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Abstract 

Objective To review and appraise the validity and usefulness of published and preprint reports of 

prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected 

infection, for prognosis of patients with covid-19, and for detecting people in the general 

population at increased risk of covid-19 infection or being admitted to hospital with the disease. 

Design Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk 

Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) 

group. 

Data sources PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, 

medRxiv, and bioRxiv up to 5 May. 

Study selection Studies that developed or validated a multivariable covid-19 related prediction 

model.  

Data extraction At least two authors independently extracted data using the CHARMS (critical 

appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; 

risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). 

Results 37 421 titles were screened, and 169 studies describing 232 prediction models were 

included. The review identified seven models for identifying people at risk in the general 

population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 

to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression 

to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. 

The most frequent types of predictors included in the covid-19 prediction models are vital signs, 

age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic 

models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. 

Reported C index estimates ranged from 0.71 to 0.99 in prediction models for the general 

population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic 

models. All models were rated at high or unclear risk of bias, mostly because of non-

representative selection of control patients, exclusion of patients who had not experienced the 

event of interest by the end of the study, high risk of model overfitting, and unclear reporting. 

Thirty five percent did not include a description of the target population or care setting, and only 

5% was externally validated using a calibration plot. 

Conclusion Prediction models for covid-19 are quickly entering the academic literature to support 

medical decision making at a time when they are urgently needed. This review indicates that 

proposed models are poorly reported, at high risk of bias, and their reported performance is 

probably optimistic. However, we have identified two promising models that should be validated 

in multiple cohorts, preferably through collaborative efforts and data sharing to allow an 

investigation of heterogeneity in performance. Details on all reviewed models are publically 

available at www.covprecise.org. Methodological guidance should be followed because unreliable 

predictions could cause more harm than benefit in guiding clinical decisions. Finally, authors 

should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis) reporting guideline.  

Systematic review registration Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. 

Readers’ note This article is a living systematic review that will be updated to reflect emerging 

evidence. Updates may occur for up to two years from the date of original publication. This 

version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). 

Previous updates can be found as data supplements 

(https://www.bmj.com/content/369/bmj.m1328/related#datasupp) and on 

https://www.covprecise.org/.  

  

http://www.covprecise.org/
https://osf.io/ehc47/
https://osf.io/wy245
https://www.bmj.com/content/369/bmj.m1328/related#datasupp
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What is already known on this topic 

The sharp recent increase in coronavirus disease 2019 (covid-19) incidence has put a strain on 

healthcare systems worldwide; an urgent need exists for efficient early detection of covid-

19 in the general population, for diagnosis of covid-19 in patients with suspected disease, 

and for prognosis of covid-19 in patients with confirmed disease 

Viral nucleic acid testing and chest computed tomography imaging are standard methods for 

diagnosing covid-19, but are time consuming 

Earlier reports suggest that elderly patients, patients with comorbidities (chronic obstructive 

pulmonary disease, cardiovascular disease, hypertension), and patients presenting with 

dyspnoea are vulnerable to more severe morbidity and mortality after infection 
What this study adds 

Seven models identified patients at risk in the general population (using proxy outcomes for 

covid-19) 

Thirty three diagnostic models were identified for detecting covid-19, in addition to 75 

diagnostic models based on medical images,10 diagnostic models for severity 

classification, and 107 prognostic models for predicting, among others, mortality risk, 

progression to severe disease 

Proposed models are poorly reported and at high risk of bias, raising concern that their 

predictions could be unreliable when applied in daily practice 

Two prediction models, one for diagnosis and one for prognosis, were identified as being of 

higher quality than others and efforts should be made to validate these in other datasets  
 

  



Living Review -  Update 3 of  Wynants et al 2020 DOI: 10.1136/bmj.m1328 

Page 7 of 49 

Introduction 

The novel coronavirus disease 2019 (covid-19) presents an important and urgent threat to 

global health. Since the outbreak in early December 2019 in the Hubei province of the 

People’s Republic of China, the number of patients confirmed to have the disease has 

exceeded 47 million as the disease spread globally, and the number of people infected is 

probably much higher. More than 1.2 million people have died from covid-19 (up to 3 

November 2020).1 Despite public health responses aimed at containing the disease and 

delaying the spread, several countries have been confronted with a critical care crisis, and 

more countries could follow.2-4 Outbreaks lead to important increases in the demand for 

hospital beds and shortage of medical equipment, while medical staff themselves also get 

infected. Several regions have had or are experiencing second waves, and despite 

improvements in testing and tracing, several regions are again facing the limits of their test 

capacity, hospital resources and healthcare staff. 

To mitigate the burden on the healthcare system, while also providing the best possible 

care for patients, efficient diagnosis and information on the prognosis of the disease are 

needed. Prediction models that combine several variables or features to estimate the risk of 

people being infected or experiencing a poor outcome from the infection could assist medical 

staff in triaging patients when allocating limited healthcare resources. Models ranging from 

rule based scoring systems to advanced machine learning models (deep learning) have been 

proposed and published in response to a call to share relevant covid-19 research findings 

rapidly and openly to inform the public health response and help save lives.5  

We aimed to systematically review and critically appraise all currently available 

prediction models for covid-19, in particular models to predict the risk of covid-19 infection 

or being admitted to hospital with the disease, models to predict the presence of covid-19 in 

patients with suspected infection, and models to predict the prognosis or course of infection in 

patients with covid-19. We included model development and external validation studies. This 

living systematic review, with periodic updates, is being conducted by the international 

COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or 

Suspected patients in diverse sEttings: www.covprecise.org) group in collaboration with the 

Cochrane Prognosis Methods Group. 

