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Abstract

In hospitals, surgeries are treated either on an outpatient or on an inpatient basis. Outpatients are normally

routine patients that enter and leave the hospital on the same day, while inpatients who need more com-

plex surgeries have to stay overnight. More recently, a shift from inpatient surgery to outpatient surgery is

occurring due to scientific progress in anaesthesia and surgical techniques. Identifying possible similari-

ties and differences between outpatient surgery scheduling and inpatient surgery scheduling can serve as a

valuable decision-making foundation for practitioners and for operations researchers to efficiently schedule

patients for surgery in the surgical department. This paper provides the first literature review on comparing

outpatient surgery scheduling with inpatient surgery scheduling. The literature published between 2000 and

2020 that explicitly mentions either scheduling setting is included and it is analyzed from three dimensions,

i.e., the uncertainty incorporation, the research methodology, and a scheduling performance comparison be-

tween both settings. We find that outpatient surgery can observe better results in many of the performance

measures (i.e., operating room utilization, overtime, and patient cancellation rate) as opposed to inpatient

surgery. This is due to the fact that inpatient surgery duration is longer and more variable and to the presence

of more emergency patients, although there is a higher likelihood of no-shows for outpatients. Moreover,

we identify future research directions that provide opportunities for expanding existing methodologies and

especially for narrowing the gap between theory and practice.

Keywords: Health care management, Operating room planning, Surgery scheduling, Outpatient surgery,

Inpatient surgery, Literature review

1. Introduction

In hospitals, the operating rooms (ORs) are one of the most critical and expensive resources and many

patients undergo a surgical intervention in their care pathway [82, 91]. Ideally, the surgical services would
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be able to deliver the highest quality of surgery to the right patient at the right time. However, due to

the randomness and complexity inherent to surgical processes, OR schedules often cannot be executed

as planned [173, 180]. Thus, the efficient scheduling of the ORs has attracted much attention from both

researchers and practitioners during the last few decades.

Additionally, surgeries are treated either on an inpatient basis or on an outpatient basis in hospitals. In-

patients are hospitalized patients who have to stay overnight after surgery, whereas outpatients are normally

routine patients with predictable requirements that enter and leave the hospital on the same day (typically a

stay of 4-6 hours). In this respect, it seems that the more routine surgery activities in an outpatient setting

could be planned and scheduled more effectively, whereas it is hard to guarantee the same performance

in the inpatient surgical department. In terms of facilities, unlike inpatient surgery, outpatient surgery can

be performed in hospital outpatient departments, freestanding ambulatory surgery centers (ASCs), or in

office-based surgeries [145]. These features imply that the planning and management of surgeries in both

settings are substantially different. Identifying possible differences and analogies between the inpatient and

the outpatient surgery settings can serve as a valuable decision-making foundation for practitioners and for

operations researchers to efficiently schedule patients for surgery in the surgical department. This might

also provide important insights for dealing with the complexity and randomness inherent to surgical pro-

cesses by incorporating some of the advantages that have already been shown to be effective. Therefore,

this paper aims to perform a thorough and focused literature review comparing and contrasting the inpatient

and outpatient scheduling settings.

This is particularly the case when one considers the broader secular trends occurring in the healthcare

delivery industry and in the management of surgeries. Outpatient surgery rates have gradually increased in

many countries over the last few decades. For example, in the United States, recent years have observed an

increase in the percentage of surgeries that are performed in outpatient settings (compared to 58% in 2005)

[73]. In the United Kingdom (UK), the list of surgical procedures deemed suitable and safe on a same-day

basis has expanded from 20 in 1990 to over 200 procedures in 2019 [17]. Many European countries have

also seen obvious trends in the adoption of day surgery for a growing number of interventions since 2005,

e.g., Denmark, Finland, Sweden, and Netherlands [174]. Reasons for the increasing popularity of outpatient

surgery are various: medical, economic, and organizational. First, the shift has been facilitated by scientific

progress in anaesthesia and surgical techniques. Moreover, outpatient surgery is associated with smaller

hospital-acquired infection rates and lower surgery cancellation risks than those encountered following

inpatient surgery [97, 146]. Second, outpatient surgery is cost-effective compared to inpatient surgery since

hospitalization time is reduced [97, 146]. Third, the consequences of the transition to outpatient surgery

seem to be win-win for all parties involved [146].

Apart from the general motivations, this review is also inspired by University Hospitals Leuven (among

the largest hospitals in Europe) which is a reference hospital in Belgium where patients are often referred

to from other hospitals. The university hospital indicates that the next big improvement in the scheduling of

their inpatient operating theater (OT) probably is to treat some of the inpatients in the way their outpatients

are treated since they already have an efficient outpatient clinic. The practical reasoning behind this is
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that its outpatient clinic normally performs routine and more predictable day-care surgeries, whereas long

and complex surgeries are performed in the inpatient OT. In order to obtain more comprehensive insights

from the literature, we will carefully consider the similarities and differences between inpatient surgery

scheduling and outpatient surgery scheduling. Specifically, we will consider how these were observed in

the different papers that referred to elements of such situations in different hospitals.

OR planning and scheduling is an extensively studied area and the literature has been reviewed by many

authors, using various classification frameworks (see Table 1). These frameworks are either comprehensive

(i.e., according to the hierarchical decision levels [82, 91] and/or the custom fields [46, 155, 211]) or focused

on a specific topic (e.g., a specific decision level [93] and a specific solution approach [163]). For exam-

ple, Cardoen et al. [46] and Samudra et al. [155] review the literature in a systematic and comprehensive

framework based on multiple descriptive fields, e.g., patient characteristics, uncertainty, methodology, and

performance measures. By limiting the scope to a higher decision level, Hof et al. [93] provide a literature

review exclusively focusing on the case mix planning problem. Methodologically, Soh et al. [163] review

the literature on the application of simulation models in hospital-wide surgical services. To get insights into

managing OR efficiency and responsiveness for both elective and non-elective (e.g., emergency) surgeries,

a detailed review on OR planning and scheduling between both surgery types is conducted by Van Riet and

Demeulemeester [184] and Ferrand et al. [71].

Table 1: Overview of existing literature reviews on OR planning and scheduling

Authors (year) Compre-
hensive

Focused
on

Hierarchical
levels

Custom
fields

Cardoen et al. (2010) [46] X X
Guerriero and Guido (2011) [82] X 1-4
May et al. (2011) [129] X 1-4
Abdelrasol et al. (2014) [1] X 1-3
Samudra et al. (2016) [155] X X
Zhu et al. (2019) [211] X 1-3 X
Dexter et al. (2004) [60] Single decision level 4
Gupta (2007) [85] Solution approaches 1-3
Erdogan and Denton (2011) [67] Solution approaches
Hans and Vanberkel (2012) [91] Solution approaches 1-3
Samudra et al. (2013) [153] Research groups
Ferrand et al. (2014) [71] Elective/non-elective 2,3
Van Riet and Demeulemeester (2015)
[184]

Elective/non-elective 2,3

Hof et al. (2017) [93] Single decision level 1
Soh et al. (2017) [163] Simulation application
Our review Outpatient/inpatient X

Notes. Hierarchical levels [91]: 1 strategic level; 2 tactical level; 3 offline operational level; 4 online operational level.
Custom filelds include multiple descriptive fields [155], e.g., patient characteristics, uncertainty, methodology, and performance
measures.
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Similarly to Cardoen et al. [46] and Samudra et al. [155], we classify the articles based on the different

descriptive fields. Three important classification fields are involved: the uncertainty incorporation, the

research methodology, and a performance comparison between the two scheduling settings. We use these

classification fields since they can describe the major profile of the scheduling problem, i.e., what are the

problem characteristics, how is the scheduling problem solved, and especially, what are the outcomes of the

performance measures (PMs). Our review is different from the previous literature reviews in that for each

classification field in this review, we further distinguish an inpatient setting and an outpatient setting in order

to investigate whether the scheduling performance in either setting is different and why this happens. It is

helpful for researchers to quickly learn about the key characteristics in each surgery setting and to consider

key factors when improving the scheduling of ORs. This especially holds true if the OR manager expects

to implement the technique that is developed by the researcher.

