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Abstract: Linear descriptor systems are governed by dynamical equations subject to algebraic
constraints. In the one-dimensional case, where the systems only depend on a single index,
usually time, the Weierstrass canonical form splits up the state vector in two parts, a causal
part, running forward in time, and a non-causal part, running backward. In this paper linear
time-invariant autonomous descriptor systems in two-dimensions are discussed and the condition
on the existence of a non-trivial solution is derived, together with an explicit formula for the
output of such systems. It is shown that the output of the model can be related to a causal and
a non-causal part in each of the dimensions of the model, running forward and backward in the
various dimensions respectively. The results are obtained by requiring that the solutions, for
states and outputs, which are defined on a two-dimensional grid, are path invariant and unique.
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1. INTRODUCTION

Differential algebraic equations (DAE) (Brenan et al.,
1996) are characterized by a dynamical part, together
with an algebraic part. DAE’s are also sometimes called
descriptor system or singular systems, and are surveyed
e.g. in (Lewis, 1986). It can be shown that the solution of
a descriptor system consists of a causal and a non-causal
part, running forward and backward in time respectively
(see e.g. (Moonen et al., 1992)). The causal part is linked
to the finite roots of the characteristic equation associated
to the descriptor system and the non-causal part is linked
to roots at infinity.

In this paper the properties of linear autonomous descrip-
tor systems in two dimensions are analyzed. A natural
question to ask is under what condition are these system
well-posed and what is the solution for the state sequence,
given specified initial conditions? We demonstrate that, in
the same way as in the one-dimensional case, the output
of a descriptor system in two dimensions can be decoupled
in a causal and non-causal part. In the past, descriptor
systems have been analyzed in multiple dimensions, but
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these models had a different model structure, for example
in (Campbell, 1991; Kaczorek, 1988; Gregor, 1992).

This paper is structured as follows. In Section 2, an
overview of linear time-invariant autonomous descriptor
systems in one dimension is provided. In this section,
we introduce the Weierstrass Canonical Form (WCE)
of a matrix pencil and explain its relevance to linear
systems. Secondly, multidimensional state space models
are introduced, and we demonstrate that the system
matrices must commute in order for the model to be well-
posed. In Section 3, the Weierstrass Canonical Form is
applied to a simplified model class, called semi-descriptor
systems, and we prove that the state vector of this model
class can be partitioned in a regular and a singular part.
This simplified case demonstrates the general techniques
that are used in the derivation of the main result of this
paper, which is formulated in Section 4. In Section 5 a
small numerical example is provided to clarify all the steps
performed. Section 6 summarizes the main conclusions of
this paper.

2. EXISTING STATE SPACE MODELS

Consider the following autonomous state space model
Ex[k + 1] =Axz[k], 1)
ylk] =Culi],
where y[k] € R? and x[k] € R"™ are the output and the
state vector of the system respectively. The matrices F
and A are elements of R™"*™, and k is the (integer) discrete
time index. A state space model in this form is called a
descriptor system (Verghese et al., 1981). This state space
model is unique modulo a left and right transformation
with non-singular matrices. The properties of this system
are determined by the generalized eigenvalues of the ma-
trix pencil (E, A) (Golub and van Loan, 2013). We assume
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that det(Fs — A), is not identically zero, such that there
exists an s for which Es — A is invertible. A matrix pencil
that satisfies this condition is called a regular matrix pencil
(Ikramov, 1993). The vector z; is an eigenvector of the
matrix pencil if and only if

for some values of (s;,7;) € C? . This pair is the eigenvalue
of the eigenvector x;. If ~; is equal to zero and s; # 0, we
say that the system has a pole at infinity.

2.1 Weuerstrass canonical form

Closely related to the generalized eigenvalue problem is
the Weierstrass Canonical Form of a matrix pencil (Gant-
macher, 1960), which states that for every regular matrix
pencil there exist matrices P, () of full rank where

|1 o Ar 0| = -

P(Es—A)Q = [0 N] 5— [ 0 ]l} =FEs— A
with 1 the identity matrix. The matrix N is a nilpotent
matrix, which can be further reduced to a Jordan form
and the matrix Ag is a regular matrix which can also bhe

put in a Jordan canonical form. Moonen et al. (1992) show
that the model of Eqn. (1) can be put in the WCF such

k+1] Ag 0] [«®[k]
o ¥ il = [ o] i)
(K]
o1k = 5] 51y
By substituting x°[k] = 5[k — 1] the model is put in its
final form
ek +1]] _ [Ar O] [«"[K]
ot = [ 3] o]
: (<]
1k = (0 o] 6l
For 0 < k < n, the output of this model is equal to
ylk] = CrARa"(0) + CrN™F155[n]
and consist of a causal part running forward, and a non-
causal part running backward, where the caubal part of
the solution depends on the initial condition .L 2[0] and the
non-causal part depends on the final state #°[n]. As N is
nilpotent, its higher powers will be zero. The matrices C'r

and Cg correspond respectively to the regular and singular
part of the output matrix.