Methods 

We searched the publicly available, continuously updated publication list of the covid-19 

living systematic review.6 We validated whether the list is fit for purpose (online 
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supplementary material) and further supplemented it with studies on covid-19 retrieved from 

arXiv. The online supplementary material presents the search strings. We included studies if 

they developed or validated a multivariable model or scoring system, based on individual 

participant level data, to predict any covid-19 related outcome. These models included three 

types of prediction models: diagnostic models for predicting the presence or severity of covid-

19 in patients with suspected infection; prognostic models for predicting the course of 

infection in patients with covid-19; and prediction models to identify people in the general 

population at risk of covid-19 infection or at risk of being admitted to hospital with the 

disease. 

We searched the database repeatedly up to 1 July 2020 (supplementary table 1). As of the 

third update (search date 1 July), we only include peer reviewed articles (indexed in PubMed 

and Embase through Ovid). Pre-prints (from bioRxiv, medRxiv, and arXiv) that were already 

included in previous updates of the systematic review remain included in the analysis. 

Reassessment takes place after publication of a preprint in a peer reviewed journal. No 

restrictions were made on the setting (eg, inpatients, outpatients, or general population), 

prediction horizon (how far ahead the model predicts), included predictors, or outcomes. 

Epidemiological studies that aimed to model disease transmission or fatality rates, diagnostic 

test accuracy, and predictor finding studies were excluded. Starting with the second update, 

retrieved records were initially screened by a text analysis tool developed using artificial 

intelligence to prioritise sensitivity (supplementary material). Titles, abstracts, and full texts 

were screened for eligibility in duplicate by independent reviewers (pairs from LW, BVC, 

MvS) using EPPI-Reviewer,13 and discrepancies were resolved through discussion.  

Data extraction of included articles was done by two independent reviewers (from LW, 

BVC, GSC, TPAD, MCH, GH, KGMM, RDR, ES, LJMS, EWS, KIES, CW, AL, JM, TT, 

JAAD, KL, JBR, LH, CS, MS, MCH, NS, NK, SMJvK, JCS, PD, CLAN, RW, GPM, IT, 

JYV, DLD, JW, FSvR, PH, VMTdJ, BvB, ICCvdH, DJM, MK and MvS). Reviewers used a 

standardised data extraction form based on the CHARMS (critical appraisal and data 

extraction for systematic reviews of prediction modelling studies) checklist14 and PROBAST 

(prediction model risk of bias assessment tool; www.probast.org) for assessing the reported 

prediction models.15 We sought to extract each model’s predictive performance by using 

whatever measures were presented. These measures included any summaries of 

discrimination (the extent to which predicted risks discriminate between participants with and 

without the outcome), and calibration (the extent to which predicted risks correspond to 

observed risks) as recommended in the TRIPOD (transparent reporting of a multivariable 
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prediction model for individual prognosis or diagnosis; www.tripod-statement.org) 

statement.16 Discrimination is often quantified by the C index (C index=1 if the model 

discriminates perfectly; C index=0.5 if discrimination is no better than chance). Calibration is 

often quantified by the calibration intercept (which is zero when the risks are not 

systematically overestimated or underestimated) and calibration slope (which is one if the 

predicted risks are not too extreme or too moderate).17 We focused on performance statistics 

as estimated from the strongest available form of validation (in order of strength: external 

(evaluation in an independent database), internal (bootstrap validation, cross validation, 

random training test splits, temporal splits), apparent (evaluation by using exactly the same 

data used for development)). Any discrepancies in data extraction were discussed between 

reviewers, and remaining conflicts were resolved by LW and/or MvS. The online 

supplementary material provides details on data extraction. Some studies investigated 

multiple models and some models were investigated in multiple studies (i.e., in external 

validation studies). The unit of analysis was a model within a study, unless stated otherwise. 

We considered aspects of PRISMA (preferred reporting items for systematic reviews and 

meta-analyses)18 and TRIPOD16 in reporting our study. Details on all reviewed studies and 

prediction models are publically available at www.covprecise.org.  

Patient and public involvement 

It was not possible to involve patients or the public in the design, conduct, or reporting of 

our research. The study protocol and preliminary results are publicly available on 

https://osf.io/ehc47/, medRxiv and www.covprecise.org. 

Results 

We retrieved 37 412 titles through our systematic search (of which 23 203 were included 

in the present update; supplementary table 1, fig 1). We included a further nine studies that 

were publicly available but were not detected by our search. Of 37 421 titles, 444 studies were 

retained for abstract and full text screening (of which 169 are included in the present update). 

One hundred sixty nine studies describing 232 prediction models met the inclusion criteria (of 

which 62 studies and 87 models added since the present update, supplementary table 1).7-12 19-

119 165-226 These studies were selected for data extraction and critical appraisal. The unit of 

analysis is the model within a study: of these 232 models, 208 were unique, newly developed 

models for covid-19. The remaining 24 analyses were external validations of existing models 

(in a study other than the model development study). Some models were validated more than 

once (in different studies, as described below). Many models are publicly available (Box 1). 

file:///C:/Users/u0060918/Documents/methods/corona%20review/analysis%20versie%20xx%2006/www.covprecise.org
https://osf.io/ehc47/
file:///C:/Users/u0060918/Documents/methods/corona%20review/analysis%20versie%20xx%2006/www.covprecise.org
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A database with the description of each model and its risk of bias assessment can be found on 

www.covprecise.org. 

