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Abstract

A number of decarbonization scenarios for the energy sector are built on simultaneous electri-
fication of energy demand, and decarbonization of electricity generation through renewable
energy sources. However, increased electricity demand due to heat and transport electrifi-
cation and the variability associated with renewables have the potential to disrupt stable
electric grid operation. To address these issues using demand response, researchers and
practitioners have increasingly turned towards automated decision support tools which uti-
lize machine learning and optimization algorithms. However, when applied naively, these
algorithms suffer from high sample complexity, which means that it is often impractical to
fit sufficiently complex models because of a lack of observed data. Recent advances have
shown that techniques such as transfer learning can address this problem and improve their
performance considerably - both in supervised and reinforcement learning contexts. Such
formulations allow models to leverage existing domain knowledge and human expertise in
addition to sparse observational data. More formally, transfer learning embodies all tech-
niques where one aims to increase (learning) performance in a target domain or task, by
using knowledge gained in a source domain or task. This paper provides a detailed overview
of state-of-the-art techniques on applying transfer learning in demand response, showing im-
provements that can exceed 30% in a variety of tasks. We observe that most research to date
has focused on transfer learning in the context of electricity demand prediction, although
reinforcement learning based controllers have also seen increasing attention. However, a
number of limitations remain in these studies, including a lack of benchmarks, systematic
performance improvement tracking, and consensus on techniques that can help avoid nega-
tive transfer.

1. Introduction

1.1. Background
A number of decarbonization scenarios for the energy sector are built on simultaneous

electrification of heating and transport, and decarbonization of electricity generation through
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renewable energy sources. The electrification of heating and transport significantly increases
electricity demand, and the variability in generation is expected to increase sharply with
more renewables in the grid. Taken together, these have the potential to disrupt stable
electric grid operation [1]. These problems appear on multiple levels. For customers, this
often means increasing energy costs, while also leading to voltage and power flow issues on
the distribution grid [2]. On the transmission side, it can lead to frequency issues caused by
inertia loss and steep ramp rates [3], as well as an increase in capacity requirements [4]. The
latter is particularly dangerous as the contracted capacity is often in the form of polluting
peaking plants, which detracts from the decarbonization objectives [5].

To address these issues, researchers and practitioners have increasingly turned towards
decision support tools that utilize machine learning algorithms [6]. Machine learning algo-
rithms allow stakeholders to accurately model [7] and predict energy demand [8], generation
[9] and prices [10]. These predictions can then be used to optimally schedule electricity de-
mand and generation to minimize grid issues, costs and carbon footprint. They can also be
used to improve user engagement and comfort, automatically detect and predict operational
faults [11] and inform policy choices [12]. Electricity demand scheduling or optimization for
grid decision support is more commonly referred to as Demand Response (DR). Automation,
relying on machine learning algorithms, is vital for DR, as the alternative of solely relying on
human domain experts to construct grid decision support tools is both impractical and eco-
nomically infeasible [13]. This is true especially in the area of residential user engagement,
more commonly known as residential DR, where machine learning will play a vital role to
ensure scalability [14]. In a more broader context, Reinforcement Learning (RL) is expected
to be of increasing importance in distribution grid decision support, as is illustrated by a
special set of RL environments, that should facilitate further research, introduced by Henry
and Ernst [15].

However, machine learning algorithms and decision support tools, such as reinforcement
learning, when applied naively, suffer from a number of issues. Foremost among these is
their high sample complexity, which means that it is often impractical to fit sufficiently
complex models in energy systems due to lack of data [16]. This hampers their ability
to generalize well in novel conditions, and manifests along all three dimensions of interest
in a learning system, i.e. they tend to show poor initial performance [17], improve only
slowly with observation data, and show asymptotic performance, which is demonstrably
sub-optimal [18]. One real-world example of this is the widespread use of local forecasting
models for (peak [19]) energy demand [20], generation and prices [21]. These models rely
primarily on on-site observation data to make forecasts [22]. However, due to limited data
availability and the curse of dimensionality, they invariably fail to capture both the low
frequency seasonality and the possibility of extreme events. The same problems arise in
applying reinforcement learning for active control. Often, these algorithms fail to converge
to the optimal policy simply because of how little interaction data is available in practice
and the naive manner in which the agents are formulated [18, 23, 24, 25, 26]. These are not
just theoretical problems; rather they are a critical roadblock in applying machine learning
to energy systems in practice.

Recent advances have shown that techniques such as transfer and semi-supervised learn-
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ing can improve the performance of machine learning models considerably - both in super-
vised and reinforcement learning contexts [27]. Such formulations allow models to leverage
existing data, domain knowledge and human expertise [28, 29]. The biggest advantage of
transfer learning is that it reduces the data complexity of machine learning models [30].
More specifically, by leveraging domain knowledge and/or previously gathered data, ma-
chine learning models tend to perform better with fewer data points, learn faster as more
data becomes available [17], and achieve higher asymptotic performance than their naive
counterparts [31].

Due to these benefits, transfer learning can enable large scale real-world roll-out of au-
tomated DR programs. This ranges from improved forecast and dynamics models to more
efficient reinforcement learning agents. In this paper, we present a thorough review of how
these techniques have been applied in practice to date for DR, in both supervised and re-
inforcement learning settings. For supervised learning, we focus on the three key variables
in energy systems: demand, generation and prices. For reinforcement learning, we focus
on how transfer learning can be used to directly improve the operational control of energy
flexible resources. We also take a closer look at some future directions based on research in
other domains, as well as how to address the unique challenges that arise in energy systems
modelling and control when applying transfer learning.

1.2. Previous Reviews

A number of recent reviews address machine learning and DR [32, 33], as well as how
reinforcement learning relates to it [34]. However, the focus in these reviews is typically
on general techniques, and not specifically on how to use transfer learning to operationalize
them in practice. On the other hand, a number of transfer learning surveys have been
presented in recent years, both on general transfer learning [35, 36] and on transfer within
the reinforcement learning setting. None of these focus on applications within the smart
grid or DR setting.

It is important to make the distinction between transfer learning and the broader field
of informed Machine Learning (ML). Informed machine learning covers a broader range of
possibilities to inform a ML agent. This can be through adding differential equations to
the loss-function, simulation results, knowledge graphs, etc [37]. Furthermore, informed ML
also incorporates what is referred to as physics informed ML [38]. This branch of ML aims
to incorporate physical knowledge into the learning pipeline. This can, for example, be
achieved by the introduction of physics-constrained convolutional encoder-decoder networks
[39]. Recent literature has even showed data free learning of parametric partial differential
equations by physics-informed convolutional neural networks [40]. Transfer learning, on
the other hand, focuses specifically on methods that inform a ML agent through transfer,
mostly of data, model parameters or feature representations. In transfer learning, one thus
typically makes a distinction between the source domain (or task), i.e., the source of the
initial knowledge and the target domain (or task), i.e., where the knowledge is used to
improve performance. Thus, while informed machine learning consists of all genres to inform
a machine learning agent, transfer learning is its subset, only focusing on those methods that
inform ML agents by transferring data or model parameters from a source domain/task to
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Figure 1: Knowledge representation and integration in informed machine learning. The knowledge is trans-
ferred from left to right and 4 archetypes of transfer learning have been identified, which have been explained
in Section 2. Full lines: research in demand response exist. Dashed lines: open research questions.

a target domain/task. Very recently, Von Rueden et al . [37] have presented an extensive
literature review on informed machine learning. However, this literature review is general
in its scope, and does not address the smart grid or DR case. In a subsequent section, we
make the link between transfer and informed ML more explicit.