2.2 Multidimensional state space models

Consider a linear autonomous two-dimensional state space

model
xlk +1, l]—AL[ ]
wlk,l 4 1] = Bulk, ]
ylk, 1] = Cxlk,1],

where y[k,l] € R? and z[k,l] € R", the output and the
state vector of the system respectively (Dreesen et al.,
2018; Vergauwen et al., 2018). The system equations are
characterized by two square matrices A and B. Obvi-
ously, both matrices must commute. This commutation
constraint comes from the path invariance of the state.
Take for example

xlk + 1,04+ 1] = A(z[k,l + 1]) = ABu[k,]
= B(«[k + 1,1]) = BAz[k,1].

This equation must hold true for all values of z[k, ], from
which it follows that

AB = BA.
The output of this model is given by
ylk, 1] = CA*BL[0,0].
So commutation is a necessary condition for the well-
posedness of a system.

The model that is considered in this paper is parameter-

ized as

Exlk + 1,1 =Axz[k,1],

Frlk, 1+ 1] =Buzlk, ],

ylk, 1] =Cxk, 1],

where y[k,!] € RP and «[k,]] € R", the output and
the state vector of the system respectively. The system
equations are characterized by four square matrices A, B,
FE and F'. We refer to this this system with the shorthand
notation (A, B, E, F').

3. SEMI-DESCRIPTOR SYSTEMS
3.1 Semu-descriptor systems with o strictly regular part
Before tackling the full problem of describing a two-
dimensional descriptor system, we focus on a special case.

We call this a semi-descriptor system in two dimensions.
The model equations are now

Exlk +1,1] =Az[k,]]
xlk, 1+ 1] =Bz[k,1] (2)
ol l] =Calk, 1,

where y[k] € R” and «[k] € R"™. The matrices A, B and E
are square real system matrices of appropriate dimensions
and the matrix pencil (E, A) is assumed to be regular.
Definition 1. We call the system of Eqn. (2) well-posed if
a non-trivial state sequence x[k,[] exists, that satisfies the
model equations.

Lemma 2. If and only if the system is well-posed, there
exists square matrices P, @, of full rank, such that

(PEQ,PAQ) = ([3}1 I(\)f] ’ [%R ]?D

and applying @ to the state equation in [
_ _ 10| |B 0
@ ease-(|oy] % )

where the matrix N is nilpotent and
ArBi1 = B11ARr, NBss = BysN.

The commutation conditions place a restriction on the
eigenvalue structure of matrices £, A and B.

It is important to observe that the matrix ), from the
WCF applied to the matrix pencil (F,A), should also
block-diagonalize the system matrix 1. This is not a trivial
condition, and will only be true for certain values of E, A
and B.

Proof. Without any loss of generality, there exist square
matrices P and @ of full rank, such that the first equation
of the system defined by (PEQ, PAQ,Q 'BQ,CQ) is put
in the WCF (see (Moonen et al., 1992))

o Lkl - Tl )
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The state vector is transformed as
Q Valk, ] = :L'R[Fc,l]
T :L'S[k, "
By applying the change of basis, «°[k,{] = #°[k — 1,
(Moonen et al., 1992) the descriptor system is transformed

Rl |

Bk, 1 4+ 1] _ |B1a B 2Pk, 1] (4)
B[k —1,04+1]] ~ [B2a Bap| [#%k —1,1]]
where

~1 _|Bi1 B2
QbR = [32,1 BQ,Q] '