Fig 1 PRISMA (preferred reporting items for systematic reviews and meta-analyses) flowchart of study 

inclusions and exclusions 

 

Primary datasets 

One hundred seventy four (75%) models used data from a single country (Table 1). Forty 

two (18%) models used international data and for sixteen models (7%) it was unclear how 

many (and which) countries contributed data. Two models (1%) used simulated data and 

twelve models (5%) used proxy data to estimate covid-19 related risks (eg, Medicare claims 

data from 2015 to 2016). Most models were intended for use in confirmed covid-19 cases 

(47%) and a hospital setting (51%). The average patient age varied from 39 to 71 years, and 

the proportion of men varied from 35% to 75%, although this information was often not 

reported. One study developed a prediction model for use in paediatric patients 25. 

file:///C:/Users/u0060918/Documents/methods/corona%20review/analysis%20versie%20xx%2006/www.covprecise.org
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Table 1. Characteristics of reviewed models 

 Number of models* (%) or median 

(IQR) 

Country **  

Single country data 174 (75%) 

China 97 (42%) 

Italy 23 (10%) 

United States of America 17 (7%) 

South-Korea 10 (4%) 

France 5 (2%) 

Singapore 4 (2%) 

Turkey 4 (2%) 

Brazil 3 (1%) 

Spain 2 (1%) 

United Kingdom 2 (1%) 

Other single country 8 (3%) 

International (combined) data 42 (18%) 

Unknown origin of data 16 (7%) 

Used proxy (non-covid-19) data 12 (5%) 

Used simulated data 2 (1%) 

Target setting  

Hospitalized patients 119 (51%) 

Patient at triage centre/fever clinic 12 (5%) 

Patients in general practice 3 (1%) 

Other 23 (10%) 

Unclear 75 (32%) 

Target population  

Confirmed covid-19 108 (47%) 

Suspected covid-19 84 (36%) 

Other 13 (6%) 

Unclear 27 (12%) 

Type of model  

Predict risks of covid-19 in the general 

population 

7 (3%) 
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Diagnostic (covid-19 vs. not covid-19) 33 (14%) 

Diagnostic classification of covid-19 severity 10 (4%) 

Diagnostic, imaging data only 75 (32%) 

Prognostic 107 (46%) 

Study type  

Developed in reviewed study 50 (22%) 

Developed and internally validated in 

reviewed study 

113 (49%) 

Developed and externally validated in 

reviewed study 

45 (19%) 

Externally validated in reviewed study 24 (10%) 

Sample size (development) 338 (134 to 707) 

Number of events (development) 69 (37 to 160) 

Sample size (external validation) 189 (76 to 312) 

Number of events (external validation) 40 (24 to 122) 

*The analysis unit is a model within a study. Some studies investigated multiple models and 

some models were investigated in multiple studies (i.e., in external validation studies). ** A 

study that uses development data from one country and validation data from another is 

classified as international. 

 

Based on the studies that reported study dates, data were collected from December 2019 

to June 2020. Some centres provided data to multiple studies and several studies used open 

Github120 or Kaggle121 data repositories (version or date of access often unspecified), and so it 

was unclear how much these datasets overlapped across our identified studies.  

Among the diagnostic model studies, the reported prevalence of covid-19 varied between 

7% and 71% (if a cross sectional or cohort design was used). Because 75 diagnostic studies 

used either case-control sampling or an unclear method of data collection, the prevalence in 

these diagnostic studies might not be representative of their target population.  

Among the studies that developed prognostic models to predict mortality risk in people 

with confirmed or suspected infection, the percentage of deaths varied between 1% and 52%. 

This wide variation is partly because of substantial sampling bias caused by studies excluding 

participants who still had the disease at the end of the study period (that is, they had neither 

recovered nor died). Additionally, length of follow-up varied between studies (but was often 

not reported), and there likely is local and temporal variation in how people were diagnosed 

as having covid-19 or were admitted to the hospital (and therefore recruited for the studies).  
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Box 1: Availability of models in format for use in clinical practice 

Two hundred and eight unique models were developed in the included studies. Thirty of these 

(14%) models were presented as a model equation including intercept and regression 

coefficients. Eight models (4%) were only partially presented (e.g., intercept or baseline 

hazard were missing). The remaining did not provide the underlying model equation. 

Seventy two models (35%) are available as a tool for use in clinical practice (in addition to or 

instead of a published equation). Twenty seven models were presented as a web calculator 

(13%), 12 as a sum score (6%), 11 as a nomogram (5%), 8 as a software object (4%), 5 as a 

decision tree or set of predictions for subgroups (2%), 3 as a chart score (1%), and 6 in other 

usable formats (3%).  

All these presentation formats make predictions readily available for use in the clinic. 

However, because all models were at high or uncertain risk of bias, we do not recommend 

their routine use before they are externally validated, ideally by independent investigators. 
 

Models to predict risk of covid-19 in the general population 

We identified seven models that predicted risk of covid-19 in the general population. 

Three models from one study used hospital admission for non-tuberculosis pneumonia, 

influenza, acute bronchitis, or upper respiratory tract infections as proxy outcomes in a dataset 

without any patients with covid-19.8 Among the predictors were age, sex, previous hospital 

admission, comorbidities, and social determinants of health. The study reported C indices of 

0.73, 0.81, and 0.81. A fourth model used deep learning on thermal videos from the faces of 

people wearing facemasks to determine abnormal breathing (not covid related) with a 

reported sensitivity of 80%.90 A fifth model uses demographics, symptoms and contact 

history in a mobile app to assist general practitioners in collecting data and to risk-stratify 

patients. It was contrasted with two further models including additional blood values and 

blood values plus computed tomography (CT) images. The authors reported a C index of 0.71 

with demographics only, which rose to 0.97 and 0.99 as blood values and imaging 

characteristics were added.194 Calibration was not assessed in any of the general population 

models. 

