the length of the episode buffer is simply sampled on a linear scale, both the entropy

regularization rate and the learning rate are sampled on a log scale. This means that for a tuning

range [10−a,10−b], we sample x on the uniform interval [a, b] and set our hyperparameter to 10−x .

We determined those ranges by monitoring the three components of the loss function (value, policy

and entropy loss) during manual training. This provided insight into the relevant ranges of the

three parameters where the A3C algorithm tended to converge to good results. We evaluated the

expected cost of the A3C policy by simulating 10 sample paths of 100,000 periods. We note that to

further reduce the confidence intervals of all results in this manuscript, we additionally simulated

all policies developed by the A3C algorithm on 100 sample paths of 100,000 periods.

Third is the final choice of the three hyperparameter values. The simplest solution is to pick

the sample point with the best results. We went one step further and fitted a quadratic function,

specifically a 3D ellipsoid, through the lower convex hull of the 200 points to highlight a well-

performing region of the tuning parameters. Later, we will provide a visualization of this approach.

We used an ellipsoidal convex hull merely to indicate a good parameter region; while its minimum

may suggest a well-performing parameter at this point it is just that: a suggestion. More research

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 15

Hyperparameter Well-performing values Range for tuning

Number of layers 4
Width of layers [150,120,80,20]
Value regularization (βV) 0.25
Activation functions ReLU
Number of parallel learners 4
Clipping rate 40
Learning rate (α= 10x) x=−4 x∈ [−7,−2]
Entropy regularization (βE = 10x) x=−7 x∈ [−10,−2]
Buffer size 20 [20,100]

Table 1 Hyperparameters of the A3C algorithm that require tuning. The first column contains one set that

performs well across all settings. The second column contains the ranges used in the automatic tuning process.

on the applicability of an ellipsoidal convex hull seems desirable but is outside the scope of this

paper.

Table 1 summarizes both the values of hyperparameters that are kept fixed as well as the ranges

used in the automatic tuning of the remaining three hyperparameters. Note that the learning

rate and entropy regularization are sampled from a continuous interval, while the buffer size is

constrained to be integer. Once the hyperparameters are chosen, the four agents start training.

Performance of the agents during training is evaluated every 100,000 periods by computing the

average cost per period on a fixed sample path of 100,000 periods. When costs do not improve

during 30 consecutive evaluations, the agent stops training. This is equivalent to a simulation of

3 million periods, with an intermediate cost evaluation every 100,000 periods. Once all agents are

finished, a new set of hyperparameters is chosen. The evaluation of one set of hyperparameters took

us about 24 CPU hours. All models were trained using (university) cloud servers. For each of the

settings reported in Sections 5.1 and 6 (optimality gaps of lost sales and dual sourcing, respectively)

we evaluated the A3C algorithm on approximately 250 hyperparameter settings (including both the

manual search to set the ranges and the automatic tuning). The initial tuning of the dual sourcing

and lost sales model thus required about 3000 of these “runs.” This resulted in total training

costs of around $2500 at current Google Cloud Platform rates of $0.033174 per virtual CPU hour.

For the sensitivity analysis (Section 5.2) we ran the algorithm for approximately 2000 additional

runs, resulting in an additional cost of around $1500. These large numbers contrast sharply with

the computational effort necessary for our benchmarks. The benchmark heuristics typically have

1 to 3 policy parameters and optimization takes seconds or minutes. The methods that rely on

approximate dynamic programming (the myopic policy and LP-ADP algorithm) partly circumvent

the curse of dimensionality; as such, their running time can typically be expressed in minutes or

hours rather than in days or weeks as is the case for the A3C algorithm.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
16 00(0), pp. 000–000, © 0000 INFORMS

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6
Hyperparameter Tuning Range (p=4, l=2) (p=4, l=3) (p=4, l=4) (p=9, l=2) (p=9, l=3) (p=9, l=4)

Learning rate (α) [10−5,10−3] 4.26× 10−4 3.04× 10−4 3.00× 10−4 4.23× 10−5 8.8× 10−5 5.25× 10−5

Entropy regularization (βE) [10−5,10−10] 4.74× 10−8 1.43× 10−7 2.10× 10−7 2.77× 10−9 5.43× 10−9 4.19× 10−10

Length of the Episode buffer (m) [1, · · · ,200] 197 107 46 62 87 63
Action Space [0,1, · · · ,20] [0,1, · · · ,20] [0,1, · · · ,20] [0,1, · · · ,20] [0,1, · · · ,20] [0,1, · · · ,20]

Table 2 Hyperparameters and action space of the A3C algorithm in our six lost sales inventory model settings.

5. Performance Evaluation of DRL in Lost Sales Inventory Models

To allow for a stringent performance analysis of the A3C algorithm in inventory management we

develop two sets of experiments. The first experiment considers small-scale settings for which the

dynamic program can be solved. Then we can compare the optimality gaps of the A3C algorithm

with the optimality gaps of state-of-the-art heuristic policies and approximate dynamic program-

ming methods in Section 5.1. The second experiment considers larger settings where we can no

longer solve for the optimal policy so we can only evaluate A3C relative to other heuristics in Sec-

tion 5.2. We also provide sensitivity with respect to the demand (by testing different distributions

including larger supports), lead time (and lead time uncertainty) and service levels.

5.1. Optimality gaps of the A3C algorithm and benchmarks for lost sales

We adopt six of the numerical experiments of Zipkin [2008a] to compare the A3C algorithm with

several well-performing heuristics and methods using approximate dynamic programming and to

stringently compare versus the optimal policy. All experiments have a unit holding cost h = 1,

ordering cost c = 0 and demand is Poisson distributed with λ = 5. Lead times are 2, 3 and 4

periods and the shortage penalty p is either 4 or 9, resulting in six settings. The hyperparameters

of the A3C algorithm are automatically tuned as described in Section 4. Table 2 reports the tuning

ranges, the best performing hyperparameters and the action space we used in each experiment.

We benchmark the A3C algorithm against six heuristic policies. Three policies are simple to

implement and possess interesting asymptotic behaviour: a Base-Stock policy, a Constant Order

policy and a Capped Base-Stock policy. In addition we add three ADP policies: the Myopic 1-

period and Myopic 2-period policies that have been shown by Zipkin [2008a] to perform well across

a variety of settings, as well as the LP-ADP approach of Sun et al. [2016].

The optimal cost for each scenario was determined by numerically solving the DP using a discount

factor of 99.9%. The costs obtained by the A3C algorithm are found by simulation and shown with

95% confidence intervals. The other policies’ parameters are optimized by simulation, after which

the steady state distribution of their Markov chain was computed to compute its expected cost.