This paper is structured as follows. Firstly, Section 2 gives the literature search method along with

results of metadata statistical analysis. In Section 3, papers are classified by the incorporated uncertainty

and the modeling assumptions. Section 4 discusses various research methodologies applied in the literature.

In Section 5, we investigate in the literature whether the scheduling performance is different between both

settings. Section 6 provides ideas for future research along with specific suggestions for efficient inpatient

surgery scheduling. Finally, Section 7 provides a summary of this paper and describes our main conclusions.

The list of important abbreviations is reported in Appendix A.

2. Literature search methodology

2.1. Literature collection and identification

We used a structured literature search method (see Table 2) to ensure that we found key and state-of-

the-art contributions under the scope of this review. First, we performed an initial search for academic

papers that discuss OR planning and scheduling. For this, we identified relevant search terms and we used

wildcards in the search terms. With these search terms, we searched for academic papers from January

2000 to December 2020 based on the database of Web of Science (WoS). WoS was chosen as it provides

the possibility to select Operations Research & Management Science (OR&MS) and Health Care Sciences

& Services (HCS&S) as specific subject categories and to sort search results on the number of citations.

Refer to the WoS Core Collection (i.e., https://mjl.clarivate.com/home) for a full list of journals within

OR&MS and HCS&S. We searched in titles, abstracts and keywords for related academic literature, written

in English. Both peer-reviewed articles and conference proceedings were included in this review.

Then, we selected a base set containing the 20 most-cited articles. Based on this base set, we identified

all articles that are referred by or refer to one of the articles in the base set and deal with OR planning

and scheduling. We found some journals that are particularly relevant for OR planning and scheduling but

are outside the OR&MS and HCS&S subject categories, i.e., anesthesiology/surgery-related journals (e.g.,

Anesthesia & Analgesia), health policy-related journals (e.g., Health Care Management Science and Health

Systems), and engineering-related journals (e.g., Computers & Industrial Engineering and IISE Transactions
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Table 2: The literature search method

Step What to do

Step 1: Identify search terms: ‘(operating room$ ∨ operating theat* ∨ operating suite ∨ surger* ∨
surgical) ∧ (scheduling ∨ planning)’

Step 2: Search the subject categories of OR&MS and HCS&S in WoS with the search terms
Step 3: Select a base set: the 20 most-cited articles relevant for our review
Step 4: Perform a backward and forward search on the base set articles
Step 5: Access other relevant online bibliographies and sources
Step 6: Include the literature that explicitly incorporates inpatients/outpatients in the final set
Notes. A search engine can replace $ by zero or one character. A search engine can replace ’*’ by any group of characters,
including no character.

on Healthcare Systems Engineering). Thus, we further included the articles published in these journals at

this forward and backward search stage.

On top of the above database, we also accessed a comprehensive and up-to-date online bibliography on

surgical services management maintained by Dexter [57] as well as an online bibliography of the literature

in the field of Operations Research/Management Science in Health Care (i.e., ORchestra) [95]. Further-

more, we referred to the search results of Samudra et al. [155]. We checked each article on these sources

and identified the literature on OR planning and scheduling. Papers that cannot be accessed on the web-

site were obtained by personal communication with the authors. After the search process, we identified

393 technically oriented papers. Here, the ‘technical’ papers are those that contain operations research

techniques (e.g., mathematical modeling and simulation) or detailed algorithmic descriptions.

Starting from this initial set of papers, the literature that explicitly incorporates either inpatients or

outpatients is identified and is included in the final set. Specifically, we use the following two filter criteria:

(1) inpatient-related terms (e.g., ‘inpatient’, ‘hospitalized’, and ‘overnight stay’) or outpatient-related terms

(e.g., ‘outpatient’, ‘ambulatory’, and ‘day-care’) are used in the paper; (2) if not, the assumptions about the

length of stay (LOS) of patients will be checked to distinguish whether the LOS is at least 1 day or not.

As a result, 215 technical papers are excluded and the final set involves 178 technical papers (77 in-

patient papers, 30 outpatient papers, and 71 papers considering both aspects). Papers that only mention

incorporating elective patients but do not indicate what type of elective patients (inpatients or outpatients)

are not included. Moreover, other data-analysis related papers were selected if they compare the perfor-

mance between an inpatient setting and an outpatient setting. Some managerial papers are excluded from

the classification tables but are mentioned if they provide specific insights.

2.2. Metadata statistical analysis

Figure 1 shows the number of annually published papers from 2000 to 2020. It is clear that the topic

on OR planning and scheduling (in both patient settings) is becoming increasingly popular in the literature,

whereas the overall number of outpatient papers is smaller than that of inpatient papers. Furthermore, there

are 49 peer-reviewed journals in total publishing the selected papers. Figure 2 shows the journals with more
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than 3 publications on this topic. As can be observed, European Journal of Operational Research is the

leading journal on this topic with 18 papers.
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Figure 1: The number of published papers growing over the last 2 decades
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3. Activity uncertainty and modeling assumptions

One of the major problems associated with OR planning and scheduling is uncertainty which is the

stochasticity in terms of the duration of different activities in the surgical delivery process. Table 3 divides

the literature according to the patient type (inpatient versus outpatient). In addition, it classifies the literature

of each of the two patient types according to the uncertainty which is inherent to patient demand (i.e.,

Section 3.1), surgery durations (i.e., Section 3.2) and length of stay (i.e., Section 3.3), etc. Out of the
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reviewed papers, about 66% incorporate some sort of variability and the surgery duration uncertainty is

most frequently taken into account in both settings.

Table 3: Stochasticity considered in the literature for inpatient and outpatient settings

% of papers Inpatient setting Outpatient setting

Deterministic 34%
(48/35)

[4, 5, 7, 9, 11, 12, 14, 16, 19, 24,
28, 35, 40, 42, 47, 48, 51, 78, 87,
89, 98, 99, 102, 107, 111, 123, 126–
128, 135, 142–144, 152, 156, 159,
164, 166, 171, 172, 181, 186, 187,
189, 191, 193, 199, 200]

[4, 5, 12, 16, 19, 24, 29, 35,
44, 45, 47, 58, 65, 72, 78, 79,
87, 94, 111, 115, 123, 126–128,
135, 138, 143, 144, 152, 156,
189, 191, 195, 200, 210]

Demand 33%
(51/30)

[2, 13, 15, 21, 22, 25–27, 30, 36, 38,
43, 50, 52, 53, 63, 68, 70, 74, 80, 86,
88, 101, 103, 105, 106, 109, 117–
121, 130, 134, 147, 148, 154, 161,
162, 169, 177, 179, 183, 185, 188,
190, 192, 201–203, 212]

[15, 22, 33, 34, 36, 38, 39, 43,
50, 63, 68, 70, 86, 103, 109,
117, 119, 120, 149, 151, 161,
169, 170, 177, 185, 190, 192,
196, 201, 202]