Fig. 1 is a (non-exhaustive) visualization of how knowledge can be represented and
integrated in a ML pipeline. The full lines indicate the main focus of transfer learning, and
hence this paper. The dotted squares give a few examples how informed ML is broader than
transfer learning.

As different surveys have adopted different nomenclature, the nomenclature as used in
this paper is defined in Table 1.

1.3. Organisation

The following section discusses the other transfer learning reviews more in depth and
formalises a taxonomy based on the adopted definitions. The two sections thereafter present
how the different DR settings fit into the taxonomy. Section 3 focuses on transfer learning
in RL, while Section 4 focuses on transfer learning in supervised learning contexts. Section
5 presents different transfer learning applications within the DR setting. Section 6 identifies
future research opportunities. The final section concludes this review.
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Table 1: Terminology adopted in the paper

Source domain Target domain
State-space XS XT
Action-space US UT
Policy πS(xS) πT (xT )
Domain data DS DT
Reward function rS(x, u, x) rT (x, u, x)
Task TS TT
Input feature space XS XT

Target space YS YT

Figure 2: Rationale for transfer learning in supervised and reinforcement contexts.

2. Taxonomy of Transfer Learning Algorithms

2.1. Conventional Machine Learning

In conventional machine learning, a functional mapping is learnt between input and out-
put variables for a specific problem using a well-defined dataset. The only expert or domain
knowledge in this case is typically in the learning pipeline, i.e. in the choice of learning
algorithm or feature selection. Expert knowledge can therefore enable the practitioner to
identify the correct learning algorithm or set its hyperparameters accurately. Likewise, ex-
pert knowledge is useful in feature engineering or hand-crafting features, which are amenable
to the learning process. In all this, there is no notion of domain knowledge being used ex-
plicitly in the machine learning process, neither is there any transfer of knowledge across
subsequent models that may be built.

2.2. Transfer Learning

Informally, transfer learning can be defined as the process of extracting information from
a source domain and task and using this information to improve in a target domain and
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task [41]. Both Pan et al . [41] and Weiss et al . [35] formally define transfer learning as the
process of improving the target predictive function fT (·), given target domain DT and target
task TT , by using the information of a given source domain DS with corresponding source
task TS.

Fig. 1 shows how transfer learning differs from conventional machine learning. In contrast
to a single learning pipeline, with a well-defined dataset, there is no knowledge flow from
a source domain/task to a target domain/task. This allows for two learning pipelines in
the overall problem. For example, in type 1 first a model is learned using available historic
data. Thereafter, this model can be used in the target domain. Furthermore, apart from
domain knowledge in the learning pipeline, there thus arises the possibility to add domain
knowledge about the learning problem itself, this is identified as type 2 in Fig. 1. A similar
approach is used in type 3. However, here, a domain expert constructs a physics-based model
that can be used to guide the learner in the target domain. Type 4 considers these transfer
learning applications that extract a feature representation from the source to initialise the
target feature representation.

Fig. 2 illustrates how the initial and asymptotic performance of conventional machine
learning models can be improved with transfer learning algorithms, which incorporate do-
main knowledge or human expertise into machine learning models, both in the supervised
and reinforcement learning contexts. It should be noted that neither initial nor asymptotic
performance increase is guaranteed.

Based on the above definition, and the applications of transfer learning, Pan et al . [41]
subdivide transfer learning in three categories; inductive, transductive and unsupervised
transfer learning. These categories can be further subdivided based on the ML setting they
are applied in. DR control applications mainly benefit from ML in the supervised or RL
setting. However, Pan et al . [41] explicitly mention that they do not consider transfer in
reinforcement learning. Therefore, and because RL differs considerably from both super-
vised learning and unsupervised learning [42], we believe transfer in reinforcement learning
and supervised learning should be dealt with separately. To date, the unsupervised transfer
learning setting has only seen limited applications within the smart grid setting, and espe-
cially the DR setting. Consequently, a thorough discussion of this transfer learning setting
has been considered outside the scope of this review.

The next subsection begins with a description of the different methods to evaluate trans-
fer learning and the differences with evaluating other ML approaches. Thereafter, the differ-
ent categories of transfer learning: transductive and inductive transfer learning are described.
This is important to understand how and when what type of transfer learning can be ap-
plied in practice. The fifth and sixth subsections describe transfer learning in the context
of reinforcement and supervised learning, respectively. Throughout this discussion the DR
control use cases have always been kept in mind.

2.3. Evaluating Transfer Learning

Reinforcement learning agents are evaluated on how much reward they accrue over time.
Likewise, supervised learning algorithms are evaluated on a predefined loss function. When
these supervised learning algorithms are applied in an online fashion, i.e. where the model
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parameters are updated over time with newly observed data, the evolution of this loss
function over time is also an important metric to consider. Therefore, in practice, it is
not sufficient to consider how a supervised learning model or reinforcement learning agent
is performing, rather it is more relevant to track its performance over time as it gains
access to increasing amounts of data. These metrics can be summarized by the initial
performance, learning performance and asymptotic performance, as shown in Fig. 2 for
supervised learning. It is straightforward to extend these metrics to the case of reinforcement
learning. It is also important to note that these three metrics are agnostic to the defined
performance metric i.e. reward or loss function.

2.4. Categories of Transfer Learning

There are slight variations on how different authors have categorized transfer learning
methods in the past. These different types of categories arise from using either the feature
space or the task and domains as separators. For instance, Pan et al . [41] use differences in
task (T ) and domain (D) to subdivide transfer learning methods. In a RL setting, the task is
defined by the reward function. In contrast to Pan et al ., Weiss et al . [35] subdivide transfer
learning methods based on the feature space. In a RL setting, the feature space is defined
by the state-space X . Consequently, Weiss et al . [35] use two categories: homogeneous and
heterogeneous transfer learning. In homogeneous transfer learning, the source and target
feature spaces are the same, i.e. XS = XT . On the other hand, in heterogeneous transfer
learning, source and target domains are represented in different feature spaces.

Contrary to a focus on solution methods, Pan et al . [41] adopt a focus on the field
of transfer learning or, rather, the transfer learning problems. Naturally, this results in a
subdivision based on the task, i.e. reward function, and the domain D. Taylor et al . [36],
whose survey of transfer learning focuses on RL, in some sense also use this division. We
have adopted this as well. In transductive transfer learning the source and target task are
the same. However, the domain differs. Both types of transfer learning taxonomy, and their
interactions, have been visualised in Fig. 3. An example of transductive transfer learning
within the DR setting could be optimising local photovoltaic (PV) self-consumption with a
battery in the source domain and another device, such as an Electric Water Heater (EWH),
in the target domain. Intuitively, one can see that transfer learning can be of use in such a
scenario, as the control policy will be fairly similar in source and target domain. Potentially,
transfer learning could thus provide a jump start in the target domain.

Transductive transfer learning loans its name from transduction, or transductive learning,
as introduced by Vapnik [43, 44]. They are related in the sense that in the transductive
transfer learning setting, like in transductive learning, there is no interest in building a
general model that can be transferred (as DS 6= DT ) [45, 43], i.e., there is no interest in
a general model for transferring all future new tasks. Rather, interest lies in knowledge
transfer for this specific task. Thus, while Vapnik introduced transductive learning on the
level of a single data-point, here transductive learning is concerned with tasks and domains.