Figure 2 plots the results of our numerical experiment. The A3C algorithm performs in line

with the Myopic 1-period policy but cannot match the performance of the Myopic 2-period or

the Capped Base-Stock policy. It does perform better than the Base-Stock and Constant Order

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 17

Myopic
1-period

Myopic
2-period

Base-Stock Constant Order Capped
Base-Stock

A3C

p l

4

4

9

4

9

9

2

3

4

2

3

4

0%

10%

20%

30%

40%

50%

60%

70%
O

pt
im

al
ity

 G
ap

 (%
)

3.6 5.2 7.0

2.1
4.1 5.3

0.2 0.9 1.9 0.2 0.6 1.2
5.5

8.3 9.9

3.8 5.1 6.3

19.8

14.6
11.4

68.6

57.2

50.1

0.2 0.7 1.5 0.5 1.4 1.0
3.2 3.0

6.7
4.8 3.1 3.4

Figure 2 The A3C algorithm performs in line with the Myopic 1-period policy but cannot match the performance

of the Myopic 2-period policy nor of the even better performing Capped Base-Stock policy. Yet A3C

does perform better than the Base-Stock and Constant Order policy.

policies. We can thus conclude that the A3C algorithm, with limited modification, develops good

policies for the lost sales inventory problem, yet cannot beat the best performing heuristics.

Figure 3 reports the performance of 100 runs of the LP-ADP approach of Sun et al. [2016] with

p= 4 and l= 4. One run corresponds to sampling 6,000 demands. Then we use the myopic policy

and store the 6,000 states visited and actions taken to construct the LP. We exclude the results of

the first 1,000 periods warm-up. Then we solve the LP to obtain the coefficients of the quadratic

approximation. Finally, we evaluate the performance of the LP-greedy policy for 60,000 periods,

excluding a warm-up of 10,000 periods. This concludes one LP-ADP run.

It is striking in Figure 3 that the results are very run dependent: only a minority of the runs

achieves reasonable performance yet no run outperformed the myopic sampling test policy. Sun

et al. [2016] do report occasional improvements over the sampling test policy. While LP-ADP has

been reported to obtain results in line or slightly better than the sampling test policy, in our

experience it does not appear to be a stable, nor well-performing method for our lost sales inventory

problem. We tested different lengths of sample paths but did not observe any improvement in

performance. The benefit of LP-ADP is that it is computationally less intensive than A3C. One

LP-ADP run can typically be finished in minutes instead of hours. Even 100 runs was easily done

on one personal computer without requiring cloud computing.

The automatic tuning of the hyperparameter values revealed that the A3C performance was

fairly insensitive to the length of the buffer size and the set of best performing values of the learning

rate and entropy can be enveloped by an ellipsoid. Figure 4 shows the optimality gaps of each of

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
18 00(0), pp. 000–000, © 0000 INFORMS

0 20 40 60 10080

50

100

150

200

250

Sample run number

O
pt

im
al

ity
 G

ap
 (%

)

Myopic Policy Results LP-ADP

Runs where policy
never orders.

7%

Figure 3 Sample run performance of the LP-ADP method relative to the myopic base policy for a lost sales

problem with p= 4 and l= 4.

the training runs of the A3C algorithm. We use a logarithmic scale as a significant amount of runs

have very high optimality gaps. The red dots indicate policies that diverged to policies that reach

infinitely high or low inventory levels such that the optimality gap is effectively infinitely large. In

our visual their optimality gaps are around 104% as we bound the state space for numerical reasons

(i.e., we do not want to feed infinite values to the neural net). The best learning rate seems to be

in the neighbourhood of 10−4 while the entropy factor should be set smaller than 10−7 to achieve

good performance. We have used the same hyperparameter values in Section 5.2.

5.2. Sensitivity analysis

In what follows we provide numerical sensitivity of the performance of the A3C algorithm for

larger demand support, longer (and stochastic) lead times and increasing service levels. Many

of these settings no longer allow for a comparison with the optimal policy due to the curse of

dimensionality. In fact, also the methods that rely on approximate dynamic programming (i.e., the

myopic policies and the LP-ADP method) suffer in these problem settings. To facilitate comparison

across our sensitivity analysis we thus only compare the A3C algorithm with the Constant Order,

the Base-Stock and the Capped Base-Stock policy. Given its excellent performance in Figure 2, the

latter serves as a solid benchmark while the other two are easy-to-use with interesting asymptotic

properties. All reported costs are computed by simulating 100 sample paths of 100,000 periods

and include 95% confidence intervals. The parameters of our base case (setting 3 in Figure 2) are:

h= 1, c= 0, l= 4, p= 4 while demand is Poisson distributed with λ= 5.

Sensitivity to longer lead times Figure 5 plots the results when the lead time is increased

from 5 up to 10 periods. Similar to Figure 2, the Capped Base-Stock policy outperforms the A3C

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 19

Entropy regularization
(log scale power of 10)

O
pt

im
al

ity
 G

ap
 (%

) (
lo

g
sc

al
e

po
w

er
 o

f 1
0)

02

4

0

8

-2 -4 -6 -8 -10

3

1.5

0

0.5

1

2

2.5

Learning rate
 (log scale power of 10)

6

-5

-10

3.5

4

Figure 4 The automatic tuning of the learning rate and the entropy over the intervals specified in Table 1 reveals

that all points on the convex hull (marked with black star) fit an ellipsoid (results shown for p= 4 and

l = 4). The red dots indicate policies where the A3C algorithm does not develop a good policy, e.g.,

policies that never place orders, or policies that result in infinite inventories.

algorithm for small lead times. Interestingly, the A3C algorithm performs particularly well for large

lead times, outperforming the benchmark policies. The reason for this excellent performance is

related to the fact that we adopt a discrete demand distribution while the asymptotic properties

of the Constant Order and Capped Base-Stock policies only hold for continuous demand supports.

Due to the integer-spaced and small demand support, the Constant Order policy was unable to

order close enough to the mean demand. (Our mean in the base case is 5; constantly ordering 5

units would result in large inventory holding costs while ordering 4 units causes on average 20% of

the demand to be lost.) The A3C algorithm, however, converges to a policy that alternates between

ordering four and five units such that its average order quantity is closer to the mean demand.

This inspired us to design an additional mixed policy that orders either 4 or 5 units according to

a two-point distribution P[qt = 4] = P and P[qt = 5] = (1− P) and we numerically search over P .

Figure 5 shows that this mixed strategy policy performs better than the benchmark policies and

matches the performance of the A3C algorithm.