With the same reasoning as for non-descriptor system,
we can reach the state x[k,l] in multiple ways. This
puts extra commutation constraints on the block matrices
B, j,Ar and N. The state vector at multi-index [k 4+ 1,]]
is calculated by using Eqn. (3)
2B+ 1,1 [ Apaflk, 1]
Ph+1,0] T [ NEk+ 2,0
From Eqn. (4) it follows that the state vector at multi-
index [k,1 + 1] is given by
Bk, 1+ 1] [Braa®k, 1] + Byaz®[k —1,1]
Pk, +1]| [ Boga®k + 1,1 + Bo o[k, 1]
The state vector at multi-index [k+1,1+1] can be obtained
in two possible ways. Firstly, Eqn. (4) is applied to the
state vector xz[k + 1,1], this results in
a2k + 1,0+ 1] = By 12k + 1,1) + B127°[k, 1]
= By 1 Apa [k, 1] + By o3[k, 1],
%[k + 1,1+ 1] = Baja®[k + 2,1 + Baoi[k +1,1]
= Boa ™[k + 2,1] + BaaNZ°[k + 2,1].
Secondly, starting from the state vector z[k,l + 1] and
applying Eqn. (3) we obtain
ok 41,1 4+1] = Aga ™[k, 1 +1]
= ApBy 2"k, 1] + ApB127°[k — 1,1,
2k + 1,1+ 1] = N[k + 2,1 + 1]
= NBy [k + 3,1 + NBa &5k + 2,1].
Both expressions for the state must be the same in order
for the model to be well-posed, comparing both for the
regular state %[k + 1,1+ 1] we get
B 1 Ara Bk, 1] + By 23°[k, 1] =
ApBuaak, ] + ApB1 23k = 1,1], (5)
this equation must hold for all values of xf[k,l] and
#°[k, 1], which implies that
Bi1Ar = ArB1,1
and
B128°[k,l] = ArB123%[k — 1,1] = AgB12N%[k,1],
or
Bis = ArBj2N. (6)
From the nilpotency of the matrix IV, it follows that By o is
equal to zero. This can easily be demonstrated, assume the

nilpotency index of NV to be p, such that N? = 0 #£ NP~
and multiply both sides of Eqn. (6) with NP1

By aNP™' = ARBy NP = 0.

Because By oNP~! = 0 we can multiply both sides of
Eqn. (6) with N?~2 and get
B1oNP"2 = ApB, o NP1 = 0.
Repeating this procedure p times proves that By s = 0, in
order for the system to be well-posed.
Comparing both expressions of the singular state 75k +
1,1+ 1] we get
By 2Bk +2,1] + Beo@S[k + 1,1 =
NBg a®k + 3,1 + NBa2i%[k + 2,1].
This equation can be rewritten as
Bo1afk+2,1] + BooNi¥[k +2,1] =
N By APk +2,1) + NBa 22k + 2,1].
Analogous as the reasoning for Eqn. (5), it implies that N
and By must commute and By ; = 0. We can therefore

conclude that the state space model of Eqn. (2) is only
well-posed when it can be transformed to

e = [ ]
] - Py s Lt

: [k, 1

y[k’l] - [CR CSN] [is[k,l]] El
with ARBl,l = Bl,lAR and NBQ’Q = BQ’QN. This is
a necessary condition that needs to be satisfied for the
matrices £, A and B. The matrices B; ; and B; 3 do not
have to be nilpotent. This demonstrates that, under the
condition that the model equations of Equ. (2) are well-
posed and a non-trivial state sequence exists, it is always
possible to find a linear transformation described by P
and @ that separates the state vector in a regular and
a singular part and both parts are completely decoupled
from each other. When the system is put in the form
described in Lemma 2, the well-posed is demonstrated
in Section 3.2 by calculating the solution of the state
sequence. 0O

3.2 Solution of the semi-descriptor system

When the first model equation of the semi-descriptor
system is put in the WCF via the transformation

(PEQ,PAQ,Q™'BQ,CQ),
the expression of the output as a function of the system
matrices can be explicitly derived. The dynamic equations
describing the regular part of the state vector are given by,

Bk + 1,1 =Aga®[k, 1],
Bk, 1+ 1] =By 12"k, 1].
The state sequence that satisfies both equations is
oB [k, 1] = ARB} 12"[0,0].
The dynamics of the singular part are described by
Pk —1,1] =N#°[k, 1]
5k, 1+ 1] =Ba2i® [k, 1].
The solution to this state sequence for 0 < &k < nand 0 <1
is
%[k, 1] = N"*B} ,2°(0,0].
Therefore the model output is
ylk, 1] = CRARBY 1"[0,0] + CsN" ¥+ Bl ,&%[n, 0],
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with

CQ =[Cr Cg].
Because of the nilpotency of N, the singular, anti-causal
part, will only have a finite memory and propagate anti-

causal over a time window given by the nilpotency index
of N.