Diagnostic models to detect covid-19 in patients with suspected infection 

We identified 33 multivariable models to diagnose covid-19. Most models targeted 

patients with suspected covid-19. Reported C index values ranged between 0.65 and 0.99. 

Calibration was assessed for seven models using calibration plots (including two at external 

validation), with mixed results. The most frequently included predictors (at least ten times) 

were vital signs (eg, temperature, heart rate, respiratory rate, oxygen saturation, blood 

pressure), flu-like signs and symptoms (eg, shiver, fatigue), age, electrolytes, image features 

(eg, pneumonia signs on CT scan), contact with covid-19 confirmed cases, lymphocyte count, 
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neutrophil count, cough or sputum, sex, leukocytes, liver enzymes and red cell distribution 

width. 

Ten studies aimed to diagnose severe disease in patients with covid-19: nine in adults with 

reported C indices between value of 0.80 and 0.99, and one in children that reported perfect 

classification of severe disease.25 Calibration was not assessed in any of the models. 

Predictors of severe covid-19 used more than once were comorbidities, liver enzymes, C 

reactive protein, imaging features, lymphocyte count and neutrophil count. 

Seventy seven prediction models were proposed to support the diagnosis of covid-19 or 

covid-19 pneumonia (and some also to monitor progression) based on images. Most studies 

used CT images or chest radiographs. Others used spectrograms of cough sounds53 and lung 

ultrasound.73 The predictive performance varied considerably, with reported C index values 

ranging from 0.70 to more than 0.99. Only one model based on imaging was evaluated using 

a calibration plot, and it appeared well calibrated at external validation 227. 

Prognostic models for patients with diagnosis of covid-19 

We identified 107 prognostic models for patients with a diagnosis of covid-19. The 

intended use of these models (that is, when to use them, and for whom) was often not clearly 

described. Prediction horizons varied between one and 37 days, but were often unspecified. 

Of these models, 39 estimated mortality risk and 28 aimed to predict progression to a 

severe or critical disease. The remaining studies used other outcomes (single or as part of a 

composite) including recovery, length of hospital stay, intensive care unit admission, 

intubation, (duration of) mechanical ventilation, acute respiratory distress syndrome, cardiac 

injury and thrombotic complication. One study used data from 2015 to 2019 to predict 

mortality and prolonged assisted mechanical ventilation (as a non-covid-19 proxy 

outcome).113 

The most frequently used categories of prognostic factors (for any outcome, included at 

least 20 times) included age, comorbidities, vital signs, image features, sex, lymphocyte 

count, and C reactive protein. 

Studies that predicted mortality reported C indices between 0.68 and 0.98. Four studies 

also presented calibration plots (including at external validation), all indicating 

miscalibration7 67 116 or showing plots for integer scores without clearly explaining how these 

were translated into predicted risks.186 The studies that developed models to predict 

progression to a severe or critical disease reported C indices between 0.58 and 0.99. Five of 
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these models also were evaluated using calibration plots, two of them at external validation. 

Even though calibration appeared good, plots were constructed in an unclear way.83 119 

Reported C indices for other outcomes varied between 0.54 (ICU admission) and 0.99 

(severe symptoms 3 days after admission), and five models had calibration plots (of which 

two at external validation), with mixed results. 

Risk of bias 

All models were at high (226 or 97%) or unclear (6 or 3%) risk of bias according to 

assessment with PROBAST, which suggests that their predictive performance when used in 

practice is probably lower than that reported (Fig 2). Therefore, we have cause for concern 

that the predictions of the proposed models are unreliable when used in other people. Fig 2 

and Box 2 gives details on common causes for risk of bias for each type of model. 

 

Fig 2  PROBAST (prediction model risk of bias assessment tool) risk of bias for all included models combined  

(n=232) and broken down per type of model 
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Box 2: Common causes of risk of bias in the reported prediction models 
Models to predict coronavirus disease 2019 (covid-19) risk in general population 

All of these models had unclear or high risk of bias for the participant, outcome, and analysis 

domain. All were based on proxy outcomes to predict covid-19 related risks, such as presence 

of or hospital admission due to severe respiratory disease, in the absence of data of patients 

with covid-19.8 90 194 
 

Diagnostic models 

Thirty percent used inappropriate data sources (eg, due to a non-nested case-control design), 

27% used inappropriate in- or exclusion criteria such that the study data was not 

representative of the target population, and 24% selected controls that were not representative 

of the target population for a diagnostic model (eg, controls for a screening model had viral 

pneumonia). Other frequent problems were dichotomization of predictors (27%), and tests 

used to determine the outcome (24%) or predictor definitions or measurement procedures 

(21%) that varied between participants.  
 

Diagnostic models based for severity classification 

Twenty percent of models used predictor data that was assessed while the severity (the 

outcome) was known. Other concerns include non-standard or lack of a prespecified outcome 

definition (20%), predictor measurements (e.g., fever) being part of the outcome definition 

(20%) and outcomes being assessed with knowledge of predictor measurements (20%).  
 

Diagnostic models based on medical imaging 

Generally, studies did not clearly report which patients had imaging during clinical routine. 

Seventy three percent used an inappropriate or unclear study design to collect data (eg, a non-

nested case-control). It was often unclear (52%) whether the selection of controls was made 

from the target population (that is, patients with suspected covid-19). Outcome definitions 

were often not defined or determined in the same way in all participants (24%). Diagnostic 

model studies that used medical images as predictors were all scored as unclear on the 

predictor domain. These publications often lacked clear information on the preprocessing 

steps (e.g., cropping of images). Moreover, complex machine learning algorithms transform 

images into predictors in a complex way, which makes it challenging to fully apply the 

PROBAST predictors section for such imaging studies. However, a more favourable 

assessment of the predictor domain does not lead to better overall judgement regarding risk of 

bias for the included models. Careful description of model specification and subsequent 

estimation were frequently lacking, challenging the transparency and reproducibility of the 

models. Studies used different deep learning architectures, some were established and others 

specifically designed, without benchmarking the used architecture against others.  
 