We acknowledge that these findings relate to our use of a small and integer demand support and

that the discretization effect will fade away for larger demand supports. Yet, we find it interesting

to show how the A3C algorithm may inspire the development of new benchmark heuristics.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
20 00(0), pp. 000–000, © 0000 INFORMS

5 6 7 8 9 10

5.0

5.5

6

Lead time (l)

A
ve

ra
ge

co
st

A3C

Constant Order

Base-Stock

Capped Base-Stock

Mixed strategy

Figure 5 Increasing the lead time favors the A3C algorithm, ultimately outperforming all benchmarks.

10 15 20 25

7.0

8.0

9

10

11

12

Mean demand (λ)

A
ve

ra
ge

co
st

A3C

Constant Order

Base-Stock

Capped Base-Stock

Figure 6 Increasing the mean demand does not significantly impact the performance of the A3C algorithm.

Sensitivity to larger demand support To demonstrate how the A3C algorithm performs

on larger problem settings we let the mean demand increase towards 25 in steps of five. To cope

with the larger demand we enlarged the action space of the A3C algorithm to the range [0,100]

for this analysis. We observe in Figure 6 how a larger demand support does not significantly alter

the relative performance compared to the benchmark policies. For this specific cost and lead time

setting the A3C algorithm continues to perform slightly worse than the Capped Base-Stock policy

but outperforms the constant-order and base-stock policy. This supports our findings in Section 5.1

and provides confidence that the A3C algorithm performs well in large settings.

We also tested the impact of different demand distributions, i.e., a uniform and a geometric

distribution but this did not yield clear-cut insights. It depends on the benchmark and problem

setting whether the relative performance of the A3C improves or reduces.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 21

4 9 19 49
0

10

20

30

40

50

60

Penalty (p)

A
ve

ra
ge

co
st

A3C

Constant Order

Base-Stock

Capped Base-Stock

Figure 7 Increasing the penalty cost (and thus service level) shows how the A3C algorithm performs in line with

the (Capped) Base-Stock policy. The Constant Order policy suffers when the lost sales penalty rises.

Sensitivity to different service levels We subsequently assess the impact of the service level

by letting the lost sales penalty p vary between {4,9,19,49}. The A3C algorithm performs in line

with the Capped Base-Stock and the regular Base-Stock policy, which are both asymptotically

optimal for large penalty costs. The A3C algorithm is able to develop policies close to these

asymptotically optimal heuristics, performing for instance within 1% for the highest penalty cost

we tested (p= 49).

Inclusion of stochastic lead times We also analyzed the performance under stochastic lead

times. We uniformly sample the delivery lead time of each order from a discrete set of realizations

on the integer space [l, l], where the decision-maker does not have access to the arrival times of

individual orders. At the beginning of period t the decision-maker thus observes the inventory

before ordering (consisting of the ending inventory of last period plus all orders that arrive in

period t) and the pipeline vector including all outstanding orders that have not arrived yet. In

addition to learning the demand distribution, the model should thus also learn how to cope with

uncertainty in the lead time.

We use the same base case and sample the lead times from a uniform distribution on the interval

[l, l]. We fix l= 2 and let l increase from 4 to 11. To the best of our knowledge no tailored heuristics

exist in the lost sales setting with stochastic lead times. Janakiraman and Roundy [2004] investigate

base-stock policies in this setting (albeit without order cross-overs) due to their simplicity —

despite being sub-optimal. We thus compare against the same benchmark policies as the previous

sensitivity experiments.

Our results demonstrate that the Capped Base-Stock policy continues to outperform even for

stochastic lead times. Figure 8 demonstrates how the A3C algorithm performs in line with a

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
22 00(0), pp. 000–000, © 0000 INFORMS

5 6 7 8 9 10 11

7.0

7.5

8

8.5

9

Max lead time (l)

A
ve

ra
ge

co
st

A3C

Constant Order

Base-Stock

Capped Base-Stock

Figure 8 When lead times are stochastic the A3C algorithm outperforms a simple Base-Stock policy, performs in

line with a Constant Order policy but can not outperform a Capped Base-Stock policy in all evaluated

settings. Additional tuning may reduce the gap with the Capped Base-Stock policy.

constant-order policy, outperforms the Base-Stock policy and performs slightly worse than the

Capped Base-Stock policy in all but one setting. The fact that the setting with l= 8 does approach

the Capped Base-Stock policy indicates there may be potential for further improvement in the

other settings as well by further tuning the algorithm.

6. Performance Evaluation of DRL in Dual Sourcing Inventory Models

Problem setting and Formulation In the conventional dual sourcing or dual mode model,

inventory can be replenished at unit cost cr using a regular source with lead time lr and using

an expedited source with lead time le < lr at premium unit cost ce > cr. At the beginning of

any period t, two order quantities, qrt ≥ 0 and qet ≥ 0, must be decided knowing the last observed

inventory on hand, It−1, and outstanding receipts or “pipeline” vector Qt−1 = (qrt−lr +qet−le , q
r
t−lr+1+

qet−le+1, · · · , qrt−lr+le−1 + qet−1, q
r
t−lr+le−2, · · · , q

r
t−1). We note that this formulation assumes strictly

positive lead times. If le=0, there are no outstanding expedited orders. After the order decision,

orders qrt−lr and qet−le are received and added to the on-hand inventory. Finally, the unknown

demand dt is realized and subtracted from the on-hand inventory. Excess demand is backlogged

so that the inventory and pipeline vector evolve as It = It−1 + qrt−lr + qet−le − dt and Qt = (qrt−lr+1 +

qet−le+1, q
r
t−lr+2 + qet−le+2, · · · , qrt−lr+le + qet , q

r
t−lr+le−1, · · · , q

r
t).

The dual sourcing problem can be modeled as a Markov Decision Process with state St =

(It−1,Qt−1) at time t. Similarly to the lost sales system we can add orders placed lr/le peri-

ods ago to the inventory on hand such that the state space becomes lr-dimensional: St = (s0 =

It−1 + qrt−lr + qet−le , s1 = qrt−lr+1 + qet−le+1, s2 = qrt−lr+2 + qet−le+2, · · · , sle = qrt−lr+le + qet−1, sle+1 =

qrt−lr+le−1, · · · , slr+1 = qrt−1). We note that future costs in periods t to t+ le−1 cannot be influenced

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 23

O
pt

im
al

ity
 G

ap
 (%

)
ce lr

105

105

105

110

110

110

2
2
3
3
4
4

Tailored Base Surge (TBS) A3CSingle Index (SI)Dual Index (DI)Capped Dual Index (CDI)
0%

1%

2%

0.030.00
0.06

0.11
0.00 0.00

0.11
0.18

0.27
0.36 0.36

0.49
0.56

1.03
0.98

2.11

1.43

2.44

0.06

0.99

0.01

0.71

0.00

0.58
0.52

0.80 0.82

0.51

1.85

1.33

Figure 9 The A3C algorithm is able to develop policies whose expected cost is within 2% of the optimal cost.