3.8 Semi-descriptor system with no causal part

A second simplified case is
Exlk+ 1,1 =Ax[k,]]
zlk,l =1 =Muz[k,!] (7)
ylk, 1] =Calk, 1],
which differs from Eqn. (2) by the second equation, which
runs backward and the matrix M is nilpotent. The prop-

erties of this state space model are used to derive the main
result, formulated in Conjecture 4.

Lemma 3. The system of Eqn. (7) is well-posed and a non-
trivial state sequence x[k, ] exist, that satisfies the model
equations, it and only if there exists square matrices P, (2,
of full rank, such that

. raay— ([ 9] [ ])

Q'Q.Q ' MQ) = ([% ﬂ , [Mg’l a QD ,

where the matrices NV, M;; and My o are nilpotent and
ApMyi = My 1Ar, NDMso = MsaN.
The nilpotency of N follows from the properties of the

WCEF. The matrices M, ; and M5 are nilpotent hecause
the matrix M is assumed to be nilpotent.

and

The assumption that M is nilpontent is part of the model
description, in Section 4 this assumption will be dropped.

Proof. By introducing the matrices PEQ, PAQ, Q~'MQ
and CQ, the model is transformed in the same way as
before, to obtain

[wR[A:+1,l]] _ [AR o] [;E_R[/g,l]] 7

Bh-1,0] " [0 N| [k,
eRlk, i —1] | [Mug Mio] [ «B[k, 1]
;ES[k o 171 _ 1} - ]\/[2,1 A/[z"z is[k — 1,l] '

The further analysis of the system goes in the same line
as before where we calculate the state vector at several
locations and require the equations to be consistent. In
exactly the same way we find that My, = 0 = My,
in order for the model to be well-posed, this results in
a canonical form given by

RBlk+1,0]  [Ar 0] [«F[k,0

Pk—-1,0] " |0 N| |k

A ] = L] [

where the matrices M, 1, Mao and N are nilpotent and
ApMy 1 = My 1AR, NM3o = M3 oN. By re-substituting
[k, 1] = x5k, 1], we retrieve the matrix pencils represent-
ing the system dynamics

(PEQ, PAQ) = ([g ﬁ_] ’ [f%R gD

and

(Q'MQ.Q7'Q) = ([A‘B’l M‘lg] | []5 %D

The output of this model is
ylk, 1] = CRARM 20, m]+Cs N FH MY 5% [n, m],

O

for0<k<nand 0 <l < m.
Both results derived in this section will be used to analyze
the main result in Section 4.

3.4 Example: Semi-descriptor system

To illustrate the obtained results so far, a small example
is provided. Take the system

[(1) 8] k41,0 = [é i] wlk, I

wlk, L+ 1] = [0.175 g} olk, ]

ylk, 1] = [1 1]l ).
Note that the system matrices as such, do not commute.
The two matrices

1-0.5 1 0
P= [0 0.25]v @= {—0.75 1]’
put the first equation in its WCFEF and the system is
transformed to

oo [tz 7] ek
el = o) [
ylk. 1] = [25 1] [‘»;R[k,l]}

STk, 1]
For 0 < k <m and 0 <, the output of this model is

ol 1] = (lwﬁ[o, 0]) 1 240™ 5, 0],

T4\ 2k

Note that the vector #°[k, (] is indeed non-causal in & but
causal in [. The vector z%[k, 1] is zero for all k < m, when
k = m the singular state satisfies

25[m, 1] = 245[m, 0].

In this particular case, the nilpotency index of the non-
causal part is 1. The difference equation of the system is
calculated by using the z—transformation. We have

10 12
det(zl |:O 0:| — |:3 4]) = —421 -2

det (2 [(1) ﬂ - [0.175 g}) — (2 - 1)(22—2)

The difference equations related to the semi-descriptor
system are thus,

1
ulb1, 0= Slk, 1] = 0, ylk, 2] =3[k, 1+ 1]+2y [k, 1] = 0
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4. MULTIDIMENSIONAL DESCRIPTOR SYSTEMS

The linear autonomous descriptor systems in two dimen-
sions that we will now consider are described by

Ex[k+ 1,1] =Ax[k,]]

Falk,l + 1] =Bax[k,l] (8)

ylk, 1] =Culk,1],

where y[k,l] € RP and z[k,l] € R"™, the output and
the state vector of the system respectively. The system
equations are characterized by four square matrices A,
B, E and F. Although up to now we have no complete
proof for the generalized canonical form for E, A, F', B, we
could try to find necessary conditions under which such a
reduction to a canonical form would be possible. A natural
question to ask is, under what conditions is this model well-
posed and does there exist a canonical form?