On the other hand, inductive transfer learning contains transfer learning problems with a
different task, within the same domain. Going back to the above mentioned battery control
use case, inductive transfer learning would be to switch using the battery’s energy buffer for
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Figure 3: Venn diagram of different transfer learning taxonomies.
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a self-consumption goal to an energy arbitrage goal. The dynamics of the battery stay the
same in both cases, and, therefore, relevant knowledge about the control problem can be
transferred between these two use cases. A more detailed treatment of how different transfer
learning techniques are applied in practice is deferred to Section 6.

3. Transfer in Reinforcement Learning

There does not exist one single method of utilising transfer learning for RL, and different
parts of a typical RL pipeline can benefit from it. This subsection first gives a short intro-
duction to RL and the terminology used. Thereafter, the different possibilities of transfer
learning within RL are explored, with a focus on DR applications. Fig. 4 summarizes the
different categories of utilizing transfer learning within RL.

Transfer in Reinforcement Learning

Transductive Transfer Inductive Transfer
DS 6= DT DS = DT
rS = rT rS 6= rT

Transfer in Model-Based Reinforcement Learning

Figure 4: Summary of Section 3

3.1. Background

RL uses the Markov Decision Process (MDP) mathematical framework to formalize the
decision making process. A MDP models the interaction between a decision making agent
and its environment. The agent interacts with the environment at discrete time-steps t. At
every such time-step, the agent perceives a state x ∈ X of the environment. Based on this
state, the agent has to decide upon an action u out of the set of all possible actions U . In the
subsequent time-step, the agent receives a reward. The value of this reward is determined
by a reward function r(xt, ut, xt+1), and thus partly influenced by the agent’s behaviour.
The dynamics of a finite MDP, with optimization horizon T ∈ N\{0}, are defined by the
transition function of the environment, given by (1) with νk process noise

xk+1 = f(xk, uk, νk) ∀k ∈ {0, . . . , T − 1}. (1)

The conditional probability of perceiving state xt+1 and reward r, given particular values
of the preceding state xt and the chosen action ut, is given by P (xt+1, rt+1|xt, ut). The goal
of the agent is then to find a policy π : X → U , which maximizes the expected discounted
reward, given a certain discount factor 0 ≤ γ < 1. The value of state x under policy π is
defined by the value function (2)

Vπ(x) = Eπ

[
∞∑
k=0

γkrt+k+1|xt = x

]
, ∀x ∈ X . (2)
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Similarly, equation (3) defines the state-action value function Qπ(x, u) under the policy π,
i.e. the value of taking action u while in state x and following policy π thereafter

Qπ(x, u) = E

[
∞∑
k=1

γkrt+k+1|xt = x, ut = u

]
, ∀x ∈ X , u ∈ U . (3)

The goal of any RL agent is then to find a policy that maximizes V (x) for every state x.
State-of-the-art RL algorithms introduce function approximation in one or several parts

of the MDP. As a first example consider a value iteration algorithm, such as Q-learning. In
Q-learning one aims to iteratively update Q(x, u) in order to find the optimal Q-function,
and as a result the optimal policy. With a finite state-space, Q can be represented in
tabular form. However, with a large state-space, and in particular with an infinite one, this
becomes infeasible. Therefore, Mnih et al . [46] proposed to use a Neural Network (NN)
to approximate the Q-function. After Mnih et al . showed the benefits of using function
approximation within RL, it has been widely used by researchers in other parts and/or
other RL algorithms. A second part where function approximation might be useful, is in
policy iteration algorithms. These algorithms aim to estimate the policy directly, rather
than through the (state-action) value function, as in Q-learning. As a consequence, function
approximation can be used to represent π(x). An example of such an algorithm has been
proposed by Schulman et al . [47]. Finally, in model-based RL the transition function itself is
approximated [48]. In almost every instance of function approximation, it is possible to use
transfer learning. The following subsections discuss transfer learning for each of the three
parts of an RL algorithm discussed previously.

Vazquez et al . [34] show in their survey of RL in DR, that almost all applications use
some form of Q-learning. Hence, our focus on Q-learning. However, many of the algorithms
subsequent to deep Q-learning [46], have been introduced in an attempt to improve upon
the sample efficiency of RLs algorithms [47]. More recently, researchers have been looking
at transfer learning to increase sample efficiency in the target domain [31]. Furthermore, in
some critical applications, exploration, which is inherent to RL should be avoided. In such
situations, transfer learning can be used to jump-start the agent’s performance [31]. While
exploration might not necessarily lead to critical errors in the DR case, users can benefit
from reduced amounts of exploration in the start-phase of deployment [29].

3.2. Transductive Transfer: source and target domain differ

Transductive transfer learning, as defined earlier and by Pan et al . [41], encompasses these
scenarios of transfer learning where source and target domains differ, but source and target
task coincide. In RL, transductive transfer learning thus refers to these learning problems
where source and target environment, and thus transition function f , are different. But, the
reward function remains the same after transfer.

The idea of transferring RL agents between environments became widespread in the
ML research community when openAI launched its retro contest in 2018 [49]. This contest
aimed to accelerate (transductive) transfer learning by providing researchers with benchmark
computer games. Algorithms submitted were tested on a new set of (unseen) levels in their
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respective games. Good performing RL agents should thus be able to generalise to unseen
levels of the same game, i.e. the domain is different while the reward is the same.

In a smart grid, and more specifically in a DR context, there is vast potential for transduc-
tive transfer learning. Different parts of the environment can alter the underlying transition
function, while the general principles of the problem can remain the same. In DR programs
there are three knowledge sources that can be used for transfer: (other) real world data,
domain knowledge - including simulations, and shared domain features. All three call for
different transfer strategies, which we discuss next.

1. Real world data. Transfer from real world data includes transfer from earlier work,
but also transfer from other related data sources with the same reward-function. As a
first example, consider the work of Paridari et al . [50] and Mbuwir et al . [51]. In their
work, they aim to design a plug-and-play Home Energy Management System (HEMS)
for a PV-battery system. However, they realise user behaviour can result in differences
in the transition function and, therefore, optimal policy. To mitigate this challenge,
they cluster different households and use transfer learning between households that
end up in the same cluster. A new household might lack enough historical data to
design a tailor made HEMS, but by using limited data it is possible to pick the right
cluster and use its policy as an initial starting point.

2. Domain knowledge. DR potential arises when there is a form of energy flexibility
available, such as a battery in the previous example. Thermostatically Controlled
Loads (TCLs) provide another source of energy storage and their potential for DR has
been proven numerous times in recent literature [18, 16, 52, 53, 54, 55, 17, 56, 57].
Although RL does not strictly need a model of the control environment, it certainly
can benefit from one. Domain knowledge, for example in the form of a dynamic model
of the environment, has been used to mitigate low data efficiency of certain RL al-
gorithms. Lampe et al . [28] introduced Model-Assisted Fitted Q-Iteration (MAFQI).
MAFQI is a variation of the Q-learning algorithm, in which virtual trajectories, origi-
nating from a learned environment model, are added to the RL agent’s training set used
to update the Q-function. Their results show an improved data efficiency, compared
to regular Q-learning. Costanzo et al . [29] show these results can also be obtained in
a DR application. Consequently, Patyn et al . [58] have expanded this idea to obtain
informed Fitted Q-Iteration (FQI). In their approach, model-free FQI is provided with
domain knowledge through the use of models constructed by domain experts.
In the previous examples, models of the environment have been used to provide the
RL agent with an increased amount of state-transitions in the start-up phase. Further
research, mainly in the domain of robotics, has shown simulations can also be used to
explicitly initialise the policy π(x) [31]. Peng et al . [31] observe that there will always
be discrepancies between source, here simulated, and target domain. With domain
randomisation, these discrepancies are modelled as variability in the source domain.
Peirelinck et al . [17] have shown that domain randomisation successfully provides an
RL agent with a jump-start.