This performance is comparable to Tailored Base-Surge, Single Index and Dual Index policies, but

uniformly dominated by the Capped Dual Index policy (as expected given its robust optimality). Single

and Dual Index performance deteriorates as the lead time increases while TBS improves.

and are thus sunk at time t. Hence the state space dimension of the dynamic program can be

reduced to lr − le [Sheopuri et al. 2010]. The action taken in period t is now two-dimensional:

at = (qrt , q
e
t) consisting of the ordered quantities from the regular and expedited source, respectively.

Results of Applying DRL We evaluate the performance of DRL in the six small-scale dual

sourcing settings of Veeraraghavan and Scheller-Wolf [2008] with linear sourcing costs for which the

dynamic program is numerically solvable. The results are compared versus well-known heuristics.

Since the value function of the dual sourcing problem is L\-convex, we also benchmark against the

LP-ADP technique, used by Chen and Yang [2019] in dual sourcing with supply uncertainty.

To keep the dynamic program computationally solvable, the lead time of the expedited source

is 0 with a discrete uniform demand over {0,1,2,3,4}. Unit holding and backlog costs in all six

experiments are h= 5 and b= 495 while the unit sourcing cost of the regular source cr = 100. The

six experiments range in their unit expediting sourcing cost ce (high = 110 or low =105) and the

regular source’s lead time lr (small = 2, medium = 3 and high = 4). All results are obtained as

described in the lost sales problem in Section 5.1. Figure 9 reports our results and shows that the

A3C algorithm succeeds in developing a policy that performs within 2% of optimality in all six

experiments. This performance is comparable to the Single Index and Tailored Base Surge policies.

The Capped Dual Index policy, which is robustly optimal, also outperforms all other policies in this

stochastic setting. The optimality gaps are smaller compared to the lost sales settings we tested (as

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
24 00(0), pp. 000–000, © 0000 INFORMS

A3C optimality gap during training

Best Solution found during training

Optimality gap of the A3C algorithm during training.

Training Epoch (100,000 periods).

O
pt

im
al

ity
 G

ap
 (%

)

0 100 200 300 400 500 600 700
0%

20%

40%

60%

80%

100%

Figure 10 The A3C algorithm quickly converges to a decent policy (within ≈ 20% of optimality). Then it trains

fast (≈ 200 episodes of length 100,000 periods) to around 5%, after which it steadily reduces the

optimality gap to less than 2% while exploring policies that fall within 10-20% of the optimal policy.

is also apparent by the scale of the vertical axis). This may be because all policies use a base-stock

policy to control the local orders, which may reduce the cost differences between our benchmarks.

We also compare against the LP-ADP algorithm that Chen and Yang [2019] used in a dual

sourcing setting with supply uncertainty. We used the SI, DI, CDI and TBS policies as sample

test policies, and for each sample path we solved the LP and evaluated the LP-greedy policies. We

repeated this procedure for 100 different sample paths and tested sample paths of lengths 6,000,

11,000 and 60,000. Unfortunately, LP-ADP using this procedure did not manage to develop policies

for dual sourcing that outperformed the test policies. Rather, the LP-ADP policies were often too

myopic in nature; e.g., many policies did not order, or placed only expedited orders.

A potential reason may be that, in contrast to Chen and Yang [2019], our model contains no

supply uncertainty and perhaps the latter is needed for LP-ADP to provide improvement over

the test policies. Or perhaps the LP-ADP improvement documented by Chen and Yang [2019] in

a setting with supply uncertainty resulted from using test policies that were not developed for a

dual-sourcing setting with supply uncertainty. We conclude that, in our experience, the LP-ADP

method was highly dependent on the sample test policy and failed to improve on the benchmark

dual-sourcing heuristics that we used as sample test policies.

Noteworthy is that the training time of A3C remains relatively stable independent on the slow

source’s lead time, in contrast to dynamic programming. Nonetheless, it is not exceptional that

more than five million periods are simulated per agent to find near-optimal policies, even in small-

scale experiments. Figure 10 plots an example of a training curve of the A3C algorithm, where the

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 25

best policy is obtained after 4.5 million periods of simulation per agent. Typically, the algorithm

converges quickly to a relatively good policy (within ≈ 20% of optimal cost). Then it trains fast (≈

200 episodes of length 100,000 periods) to approximately 5%, after which it steadily reduces the

optimality gap to less than 2%. These results were obtained by occasionally restarting trained mod-

els with different hyperparameter values. For instance, a smaller learning rate could occasionally

improve performance of these pre-trained models.

7. Performance Evaluation of DRL in Multi-echelon Inventory Models

Problem setting and Formulation We adopt the multi-echelon inventory model of Van Roy

et al. [1997] with one warehouse and K identical retailers (see Figure 11). Van Roy et al. [1997]

are the first to adopt a neuro-dynamic programming approach in inventory management. They

use a neural net to approximate the value function which is updated using temporal difference

learning. Employing the same setting allows us to show how a deeper neural net and a more

advanced algorithm eliminates the need for manual feature engineering, which was needed to make

the algorithm of Van Roy et al. [1997] work well.

Inventory held at the central warehouse or at the retailers incurs a unit holding cost hw and hr,

respectively. The replenishment lead time from the manufacturer to the warehouse is lw periods,

and from the warehouse to any retailer lr periods. All locations have limited capacity: (1) maximum

production rate is Cm units per period; (2) warehouse inventory position cannot exceed Cw units;

and (3) retail inventory position cannot exceed Cr units.

The model’s MDP has state St = (Iwt−1,Q
w
t−1, I

r
t−1,Q

r
t−1), where Iwt−1 is the end-of-

period inventory at the warehouse and Qw
t−1 = (qwt−lw , · · · , q

w
t−1) its outstanding orders;

Irt−1 = (I1t−1, · · · , IKt−1) the end-of-period inventories at the K retailers, and Qr
t−1 =

(q1t−lr , · · · , q
1
t−1, q

2
t−lr , · · · , q

2
t−1, · · · , qKt−lr , · · · , q

K
t−1) their respective outstanding orders.