Duration 54%
(79/54)

[3, 6, 8, 13, 15, 18, 20, 22, 23, 26,
27, 30, 36, 38, 41, 43, 49, 53, 55, 63,
68, 69, 74, 80, 86, 88, 90, 100, 101,
105, 106, 109, 112–114, 117, 119–
122, 124, 125, 130–134, 136, 139,
141, 147, 148, 150, 154, 160, 165,
167, 169, 173, 175–177, 179, 180,
182, 183, 185, 188, 192, 197, 201–
204, 206–209, 212]

[6, 8, 10, 15, 18, 22, 33, 34,
36, 38, 39, 43, 49, 54–56, 63,
68, 69, 81, 83, 84, 86, 96, 109,
113, 114, 117, 119, 120, 122,
124, 125, 132, 133, 136, 149–
151, 157, 167, 169, 170, 173,
175, 177, 185, 192, 194, 196,
197, 201, 202, 205]

LOS (PACU,
ward, and
ICU)

30%
(48/18)

[2, 3, 13, 20, 23, 26, 27, 30, 31, 36,
37, 41, 53, 68, 69, 74, 76, 77, 88, 92,
100, 101, 110, 113, 116, 118, 121,
130, 132, 134, 139, 141, 158, 160,
162, 165, 169, 175, 176, 178, 182,
185, 188, 192, 197, 203, 204, 212]

[56, 68, 69, 76, 84, 92, 96, 113,
116, 132, 149, 151, 157, 158,
169, 175, 192, 197]

Others 19%
(25/22)

[6, 13, 23, 36, 41, 43, 68, 69, 74–
77, 86, 88, 106, 114, 119, 121, 131,
132, 141, 158, 160, 173, 190]

[6, 34, 36, 43, 56, 61, 68, 69, 75,
76, 84, 86, 96, 114, 119, 132,
149, 151, 157, 158, 173, 190]

Notes. PACU: post-anesthesia care unit. ICU: intensive care unit. Others include turnover, preparation, etc. The two numbers
in parentheses following each percentage represent the number of inpatient papers and of outpatient papers, respectively.

3.1. Patient demand

The patient demand arrival represents the time point when the request for surgery arises at the hospital.

In order to model the volatile patient demand patterns, a majority of studies use historical data. Table 4

shows that the Poisson distribution is often utilized for both inpatients and outpatients in the literature.
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That is, the inter-arrival times between successive patients’ requests are often modeled as the exponential

distribution [36, 63, 201]. The patient arrival pattern depends on the patient type (i.e., outpatient, inpatient,

and non-elective), the clinical discipline, and time, etc [86, 154, 201]. Holidays, for example, in a week

lead to smaller arrival numbers for all surgery disciplines [154]. Moreover, the patient arrival pattern is

sometimes modeled as a non-stationary process with the arrival rate changing over time [86, 118, 121,

201]. For instance, Zhang et al. [201] assume the outpatient arrival process for each specialty to be a

non-stationary Poisson process in their case hospital, while a stationary Poisson process is assumed for the

inpatient and emergency patient demands. Gupta et al. [86] take into account seasonal and day-of-week

variations in patient arrival rates.

Table 4: Assumptions on the probability distribution of surgery durations and demand

Surgery duration Patient demand arrival

Inpatient Lognormal [6, 20, 41, 63, 68, 69, 74, 88,
100, 101, 112, 113, 117, 119,
122, 132, 133, 139, 147, 148,
167, 169, 173, 175, 176, 179,
182, 183, 188, 192, 201, 203,
204, 206–209]

Poisson [2, 13, 36, 52, 53, 63,
74, 80, 88, 101, 103,
109, 118, 121, 130,
148, 162, 179, 188,
201–203]

Empirical [23, 36, 41, 125, 141, 154, 190] Normal [8, 183, 190]
Normal [131, 160, 180, 197, 207] Uniform [68, 103, 117]
Uniform [121, 165, 206]
Exponential [13, 80, 202]
Other [68, 105, 106, 136, 206]

Outpatient Lognormal [6, 34, 54, 63, 68, 69, 81, 84,
113, 117, 119, 122, 132, 133,
157, 167, 169, 170, 173, 175,
192, 194, 196, 201, 205]

Poisson [36, 63, 103, 109,
119, 151, 196, 201,
202]

Empirical [36, 56, 125, 190] Uniform [68, 103, 117, 149]
Normal [8, 54, 149, 197]
Weibull [68, 149]
Other [54, 68, 136, 149, 157, 202]

After patients are scheduled for surgery, many papers assume that patients are punctual to their ap-

pointments. However, in reality, patients sometimes do not punctually arrive at the hospital or even do not

show up at the planned time of surgery (called a no-show), which is especially true for outpatients. Out-

patient no-show is studied in some papers by assuming a no-show probability that ranges from 5% to 24%

[34, 38, 39, 68, 201], while there is even less research on the unpunctuality of outpatients (e.g., late arrival)

in the literature [39, 43, 68, 170]. No-show is not common for inpatients, since inpatients might be admitted

in the hospital some days before surgery due to, e.g., necessary pre-operative preparations. Despite this,

inpatients’ health conditions are more variable (e.g., development of a fever), which could sometimes force
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the postponement of the surgery on the day of surgery [66, 141].

Apart from the scheduled elective patients, there might appear unexpected non-elective patients (for

whom a surgery is required on short notice) in the hospital. Furthermore, some researchers classify surgeries

into more than two urgency classes by using a surgery target/due time (DT). The due time is a time interval

within which it is best for a patient to receive the actual procedure [189]. Thus patients are considered to

have health risks if their surgery is performed after their target DT. In the literature, unfortunately, varying

surgery DT intervals are used for denoting patients. Moreover, even for a similar DT interval, the used

categorization terms are often different, e.g., urgent and high priority.

According to the urgency definition of the National Confidential Enquiry into Patient Outcome and

Death (NCEPOD) [137], we classify surgeries into four types: elective, expedited (or scheduled), urgent,

and immediate (or emergency). Generally, we consider patients who need to have surgery within 30 days

as expedited patients. A surgery is normally considered an urgency if it can be delayed for a short time (i.e.,

hours), while an emergency if it must be performed immediately. Table 5 classifies the literature based on

the four categorizations. For both outpatient and inpatient scheduling problems, a small number of articles

distinguish between elective and expedited patients. In addition, the literature on elective and expedited

patient scheduling is larger as opposed to its non-elective (i.e., urgent and immediate patients) counterpart.