3. Shared domain features. A third opportunity for transfer learning lies in the nature
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of energy flexibility options. This is because energy flexibility can be provided based
on different technologies, yet the main principles largely stay the same. In a lot of
applications, energy flexibility is provided by some form of energy storage, e.g . heat or
chemical storage. While it is clear that the transition function of these types of storage
is different, at a high enough abstraction layer their functionality remains the same. It
remains to be seen if, for example, RL agents trained on battery storage applications
have policies that are general enough to be used as initial policies in an application
with TCLs. But, when differences between domains are minor, for example different
rooms in the same building, sharing features can be a successful approach. Kim et
al . [59] demonstrate this in their multi-task learning setting, by sharing features (and
transitions) between control policies for different rooms in a building.

3.3. Inductive Transfer: source and target task differ

Recall that, by definition [41], inductive transfer learning is the case where the domains
are the same, but tasks differ. This is visually presented in Fig. 3. In a RL scenario,
this means both tasks share transition function f , but have a different reward function r.
Note however that, although the transition function is the same, the conditional probability
distribution P (xt+1, rt+1|xt, ut) in the two domains can differ, as these probabilities are policy
dependent (and the policy depends on the reward function). Since domains are the same,
methods used for inductive transfer learning often correlate with those used for multi-task
learning [41].

In a supervised learning setting this implies labels have to be available in both the source
and target domains. Or, it needs to be possible to induce them [41]. In a RL scenario, the
reward function should be available in both domains. The different approaches for inductive
transfer in RL can be divided in similar categories as the above mentioned transductive
learning scenarios.

A first intuitive approach is to transfer knowledge of instances, i.e., use source domain
instances to accelerate and jump-start target domain performance [41]. As domains are the
same, it is not strictly necessary to use schemes such as domain randomization to account for
domain difference. One approach is to weigh source and target domain samples differently
in order to prioritise target domain experience [60]. The energy arbitrage application, as
presented by Ruelens et al . [18], can be considered an example of inductive transfer with RL.
Day-ahead electricity prices are changing from day to day and, thus, rewards of previously
seen state transitions are not representative for future rewards. Even if the exact same
transition would occur in the future, the received reward (or cost) would (likely) be different,
since the electricity price will be different. Therefore, Ruelens et al . recalculate all rewards
for the new prices occurring the next day. They thus use samples of the past (in the same
domain) to train for a new task (new day-ahead electricity prices).

Furthermore, knowledge can be transferred using feature representations [41]. If the
possible tasks, i.e., reward functions, are known in advance, the RL agent can be trained on
the different tasks together [61]. When using a NN for function approximation, this allows
to share learned feature representations.
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In a similar fashion, knowledge can be transferred using the knowledge incorporated in
the parameters of the RL agent [41], be it the hyperparameters or the parameters of the
regressor used to represent the policy or value-function. In this type of setting, model-based
RL comes to mind. As the domain is the same, but the tasks differ, it is possible to learn an
approximate model of the environment, which can then be used in an optimization setting
for multiple objective functions.

3.4. Transfer Learning for Model-Based RL Algorithms

It is clear RL plays a vital role in recent DR control applications. The main benefit of
RL is the lack for the need of an environment model, and, therefore, domain knowledge.
In all examples presented until now, this was achieved by directly learning a (state-action)
value-function or a control policy. It is, however, also possible to eliminate the need for a
domain expert by learning the model of the environment, using the transitions the agent
experienced. With model-based RL, there is still no need for a domain expert, as the model
is learned using a data-driven approach. The dynamic’s model of the environment is learned
(mostly) on-line, while control is active. This predictive model can then be used to estimate
the cost or reward of a certain action, when in a certain state [48].

While model-based RL has proven to be relatively sample-efficient, compared to model-
free RL, there is still room for improvement [48, 62]. Similar to model-free RL, model-based
RL can use transitions of a source domain to jump-start control performance in the target
domain [62]. Taylor et al . [62] have developed a model-based transfer learning method
where source domain transitions are transformed to fit the target domain and task. This
transformed source-data can then be used to build an initial model in the target domain.

Recent literature has shown that transfer learning can be used to mitigate the lack of
sensing in EWHs [16]. With transfer learning Kazmi et al . accomplish few-shot learning,
both with homogeneous and heterogeneous appliances. It thus enables all benefits of black-
box modeling, while limiting the need for extensive sensing. It is exactly in this regard that
the aim of transfer learning for model-based RL differs from general supervised learning. In
model-based RL, the model is needed for control of a certain environment, and one mostly
operates in a few-shot learning setting. Sample efficiency is therefore very important.

4. Transfer in Supervised Learning Settings

A similar review and analysis can be performed for transfer learning in the supervised
learning context. This section starts with a short introduction to supervised learning. There-
after, the transductive and inductive transfer learning contexts are explored. Fig. 5 summa-
rizes the different transfer learning concepts in a supervised learning setting.

4.1. Background

Transfer in a supervised context in DR is primarily used to improve models that can
explain and predict different factors, ranging from user, device and grid behaviour. These
models are helpful in creating future trajectories of device, user or grid behaviour, which can
be used as input to control algorithms such as model predictive control and model-based RL
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Figure 5: Summary of Section 4

to achieve predefined objectives such as reducing electricity costs, emissions or grid impact
etc. [63]. User models can also be utilized to engage and to inform energy consumers of
modifications to their energy behaviour that may lead to savings in costs or emissions etc.
Likewise, device models can also be used to estimate existing energy flexibility potential as
well as in early fault detection. Grid models can allow system operators to better understand
existing hosting capacity for distributed energy resources, and plan their network capacity
expansions accordingly.

It is important to note the many different ways to characterize these DR related models.
The most notable characterization is in terms of the data used to build them and how
interpretable they are to a domain expert; a classification referred to as white-box, grey-box
and black-box models [64]. While white-box models typically rely exclusively on domain
expertise, black-box models are often purely data-driven i.e. based on observation data.
Grey-box models straddle the line between the two by combining domain knowledge with
machine learning, and can offer improved performance and interpretability. In many ways,
these can often be thought of as a sub-class of informed machine learning as well.

More concretely, in a data-driven black-box context, given a set of N training examples
of the form {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi ∈ X is the input feature vector of the
ith example and yi ∈ Y is the target variable, the supervised learning algorithm attempts
to learn a function f : X → Y , which maps X, the input feature space, to Y , the target
space. This function can subsequently be used to generate predictions given any arbitrary
set of input features. In DR, where regression problems are quite common, this function
typically minimizes an error metric such as mean absolute error or mean squared error on
the training and validation dataset. Likewise, other cost functions such as the pinball loss
are used as well, e.g. in the creation of quantile regression models.

As opposed to the naive formulation of a machine learning model, transfer learning reuses
existing data or knowledge. However, as in the case of reinforcement learning, a number of
distinctions can be applied on how to approach transfer in supervised contexts. Given the
definitions given above, these include the case where (1) the feature space is different between
the source and target domain, i.e. XS 6= XT ; (2) the marginal probability distribution differs
between the source and target domain, i.e. P (Xs) 6= P (Xt); (3) the label space differs across
the source and target domain, i.e. YS 6= YT ; and (4) the conditional probability distribution
varies between the source and target task, i.e. P (Ys|Xs) 6= P (Yt|Xt).