The action vector at = (qwt , q
1
t , · · · , qKt), consists of the order quantities: qwt at the warehouse

and qit (i = 1, · · · ,K) at retailer i. The retailer order quantities cannot exceed the end-of-period

inventory on hand in the warehouse, i.e.,
K∑
i=1

qit < I
w
t−1 + qwt−lw . The sequence of events is as follows.

Each period t demand di at retailer i is fulfilled by the inventory on hand at retailer i. In case

of a stock-out, [di − (I it−1 + qit−lr)]+ > 0, customers either decide to wait for an expedited, same-

day delivery from the warehouse — this occurs with probability Pw— or walk away such that

the retailer incurs a lost sale with probability 1− Pw. The system is thus a hybrid of a backlog-

ging and lost sales model. Important is that expedited deliveries are shipped after retailers have

placed orders (q1t , · · · , qKt) and are allocated inventory from the warehouse. This implies that only

[Iwt−1 + qwt−lw −
K∑
i=1

qit] units can be expedited. Let Bt denote the number of customers in period t

that request an expedited delivery. The number of requested expedited deliveries exceeding the

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
26 00(0), pp. 000–000, © 0000 INFORMS

It

It

It

It

qt-1
wq w

qt-1
1

q1
t-lw

K
t-lw

q

qt-1
K

w

1

2

K

MANUFACTURER WAREHOUSE RETAILERS

t-lr

Figure 11 Two-echelon supply chain of Van Roy et al. [1997] in which one capacitated warehouse is replenished

from a manufacturer with lead time lr and replenishes K capacitated retailers with lead time lw.

available end-of-period inventory on hand at the warehouse,

[
Bt− [Iwt−1 + qwt−lw −

K∑
i=1

qit]

]+
, is lost

and the remainder, Bt−
[
Bt− [Iwt−1 + qwt−lw −

K∑
i=1

qit]

]+
, is expedited and shipped same-day from the

warehouse. Expedited deliveries by the warehouse incur a unit cost cw while unmet demand is lost

at a unit penalty cost p. The cost in period t thus is:

ct(St, at) = hwI
w
t +hr

K∑
i=1

I it + cw

Bt−[Bt− [Iwt−1 + qwt−lw −
K∑
i=1

qit]

]+
+ p

[Bt− [Iwt−1 + qwt−lw −
K∑
i=1

qit]

]+
+

K∑
i=1

[
di− I it−1 + qit−lr

]+−Bt
 , (2)

where the first two elements represent the inventory holding costs in the supply chain, the third

element the expedited delivery costs and the last two elements the lost sales costs upon stock-out

at the warehouse and upon stock-out at the retailer. The state evolves as follows: Iwt = Iwt−1 +

qt−lw −
K∑
i=1

qit −

[
Bt−

[
Bt− [Iwt−1 + qwt−lw −

K∑
i=1

qit]

]+]
, I it = [I it−1 + qit−lr − di]

+ for each retailer i,

Qw
t = (qwt−lw+1, · · · , qwt) and Qi

t = (qit−lr+1, · · · , qit) for each retailer i.

Results of Applying DRL To apply A3C in the multi-echelon inventory model, we adapt the

width of the first layer of the neural net to the dimension of the state space (lw+Klr). As the action

space is K-dimensional, we reduce the action space by adopting a base-stock replenishment policy

for the warehouse and the retailers with state-dependent base-stock levels, similar to Van Roy

et al. [1997]. This reduces the action space to only two dimensions at = [ywSt , y
r
St

], consisting of a

base-stock level at the warehouse and a base-stock level for all retailers, which all depend on the

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 27

state St. The warehouse order qwt raises its inventory position to its base-stock level ywst . Note that

qwt may not exceed production capacity Cm and the inventory position may not exceed Cw. Hence,

qwt = min

(
Cw− (Iwt−1 +

lw∑
i=1

qwt−i),min

(
ywst − (Iwt−1 +

lw∑
i=1

qwt−i),C
m

))
.

After the warehouse has ordered, each retailer places its order to raise their inventory position to

the base-stock level yrSt : q
i
t = yrSt− (I it−1 +

lr∑
i=1

qit−i). After ordering, each retailer’s inventory position

may not exceed Cr:

qit ≤Cr− (I it−1 +

lr∑
i=1

qit−i).

If the warehouse has insufficient capacity to deliver all retailer orders, the inventory is allocated

to the retailers by minimizing the difference in inventory position between all retailers after orders

are allocated following Van Roy et al. [1997].

We test the two numerical settings used in Van Roy et al. [1997] (see Table 4) Each element

of the random demand vector D = (d1, · · · , dK) is sampled from a normal distribution with mean

µ and standard deviation σ, rounded to the nearest integer. As computing the optimal policy

is intractable we only compare the A3C versus a base-stock policy with constant, i.e., not state-

dependent, base-stock levels yw and yr. Unlike the dual sourcing and lost sales inventory models

we cannot deploy the LP-ADP approach, as we do not know the structure of the value function,

and the K-dimensional demand makes the number of transition probabilities too large and the

formulation of the constraints of the LP infeasible.

We trained the A3C algorithm using the automatic tuning process with the same set of hyper-

parameters as in dual sourcing and lost sales (see Table 3). We fixed the buffer size at 100, which

provided decent results after 100 training runs of the A3C algorithm. The discrete action space

of the A3C algorithm is identical to that used in Van Roy et al. [1997]. The state-dependent

base-stock levels ywSt are restricted to 6 values {50,60, · · · ,100} while yrSt is restricted to 9 values

{0,5,10, · · · ,40} in Setting 1 and 11 values {0,5,10, · · · ,50} in Setting 2. Restricting the base-stock

levels to this set of values will go at the expense of being able to reach the optimal policy. Yet, it

allowed us to improve on a state-independent base-stock policy in which all base-stock levels are

allowed. We find that the A3C algorithm improves approximately 9% and 12% on the base-stock

policy with constant base-stock levels. These results are in line with, and slightly better in setting 2,

than Van Roy et al. [1997] who report savings around 10%.