Table 5: Categorization based on surgical urgency

Category Inpatient Outpatient

Elective [2–9, 11–16, 18–28, 30, 31, 35–38, 40–
43, 47–53, 55, 63, 68–70, 74–78, 80, 86–
90, 92, 98–103, 105–107, 109–114, 116–
128, 130–136, 139, 141–144, 147, 148,
150, 152, 154, 156, 158–162, 164–167,
169, 171–173, 175–183, 185–193, 197,
199–203, 206–209, 212]

[4–6, 8, 10, 12, 15, 16, 18, 19, 22, 24,
29, 33–36, 38, 39, 43–45, 47, 49, 50, 54–
56, 58, 61, 63, 65, 68–70, 72, 75, 76,
78, 79, 81, 83, 84, 86, 87, 92, 94, 96,
103, 109, 111, 113–117, 119, 120, 122–
128, 132, 133, 135, 136, 138, 143, 144,
149–152, 156–158, 161, 167, 169, 170,
173, 175, 177, 178, 185, 189–192, 194–
197, 200–202, 205, 210]

Expedited
(scheduled)

[4, 5, 9, 12, 19, 23, 25, 42, 47, 86, 103, 124,
126–128, 133, 152, 154, 167, 185, 189,
192, 203, 204]

[4, 5, 12, 19, 47, 86, 103, 124, 126–128,
133, 152, 167, 185, 189, 192]

Urgent [15, 16, 26, 36, 48, 74, 86, 130, 141, 144,
154, 158, 192]

[15, 16, 21, 33, 36, 86, 144, 158, 192]

Immediate
(emergency)

[2, 15, 16, 22, 25, 36, 37, 43, 75, 76, 86,
88, 101, 102, 105–107, 109, 113, 118, 119,
125, 130, 134, 135, 144, 147, 148, 154,
156, 169, 179, 185, 192, 200–202, 212]

[15, 16, 21, 22, 36, 43, 75, 76, 86, 109, 113,
119, 125, 135, 144, 156, 169, 170, 185,
192, 196, 201, 202]

Notes. Elective: planned. Expedited: normally within days of decision to operate. Urgent: normally within hours of decision
to operate. Immediate: normally within minutes of decision to operate.

Compared to the inpatient literature, the outpatient literature less often incorporates the non-elective
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patients. If the literature is narrowed down to solely involve outpatient surgery, only 3 papers explicitly

mention incorporating the non-elective patients in their problem of interest (i.e., Stuart and Kozan [170],

Berg and Denton [33], and Wang et al. [196]). The reason might be that outpatient non-electives in general

need less urgent surgery than those in an inpatient setting. For example, trauma specialty is often taken into

account in the inpatient literature along with other surgical specialties (e.g., [132, 162, 180, 201]). As the

trauma specialty usually handles very urgent patients, inpatient surgeries in this context tend to have more

variation in terms of the patient demand and of the surgery duration.

3.2. Surgery duration

The surgery duration of a patient is normally defined as the time interval between the moment the patient

is rolled into the OR and the time when the patient leaves the OR. According to this definition, the turnover

(or cleaning) time would not be included into the surgical time. However, there are still many papers

incorporating turnover time in the surgery duration (e.g., [20, 109, 125, 208]) for reasons of convenience or

of complying with the practice at the case hospital [20]. Estimated surgery durations are typically used at

the time of surgery scheduling, but the realized surgery durations are unknown at this moment.

The extent of variability in the surgery durations is usually measured by the standard deviation or the

coefficient of variation (CV, i.e., the ratio of the standard deviation to the mean). According to the papers

[63, 104, 173], the surgery duration of outpatients tends to be shorter and to have a smaller CV as opposed

to that of inpatients. To the extreme, Cardoen et al. [44] assume that surgery durations are deterministic in

an outpatient surgical environment. Contrarily, some authors also argue that even for very routine outpatient

surgeries, the duration of activities exhibits some uncertainty [32, 84].

It is challenging to predict surgery durations due to the fact that the durations are affected by many com-

plex factors, e.g., the surgery type and the professional ability of the surgeon. In addition, some surgeries

do not appear frequently and newer procedures are constantly being developed, and thus the available data

are not sufficient to predict their durations [150, 154], which is quite real for inpatient surgery. A large

number of papers estimate surgical durations according to historical records and/or predictions of surgeons.

The authors in general first make an effort to fit a theoretical statistical distribution to the data collected on

surgery durations. Table 4 shows that by far the most frequently used distribution of the surgery duration for

both inpatients and outpatients is the lognormal distribution. When no statistical evidence was obtained, the

empirical distribution (i.e., an empirical measure of data) is fitted for the data available, which is the second

most popular distribution in the literature. Moreover, some authors use machine learning methods to obtain

better estimates of surgery durations [79, 141]. More recently, some authors use uncertainty sets instead of

the probability distribution to handle the variable surgery duration [22, 124, 150]. Because the estimation

of surgery durations exceeds the scope of this article, we will not delve more deeply into this topic.

3.3. Length of stay

In addition to patient demand and surgery durations, the stochastic LOS in the downstream units (e.g.,

the post-anesthesia care unit (PACU), the ward bed, and the intensive care unit (ICU), see Figure 3) is often
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considered in the integrated OR planning and scheduling for both inpatient and outpatient settings. The LOS

is an amount of time during which operated patients occupy a recovery unit in order to recover following the

surgery. In Table 3, the patients’ LOS of both settings must be read with caution. On an inpatient basis, the

LOS (longer than one day) in the ward bed/ICU is often considered. In contrast, outpatients are expected to

go home on the day of surgery and the LOS often means the time in the PACU. This is a major bottleneck

for the outpatients [84, 151, 157]. The patient LOS differs per surgery type/group. This is why many papers

estimate the distribution of the LOS for each surgery type/group (e.g., [23, 31, 84, 92, 160, 192]). The

variable LOS of patients will bring deviations of the real bed demand from the assigned capacity, which

sometimes results in a congested downstream unit. This adverse impact can be partly mitigated by building

balanced master surgery schedules (MSSs) that consider a stochastic LOS [27, 76, 77].

PACU

ICU

Ward

OR
Pre-

operative
Discharge

Notes. OR: operating room; PACU: post-anesthesia care unit; ICU: intensive care unit.

Figure 3: Main patient flows for a surgical patient

Table 6 provides a classification of the articles by the different resources (e.g., PACU, ward, and ICU)

considered, along with the operating theatre focus. Moreover, it distinguishes between the inpatient and

the outpatient setting. We find that 56% of the reviewed papers incorporate some of these resources in OR

planning and scheduling in order to improve their combined performance.

3.4. Other uncertainty

Other uncertainty that is considered in OR planning and scheduling includes stochastic OR turnover

times, i.e., the time between successive surgeries of the OR (e.g., [69, 74, 141]), uncertainty in pre-operative

activities (e.g., [68, 84, 157, 190]), uncertainty in the staff availability (e.g., busy doctors [68]), etc. Part of

this uncertainty is taken into account in both settings, whereas part of it is only incorporated in either the

inpatient setting or the outpatient setting.

Even though the inpatients and the outpatients experience the surgical services in a similar fashion in

the hospital, the characteristics of many specific activities for them are substantially different. The inpatient

surgery process encounters a higher unpredictability of those aforementioned surgical activities (e.g., the

arrivals of emergency patients, the surgery durations, and the LOS), which would result in a challenging

OR planning and scheduling problem.
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Table 6: Classification based on the resources conisdered

Inpatient setting Outpatient setting

Isolated OR [4, 5, 7, 11, 14, 19, 21, 22, 31, 47, 51,
52, 55, 63, 70, 78, 86, 89, 90, 98, 105,
106, 109, 111, 112, 114, 116, 119,
120, 123–128, 130, 133, 136, 142,
143, 147, 148, 150, 152, 154, 159,
161, 167, 173, 177, 179, 180, 182,
183, 188–190, 192, 202, 206–209]

[4, 5, 10, 19, 22, 33, 34, 39, 47, 54,
55, 63, 65, 70, 78, 79, 81, 83, 86,
109, 111, 114–116, 119, 120, 123–
128, 133, 136, 138, 143, 150, 152,
161, 167, 170, 173, 177, 189, 190,
192, 194, 196, 202, 205, 210]

Integrated OR PACU [6, 15, 16, 18, 20, 40, 49, 50, 68, 69,
87, 99, 113, 122, 131, 132, 135, 144,
165, 169, 175, 181, 191, 197]