Prognostic models 

Dichotomization of predictors was a frequent concern (21%). Other problems include 

inappropriate in- or exclusions of study participants (18%). Study participants were often 

excluded because they did not develop the outcome at the end of the study period but were 

still in follow-up (that is, they were in hospital but had not recovered or died), yielding a 

selected study sample (11%). Additionally, many models (15%) did not account for censoring 

or competing risks. 
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Ninety eight models (42%) had a high risk of bias for the participants domain, which 

indicates that the participants enrolled in the studies might not be representative of the 

models’ targeted populations. Unclear reporting on the inclusion of participants led to an 

unclear risk of bias assessment in 58 models (25%), and 76 (33%) had a low risk of bias for 

the participants domain. Fifteen models (6%) had a high risk of bias for the predictor domain, 

which indicates that predictors were not available at the models’ intended time of use, not 

clearly defined, or influenced by the outcome measurement. One hundred and thirty five 

(58%) models were rated unclear and 82 (35%) rated at low risk of bias for the predictor 

domain. Most studies used outcomes that are easy to assess (eg, death, presence of covid-19 

by laboratory confirmation), and hence 95 (41%) were rated at low risk of bias. Nonetheless, 

there was cause for concern about bias induced by the outcome measurement in 50 models 

(22%), for example due to the use of subjective or proxy outcomes (e.g., non-covid-19 severe 

respiratory infections). Eighty seven models (38%) had an unclear risk of bias due to opaque 

or ambiguous reporting. 

 Two hundred and eighteen (94%) models were at high risk of bias for the analysis 

domain. The reporting was insufficiently clear to assess risk of bias in the analysis in thirteen 

studies (6%). Only one model had a low risk of bias for the analysis domain (<1%). Twenty 

nine (13%) models had low risk of bias on all domains except analysis, indicating adequate 

data collection and study design but issues that could have been avoided by conducting a 

better statistical analysis. Many studies had small to modest sample sizes (see table 1), which 

led to an increased risk of overfitting, particularly if complex modelling strategies were used. 

In addition, 50 models (22%) were neither internally nor externally validated. Performance 

statistics calculated on the development data from these models are likely optimistic. 

Calibration was only assessed for 23 models using calibration plots (10%), of which 12 on 

external validation data.  

Two models are worthy of note, that were generally of good quality, were built on 

large datastes, and rated low risk of bias on most domains but had an overall rating of unclear 

risk of bias, due to a unclear details on only one signalling question within the analysis 

domain, see Table 2 for a summary. Jehi and colleagues presented findings from developing a 

diagnostic model, however, there was substantial missing data and it remains unclear whether 

the use of median imputation influenced results, and there are unexplained discrepancies 

between the online calculator, nomogram, and published logistic regression model 184. Hence, 

the calculator should not be used without further validation. Knight and colleagues developed 

a prognostic model for in-hospital mortality, however, continuous predictors were 



Living Review -  Update 3 of  Wynants et al 2020 DOI: 10.1136/bmj.m1328 

Page 18 of 49 

dichotomized, which reduces granularity of predicted risks (even though the model had a C 

index comparable with that of a generalized additive model) 186. The model was also 

converted into an sum score but it was unclear how the scores were translated to the predicted 

mortality risks that were used to evaluate calibration.
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 Table 2 Prediction models with unclear risk of bias overall and large development samples. 

Study; setting; and outcome Model Sample size: total 

No of 

participants (No 

with outcome)* 

Predictive performance Overall risk 

of bias 

using 

PROBAST 

Strongest type 

of validation 

reported 

Performance (C index, 

sensitivity (%), specificity 

(%), PPV/NPV (%), 

calibration slope, other 

(95% CI, if reported)) 

 

Diagnostic models      

Jehi et al 184; data from U.S.A., patients with 

suspected covid-19; covid-19 diagnosis 

Jehi model Development: 11672 

(818) 

External validation: 

2295 (290) 

External validation, 

same country,  

new centres and 

later period 

C index 0.84 (0.82 to 0.86) Unclear 

Prognostic models      

Knight et al 186; data from U.K.; suspected or 

confirmed symptomatic inpatients; in-hospital 

mortality 

4C Mortality Score Development: 35463 

(11426) 

Temporal validation: 

22361 (6729) 

Temporal 

validation 

C index 0.77 (0.76 to 0.77) Unclear 

NPV=negative predictive value; PPV=positive predictive value; PROBAST=prediction model risk of bias assessment tool; * a large dataset according to PROBAST is at 

least 10 events per candidate variable (EPV) for model development and at least 100 events for validation. In case EPV could not be extracted or calculated from the study 

report, 100 events for model development was the lower bound to be included in this table. 
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External validation 

Forty six models were developed and externally validated in the same study (in an 

independent dataset, excluding random training test splits and temporal splits). In addition, 

there were 24 external validations of models developed for covid-19 or before the covid-19 

pandemic in separate studies. Unfortunately, none of the external validations were scored as 

low risk of bias, 3 were rated as unclear risk of bias, and 67 as high risk of bias. One common 

concern is that datasets used for the external validation were likely not representative of the 

target population (eg, not recruiting consecutive patients, using an inappropriate study design, 

using unrepresentative controls, excluding patients still in follow-up). Consequently, 

predictive performance could differ if the models are applied in the targeted population. 