One key distinguishing factor with the method of Van Roy et al. [1997] is that A3C (or DRL)

does not require manual feature engineering. Van Roy et al. [1997] manually develop 23 features

based on the state vector. Instead, DRL or A3C learns directly from the state vector. This is

possible because our network uses four layers and is ‘deeper’ than the single layer with activation

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
28 00(0), pp. 000–000, © 0000 INFORMS

Hyperparameters Tuning Range Setting 1 Setting 2

Learning rate used [10−5,10−3] 5.78× 10−5 1.74× 10−4

Entropy regularization (βE) [10−10,10−6] 4.68× 10−5 1.46× 10−8

Length of the Episode buffer (m) 100 100 100
Base-stock levels warehouse (ywSt) [50,60, · · · ,100] [50,60, · · · ,100]
Base-stock levels retailers (yrSt) [0,5, · · · ,40] [0,5, · · · ,50]
Table 3 Hyperparameters of the A3C algorithm to achieve results in both multi-echelon settings.

lw lr µ σ K hw hr cw p Pw Cp Cw Cr

Setting 1 2 2 5 14 10 3 3 0 60 0.8 100 1000 100
Setting 2 5 3 0 20 10 3 3 0 60 0.8 100 1000 100

Table 4 Numerical setting used in lost sales multi-echelon setting of Van Roy et al. [1997]

neural net used in Van Roy et al. [1997]. Their careful selection of the features has resulted in

excellent performance but required problem knowledge. In contrast, DRL does not require any

manual feature engineering, a desirable characteristic of a general purpose technology. Moreover,

we observe that A3C manages to find slightly better policies in the larger setting 2.

8. Conclusions and Reflections

Our study provides evidence that deep reinforcement learning can effectively solve classic,

intractable inventory problems. The A3C algorithm can be trained to produce policies that match

the performance of state-of-the-art heuristics and other approximate dynamic programming meth-

ods. Applying deep reinforcement learning, however, is not effortless. Initial tuning of the hyper-

parameters is computationally and time-intensive and requires both art and science. Yet, after

extensive manual tuning of 9 hyperparameters in one problem setting, fixing 6 parameters and

automatically tuning the learning rate, entropy regularization, and buffer size resulted in good

performance in the other two problem settings. More so, using only one well-performing hyper-

parameter set resulted in good performance across all sensitivity analyses. Given such minimal

changes among three different problem settings, DRL seems a promising general purpose technol-

ogy.

Our rigorous comparative analysis required the controlled “lab” environment for which the

stochastic inventory policies have been developed. Applying the A3C algorithm on a dual-mode

transportation problem setting of a consumer goods manufacturer with real data (c.f. Online

Appendix) provides evidence that our lab findings may extrapolate to “the real world.” We find

that the A3C algorithm adapts well to company-specific problem settings without requiring re-

tuning of the algorithm. This agrees with one of the authors’ experience with applying DRL in

a large distribution company: While training and tuning DRL for the first warehouse required

substantial setup time and cost, scaling the algorithms to other locations was significantly easier

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 29

because both the models and the parameters could be re-used (similar to our experience here going

from lost-sales to the other two problem settings). Our analysis and reported training times only

concern the initial setup time and cost, and thus are likely conservative.

Our lab environment assumed the demand distribution was known and our training effectively

could sample an unlimited number of data points from that distribution. It is well known that

machine learning can learn over time, so our analysis focused on the comparative performance

without demand learning. (Again, this implies that our assessment of DRL relative to heuristics

that don’t learn is likely conservative.) In addition to computational power, machine learning—and

especially deep learning—also requires vast amounts of training data to perform well. Whereas

this is true for deep supervised learning, the need for (big) data appears more nuanced for deep

reinforcement learning applied to inventory management: The practical experiment in the Online

Appendix shows that training using a relatively small demand data set was sufficient to achieve

good out-of-sample performance. This also is encouraging for adoption of DRL in the real world.

In conclusion: DRL can effectively solve classic, intractable inventory problems both in a con-

trolled lab environment as well as in practical settings with complex environments (non-linear cost

functions with multiple constraints) and limited training data. Yet the first-time implementation

is computationally and time demanding. We also found that A3C does not outperform all heuristic

policies and remains, like other ADP methods, a black box. So our conclusion is nuanced: DRL

seems a promising general purpose technology that can be applied to intractable inventory prob-

lems. Yet, before applying DRL in practice, we recommend to study performance in non-stationary

environments with multiple products and unknown demands that must be learned from histori-

cal data. We also believe that there remains a job for academic inventory researchers to generate

structural policy insight or design specialized policies that are (ideally provably) near optimal. We

hope that by sharing our experience and code, this paper will provide a stepping stone for such

research in inventory management and other operational settings.

References

Arrow KJ, Karlin S (1958) Studies in the mathematical theory of inventory and production (Stanford Uni-

versity).

Bellman R (1954) The Theory of Dynamic Programming. Bulletin of the Amer Math Soc 60(6):503–515.

Bergstra J, Bengio Y (2012) Random Search for Hyper-Parameter Optimization. J. of Machine Learn. Res.

13:281–305.

Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD (2015) Hyperopt: a python library for model selection

and hyperparameter optimization. Comput. Sci. & Discovery 8(1):1749–4699.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
30 00(0), pp. 000–000, © 0000 INFORMS

Bergstra J, Yamins D, Cox DD (2013) Making a science of model search: Hyperparameter optimization in

hundreds of dimensions for vision architectures. Proceedings of the 30th International Conference on

International Conference on Machine Learning - Volume 28, 115–123.

Brown DB, Smith JE (2014) Information relaxations, duality, and convex stochastic dynamic programs. Ops

Res 62(6):1394–1415.

Chen W, Dawande M, Janakiraman G (2014) Fixed-dimensional stochastic dynamic programs: An approxi-

mation scheme and an inventory application. Ops Res 62(1):81–103.

Chen W, Yang H (2019) A heuristic based on quadratic approximation for dual sourcing problem with

general lead times and supply capacity uncertainty. IISE Transactions 51(9):943–956.

Clark AJ, Scarf H (1960) Optimal Policies for a Multi-echelon Inventory Problem. Mgt Sci 6(4):363–505.

de Kok T, Grob C, Laumanns M, Minner S, Rambau J, Schade K (2018) A typology and literature review

on stochastic multi-echelon inventory models. Eur J of Op Res 269(3):955–983.

Fang J, Zhao L, Fransoo JC, Van Woensel T (2013) Sourcing strategies in supply risk management: An

approximate dynamic programming approach. Comput. Oper. Res. 40(5):1371–1382.

Federgruen A, Zipkin P (1984) Approximations of dynamic, multilocation production and inventory prob-

lems. Mgt Sci 30(1):69–84.

Fukuda Y (1964) Optimal Policies for the Inventory Problem with Negotiable Leadtime. Mgt Sci 10(4):690–

708.

Giannoccaro I, Pontrandolfo P (2002) Inventory management in supply chains: a reinforcement learning

approach. Int. Journ. Prod. Econ. 78(2):153–161.