[6, 15, 16, 18, 29, 44, 45, 49, 50, 56,
68, 69, 72, 84, 87, 94, 96, 113, 122,
135, 144, 149, 151, 157, 169, 175,
191, 195, 197]

Ward [2, 3, 6, 12, 13, 15, 16, 23–28, 30, 35–
38, 41–43, 48, 50, 53, 74–77, 80, 87,
88, 100, 102, 103, 107, 117, 118, 121,
131, 132, 134, 135, 141, 144, 156,
160, 162, 164–166, 171, 172, 175,
176, 178, 185–187, 191, 193, 199–
201, 212]

[15, 16, 38, 43, 50, 58, 61, 76, 103,
132, 144, 191]

ICU [2, 3, 9, 12, 15, 16, 25, 37, 50, 53, 75–
77, 88, 92, 99–102, 107, 110, 132,
134, 135, 139, 144, 156, 158, 160,
171, 172, 175, 193, 203, 204]

[58, 61, 76, 92, 158]

Other [8, 13, 15, 16, 18, 49, 68, 87, 99, 117,
122, 144, 175, 185, 197, 212]

[8, 15, 16, 18, 29, 49, 56, 68, 84, 87,
96, 117, 122, 144, 149, 157, 175, 185,
197]

4. Research methodology

A large body of literature tries to improve the performance of OR planning and scheduling by using

various methods at different decision levels. In Section 4.1, we introduce four classical decision levels.

Next, specific research methodologies in the literature are classified and discussed in Section 4.2.

4.1. Four hierarchical decision levels

According to the time frame, OR planning and scheduling in hospitals can be classified into four dif-

ferent hierarchical decision levels: strategic, tactical, offline operational, and online operational [91]. The

strategic level addresses the dimensioning of OR time among different surgical groups (often referred to as

case mix planning), typically with a long-term planning horizon (e.g., a year or more). The tactical planning

level assigns the OR time to surgeons or surgical groups over a medium term (e.g., several weeks). This

level usually generates so-called MSSs which define the number, type, and opening hours of available ORs,

12



as well as the allocation of OR time among surgical groups. The offline operational level usually deals with

patient-to-date scheduling decisions and surgery sequencing problems for elective patients. Last, the online

operational level handles the monitoring and control of the process during OR schedule execution.

4.2. Research methodology classification

It is evident that making these decisions is not a simple task and here the proper research methodologies

are capable of making a difference. Table 7 classifies the literature according to the applied methodologies.

Figure 4 further shows the number of papers according to the decision levels and the patient types. As

can be seen, the offline operational level is most studied in both settings (inpatient and outpatient) in the

reviewed literature. At all decision levels, the number of papers in an outpatient setting is smaller than that

in an inpatient setting. One would expect there to be different methodological focuses in the outpatient and

the inpatient settings. However, Figure 4 reveals that at each decision level, both settings observe a similar

share of different methodologies applied. Therefore, in the following, we do not distinguish the two settings

when we discuss the methodologies.
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Figure 4: Methodologies considered at each decision level (IN: inpatients and OUT: outpatients)

Mathematical programming (e.g., mixed integer programming (MIP)) models are shown to be used the

most overall, especially at the tactical and offline operational levels. In this type of methodology, the OR

planning and scheduling problem is normally represented in mathematical terms, which seeks to maximize

or minimize the objective. It is subject to a set of mathematical constraints that portray the conditions under

which the decisions have to be made. These models can then be solved by using standard software (e.g.,

CPLEX solver [12, 87]) or by developing exact solution methods (e.g., branch-and-price [121, 138]).
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In order to incorporate some sort of uncertainty, the stochastic programming counterparts of the math-

ematical models are increasingly used in the literature (e.g., stochastic integer programming [33, 132] and

stochastic MIP [100, 150]). Stochastic programming models usually optimize some objective function in

expectation and assume that probability distributions of the underlying stochastic parameters are known.

However, true distributions may not be available in reality, which will result in unreliable solutions. Alter-

natively, robust optimization optimizes for the worst case in an uncertainty set of the stochastic parameters,

usually without requiring full knowledge about their probabilistic distributions. Furthermore, computa-

tional speed and tractability are also a reason why the recent literature begins to use such methodology

[22, 124, 134, 150]. However, robust optimization tries to hedge against all possible worst-case realizations

of the stochastic parameters, which results in highly conservative solutions in some cases. For example, if

the buffer capacity decision is made to be too conservative by this methodology, then the number of served

elective patients will be affected. In order to deal with the issues of the above two methodologies, a recent

research by Deng et al. [54] develops a distributionally robust optimization model. This model can seek

the worst-case distribution over an ambiguity set describing available distributional information of random

parameters (i.e., surgery durations).

Heuristics are often thought of as a useful approach to solve OR planning and scheduling problems, in-

cluding constructive heuristics, improvement heuristics, meta-heuristics, heuristics based on exact methods

(e.g., column generation based heuristics), etc. Heuristics are relatively easy to implement, but cannot guar-

antee a global optimal solution. Constructive heuristics (e.g., the longest processing time first [84]) may

be done by adding one item at a time to a partial solution, while meta-heuristics (e.g., genetic algorithm

[89], tabu search [14], and simulated annealing [48]) alternates between diversification and local search to

identify better solutions. Table 7 indicates that the meta-heuristics are the most popular heuristics. One

reason is that the meta-heuristics are widely used for solving the mathematical models in the literature (e.g.,

[14, 77, 157, 167]). When testing on real data, the computational results have shown that the heuristics work

fairly well compared to the exact solution methods within a reasonable time limit. Among other heuristics,

we find that sample average approximation is increasingly used to approximately solve stochastic models

[100, 101, 105, 132]. This method allows for finding a good solution among a limited number of scenarios.

Simulation is used at various decision levels mainly to perform two roles: (1) scenario analysis and

(2) evaluation of model solutions. The former is to compare multiple scenarios, policies, and changes to

the OR setting in terms of PMs of interest. For example, at the strategic decision level, Dexter et al. [63]

apply discrete-event simulation (DES) to test the impact of increasing patient volume on revenue and OR

utilization at the surgical suite. Freeman et al. [74] use simulation to evaluate each candidate case mix

plan with respect to various performance measures so that the decision makers can make a selection among

those plans. At the tactical level, van der Kooij et al. [177] develop a generic DES framework to evaluate

the scheduling of ORs with a releasing mechanism (i.e., determining when OR time is made available for

scheduling elective patients of all specialties). At the offline operational level, Samudra et al. [154] create

a DES model by incorporating many realistic aspects of the surgery setting of our case hospital, in order

to test various patient scheduling policies. Simulation is versatile in its account of the complex as well as
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stochastic nature of the OR setting and in accounting for multiple different PMs. The negative sides of this

technique are that the development of a precise simulation model might be time-consuming and that it is

hard to obtain optimal solutions by this technique.

The second role of simulation is normally combined with mathematical programming models and/or

heuristics (called simulation-optimization). Some papers first tailor deterministic optimization models that

are used to produce possible solutions, and then these solutions are evaluated under uncertainty by simu-

lation models (e.g., [20, 23, 36]). For a similar purpose, heuristics are also combined with simulation to

assess and search for a better solution [68, 84, 157]. These are common at the tactical and offline operational

levels where the MSS and the surgery schedule are optimized, respectively. The advantage of simulation-

optimization lies in allowing to solve complex optimization problems by using an optimization model, while

including various features surrounding the OR planning and scheduling problem by simulation.