Moreover, only 21% had 100 or more events for external validation, which is the 

recommended minumum.137 138  Only 16% of external validations presented a calibration plot. 

 Table 3 shows the results of external validations that had at most an unclear risk of bias 

and at least 100 events in the external validation set. The model by Jehi et al has been 

discussed above 184. Luo and colleagues performed a validation of the CURB-65 score, 

originally developed to predict mortality of community-acquired pneumonia, to assess its 

abilty to predict in-hospital mortality in patients with confirmed covid-19. This was 

conducted in a large retrospective cohort of patients admitted to two Chinese designated 

hospitals to treat patients with SARS-CoV-2 pneumonia 198. It was unclear whether all 

consecutive patients were included (although this is likely given the retrospective design), 

there was no calibration plot because the score gives an integer as output rather tgan estimates 

risks, and the score uses dichotomized predictors. Overall, the external validation by Luo et al 

was performed well. It should be noted that studies that validated CURB-65 in covid-19 

patients obtained C indexes of 0.58, 0.74, 0.75, 0.84 and 0.88 173 191 198 207 228. These observed 

differences may be due to differences in risk of bias (all except Luo et al were high risk of 

bias), heterogeneity in study populations (South Korea, China, Turkey, and U.S.A.), outcome 

definitions (progression to severe covid-19 vs. mortality), and sampling variability (number of 

events 36, 55, 131, 201, unclear). 
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Table 3 External validations with  unclear risk of bias and large validation samples.  

Study; setting; and outcome Model Sample size: total 

No of 

participants for 

model validation 

set (No with 

outcome) * 

Predictive performance Overall risk 

of bias 

using 

PROBAST 

Type of 

validation 

Performance* (C index, 

sensitivity (%), specificity 

(%), PPV/NPV (%), 

calibration slope, other 

(95% CI, if reported)) 

 

Diagnostic models      

Jehi et al 184; data from U.S.A., patients with 

suspected covid-19; covid-19 diagnosis 

Jehi model Development: 11672 

(818) 

External validation: 

2295 (290) 

External validation, 

same country,  

new centres and 

later period 

C index 0.84 (0.82 to 0.86) Unclear 

Prognostic models   

 

  

Luo et al198; data from China, inpatients with 

confirmed covid-19; in-hospital mortality CURB-65 1018 (201) 

Independent 

external validation C index 0.84 (0.82 to 0 .93) Unclear 

PROBAST=prediction model risk of bias assessment tool; CURB-65= Confusion, Urea, Respiratory rate, Blood pressure plus age at least 65 years NPV=negative predictive 

value; PPV=positive predictive value; * a large dataset according to PROBAST is at least 10 events per candidate predictor for model development and at least 100 events for 

validation.
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Discussion 

In this systematic review of prediction models related to the covid-19 pandemic, we 

identified and critically appraised 232 models described in 169 studies. These prediction 

models can be divided into three categories: models for the general population to predict the 

risk of having covid-19 or being admitted to hospital for covid-19; models to support the 

diagnosis of covid-19 in patients with suspected infection; and models to support the 

prognostication of patients with covid-19. All models reported moderate to excellent 

predictive performance, but all were appraised to have high or uncertain risk of bias owing to 

a combination of poor reporting and poor methodological conduct for participant selection, 

predictor description, and statistical methods used. Models were developed on data from 

different countries, but the majority used data from a single country. Often, the available 

sample sizes and number of events for the outcomes of interest were limited. This is a well-

known problem when building prediction models and increases the risk of overfitting the 

model.139 A high risk of bias implies that the performance of these models in new samples 

will probably be worse than that reported by the researchers. Therefore, the estimated C 

indices, often close to 1 and indicating near perfect discrimination, are probably optimistic. 

The majority of studies developed new models specifically for covid-19, but only 45 carried 

out an external validation, and calibration was rarely assessed. We cannot yet recommend any 

of the identified prediction models for widespread use in clinical practice, although a few 

models originated from studies that were of better quality. We suggest that these models 

should  be further validated in other data sets, and ideally by independent investigators184 186. 

Challenges and opportunities 

The main aim of prediction models is to support medical decision making in individual 

patients. Therefore, it is vital to identify a target setting in which predictions serve a clinical 

need (eg emergency department, intensive care unit, general practice, symptom monitoring 

app in the general population), and a representative dataset from that setting (preferably 

comprising consecutive patients) on which the prediction model can be developed and 

validated. This clinical setting and patient characteristics should be described in detail 

(including timing within the disease course, the severity of disease at the moment of 

prediction, and the comorbidity), so that readers and clinicians are able to understand if the 

proposed model could be suited for their population. Unfortunately, the studies included in 

our systematic review often lacked an adequate description of the target setting and study 

population, which leaves users of these models in doubt about the models’ applicability. 



 

Page 23 of 49 

Although we recognise that the earlier studies were done under severe time constraints, we 

recommend that any studies currently in preprint and all future studies should adhere to the 

TRIPOD reporting guideline16 to improve the description of their study population and guide 

their modelling choices. TRIPOD translations (eg, in Chinese and Japanese) are also available 

at https://www.tripod-statement.org. 

A better description of the study population could also help us understand the observed 

variability in the reported outcomes across studies, such as covid-19 related mortality and 

covid-19 prevalence. The variability in mortality could be related to differences in included 

patients (eg age, comorbidities) and interventions for covid-19. The variability in prevalence 

could in part be reflective of different diagnostic standards across studies. Note that the 

majority of diagnostic models use viral nucleic acid test results as the gold standard, which 

may have unacceptable false negative rates. 

Covid-19 prediction will often not present as a simple binary classification task. 