Here, the second case is analogous to transductive transfer and the fourth case to induc-
tive transfer as described earlier in this paper. It is important to note that it is possible
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to combine these two conditions to still achieve transfer, i.e. where both the marginal and
conditional probabilities differ between source and target. We take a look at the different
ways this can be, and has been, realized in practice in the supervised learning context next.

4.2. Transductive Transfer: source and target domain differ

This refers to the case where the source and target domain differ, but the source and
target task coincide. An example of this is when a model needs to be learned for identical,
or very similar, devices which are being operated in different operating conditions. This
model is expected to generalize from the given training dataset, and learn a mapping from
input feature space to target feature space. In practice, this can be done in a number of
ways which mirror transductive transfer in reinforcement learning settings.

1. Real world data. Transfer using (models trained on) similar datasets can often lead
to improved modelling performance. This is especially true now that a large number
of energy related datasets have been open-sourced [65].

2. Domain knowledge. Transfer can also be achieved by making use of domain knowl-
edge. This is valid only in cases where the process can be described succinctly using
physical equations, logic rules or through simulation models.

3. Shared feature representations. Transfer can also be effectively realized when,
rather than transferring examples or model parameters, knowledge of how to trans-
form observational data into a more usable form (i.e. one that is more amenable to
learning) is transferred. This is arguably the automated analog of the historically
human-intensive operation of feature engineering.

The different information sources, arising from real world data and domain knowledge,
can be incorporated in the supervised learning algorithm through the use of (1) a modi-
fied loss function while learning the input-output mapping [37], and (2) simulation tools,
which include techniques such as domain randomization and data augmentation [66], be-
sides others. In either case, when data points gathered from previous similar projects or
those generated from domain knowledge based simulations are used in the learning process
directly, a weighting factor depending on the ‘dissimilarity’ between the source and target
is applied. The training examples then take the form {(x1, y1, w1), (x2, y2, w2), ...,
(xn, yn, wn)}, where wi is the weight assigned to each individual training example. Alter-
natively, it is increasingly common to use a two step approach, whereby the ‘transferred’
examples are used to first pre-train an initial model. The observed examples are then used
to fine-tune the parameters of this model. This latter also has a close link to sharing feature
representations across source and target.

The effect of these strategies can be seen as fundamentally that of regularization, in
which domain knowledge or a greater amount of data helps with constraining the output of
the mapping function.

4.3. Inductive Transfer: source and target task differ

Unlike in the reinforcement learning case, the task for most supervised learning algo-
rithms is to create a model that explains and predicts the behaviour of a device, a building
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or its occupants, or energy grids and markets in a DR context. Therefore, the inductive
transfer case mostly refers to when data collected from heterogeneous sources is used in an
attempt to accelerate learning. This is the case, for instance, when data collected from a
heat pump or solar panel is used as an example for a new instance of the device, which
has a different behaviour (i.e. the conditional probability distributions of the source and
target device are different). This can make use of similar techniques to achieve transfer as
the transductive case. However, here, observed training examples naturally receive a higher
weight than ‘transferred’ examples, with the exact weights decided by a distance metric
between the source and target.

4.4. Related Concepts in Time Series Analysis

An alternative formulation in time series forecasting literature is the use of “Global
Forecasting Models” [67]. These are used to predict many time series simultaneously, using
a single model with shared parameters. When the time series are related in some way, this
can lead to a considerable boost in predictive accuracy while also substantially lowering
barriers to scalability by cutting down on models that need to be trained and maintained.
Another benefit of such types of models is their ability to more accurately predict extreme or
rare events [68]. This formulation makes it quite similar to multi-task learning in supervised
learning contexts [69]. One important distinction to keep in mind between transfer and the
formulation of global forecasting models is between the source and target domain or task. In
transfer learning, as defined above, only the model’s performance on the target is relevant.
On the other hand, in a global forecasting model, there is no such distinction between a
source and a target: every task contributes to the loss function evaluation.

An alternative research direction has been the use of feature-based learning in large time
series datasets to improve forecasting results. The FFORMS and FFORMA [70] algorithms
perhaps best typify this line of work. The underlying idea behind these algorithms is either
automatic model selection or model combination. The first step in such methods is to extract
underlying features from a large number of time series. The next step is to build different
models for these time series. The final step in the training phase is to build a meta-model
which learns the relationship between the extracted features and the predictive accuracy
of different models. During the test phase, when a new dataset is encountered, the same
features are extracted and fed to the meta-model. The meta-model provides information
on which model should be used (FFORMS) or how multiple models should be combined
(FFORMA). Note that there is a difference between how this method and the shared feature
representations mentioned earlier have been applied so far. In the feature-based learning
method discussed here, the extracted features are static, i.e. defined using mathematical
formulas, and are only used for the purpose of summarizing different time series and deciding,
which model is to be used with a particular time series. The shared feature representations,
on the other hand, can be used directly in the modelling task. Nevertheless, it is still possible
to combine the two approaches.
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Figure 6: Articles classified per application and year of publication based on Table 2.

5. Application Scenarios

The benefits of transfer learning in the smart grid setting, specifically in DR applications
have been illustrated in the literature through several uses cases - both in simulation and
real-world settings. As shown in Fig. 6, the use of transfer learning in demand response
applications has steadily gained attention since 2017, with a bulk of the applications focusing
on energy demand forecasting and control. In this section, we present a detailed discussion of
these applications, following the same high-level framework defined in the previous sections.

5.1. Transfer in Supervised Learning

In the supervised learning setting, transfer learning has mainly been used in the context
of forecasting electricity generation from renewable energy sources - wind and solar, energy
demand and electricity price, as mentioned previously.

5.1.1. Electrical Energy Generation

The principles behind electricity generation through renewable sources such as solar PV
systems and wind turbines are well understood. However, purely relying on these physical
models can prove to be quite inaccurate because they ignore local effects such as shading,
soiling and real-time effects. Likewise, forecasting electricity production using only historic
on-site data is error-prone as it ignores physical knowledge of the systems, and relies solely
on (possibly sparse) observations. By combining the two streams of information in one of
the ways highlighted above, better performing models can be obtained.

One of the earliest work on transfer learning for forecasting renewable energy generation
was done in 2016 by Hu et al . [71]. The authors transferred high-level representations of
wind-speed patterns learned from data-rich wind farms as additional features for training
forecasting models of newly constructed farms. In the work of Qureshi et al . [72, 73], weights
from the source forecasting model were used as initial weights for the target model in order
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to reduce the time required to train a model from scratch. The authors considered knowledge
transfer across different task domains - wind power to wind speed prediction - and between
wind farms in different regions. In a similar vein, the authors of [74, 75] transferred trained
weights from the source to the target model for forecasting PV power generation. The
source models were trained using historical solar irradiance data from existing solar farms
in a nearby location.

5.1.2. Energy Demand

Transfer learning for forecasting of electricity demand is arguably the area that has
received the most attention in recent years. To improve the load forecasting error in target
buildings with limited amounts of data, data set sharing between the source and target
has been widely used. For example, by using data sets from different cities [76, 77, 78,
79, 80] and different types of buildings - school and office buildings [81, 82, 83], residential
buildings [84] - in the same or different geographical locations, with different distributions
and seasonal profiles to train a base forecasting model for the target building. This base
model is then fine-tuned with the data from the target building. Also, in Jain et al . [85],
data and parameters from a physics-based simulation model were used to improve accuracy
of a model for forecasting electricity consumption in buildings with limited and sparse data.
The above mentioned works showed a significant reduction (up to 78%) in prediction errors
when transfer learning is used compared to models trained from scratch even if the buildings
are not similar.