Goldberg DA, Katz-Rogozhnikov DA, Lu Y, Sharma M, Squillante MS (2016) Asymptotic Optimality of

Constant-Order Policies for Lost Sales Inventory Models with Large Lead Times. Math. Oper. Res.

41(3):898–913.

Halman N, Klabjan D, Mostagir M, Orlin J, Simchi-Levi D (2009) A fully polynomial-time approximation

scheme for single-item stochastic inventory control with discrete demand. Math. Oper. Res. 34(3):674–

685.

Hessel M, Modayil J, van Hasselt H, Schaul T, Ostrovski G, Dabney W, Horgan D, Piot B, Azar M, Silver

D (2017) Rainbow: Combining improvements in deep reinforcement learning. arXiv:1710.02298 .

Hua Z, Yu Y, Zhang W, Xu X (2015) Structural properties of the optimal policy for dual-sourcing systems

with general lead times. IIE Transactions 47(8):841–850.

Huh WT, Janakiraman G, Muckstadt JA, Rusmevichientong P (2009) Optimality of Order-Up-To Policies

in Lost Sales Inventory Systems. Mgt Sci 55(3):404–420.

Janakiraman G, Roundy RO (2004) Lost-sales problems with stochastic lead times: Convexity results for

basestock policies. Ops Res 52(5):795–803.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 31

Keller PW, Mannor S, Precup D (2006) Automatic basis function construction for approximate dynamic

programming and reinforcement learning. Proceedings of the 23rd International Conference on Machine

Learning, 449–456, ICML ’06 (ACM).

Kingma DP, Ba J (2015) Adam: A Method for Stochastic Optimization. arXiv:1412.6980 .

Kohl N, Stone P (2004) Policy gradient reinforcement learning for fast quadrupedal locomotion. Proceedings

of the IEEE International Conference on Robotics and Automation.

Levi R, Perakis G, Uichanco J (2015) The data-driven newsvendor problem: New bounds and insights. Ops

Res 63(6):1294–1306.

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous

Methods for Deep Reinforcement Learning. arXiv:1602.01783 .

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland

AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg

S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518:529–533.

Morton TE (1969) Bounds on the Solution of the Lagged Optimal Inventory Equation with no Demand-

Backlogging and Proportional Costs. SIAM Rev. 11(4):572–596.

Morton TE (1971) The Near-Myopic Nature of the Lagged-Proportional-Cost Inventory Problem with Lost-

Sales. Ops Res 19(7):1708–1716.

Murota K (2003) Discrete Convex Analysis: Monographs on Discrete Mathematics and Applications 10 (Soci-

ety for Industrial and Applied Mathematics).

Nahmias S, Smith SA (1993) Perspectives in Operations Management (Springer, Boston, MA).

Nahmias S, Smith SA (1994) Optimizing Inventory Levels in a Two Echelon Retailer System with Partial

Lost Sales. Ops Res 40(5):582–596.

Oroojlooyjadid A, Nazari M, Snyder L, Takáč M (2017) A Deep Q-Network for the Beer Game with Partial

Information. arXiv:1708.05924 .

Porteus EL (2002) Foundations of Stochastic Inventory Theory (Stanford Business Books).

Powell WB (2011) Approximate dynamic programming: solving the curses of dimensionality (Wiley).

Puterman ML (1994) Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley).

Reiman MI (2004) A new and simple policy for the continuous review lost sales inventory model. Working

Paper, Bell Labs, Lucent Technologies .

Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized experience replay. arXiv:1511.05952 .

Schulman J, Levine S, Moritz P, Jordan MI, Abbeel P (2017a) Trust region policy optimization.

arXiv:1502.05477 .

Schulman J, Moritz P, Levine S, Jordan M, Abbeel P (2015) High-Dimensional Continuous Control Using

Generalized Advantage Estimation. arXiv:1506.02438 .

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
32 00(0), pp. 000–000, © 0000 INFORMS

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017b) Proximal policy optimization algorithms.

arXiv:1707.06347 .

Sheopuri A, Janakiraman G, Seshadri S (2010) New Policies for the Stochastic Inventory Control Problem

with Two Supply Sources. Ops Res 58(3):734–745.

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I,

Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap

T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of go with deep neural

networks and tree search. Nature 529:484–489.

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton

A, et al. (2017) Mastering the game of go without human knowledge. Nature 550:354.

Strehl AL, Li L, Wiewiora E, Langford J, Littman ML (2006) Pac model-free reinforcement learning. Pro-

ceedings of the 23rd international conference on Machine learning, 881–888.

Sun P, Wang K, Zipkin P (2016) Quadratic Approximation of Cost Functions in Lost Sales and Perishable

Inventory Control Problems. Working Paper,Fuqua School of Business, Duke University .

Sutton RS, Barto AG (1998) Introduction to reinforcement learning, volume 135 (MIT press Cambridge).

Tesauro G (1995) Temporal difference learning and td-gammon. Communications of the ACM 38(3):58–68.

van Hasselt H, Guez A, Silver D (2015) Deep reinforcement learning with double q-learning.

arXiv:1509.06461 .

Van Roy B, Bertsekas DP, Lee Y, Tsitsikis JN (1997) A Neuro-Dynamic Programming Approach to Retailer

Inventory Management. Proceedings of the IEEE Conference on Decision and Control .

Veeraraghavan S, Scheller-Wolf A (2008) Now or Later: A Simple Policy for Effective Dual Sourcing in

Capacitated Systems. Ops Res 56(4):850–864.

Wang Z, Schaul T, Hessel M, van Hasselt H, Lanctot M, de Freitas N (2015) Dueling network architectures

for deep reinforcement learning. arXiv:1511.06581 .

Watkins C (1989) Learning from delayed rewards. Ph.D. thesis, Cambridge University.

Whittemore AS, Saunders SC (1977) Optimal Inventory Under Stochastic Demand With Two Supply

Options. J on Appl Math 32(2):293–305.

Williams R (1992) Simple statistical gradient-following algorithms for connectionist reinforcement learning.

Machine Learning 8(3):229–256.

Xin L (2019) Understanding the performance of capped base-stock policies in lost-sales inventory models.

Forthcoming in Operations Research. Available at SSRN: https://ssrn.com/abstract=3357241 .

Xin L, Van Mieghem JA (2021) Dual Sourcing, Dual Mode Dynamic Inventory Models: A Review. Working

Paper, UC Chicago .

Zipkin P (2008a) Old and new methods for lost-sales inventory systems. Ops Res 56(5):1256–1263.

Zipkin P (2008b) On the Structure of Lost-Sales Inventory Models. Ops Res 56(4):937–934.