We conjecture that a potential generalization of the WCF
to 2 pairs of matrices, describing a 2-dimensional descrip-
tor system, could have a canonical form as follows:

Conjecture 4. The two-dimensional system described in
Eqn. (8), with (E, A) and (F, B), two regular pencils, is
well-posed if and only if there exist square matrices P, @,
and U of full rank, such that the equivalent model

PEQu[k + 1,1 =PAQu[k,]]
UFQux[k,l + 1] =UBQuxl[k,]
y[k, I =CQux[k. 1],
exists with
PEQ = ,PAQ =
By 1
I . UBQ — 1
F 1

UFQ =

and
CQ = [Crr Crs Csr Css],
where the matrices Fy, Fs, F}, and F; are nilpotent. In
this basis, the state vector has the form
=Pk, 1]
B[k, 1]
a5k, 1]
sts[k‘, ]
and the following additional equations must hold
A1By = BiAq, Aol = I A,
E1By = BoEy, ExFy = Fols.
Furthermore, in this basis, the output of the model is equal
to

Q 'ulk,l] =

ylk, 1] = CrrAY BL™R(0,0] + Crs ASF™ ' 5[0, m]+
CsrET *BLeSB[n, 0] + Css By FF "% [n,m]  (9)
for some integer values m and nand 0 <k <m,0 <! <n.

In what follows, we first define the well-posedness of
state equations for a 2D system, and then proceed by
carefully investigating the necessary conditions that could
lead to a canonical form for 2D systems in which one
could partition the state space in pure regular (RR), pure
singular (55) and mixed regular-singular (RS and SR)

k
L S
RS
m—my

RR |

|
0 iy

0 n-—mny n

Fig. 1. Schematic overview of the regular and singular
parts of the state vector on a two-dimensional grid,
with the multi-index 0 < k < m and 0 <! < n. The
nilpotency of the singular matrices is denoted by n;
and m; (with i =1 and i = 2). The state vector of a
two-dimensional descriptor system can be split up in
4 parts, a strictly regular part that is causal in both
dimensions, a part that is regular in one equation and
singular in the other and vise versa. And lastly, a part
that is singular in both dimensions.

complementary parts. The RR part corresponds to states
that, in the canonical basis, propagate causally on a 2D
grid in both directions. The RS part corresponds to states
that propagate causally in one direction and anti-causally
in the other, in the SR part corresponds to states that
propagate the other way around. The S5 part represents
states that propagate purely anti-causally. The notion of
well-posedness we propose includes

(1) the uniqueness of the state vector as it propagates
on a 2D ‘equidistant’ discrete grid, after providing
proper initial states for the 4 complementary parts of
the state vector (RR,RS,SR,SS) and

(2) a consistency condition, that guarantees the unique-
ness of the state vector as different paths can be
followed in order to get to a specified end-state. As we
will see, this imposes certain conditions of commuta-
tivity between matrices in the canonical state space
basis.

The four partitions of the state vector are graphically
represented in Fig. 1. Lets now elaborate on the necessary
condition proposed in Conjecture 4.

Consider the two-dimensional descriptor system presented
in Eqn. (8), where (E, 4) and (F, B) are both regular pen-
cils. Using the same techniques as for the semi-descriptor
system, an equivalent model is constructed defined by the
matrices (PEQ, PAQ, FQ. BQ)) where the first equation
is put in the WCF. In this form, the system equations are

[

given by ) ]
i) = [ ] [

Fiy Fio| [ «®[k0+1] | _ [Bia Big| [ «™[k1]
Py Foo| |55k — 1,1+ 1] Bay Bas| |9k —1,1]]"
The solution evolving in k is equal to
2Bk, 1] = A%a®(0,1]
5[k, 1] = N"*&%[n, 1],
for all 0 < £ < n and 0 < [, it consists of a causal
part, running forward in the coordinate %, and a non-

(10)
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causal part, running backward. Substituting Eqn. (10) in
the second model equation of Eqn. (8) gives

Fia Fio| [ AkeRo0+1) ]
Fayy Fool| [N"FF15500,0 +1]]
Biy By A0, 1]
n—k+1-S . (11)
Ba1 Baa| [N"Ft13%[n, )
We first consider the dynamic-modes of this system in
detail. These are the modes associated to the regular part
of the state vector. The matrix N, in the Weierstrass
canonical form, is nilpotent, such that there exist a value
m where N™ = 0. Assume there exists an index & > 0

with n — k + 1 > m, such that #%[k,l] = 0. In this case
Eqn. (11) reduces to

FyA%cB[0,1+ 1) = By 1 A% [0, 1]

Fy 1 AR B[00+ 1] = By Afa™[0,1]
and the system is purely dictated by the dynamic modes.
For k = 0 and A% =1, Eqn. (12) is reduced to

Fii| R | Bia1| R
[F2,1] 0,1+ 1] = [82,1] x0,1].