An alternative way of using transfer learning is by merging data sets from a large number
of residential and non-residential households to train a base model, which extracts relevant
features for forecasting the energy demand of the target building [86, 87]. By merging data
sets, the trained base model extracts features that are not specific to a particular type of
building, making it necessary to fine-tune the model using the (sparse) data of the target.
Additionally, sharing essential features in the source data set with the target has also shown
to increase forecasting accuracy in the target building: the authors of [88, 89, 90] shared
historical load data, whereas [91] shared historical load and weather features such as wind.
It is worth mentioning that Wu et al . [89] also showed the effectiveness of transfer learning
in both homogeneous (up to 43.10% improvement in accuracy) and heterogeneous (up to
46.87% improvement in accuracy) settings.

Motivated by the lack of sufficient data on incentive-based demand response events, Cai
et al . [92] used load data of related (source) customers to train a model that predicts the
customers’ response to DR incentives during peak periods. Bandara et al . [93] proposed the
use of augmented time series - i.e. a synthetic collection of time series generated based on
the original time series data set - to pre-train a global energy demand forecasting model.
The knowledge representations from this model are used to train a more accurate forecasting
model for the target. In the above mentioned works, considerable accuracy gains ranging
between 9.5 − 30% have been observed, compared to the case where transfer learning was
not used.

Transferring knowledge in the form of trained neural network weights has also been
exploited in load forecasting. The objective of this weight transfer has been either to reduce
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computational needs for model training [94] or to compensate for the insufficient data in new
buildings/users [95, 96, 97]. This weight transfer resulted in a 7.3 − 30% improvement in
prediction accuracy. Cluster-based transfer learning has also been used to transfer weights
of a model - trained with data from the most representative building or centroid of each
cluster - between buildings in the same cluster for load forecasting in a neighbourhood with
multiple households [98, 99]. These weights are used to initialize the forecasting models for
all (target) buildings belonging to the same cluster leading to improvements of 3.17−15.07%
in the prediction accuracy. In [100] and [101] load profiles in the same cluster were used to
construct a pool of profiles, which were then used to train a deep neural network [100] or a
Bayesian neural network [101] that learns to extract and select feature representations for
training a probabilistic load forecasting model. These additional feature representations led
to a prediction accuracy improvement of 5.6− 7.1%.

As opposed to appliance demand, it is possible to build models for thermal systems such
as heat pumps, air conditioners, etc, which combine domain knowledge with observation
data. These models, built in a purely data-driven supervised learning context, take some
observed variables such as ambient conditions, historical temperatures and power drawn
by the heating or cooling element as input to predict the internal temperature (or state
of charge) in the medium of interest (e.g ., a building or hot water vessel, etc). However,
models built in this way remain domain agnostic and tend to generalize poorly on unseen
data. Thus, incorporating domain knowledge into the predictive models via transfer of
knowledge instances or parameters has shown to greatly accelerate learning performance in
supervised contexts [66], similar to the case of generation models.

As such, transfer learning has also been used to transfer knowledge on learned system
dynamics - the system dynamics are learned in a data-driven supervised learning fashion -
across similar systems/devices. Kazmi et al . [16] combined features from several households
into a single feature vector used by a neural network to learn a dynamics model. The
authors showed that by transferring knowledge across both homogeneous and heterogeneous
hot water systems, convergence to a reliable model was achieved within a few weeks of
data collection as opposed to months or years without knowledge transfer. The authors also
reported a performance improvement of 13.7−24.3% in the learned dynamics model. Similar
work was done by Grubinger et al . [102] for predicting the heat-mass transfer dynamics in
residential buildings, and by Chen et al . [103] for predicting the thermal dynamics of a
building: indoor temperatures and relative humidity. Moreover, Jain et al . [104] transferred
first-order thermal model parameters for simulating temperatures in cold-rooms with the
goal of improving refrigerant leakage detection across buildings. These model parameters
were continuously updated as more data was collected to accommodate temporal changes
in the building’s thermal behavior.

A recent application of transfer learning is for identification of residential loads or non-
intrusive load monitoring [105]. Nonintrusive load monitoring allows to identify how the
different loads in a building contribute to its energy consumption, which is essential for
implementation of DR programs. Cavalca et al . [105] showed that by using a pre-trained
(CNN VGG16 [106]) model to extract relevant features from the electricity consumption
data, a performance gain of 6.4% − 22.4% was obtained compared to other feature extrac-
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tion methods that do not use transfer learning.

5.1.3. Market Prices

In the context of electricity price forecasting, transfer learning has not been widely
adopted to date. Gunduza et al . [107] combined features from different electricity markets
- Belgian, French, German, Nord Pool and Turkish markets - to train a forecasting model,
which was then fine-tuned with features from the target market. In the work of Lago et
al . [108] the authors used some features from the French electricity market for training an
electricity price forecasting model for the Belgian electricity market. In their work, the
authors observed a 12.5% improvement in the forecasting accuracy compared to when only
data from the Belgian electricity market was used.

5.2. Transfer Learning in Reinforcement Learning

Transfer learning for reinforcement learning in the context of demand response is still in
a nascent stage of development. Nevertheless, a number of case studies have appeared in
the recent past that use it to improve models or control policies.

One of the very first applications of transfer in RL was actually for forecasting energy
demand of buildings with limited historical data [109]. The authors transferred forecasting
models trained using RL algorithms - SARSA and Q-learning with deep belief networks
for function approximation - and data from source buildings to predict the energy demand
in (commercial and residential) buildings with unlabelled historical data. Similarly, Kong
et al . [110] transferred knowledge on the user’s elasticity of electricity price from regions
where DR has been implemented to areas with unknown elasticity. This elasticity is used to
estimate the electricity demand of the users in the new region, which is then used to train a
RL algorithm - SARSA - that selects suitable retail electricity prices to enforce DR in this
new region.

A parallel thread of research has focused on using transfer learning to improve reinforce-
ment learning based control strategies of flexible assets. An early example of using prior
knowledge in an RL system using a hybrid simulation learning control can be found in [111],
where the authors adopt a two-step approach. In the first step, they pre-train the controller
using a calibrated model of the HVAC system under consideration. Then, this controller is
updated online during the operational phase in an experimental environment. Likewise, in
the works of Costanzo et al . [29] and Ruelens et al . [18] the authors used transfer learning
in the form of expert knowledge to shape and enforce monotonicity in a control policy pre-
viously learned from a limited number of observations to improve the accuracy of the policy
for controlling TCLs. The authors of [58] proposed using expert knowledge in the form of
grey-box model predictive control transitions - transitions based on a grey-box model of an
electric water heater - for kick-starting of an informed fitted Q-iteration-based controller.
The authors used a linear grey-box model predictive control approach as the expert and
showed an increase in cost savings. Peirelinck et al . [17] used transfer learning through
domain randomization to facilitate knowledge transfer and reduce the exploratory time of
the learning agent. The authors reported an 8.8% increase in cost savings compared to
the setting without any knowledge transfer. This approach has the added advantage of not
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requiring a well-calibrated simulation model of the system under consideration. Likewise,
domain randomization in RL was also used by Kazmi et al . [112] to control batteries in order
to solve voltage problems in the low voltage grid. Control agents were trained offline using
randomly sampled load and PV generation profiles in many different simulated topologies of
the distribution grid. The authors showed that by employing domain randomization more
grid violations were resolved compared to the case without.