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 33

Demand per period

K
r

Units ordered (q
r
)

Cost when sourcing from the regular
source in containers of size k

r

Empirical probability density function (pdf)

Best Gamma Fit (pdf) - G(1.98,5.34)

Empirical demand distribution is fitted by Gamma distribution.

P
ro

ba
bi

lit
y

of
 o

rd
er

 s
iz

e
ex

cl
. z

er
o

or
de

rs
 (%

)

Cost function employed in the practical setting.

Actual demand time-series used in the practical setting.

Order size (pallets)

O
rd

er
 s

iz
e

(p
al

le
ts

)

0 50 100 150 200 250

0

5

10

15

20

25

30

k
r

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 5 10 15 20 30 35

0
0

Period (weekdays in one year)

Figure 12 We applied the A3C algorithm on a real data set with actual daily demand time-series (top left) whose

empirical distribution is well-fitted by a discrete Gamma distribution Γ(1.98,5.34) (top right) and a

5.5% probability of no demand. Slow-mode transportation is containerized and each container has

maximum capacity kr and incurs a fixed ordercost Kr (bottom).

Online Appendix - Application at a Consumer Goods Manufacturer

We applied the A3C algorithm on a real dataset (see top left panel of Fig. 12) of a consumer

goods company that replenishes its distribution center using rail and road from its 1000km remote

manufacturing plant. To include practical constraints of rail transport, we modified the linear

sourcing costs in the conventional dual sourcing problem to Krd qrkr e+ crqr + ceqe, where Kr is the

fixed cost of ordering a container with capacity kr using rail transport (see bottom panel of Fig. 12).

The real demand time series contains approximately one year of demand-per-weekday data,

expressed in pallets. There is no demand in 5.5% of the (week)days; in the other days demand is

well fitted by a discretized (by rounding to the nearest integer) Gamma distribution Γ(1.98,5.34)

(see top right panel of Fig. 12). Daily inventory holding costs are 25% of the product value, which

we normalized to h = 1 per pallet (so that all other costs are normalized against h = 1). Unit

backlog costs b = 98 reflect a desired 99% service level using the critical fractile b
b+h

. The unit

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
34 00(0), pp. 000–000, © 0000 INFORMS

sourcing costs reflect actual price quotes and in-transit inventory costs: cr = 50 and ce = 75 per

pallet, and Kr = 500 per container shipped using rail with capacity kr = 33 pallets. Rail and truck

transport require lr = 7 and le = 4 days, respectively. These include actual transportation times as

well as additional processes such as order preparation and administrative tasks.

We compare two training methods: (1) using the first 70% of the sample path (by sampling

from the empirical distribution) to train the A3C algorithms and use the remaining 30% for

out-of-training-sample evaluation; and (2) training on the fitted gamma distribution (taking into

account the 5.5% probability of having no demand). For small scale problems we stringently eval-

uated the DRL’s value against the optimal value found by numerically solving the dual sourcing

dynamic program (DP). Given that the optimal policy of this specific problem setting is not known,

and that the problem size renders the dynamic program intractable, we benchmark performance

against “extrapolated optimality using clairvoyance” using the expected value of perfect informa-

tion (EVPI) as follows. First, we determine the expected cost under perfect information Cclair: For

a given demand sample path, solve for the cost of the optimal “clairvoyant” dual sourcing policy

assuming the future sample demand path is known. In the conventional setting where sourcing

costs are linear in the ordered volumes, the clairvoyant policy is simple: qrt = Dt+lr and qet = 0.

With non-linear sourcing costs (i.e., stemming from container constraints) we approximate the

infinite-horizon clairvoyant cost by solving, at each time t, the deterministic dual sourcing problem

using a MIP over the rolling horizon {t, . . . t+T}. We gradually increase the horizon length T until

the clairvoyant policy converges. We repeat for 10 demand samples and average to compute Cclair.

Second, we estimate the optimal cost by adding the estimated EVPI to Cclair. EVPI is defined

as the difference between optimal cost and Cclair and equals the optimal expected holding and

backlogging costs. In a single-sourcing newsvendor model, the latter is proportional to the standard

deviation of demand if demand is normally distributed with mean µ and variance σ2 [Porteus 2002].

Therefore, the scaled EVPI/µ is proportional to the coefficient of variation: EVPI/µ= βσ/µ.

We boldly extrapolate this property to our dual sourcing system and estimate the factor β in a

small scale system (by solving its dual sourcing DP) and extrapolate to large scale (practical µ) to

estimate the large-scale EVPI. Figure 13 provides some first evidence of this linear relationship for

dual sourcing in our practical setting. We compute the clairvoyant policy with the real data and

add the extrapolated EVPI to estimate optimal cost, as shown in Figure 13. The A3C algorithm

develops policies within 6% and 7% of the extrapolated optimal costs for training method (1) and

(2), respectively.

We also evaluated against traditional dual sourcing heuristics. As these traditional heuristics

are designed for linear sourcing costs, they did not perform well in this cost setting and all only

relied on single sourcing fast. The A3C algorithm performed approximately 13% better than single

Electronic copy available at: https://ssrn.com/abstract=3302881

Deep Reinforcement Learning in Inventory Management
00(0), pp. 000–000, © 0000 INFORMS 35

Coefficient of variation (σ/µ) Standard deviation (σ)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1%

2%

3%

4%

5%

0%E
xp

ec
te

d
va

lu
e

of
 p

er
fe

ct
 in

fo
rm

at
io

n/
µ

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

E
xp

ec
te

d
va

lu
e

of
 p

er
fe

ct
 in

fo
rm

at
io

n

β

β

EVPI computed when
DP is tractable.

EVPI extrapolated
when problem size

becomes large.

EVPI computed when
DP is tractable.

6%

Figure 13 Left panel: Similar to single sourcing, the EVPI, evaluated with DP, remains linear in σ for dual

sourcing. Right panel: When the problem scale is too large to computationally solve the DP, we

estimate the optimal costs by adding the EVPI to the cost of the optimal clairvoyant policy. This

EVPI is found by extrapolating the linearity of EVPI from small (where β is estimated with DP) to

large scale systems.

sourcing when evaluated on the remaining 30% of demand samples. We did not observe strong

performance degradation of the A3C algorithm when we bootstrapped the out of sample data

points for evaluation on a larger dataset. This demonstrates that the A3C algorithm is capable

of developing good policies when trained using a relatively small real dataset for realistic cost

functions without needing any tailored heuristics.

Electronic copy available at: https://ssrn.com/abstract=3302881