If the system is well-posed, this equation must be valid
for every value of the initial state ©%[0,1], which is free to
choose. This is only the case when

range ([g;i]) D range ([g;j) .

This condition can be formulated as a rank constraint

Iy Fi1 Bia : R
’ ’ ’ < e
rank ([Fﬂ]) rank ([Fg,l B2,1]) dim(z™) (13)

or said in words, if the number of linearly independent
equations in Eqn. (12) is less than or equal to, dimension of
the state vector ! . Under this rank condition it is possible
to reduce the matrix in Eqn. (13) by means of elementary
row operations, described by a partitioned matrix U, to

(12)

the form
[U1,1 U1,2] [F1,1 B1,1} _ [Flrl Bi,l] (14)
Uy Usp| [F21 B2 0 |’
Under this transformation, the system matrices become
! / ! r
UFQ = [F(l)'l ?;ﬂ , UBQ = [B 0" gizz] :
and the second model equation is reduced to
Fiy Fiol [ «®ki+1) | _ [Bia Bia| [ «®[k,1]
[ 0 F22] [‘l’s[k—lal‘i‘l}] a [ 0 Béz'] [is[k—lal]}
15)

The singular part of the vector, denoted by %, is now
fully decoupled from the regular part and its dynamics
are governed by the subsystem
Pk —1,1) = Ni®[k, ]

F},i%[k — 1,1+ 1] = B ,&%[k — 1,1],
which has the form of a semi-descriptor system and has
been analyzed in detail in Section 3. However, the regular
part is still coupled with the singular part via the system
matrices Fy 5 and By .

(16)

‘We demonstrate that under certain conditions the vector
2%[0,0] and z®[0,1] can both be assumed to be zero.

1 In a later step in the derivation, we will show that the inequality of
Eqn. (13) is in fact an equality, which follows from the regularity of
the pencil (F,1, B1,1), however, this is far from trivial at this point
in the proof.

This assumption will allow us to reduce the problem to
a dynamic system that is only governed by the singular
vector, from which we can derive further conditions on
the system matrices. This is not a trivial assumption,
because +f[0,0] can always be chosen freely, but =0, 1]
is determined by a dynamic equation.

Consider the regular matrix pencil (F] q, By ), its regu-
larity follows directly tfrom the fact that the applied trans-
formation to the regular matrix pencil (F, B) preserves its
regularity and that (F, B) is put in a block diagonal form
with (£} 1, B} ;) being one of the blocks on the diagonal.
A conseciuencé of the regularity of the pencil is that the
matrices Fy ; and Bj ; share no vector in both null spaces.
If such a vector @ existed, that lies in the null space of FY
and B] |, we would have that

(sF{,l — B'Ll)u: =0 Vs,

which would imply that the pencil is singular. Because
both matrices do not share a common vector in the null
space, the matrix [Ff:l, B{l]T is of full rank. By noticing
that the matrix U in Eqn (14) is of full rank, it follows that
the inequality in Eqn. (13) is in fact an equality. As hefore,
the pencil (F] ;, By 1), can be put in the WCF. Therefore,
there exist matrices P and ()4 such that

i (383 1)

We can also calculate the WCF of the regular pencil
(F5 5, Bj 5), which is regular by the same reasoning as for
(Fl’ 1, B1.1), such that

e = ([ [51])

Combining both transformations yields

P 0 F11F1'2 Q0 PlFllQl Py 12Q2
0 B~ 0 F22 0 Qs 0 PQFQQQQ

and

P 0] B Biol[@Q 0] [PiB11Q1 PiB),Qs
0 P2 | 0 Byo| |0 Qof — 0 PyBj ,Qa|”

By introducing a new state vector

01 5k — 1,1

;(:RR[k', ]
Q;l 0 ‘LR['k:” — $Rs[kvl] (17)
0 Q'] &k 0] — |« k]|
w8 [k, 1]
the descriptor system has the following form
PRk 4 1,1] "Bk, 1]
2O+ 10| [QTTARQY 0 285k, 1]
B[k — 1,1 0 Q5 'NQs| | [k, 1)
255k —1,1] 55k, 1]
10 / | |
0N Pl 5Q2 J:Rs%k,’l + 1]} B
o | L O a0k — 1,1+ 1]
‘ 0 N 255k — 1,1+ 1]
B, 0 RREM.
01 1 Bi»QQZ iRS[k’l]
0 ‘ By 0 IRk — 1,1
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Note that the WCF of the first equation is preserved and
the matrix Q;lNQg is still nilpotent ? . However, it may
no longer be in a Jordan form.