In the work of Mbuwir et al . [51], the authors used cluster-based transfer learning to
transfer knowledge in the form of control policies amongst buildings with similar energy
usage patterns. A control policy learned using data from a data-rich building in a cluster is
used to initialise learning in a target building belonging to the same cluster. The authors
showed a faster convergence to a near optimal policy compared to when no knowledge was
transferred. Similarly, Paridari et al . [50] proposed a plug-and-play planning and control
framework for control energy storage devices in buildings with PV installations. In their
work, knowledge was transferred in the form of a policy function approximation to new end
users with no historical data - from which a control policy could be learned- leading to a 29%
increase in cost savings. Likewise, in [59] the authors exploit the structural similarities in
the control policies across rooms in a building by sharing features (and transitions) to obtain
a policy that can set the suitable energy levels for lighting and air-conditioning units. To
avoid excessive use of cloud resources and speed up the training process when training RL-
based control agents from scratch in DR applications, Tao et al . [113] transferred weights
of the control policies between batteries and Heating, Ventilation and Air Conditioning
(HVAC) units. The authors showed: a significant cost savings in a homogeneous setting
(knowledge transferred between two battery control agents), and a slight cost savings in
a heterogeneous setting (knowledge transferred from a battery to an HVAC control agent)
compared to training an entirely new policy. Moreover, the authors showed that knowledge
can be transferred between different DR programs (price-based to direct load control).

Even though the above applications have shown the positive impact of transfer learn-
ing on the target domain learner, the effectiveness of the knowledge transfer is not always
guaranteed. Knowledge transfer can also lead to reduced performance in the target do-
main/task. This is termed negative transfer and can occur due to source and target tasks
being unrelated or the domain data distributions being too different. For example, a 1.36%
reduction in prediction accuracy was reported in [78] due to negative transfer. Several ap-
proaches exists in the literature for mitigating negative transfer as summarised in [114]. In
the context of demand response, negative transfer has been tackled by selecting appropriate
source tasks using a Gaussian process-based selection algorithm [76] or using TrAdaBoost
algorithm [78], which decreases the weights of source instances with distributions different
from that of the target. Establishing the similarity between source and target tasks, and
performing optimization to determine the appropriate number of source tasks - large number
of source task could increase the computational time while too few tasks might not provide
sufficient supplementary information - also mitigates negative knowledge transfer [78].

Table 2 provides a summary of the articles that have applied transfer learning to demand
response applications. The table is classified based on the demand response application
and the percentage improvement when transfer learning is used. As can be seen in the
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Figure 7: Visual illustration of transfer learning in demand response applications.

table, articles in which the percentage improvement brought by transfer learning have been
reported, the improvements are typically greater than 3%, and exceed 10% in many cases.
However, some articles do not explicitly report a specific percentage improvement value but
provide figures/tables to illustrate the performance improvement. Likewise, many studies
only report improvements in asymptotic performance, but do not distinguish between the
other dimensions of performance we highlighted earlier (initial performance and learning
performance). Fig. 7 provides a general visualization of how the different articles have
applied transfer learning in the demand response use cases discussed above.

6. Future Directions

The presented review shows that transfer learning has gained considerable traction in
recent years, and is currently the subject of intensifying research efforts in DR. This attention
can mainly be attributed to the success of transfer learning methods in other domains, and
early indications that the methods hold enormous potential for DR applications as well. The
review also shows that major research opportunities remain untapped, with most research
to date being concentrated on improving demand forecasts using transfer learning. This
section explores and elaborates the identified limits and resulting research opportunities of
transfer learning within a DR setting. Table 3 summarises all applications that have been
reviewed in the preceding section, and provides an overview of the research gaps that remain
within transfer learning applications in DR.

A first observation made based on Table 3 is that many of the supervised learning appli-
cations focus on using transfer learning to jump-start forecasting ability. They thus transfer
features and/or data from a source domain to a target domain. Mostly, source and target
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Table 2: An overview of reviewed papers.

Article ref Year Application Category Improvement
[91] 2014 energy demand real-world data 4.54− 23.93%
[76] 2015 energy demand real-world data -
[71] 2016 wind power generation real-world data -
[109] 2016 energy demand real-world data -
[90] 2016 energy demand real-world data -
[29] 2016 climate control domain knowledge -
[18] 2017 heat pump control inductive transfer -
[73] 2017 wind power generation real-world data -
[108] 2017 electricity prices inductive transfer 12.5%
[102] 2017 system dynamics real-world data -
[77] 2017 energy demand real-world data 9.5%
[88] 2017 energy demand real-world-data -
[75] 2018 PV generation real-world data -
[81] 2018 energy demand real-world data 11.2%
[84] 2018 energy demand shared features -
[50] 2018 battery control real-world data 29%
[87] 2018 energy demand real-world data -
[78] 2019 energy demand real-world data 28%
[104] 2019 energy demand real-world data -
[89] 2019 energy demand real-world data 14.37− 43.10%
[72] 2019 wind speed real-world data -
[94] 2019 energy demand real-world data 7.3%
[96] 2019 energy demand real-world data 20− 30%
[101] 2019 energy demand real-world data 5.6− 7.1%
[100] 2019 energy demand real-world data -
[110] 2019 electricity prices shared features -
[74] 2020 PV generation real-world data -
[82] 2020 energy demand real-world data 15− 78%
[80] 2020 energy demand real-world data 0.01− 47.4%
[92] 2020 energy demand real-world data -
[93] 2020 energy demand inductive transfer -
[79] 2020 energy demand real-world data 30%
[95] 2020 energy demand real-world data 19.69%
[99] 2020 energy demand real-world data 3.79− 5.10%
[16] 2020 system dynamics real-world data 24.3− 13.7%
[103] 2020 system dynamics real-world data 73.3− 83.3%
[107] 2020 electricity prices shared features -
[17] 2020 electric water heater control domain knowledge 8.8%
[51] 2020 battery control real-world data -
[59] 2020 air-conditioning system control shared features -
[97] 2020 energy demand real-world data 8.2− 28.9%
[83] 2021 energy demand real-world data -
[86] 2021 energy demand real-world data 7.84− 15.07%
[98] 2021 energy demand real-world data 3.17%
[85] 2021 energy demand simulated data -
[105] 2021 energy demand real-world data 6.4− 24.4%
[112] 2021 battery control real-world data -
[113] 2021 battery and HVAC real-world data -
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Table 3: Classification of transfer learning applications in demand response.

Supervised Learning Reinforcement Learning
Transductive transfer

Domain knowledge [28, 29, 58, 17]
Real-world data [71, 73, 74, 75, 81, 89] [50, 51, 109]

[88, 95, 96, 97, 92, 82, 83]
[98, 99, 94, 115, 78, 79, 76]
[80, 87, 16, 103, 90, 91, 100]

Shared features [84], [107] [59], [110]
Inductive transfer [93, 108] [18, 26]

domains are different instances of the same physical construct. For example, from one build-
ing to another building. In this sense, these applications belong to the transductive transfer
learning setting, as they have the same goal, i.e., reducing forecasting error. However, they
can be classified under real-world data transfer as well as shared features, as they use the
data and/or learned features of the source domain to jump-start performance in the target
domain. Here, only those that explicitly transform features with the aim of increasing trans-
fer performance have been classified under shared features. A second observation made based
on Table 3 is that most of the reinforcement learning based transfer learning applications
within the DR setting focus on utilising domain knowledge to increase control performance.
An example of this is controllers trained using simulators.