Apart from the aforementioned methodologies, analytical procedures such as Markov Decision Pro-

cesses [25, 118] and queueing theory [80, 162] have also been used in the uncertain OR planning and

scheduling context. Analytical approaches can model the patient flow by stochastic processes and gener-

ate exact/analytical results that are unattainable with other methodologies. Nonetheless, they require many

simplifying assumptions, e.g., often assuming exponentially distributed service times and unlimited waiting

space in the queueing model. This disadvantage might reduce the flexibility of analytical approaches and

make models more difficult to solve for some complex OR processes.

On top of traditional operations research methodologies, big data analytics (BDA) are attracting atten-

tion from researchers in the field of OR planning and scheduling, e.g., machine learning and data mining, in

recent years. Big data analytics are normally used for analysis on large-scale datasets called ‘big data’ and

for functions of classification, association, clustering, as well as optimization [140]. Papers of OR planning

and scheduling use BDA for different purposes, including grouping similar surgeries [12, 160], predicting

the duration of key activities (e.g., surgery durations [79, 141], PACU LOSs [69]), and predicting the PMs

of interest (e.g., the probability of surgical cancellations [119] and the bed occupancy in the ICU [158]).

These outcomes of BDA are then incorporated as inputs of the traditional operations research models or

used as a supporting tool for decision makers.

In short, there is no apparent trend on which methodologies are more popular in which setting (inpatient

and outpatient). However, when we look at different decision levels separately, simulation can be applied for

dealing with problems at different decision levels. At lower-level decisions (e.g., the tactical and the offline

operational level), mathematical programming is most used, in which stochastic programming and robust

optimization seem to be able to effectively incorporate stochasticity. Moreover, the combinations of differ-

ent methodologies (e.g., simulation-optimization and distributionally robust optimization) are promising to

account for optimality, complexity and stochasticity in the OR planning and scheduling problem.
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Table 7: Overview of methodologies considered

Methodologies References

Mathematical programming1

Linear programming [58, 61, 111, 135, 208]
Goal programming [2, 3, 35, 42, 53, 116]
Integer programming [19, 28, 31, 33, 44, 65, 69, 79, 98, 107, 121, 132, 152, 157, 171, 172, 178,

196, 209]
Mixed integer programming [4, 6–9, 12, 14, 20, 21, 23, 24, 27, 30, 34, 41, 45, 50, 52, 54, 55, 74,

75, 78, 83, 87–89, 99, 100, 102, 105, 106, 109, 110, 112, 113, 121, 124–
126, 130, 133, 134, 138, 139, 141–144, 147, 150, 156, 160, 165, 167,
175, 176, 179, 181, 183, 188, 191–193, 195, 199, 201, 204, 206, 210]

Quadratic programming [27, 30, 41, 92]
Chance-constrained [54, 101, 105, 188]
Exact solution methods

Column generation [7, 106, 139, 196, 204]
Dynamic programming [25, 28, 45, 120, 196, 203]
Branch-and-bound [33, 44, 77, 170, 193]
Branch-and-price [28, 45, 121, 138, 206]
Branch-and-cut [54, 209]

Heuristics
Constructive heuristics [11, 14, 49, 55, 90, 96, 113, 123, 127, 128, 133, 134, 165, 175, 179, 182]
Improvement heuristics [7, 77, 126–128, 133, 167]
Meta-heuristics

Genetic algorithm [51, 68, 84, 89, 113, 117, 123, 127, 158, 164–166, 175]
Simulated annealing [11, 27, 30, 48, 56, 77, 88, 90, 133, 160, 167, 178, 179]
Tabu search [14, 94, 112, 157, 176, 179]
Others [7, 11, 14, 21, 55, 68, 89, 90, 112, 133, 134, 136, 159, 164–166, 188, 197,

209]
Heuristics on exact methods [7, 25, 27, 106, 109, 133, 196, 204]
Other heuristics [5, 20, 25, 34, 40, 101, 105, 120, 132, 150, 171, 179, 188, 190, 203, 204,

209]
Simulation

Discrete-event simulation [2, 10, 13, 15, 16, 18, 20, 23, 24, 34, 36–39, 41, 43, 49, 53, 63, 68–
70, 72, 74, 84, 86, 88, 92, 96, 103, 107, 110, 114, 117–119, 121, 122,
130, 131, 141, 148, 149, 151, 154, 157, 169, 173, 177, 179, 183, 185,
188, 190, 192, 200, 201]

Monte Carlo simulation [6, 50, 56, 61, 101, 109, 112, 176]
Analytical procedures

Markov decision processes [25, 52, 118, 161, 202, 203, 212]
Queueing theory [80, 162]
Others [26, 34, 76, 77, 114, 194]

Big data analytics2 [12, 69, 79, 119, 141, 158, 160]
Notes. 1: Some papers develop deterministic optimization models, while some papers incorporate uncertainty into their models
using e.g., stochastic programming and robust optimization. 2: Big data analytics include machine learning and data mining, etc.
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5. PM comparison of inpatient and outpatient

In order to obtain practical implications about the difference in the scheduling performance between

an outpatient setting and an inpatient setting, in this section, we only consider papers in the classification

scheme that use real data in their testing or application phase of the involved methodologies. Section 5.1

discusses the articles that explicitly or implicitly compare the performance of surgery scheduling between

both settings, while Section 5.2 collects the statistics of their performance results from the related papers.

5.1. PM comparison of inpatient and outpatient (Paper-to-paper description)

Even though a considerable number of articles have been written on OR planning and scheduling, very

few articles directly or indirectly investigate the relative performance of surgery scheduling between the

two settings. Only eleven related articles are identified (see Table 8) and will be discussed in the following.

Dexter et al. [63] investigate the impact on revenue and OR utilization of increasing the volume of

patients for both the inpatient hospital suite and the ASC with a relatively high OR utilization (90%). It

is illustrated that increasing the patient volume (by the amount expected to ‘fill’ the OR) just results in

slight improvements in utilization instead of 100% utilization for both settings, with a smaller increase in

the inpatient ORs (by <1%) than in the ASC (4%). Through a sensitivity analysis, they explain that the

smaller increase for the inpatient surgical suite is due to fewer patients to schedule (so that the variability

in patient arrivals has a larger effect) and a poorer ‘packing’ of the longer inpatient surgery durations into

each OR. In terms of the revenue, the increase in patient volume may increase the profitability for the ASC

(by 1.8%), while there is a decrease for the inpatient hospital (by 0.7%). The decrease of the revenue is

because the additional patients might displace other more lucrative patients from OR time as a result of the

poorer ‘packing’ in the inpatient setting. Thus, scheduling inpatient surgeries is inherently different from

outpatient OR planning and scheduling.

For simulating the effects of opening the ASC, Tyler et al. [173] move healthier patients to this center

and then sicker inpatients (whose case times are normally longer and more variable) are left in the main

hospital. However, their results need to be considered with caution. Even though the main hospital appears

to achieve a higher utilization after outpatients are removed (from 89% to 97%), the OR overtime and

the patient waiting time on the day of surgery increase to 15.3 and 24.7 minutes, respectively. The two

results are beyond the operational goals set in their research (15 minutes for both). This is because the

larger duration variance in the remaining heavier surgeries leads to the difficulty to achieve a better trade-

off between a higher utilization and a shorter OR overtime as well as a shorter patient waiting time. By

comparison, the ASC is able to perform all the cases within an acceptable overtime and patient waiting time

(i.e., 0.1 and 3.6 minutes).