Complexities in the data should be handled appropriately. For example, a prediction horizon 

should be specified for prognostic outcomes (eg, 30 day mortality). If study participants have 

neither recovered nor died within that time period, their data should not be excluded from 

analysis, which some reviewed studies have done. Instead, an appropriate time to event 

analysis should be considered to allow for administrative censoring.17 Censoring for other 

reasons, for instance because of quick recovery and loss to follow-up of patients who are no 

longer at risk of death from covid-19, could necessitate analysis in a competing risk 

framework.140 

We reviewed 75 studies that used only medical images to diagnose covid-19, covid-19 

related pneumonia, or to assist in segmentation of lung images, the majority using advanced 

machine learning methodology. The predictive performance measures showed a high to 

almost perfect ability to identify covid-19, although these models and their evaluations also 

had a high risk of bias, notably because of poor reporting and an artificial mix of patients with 

and without covid-19. Currently, none of these models are recommended to be used in 

clinical practice. An independent systematic review and critical appraisal (using PROBAST16) 

of machine learning models for covid-19 using chest radiographs and CT scans came to the 

same conclusions, even though they focused on models that met a minimum requirement of 

study quality based on specialised quality metrics for the assessment of radiomics and deep-

learning-based diagnostic models in radiology.229  

A prediction model applied in a new healthcare setting or country often produces 

predictions that are miscalibrated141 and might need to be updated before it can safely be 

https://www.tripod-statement.org/
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applied in that new setting.17 This requires data from patients with covid-19 to be available 

from that system. Instead of developing and updating predictions in their local setting, 

individual participant data from multiple countries and healthcare systems might allow better 

understanding of the generalisability and implementation of prediction models across 

different settings and populations. This approach could greatly improve the applicability and 

robustness of prediction models in routine care.142-146 

The evidence base for the development and validation of prediction models related to 

covid-19 will continue to increase over the coming months. To leverage the full potential of 

these evolutions, international and interdisciplinary collaboration in terms of data acquisition, 

model building and validation is crucial.  

Study limitations 

With new publications on covid-19 related prediction models rapidly entering the medical 

literature, this systematic review cannot be viewed as an up-to-date list of all currently 

available covid-19 related prediction models. Also, 80 of the studies we reviewed were only 

available as preprints. These studies might improve after peer review, when they enter the 

official medical literature; we will reassess these peer reviewed publications in future updates. 

We also found other prediction models that are currently being used in clinical practice 

without scientific publications,159 and web risk calculators launched for use while the 

scientific manuscript is still under review (and unavailable on request). These unpublished 

models naturally fall outside the scope of this review of the literature.160 As we have argued 

extensively elsewhere,161 transparent reporting that enables validation by independent 

researchers is key for predictive analytics, and clinical guidelines should only recommend 

publicly available and verifiable algorithms. 

Implications for practice 

All reviewed prediction models were found to have an unclear or high risk of bias, and 

evidence from independent external validations of the newly developed models is still scarce. 

However, the urgency of diagnostic and prognostic models to assist in quick and efficient 

triage of patients in the covid-19 pandemic might encourage clinicians and policymakers to 

prematurely implement prediction models without sufficient documentation and validation. 

Earlier studies have shown that models were of limited use in the context of a pandemic,162 

and they could even cause more harm than good.163 Therefore, we cannot recommend any 

model for use in practice at this point. 
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The current oversupply of insufficiently validated models is not useful for clinical 

practice. Future studies should focus on validating, comparing, improving, and updating 

promising available prediction models.17 The models by Knight and colleagues 186 and Jehi 

and colleagues 184 are good candidates for validation studies in other data. We urge Jehi and 

colleagues to make all model equations available for independent validation. 184  Such 

external validations should assess not only discrimination, but also calibration and clinical 

utility (net benefit),141 146 163 in large datasets 137 138 collected using an appropriate study 

design. In addition, these models’ transportability to other countries or settings remains to be 

investigated. Owing to differences between healthcare systems (eg, Chinese and European) 

and over time in when patients are admitted to and discharged from hospital, as well as the 

testing criteria for patients with suspected covid-19, we anticipate most existing models will 

be miscalibrated, but researchers could attempt to update and adjust the model to the local 

setting. 

Most reviewed models used data from a hospital setting, but there is a paucity of models 

for primary care and the general population. Additional research is needed, including 

validation of any recently proposed models not yet included in the current update of the living 

review (eg Clift et al230). The models reviewed to date predicted the covid-19 diagnosis or 

assess the risk of mortality or deterioration, whereas long-term morbidity and functional 

outcomes remain understudied and may become a target outcome of interest in future studies 

developing prediction models.231 232  

When creating a new prediction model, we recommend building on previous literature and 

expert opinion to select predictors, rather than selecting predictors in a purely data driven 

way.17 This is especially important for datasets with limited sample size.164 Frequently used 

predictors included in multiple models identified by our review are vital signs, age, 

comorbidities, and image features, and these should be considered when appropriate. Flu-like 

symptoms should be considered in diagnostic models, and sex, C reactive protein, and 

lymphocyte counts could be considered as prognostic factors. 

By pointing to the most important methodological challenges and issues in design and 

reporting of the currently available models, we hope to have provided a useful starting point 

for further studies, which should preferably validate and update existing ones. This living 

systematic review has been conducted in collaboration with the Cochrane Prognosis Methods 

Group. We will update this review and appraisal continuously to provide up-to-date 

information for healthcare decision makers and professionals as more international research 

emerges over time. 
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Conclusion 

Several diagnostic and prognostic models for covid-19 are currently available and they all 

report moderate to excellent discrimination. However, these models are all at high or unclear 

risk of bias, mainly because of model overfitting, inappropriate model evaluation (e.g. 

calibration ignored), use of inappropriate data sources and unclear reporting. Therefore, their 

performance estimates are probably optimistic and not representative for the target 

population. The COVID-PRECISE group does not recommend any of the current prediction 

models to be used in practice, but two models originated from higher quality studies and 

should be (independently) validated in other datasets. For details of the reviewed models see 

www.covprecise.org. Future studies aimed at developing and validating diagnostic or 

prognostic models for covid-19 should explicitly address the concerns raised. Sharing data 

and expertise for the validation and updating of covid-19 related prediction models is urgently 

needed.  