Furthermore, from Table 3, it is clear that in every area of transfer learning within DR
there remain research opportunities. But, especially inductive transfer learning and trans-
ductive learning with feature sharing between different domains remain open challenges.
Although inductive transfer within reinforcement learning has seen few research applica-
tions, it could be a promising field in the near future. For example, one can think of a DR
setting where a flexibility provider offers different services to the market, e.g ., frequency
response and peak shaving. At different times, this provider would then have to switch
between reward-functions, transferring as much relevant information about the underlying
system dynamics as possible. Likewise, transductive learning with feature sharing has rel-
evant applications in practice but has seen relatively little research interest. For example,
energy storage devices can be based on multiple technologies. However, at a high enough
abstraction level they have similar dynamics. Therefore, features could be shared among
different storage appliances. Transfer could then be used to jump-start performance of a
new storage technology entering a flexibility provider’s set of appliances. It could also be
used to increase overall performance of the flexibility pool among all active appliances.

Finally, it is interesting to revisit Fig. 1. While it is now clear that almost all applications
considered represent the knowledge of the source domain either with Simulation Results or
with Historic Data, other representations of knowledge are possible. Simultaneously, most
knowledge of the source domain and task is integrated in the target domain and task by
incorporating it in the agent’s training set. Taking the broader field of informed ML into
account, it is also possible to integrate knowledge through other means. For example,
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one could restrict the hypothesis set by a pre-defined model structure of the NN, or by
modifying the loss function of the model. As far as the reinforcement learning algorithm
goes, our review clearly shows Q-learning is widespread and well-used in DR applications.
Many researchers seem to agree that Q-learning is promising, as it has shown good results
in past research and in other domains. However, in other domains, such as robotics, state-
of-the-art policy iteration algorithms have proven to handle challenging tasks better [47].
Therefore, it is important to follow-up on the advances that have been made elsewhere and
investigate their applicability for DR, especially in the context of transfer learning. This
might be necessary for such algorithms to become sophisticated enough to handle real-world
challenges, which arise as much from sparse data as they do from other limitations such as
poor quality data, and ill-defined and often conflicting objectives.

7. Conclusion

The recent adoption of machine learning-based techniques in demand response applica-
tions has been influenced by the availability of data through smart metering and the smart
grid in general. However, using these techniques in newly constructed systems remains chal-
lenging due to their lack of (sufficient) historical data. Transfer learning has the potential
to solve this challenge and improve generalizability of machine-learning based models and
control policies as seen in this review. This is evident in the performance gains we have
observed in the papers reviewed herein. In many cases, this can be the difference between
machine learning models that can learn from the available limited data vs. those that fail
to converge to an accurate solution. However, to date, a majority of articles has focused on
transfer learning for forecasting energy demand, with only limited attention paid to renew-
able energy generation and electricity price forecasting. A few, but increasing number of,
articles on modelling system dynamics and control of electric water heaters and batteries
for energy storage have also appeared in the very recent past.

In transfer learning literature, a wide variety of methods - ranging from data and pa-
rameter sharing to learned representations have been explored. Although a plurality of the
articles reviewed in this paper have considered knowledge transfer in the form of pre-trained
weights from the source forecasting model to initialise learning in the target, a few articles
have looked into sharing feature representations. Likewise, global forecasting models which
employ multi-task learning have emerged as a practical way to handle the operational com-
plexity of multiple individual models, while achieving transfer to improve generalization.
Models built in this way also have additional benefits in terms of scalability, whereby a
vastly reduced number of models can be used for a large number of tasks. In the context
of reinforcement learning, knowledge transfer in the form of domain/expert knowledge has
been explored with the literature showing how domain knowledge can accelerate learning of
adequate control policies.

A critical shortcoming we have identified is that almost half the articles reviewed do not
provide any quantification of gains attributed to transfer learning. Furthermore, even when
such numbers are included, they mostly do not provide a complete representation of the
gains that could be associated with transfer learning. These include improvements to initial
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and asymptotic performance as well as the rate of improvement (Fig. 2). These concerns are
further exacerbated by the fact that most studies do not open-source their data or codebase,
often due to privacy concerns, and are consequently not reproducible. A recommendation
for future research is therefore to quantify all of these three metrics, especially against strong
baselines, and open-source the trained models in a responsible manner when sharing code
and data is not possible.

While research on transfer learning for demand response applications is still in its infancy,
we have found that most of the use cases have only been tested in simulation environments.
Consequently, in order to prove the effectiveness of transfer learning for demand response
applications, more real-world experiments need to be conducted. This is especially true due
to the added challenges that can arise while deploying models that make use of transfer
learning. Moreover, in the context of reinforcement learning in DR, we have observed only
limited applications of transfer learning despite its tremendous potential. In light of all
this, we have suggested different directions in which research could advance the field of
both supervised and reinforcement learning in demand response by incorporating transfer
of knowledge.
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[102] T. Grubinger, G. C. Chasparis, and T. Natschläger, “Generalized online transfer learning for climate
control in residential buildings,” Energy and Buildings, vol. 139, pp. 63–71, 2017.

[103] Y. Chen, Y. Zheng, and H. Samuelson, “Fast adaptation of thermal dynamics model for predictive
control of hvac and natural ventilation using transfer learning with deep neural networks,” in 2020
American Control Conference (ACC), pp. 2345–2350, IEEE, 2020.

[104] M. Jain, M. Gupta, A. Singh, and V. Chandan, “Beyond control: Enabling smart thermostats for leak-
age detection,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 3, no. 1, pp. 1–21, 2019.

[105] D. L. Cavalca and R. A. Fernandes, “Deep transfer learning-based feature extraction: An approach
to improve nonintrusive load monitoring,” IEEE Access, 2021.

[106] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[107] S. Gunduz, U. Ugurlu, and I. Oksuz, “Transfer learning for electricity price forecasting,” arXiv preprint
arXiv:2007.03762, 2020.

[108] J. Lago, F. De Ridder, P. Vrancx, and B. De Schutter, “Forecasting day-ahead electricity prices in
Europe: the importance of considering market integration,” Applied Energy, vol. 211, pp. 890–903,
Aug 2017.

[109] E. Mocanu, P. H. Nguyen, W. L. Kling, and M. Gibescu, “Unsupervised energy prediction in a smart
grid context using reinforcement cross-building transfer learning,” Energy and Buildings, vol. 116,
pp. 646–655, 2016.

31



[110] D. Kong, X. Kong, J. Xiao, J. Zhang, S. Li, and L. Yue, “Dynamic pricing of demand response based
on elasticity transfer and reinforcement learning,” in 2019 22nd International Conference on Electrical
Machines and Systems (ICEMS), pp. 1–5, IEEE, 2019.

[111] S. Liu and G. P. Henze, “Experimental analysis of simulated reinforcement learning control for active
and passive building thermal storage inventory: Part 2: Results and analysis,” Energy and buildings,
vol. 38, no. 2, pp. 148–161, 2006.

[112] H. Kazmi, D. Didden, N. Wiese, and J. Driesen, “Sample efficient reinforcement learning with domain
randomization for automated demand response in low-voltage grids,” IEEE Journal of Emerging and
Selected Topics in Industrial Electronics, 2021.

[113] Y. Tao, J. Qiu, and S. Lai, “A hybrid cloud and edge control strategy for demand responses using
deep reinforcement learning and transfer learning,” IEEE Transactions on Cloud Computing, 2021.

[114] W. Zhang, L. Deng, L. Zhang, and D. Wu, “Overcoming negative transfer: A survey,” arXiv preprint
arXiv:2009.00909, 2020.

[115] P. Banda, M. A. Bhuiyan, K. Zhang, and A. Song, “Transfer learning for leisure centre energy con-
sumption prediction,” in International Conference on Computational Science, pp. 112–123, Springer,
2019.

32