Similarly, Bowers and Mould [38] examine the impact of the separation of elective ambulatory patients

and inpatients on the hospital ward, on the profile of surgery activities, and on the operating theater utiliza-

tion. First, they show that the utilization in the ambulatory care ORs is always better than the utilization

of the inpatient ORs for each separation definition of ambulatory care. The reason is that the introduction
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of an ambulatory care center causes the profile of the surgery activities in the main hospital to change with

relatively more long surgeries which are difficult to fill a half-day OR session. Fortunately in their case,

the issue could be overcome through adopting full-day OR sessions. Second, the decline in the overall bed

requirement is not proportional to the increase in the proportion of the ambulatory patients, which is caused

by the fact that a lot of beds are used by patients with a longer LOS.

The difference in patient waiting times for surgery between inpatients and outpatients can be discerned

in the study of Zhang et al. [201]. The authors aim to minimize inpatients’ LOS in the hospital before

surgery by an MIP model. They also incorporate the outpatients’ waiting as an objective element since the

outpatients indirectly affect the inpatients’ waiting by competing for OR capacity. Both the actual hospital

data and the best solution produced by the MIP model result in the waiting days of inpatients for surgery

(1.86 and 1.54 days, respectively) to be longer than that of outpatients (0.34 and 0.33 days, respectively).

A major cause is that outpatients are given a higher priority over inpatients in the authors’ case hospital

(scheduling preference). Moreover, in the sensitivity analysis with an increase in the patient demand, the

difference between both patient types is still the case (even larger). This means that the waiting time of

inpatients is more sensitive to the growing demand for surgery in this hospital.

Despite the great performance of the outpatient setting, there exists research that produces different re-

sults. Gupta et al. [86] optimize OR capacity planning via computer simulation in order to reduce patient

waiting times (to be scheduled) in a regional cardiac center, where patients are classified into three types,

i.e., hospitalized urgent patients, urgent outpatients, and elective outpatients. When comparing their waiting

times, the hospitalized urgent patients have the least (1.6 days), while the latter two patient types suffer a

longer waiting (7.4 and 15.9 days, respectively). The result seems conflicting with most of the aforemen-

tioned research. This is caused by their case hospital recommending different target waiting times for each

type of patients (and the hospitalized urgent patients are given the highest priority). This indicates that the

patients’ medical urgency plays an important role in their waiting time results.

In addition to regular PMs, the due time related PMs are compared in an inpatient and an outpatient

OR setting based on historical data of a University hospital in the study of Vansteenkiste et al. [189]. The

authors’ data reveal that all three care programs of a specialty (i.e., gynecologic specialty) in the outpatient

setting consistently have a higher percentage of surgeries performed within their DT (called within DT

percentage) than those in the inpatient setting. This is due to the fact that the smaller and more predictable

surgeries are served in the outpatient ORs of the authors’ case hospital, and the outpatients are thus treated

in a quite efficient way.

At the hospital, reducing the number of cancellations is a key issue due to the fact that cancellations

disrupt the OR schedule, decrease the quality of surgery service, and create an additional workload to the

scheduling office (e.g., rescheduling decisions and communication with patients). In the literature, the term

cancellation can include actions where surgeries are removed from the OR schedule already before the

day of surgery or on the day of surgery. Based on the former definition, Dexter et al. [64] analyze the

cancellation data in both nonacademic and academic hospitals, and differentiate inpatients and outpatients.

They conclude that in both types of hospitals, inpatients account for approximately 50% and 70% of the
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total canceled minutes although they only represent about 16% and 22% of the total scheduled minutes of

surgery, respectively. They explain that more than half the total inpatient canceled minutes (54%) are caused

by patients who are scheduled within 1 workday before the day of surgery. Based on the latter definition

of cancellation, Xue et al. [198] report that the cancellation rate (18.1%) of inpatients is much higher than

that of outpatients (4.6%). The higher cancellation rate is mainly associated with inadequate preoperative

preparation. A similar result about the cancellation difference between both patient types is also obtained

in Luo et al. [119] who reveal that the cancellation rates for elective inpatient surgery and for day-care

surgery are 15.8% and 5.1%, respectively. The authors indicate that the reasons for cancellation include the

difficulty in performing a surgery, the surgery duration, and the involved surgical procedure, etc. Therefore,

it seems that inpatients might suffer a higher cancellation rate.

In a statistical way, Kadhim et al. [104] study the differences in the orthopaedic surgical time and OR

work efficiency (i.e., the percentage of work done before mid-day) between inpatient and outpatient surgery

facilities in the same hospital. The OR efficiency at the hospital-owned ASC (72.5%) is higher than in

the inpatient hospital (49.5%) despite the common variables of the same surgeon performing the same

procedure. The authors explain that the work time at the outpatient facility is often predictable, which is

not the case for the inpatient hospital where the procedure time is less predictable and longer on average.

Similarly, the USA national survey of ambulatory surgery cases reports that 64% of the OR case time is

complete before noon and 90% before 3 p.m. [59].

In the study of Aissaoui et al. [6] for a private clinic, inpatients and outpatients are shown to have a

different degree of surgery delay on the day of surgery. Specifically, the inpatients have a longer average

delay (30 minutes) than outpatients (15 minutes) based on real-world data in their study. One reason is that

the private clinic prefers to serve outpatients, who have day-care surgery, early in the morning so that these

patients are less likely to spend the night in the hospital for post-operative care.

Overall, the eleven papers in Table 8 reveal that outpatient surgery can be performed in a more efficient

way as opposed to inpatient surgery although hospitals are different in terms of the country and the type.

Important insights include: (1) the shorter duration and the lower variability in outpatient surgery facilitate a

better performance of surgery scheduling; (2) the patient waiting time to be scheduled is mostly affected by

the patients’ medical urgency and the hospital scheduling preference; (3) there is a competing relationship

among some PMs, e.g., OR utilization, OR overtime, and surgery delay on the day of surgery.

5.2. PM statistics for inpatient and outpatient settings

In this section, we collect the statistics of the performance results of both settings from the related

papers. As can be seen from Figure 5, the OR utilization is different between an inpatient surgical setting

and an outpatient surgical setting. The utilization of inpatient ORs roughly ranges from 55% to 90.9% and

this range depends on many factors, such as the case mix, the case hospital, and the scheduling approaches.

Contrarily, the outpatient-related literature shows that the OR utilization varies in the interval between 83%

and 93.8%. This indicates that outpatient ORs are usually able to be more utilized than inpatient ORs.
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OR utilization

OUT

IN

83% 93.8%
[38, 63, 173]

55% 90.9%
[13, 14, 23, 37, 38, 63, 69, 90, 101, 110, 131, 141, 154, 160, 188]

OR overtime

OUT

IN

6% 22%
[34, 39, 84]

11.9% 38.7%
[90, 98, 101, 134, 141, 154]

Patient waiting

OUT

IN

0.1 hours 2.1 hours
[6, 34, 39, 84, 157, 194] [201]

0.3 days

1.9 days 79.7 days
[13, 53, 154, 172, 188, 201][6]

0.5 hours

Cancellation rate

OUT

IN

1% 5.1%
[64, 119, 157, 198]

3.4% 18.1%
[37, 64, 66, 110, 119, 131, 154, 198, 212]

Notes. OUT: outpatients, IN: inpatients. As for patient waiting, the unit of hours relates to the direct waiting time
(on the day of surgery), while the unit of days implies indirect waiting time (to be scheduled). The cancellation
rate is calculated as dividing the number of canceled surgeries by the number of scheduled surgeries.