The next step is to proof that the matrices PIF{JQZ and
P1B 5Q2 can be further eliminated in the block struc-
ture. This is done by demonstrating that under certain
conditions, we can assume that x[0,0] = 0 = 20, 1],
which leads to a rank condition on the system matrices.
The singular vector z°[k, [] satisfies the dynamic equation
presented in Eqn. (16), where the matrix N is nilpotent,
with nilpotency index p, and its solution is
Bk, 1] = N"*55[n,1].
Assume that n > p, this implies that °[0,] = 0, (for all
1) we also have
Q3'#5[0,0] = 0 = [+5F[0,0]" +55[0,0]"]"".

Under this condition, we can eliminate the singular part
of the state vector and Eqn. (18) reduces to

[11 0] [wRR[k,l+1}] - [Bl 0] [J;RR[k,z}}
0 Ny| [«B5k,0+1]] — |0 1] [«®[k,1]]"
The state sequence that satisfies these equations is
"Bk, 1) = BB [k, 0]
"9k, 1] = NP~ '™k, n]
Due to the nilpotency of the matrix N; there exists a value
ny such that N = 0. Assume n — 1 — 1 > ny, and we
have 15[k, 0] = 29[k, 1] = 0. Furthermore, the value of
«fR]0,0] can be freely chosen, and is assumed to be zero.
The value of the state vector #/*#[0,1] is now equal to
#BR0,1] = B270,0] =0
Under these two conditions we have that,
<" R0,01 _ _ [«"[0,1]
[‘»URS[O,O]] o L’RS[O, 1]] '
Because x®f and £®5 are related to the vector = via a

non-singular transformation as described in Eqn. (17), we
have proven that we can always assume

22[0,0] = 0 = +%[0,1],
without loss of generality. The vector x¥[k, 0] satisfies the
regular equation in Eqn. (10), such that

Bk, 0] = A%2F[0,0] = 0,
Bk 1) = AkaR0,1] =0,
for all values of k. Applying this to Eqn. (15) yields,
Fy 35k, 1+ 1] = B 135k, I
F3 235k, 1+ 1] = B 5[k, 1].
This system of equations is over determined and only has
a solution for all values of %[k, ] when

/ !
range ([?1,2]) D range ([g}z}) .
2,2 2,2

This implies that

F|, B .
rank ([Fl,z B,L’2 < dim(z%).
2,2 P22
Furthermore, from the regularity of the matrix pencil
(F}4,Bh,) it follows that the pencil (Fy%, Bf,) is also
regular and that there does not exist a vector x for which
Filw = 0= Blye = (sF}5 — By)a =0 Vs,

2 Tt is clear that (QEINQQ)P = QQINPQQ, which proves that the
transformed matrix has the same nilpotency index as N.

Vk.

R R

(19)

otherwise the pencil would be singular. This implies that

Fi,
rank ([B%%]) = dim(z%).
2,2

Note that the columns of this matrix are the bottom rows
in the matrix present in Eqn. (19). And we have that

0 01\ _ . g
rank ([Fé,z Bé,z]) = dim(z”).

This demonstrates that the inequality in Eqn. (19) is an
equality and that the rows span by [F],, B] 5] must be
linearly depended on [Fj,, B ,] in order for the rank
condition to be satisfied. We thus have

’ ’
o ([]) 2 (5]
2,2 1,2

and that there exists a matrix V; 2, which can be singular,

for which , ,
F
22|y — |2
[Bé,z] b [ 1,2]
The matrix in Eqn. (11) can thus further be reduced by
means of elementary row operations to the form

I —Vig| [Fia Bio] [0 0
0 1 Fyo Byo| Fy9 Byol”

_ Il*V]_!z
V=[]

note that the matrix V' is of full rank, despite that V; ,
can be singular. Applying this transformation to Eqn. (11)
results in