  

http://www.covprecise.org/
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Supplementary material: search and screening 

 

Search strings  

arXiv: ncov or corona or Wuhan or COVID 

Search strings for bioRxiv, medRxiv, PubMed, EMBASE are given on ispmbern.github.io/covid-19/living-

review/collectingdata.html 

 

Validation  

We validated the publicly available systematic review list to examine whether it is fit for purpose by comparing 

it to relevant hits from bioRxiv and medRxiv when combining covid-19 search terms (covid-19, sars-cov-2, 

novel corona, 2019-ncov) with methodological search terms (diagnostic, prognostic, prediction model, machine 

learning, artificial intelligence, algorithm, score, deep learning, regression) in March 2020. All relevant hits were 

found on the living systematic review list. We supplemented this list with hits from PubMed by searching for 

“covid-19” because when we performed our initial search this term was not included in the reported living 

systematic review search terms for PubMed. 

 

AI for initial screening 

As the amount of covid-19 literature increased exponentially over time, a new approach was needed to keep up 

with the literature. The results from manual screening of title and abstracts followed by full text review for final 

inclusion for the records retrieved up to 7 April were used to build a classification model for covid-19 prediction 

model studies, using the model building function within Eppi reviewer. To this end we used the final included 

studies within the review as relevant studies and the rest of the covid-19 retrieved studies as irrelevant 

documents. Eppi reviewer uses the standard SGCClassifier in Scikit-learn on word tri-grams. As output, new 

documents get a percentage (from the predict_proba function) where scores close to 100 indicate a high 

probability of belonging to the class ‘relevant document’ and scores close to 0 indicate a low probability of 

belonging to the class ‘relevant document’. The classifier was trained on the first sets of screened articles (from 

searches up to March 24), and tested and retrained on every following set of screened articles (search dates April 

7 and May 5). 

Testing on the second set (search date April 7) revealed poor positive predictive value but 100% sensitivity at a 

cut-off of 20%. The poor positive predictive value may be due to the broad scope of our topic (all prediction 

models in covid-19), poor reporting in abstracts, and small set of included documents. The model was retrained 

after adding the screening data of the second set (search date April 7), which added a considerable amount of 

additional documents. This led to a large increase in (apparent) positive predictive value, at the cost of a lower 

(apparent) sensitivity, which led us to reduce the cut-off to 10%. The largest proportion of documents had a 

score between 0%-9%. This set did not contain any of the relevant documents. This version of the classifier with 

cut-off 10% was used for the initial screening of the results from the search on May 5th, and saved around 80% 

of the screening burden. 

Subsequent updating after manual screening of the results identified by the AI algorithm and testing of the 

classifier on the third set (search date May 5th) led to a sensitivity of 100% at cut-off 10% and reasonable 
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positive predictive value (60%). This version of the classifier was used for the initial screening of the results 

from the search on June 1st, and saved around 96% of the screening burden. 
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Supplementary material: data extraction 

Data were extracted on the following items: 

• Population (China, other). 

• Intended timing of model use (screening of patients, ICU admission, etc.). 

• Setting (inpatients, outpatients, suspected cases). 

• Participants: study design, recruitment method, number of centres, inclusion criteria, exclusion criteria, 

patient age (mean and standard deviation or median and interquartile range), patient sex (n males and 

percentage). 

• Predictors: list of candidate predictors, number of candidate predictors, number of additional degrees of 

freedom for candidate predictors (e.g. for categorical variables with more than two categories or for modelling 

continuous variables non-linearly), predictors in the final model, number of predictors in the final model, 

number of additional degrees of freedom in the final model. 

• Outcome: definition of outcome, timing of outcome. 

• Analysis:  

o Total number of participants, total number of participants with the outcome. 

o Total number of participants with any missing predictor or outcome values. 

o Method for handling missing data. 

o Method for prediction model development (logistic regression, Cox regression, neural network, tree-

based, etc.). 

o Method for selection of predictors during multivariable analysis and the criteria used (e.g., p-value used 

for selection). 

o Handling of categorical and continuous variables. 

o Method(s) for validation (e.g. apparent, internal or external) and for optimism adjustment. 

o Performance measures (calibration, discrimination, other) resulting from validation. 

o Model presentation (coefficients and confidence intervals, final model, alternative presentation formats 

of the model such as a web-based tool).  

• Standard signalling questions and items to assess risk of bias according to PROBAST (Moons, Wolff, et 

al.), on four domains: 

o participants 

o predictors 

o outcome 

o analysis 
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If risk of bias was high in at least one of the subdomains, overall risk of bias was judged high, as per PROBAST 

guidance (Moons, Wolff, et al.). 
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Supplementary Table 1. Overview of Search dates, hits and inclusions. 

 

search date publication version titles retrieved full text 

screening 

included 

papers 

included 

models 

13 March 2020 first pre-print (medRxiv) version 1916 / / / 

24 March 2020 first published version (BMJ) 774 85 27 31 

7 April 2020 first update (BMJ) 2213 114 24 35 

5 May 2020 second update (BMJ) 9306 76 56 79 

1 July 2020 third update (BMJ) 23203 169 62 87 

 

 