Fiy O] a®ki+1] ] _
0 Foo| &5k —1,1+1]] —

s L4

which decouples the regular and the singular part of
the state vector. Note that it was important that the
transformation matrix in Eqn. (20) is upper triangular in
order to preserve the existing zero block under the block
diagonal.

with
(20)

This suggests that the state space model of Eqn. (8) can
always be reduced to the form

1 0] [«f[k+1,0]  [Ar 0] [«%[k, 1]
ON| [2%k+1,0]] [0 1] |25k,
Fy 0] [k, 0+ 1)) _ [Br 0] [«%[k,1]
0 Fo| [k, 04+ 1] — |0 By [k,
This model consist of two separate semi-descriptor systems
for which canonical forms have been derived in Section 3.

The other way around, if the descriptor system is put in
the described form of Conjecture 4, it is clear that the
descriptor system is well-posed and that the output is
given by Eqn. (9).

The reduction of the two-dimensional descriptor system
to the form described in Conjecture 4 has some further
implications.

Corollary 5. When the two-dimensional descriptor system
is transformed to the form described in Conjecture 4, all
four transformed system matrices E, A, F, B commute.
As a consequence, the state sequence w[k,!] satisfies the
following equation

E"F™x[n,m] = A" B™«[0,0].
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Proof. The commutation of the matrices A, B, I and F,
presented in Conjecture 4, follows directly from the block
structure of the matrices and the commutation constraints
on the blocks. Consider the first model equation

Euxlk, 1] = Az[k — 1,1].
Both sides are multiplied by the square matrix F
E?2[k, 1] = BAx[k—1,1] = AEx[k —1,1] = A%x[k—2,1].
By repeating this step n-times and setting k = n we get
E"x[n,l] = A"x[0,1]. (21)
Next, we multiply both sides of Eqn. (21) by F to get
FE"x[n,l] = FA"z[n,l] = A"Fx[n,l] = A"Bzn,l—1].
We repeat this step m—times and put m = [ such that
E"F™x[n,m] = A"B™z[0,0].

This proves the result from Corollary 5. O

5. EXAMPLE

To demonstrate the above results, we take a descriptor
system defined by the following matrices,

110 110 011 011

E= MOLA:QBQ,F=122,3=Q34

000 011 121 121
C=1232

Notice that the four matrices do not commute and that
the matrices FF and F' are singular. Both matrix pencils
(E, A) and (F, B) are regular, which can be demonstrated
by calculating the associated characteristic equations

det(Es — A) = —s+ 1,
det(Fs — B) = —2s% + 45 — 2.

The matrix pencil (£, A) can be put in the WCF via the
transformation matrices

1 00 0 1 -1
P=|-11-1, @=|1 11]
001 -1 1 0
The four system matrices (PEQ, PAQ, FQ, BQ) become
100 100
PEQ[OOO], PAQ = |010],
000 001
001 001
FQ=1(001|, BQ=|021],
101 101
cQ=1[111].

In the next step, we calculate the matrix U which generates
a first row compression to the matrices (FQ, BQ), in
practice the row compression can be computed via the
singular value decomposition. In this example we have

0017 [00[00 10[10

g F| B g 10l {0002 — [00/02
F21 BQl

S 100l f1o10 00[00

Such that the partially reduced matrices are

101 101
UFQ_[OM], UBQ_[OM]‘
001 001

In this form it is clear that the matrix pencil (UFQ,UBQ)
is still regular. In the next step we calculate the matrix V'
to further compress the rows

10 =1 11 010
Fi2|Bial| _ _ 1’1 _ 0‘0
vV o 01 1] (L] =YY
2,2 2,2 00 1 1|1 1‘1
The second model equation is put in its final form
100 100
VUFQ = 000], VUBQ:[OQO].
001 001

And the system is transformed to its final form (EQ,
AQ, VUFQ, VUBQ, CQ). For the multi-index [k, [] with
0<k <n,0<l<mthe output of the model is

ylk, 1] = «B7[0,0] + 0" *B5]0, 0] +- 0" =R 0™ =155 [, m).

6. CONCLUSION

In this paper, some necessary conditions for the existence
of a non-trivial state sequence w[k,{] of a two-dimensional
descriptor system has been derived. The derivation is
based on the classical results of the Weierstrass canonical
form and the final result could be considered as an ex-
tension of this canonical form to multiple matrix pencils.
As a consequence of this conjecture it is shown that the
descriptor system can always be transformed to a form
where the system matrices commute.
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