Figure 5: Statistical results of PMs for outpatients and inpatients in the literature

With regards to the OR overtime (which is represented as a ratio of the amount of overtime to the regular

OR opening time), it is higher for an inpatient setting compared to that of an outpatient setting as a whole.

For instance, Ozen et al. [141] aim to improve the OR performance of orthopedic spine surgery practice

(inpatient setting) at the Mayo Clinic which normally serves lengthy (mean time of 4 hours) and highly

variable spine surgeries. Their results show that the overtime is still above 20% although it was reduced

already after the authors have performed an improved scheduling method (originally 38.7%). Other results

for an inpatient setting also show a relatively high OR overtime, e.g., 13.6% in Samudra et al. [154] and

25.3% in Moosavi and Ebrahimnejad [134]. On the contrary, the outpatient procedure center in Berg et al.

[34] demonstrates an average overtime of 6%-20% for different test instances. Gul et al. [84] reports the

overtime results for different configurations of surgical cases in an outpatient setting, which range from 1

to 2 hours (i.e., 11%-22%). However, in their study, the overtime is defined as the difference between the

time the last patient leaves the recovery room (instead of the operating room) and a regular closing time.

This is also the case in Burns et al. [39] with a reported average overtime of 10%. Ozen et al. [141] give a

reason for the higher inpatient OR overtime: emergency surgery due to infections. In this regard, outpatient

surgery has a lower risk of infections as they often consist of standardized procedures and are separated

from sicker inpatients.
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The patient waiting time is usually classified into two types: direct waiting time and indirect waiting

time. Direct waiting time is the surgery delay of patients on the day of surgery. Indirect waiting time refers

to the patient waiting to be scheduled on a given day for elective surgery, which is normally measured in

days. The focus of patient waiting time in the related literature is different for inpatients and outpatients. The

indirect waiting time is frequently used in the inpatient setting. The waiting length could vary considerably

from article to article, as displayed in Figure 5 (e.g., 1.9 days in Zhang et al. [201], 2.5-25.1 days in Dellaert

and Jeunet [53], 38.2 days in Samudra et al. [154], 7.6-79.7 days in Testi and Tànfani [172]). Only Aissaoui

et al. [6] report on direct waiting time (0.5 hours) for inpatients. Differently, most of the outpatient papers

focus on the direct waiting time [6, 34, 39, 84, 157, 194], except Zhang et al. [201] who report on the indirect

waiting time. The reason why the direct waiting time is less studied in the inpatient setting is that elective

surgical cases are usually admitted as inpatients some days ahead of surgery and that the waiting time after

their admission is mostly due to necessary pre-operative preparations. This reflects, to some extent, that the

indirect waiting time closely relates to the inpatients’ satisfaction.

As for the cancellation rate, it can be defined based on either surgery counts or canceled times in the

reviewed studies, in which we find the former definition commonly being used. That is, the cancellation

rate is mostly computed as the numerical counts of canceled surgeries divided by the number of scheduled

surgeries. Figure 5 shows that it is possible to achieve a lower outpatient cancellation rate at different

hospitals, e.g., ≤2% among non-academic hospitals [64, 157], and 4.6% to 5.1% at academic hospitals [119,

198]. On the contrary, cancellation rates are relatively higher among inpatients, e.g., 8.1% to 14.1% among

non-academic hospitals [37, 64, 131], 11.8% to 18.1% among academic hospitals [66, 198, 212]. However,

Samudra et al. [154] report a cancellation rate of 3.4% at the University Hospital Leuven’s inpatient surgical

department. This number seems very small because the case hospital is more reluctant to cancel a surgery,

but rather reassigns it to another OR on the day of surgery if possible. In addition, it has more allowance for

overtime. Reasons for cancellations vary across studies and are also different for inpatients and outpatients,

including unfitness for surgery (e.g., variable patient medical condition) [66, 141, 168], priority surgery

(e.g., emergency arrivals) [37, 119, 168], no-show [168, 198], scheduling issues (e.g., overbooking) [198],

etc. Although no-shows are not common for inpatients, their variable medical condition might force them to

be canceled. This together with other reasons (e.g., emergency surgery) might lead to a higher cancellation

rate among inpatients.

Furthermore, some other PMs show up in the reviewed literature for both OR settings, such as the OR

idle time [98], the OR undertime [154], the within DT percentage [154, 189] and the patient throughput

[201]. However, the number of papers for each of these PMs is too small to reflect differences between the

two settings.

Certainly, different PMs are given different emphasis from article to article. However, by combining

Table 8 and Figure 5, there is evidence that outpatient surgery scheduling can be more efficient and effec-

tive than inpatient surgery scheduling in terms of most of the PMs, including the OR utilization, the OR

overtime, and the surgery cancellation. This is caused by different features between both settings, which

can be summarized as follows: (1) outpatient surgery often involves the more standardized procedures with
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a lower variance and mean in surgery durations, while inpatient surgery is longer and less predictable, (2)

although the outpatients’ actual arrival time is uncertain with a possible no-show, the emergency arrivals

and the variable medical conditions of inpatients might lead to a higher inefficiency, (3) the inpatients are

more concerned with the scheduled surgery date, whereas the direct waiting time on the day of surgery is a

main issue in the current outpatient surgery scheduling.

6. Discussion and future research

Based on the literature review, we identify future research directions that provide opportunities for

expanding existing methodologies and for narrowing the gap between theory and practice. Specifically,

we suggest directions for future research in terms of (1) outpatient surgery scheduling (Section 6.1), (2)

methodologies and decision levels (Section 6.2), and (3) inpatient surgery scheduling (Section 6.3).

6.1. Outpatient surgery scheduling

There is a need for a more realistic representation of uncertain patterns in outpatient surgery scheduling,

e.g., no-shows and non-elective patients. For example, although many papers assume that patients are punc-

tual to their appointments, the patient no-show is common in practice in an outpatient surgical setting (with

a no-show probability of 5% to 24% [34, 38, 39, 68, 201]). As a result, inefficiencies, access problems, and

cost issues of the surgery delivery will be caused (e.g., the surgeon will become idle and cannot perform

another surgery) [34, 38]. In addition, the arrivals of non-elective (urgent or emergent) surgeries often dis-

rupt the elective surgery schedule, but the outpatient literature rarely incorporates the non-elective patients

(see Section 3.1). It would be important that future research can incorporate these uncertainties and devise

effective interventions to reduce their effect. However, handling both no-shows and non-electives is a very

difficult challenge. This is due to the fact that a patient is not considered as a no-show until some time past

the planned time point and that non-electives occur randomly [33]. There has been a significant amount

of research on appointment scheduling in outpatient clinics for dealing with no-shows (e.g., [108]), but in

most of the research patient schedules are created based on fixed appointment slots, neglecting the fact that

the surgery durations are more variable. Therefore, outpatient surgery scheduling requires fundamentally

different solutions than outpatient appointment scheduling with regards to these topics.

Due to the increasing popularity of outpatient surgery in reality, the outpatient facilities are facing a

growing patient demand [17, 73, 174]. As a result, patients might wait for their surgery for longer days (i.e.,

indirect waiting time to be scheduled). Nonetheless, the literature review shows that most of the current

outpatient papers focus on the direct waiting time (i.e., the surgery delay of patients on the day of surgery)

(see Section 5.2). For future research, the indirect patient waiting time in the scheduling of outpatient

surgery needs more attention in order to perform better patient-to-date scheduling. However, modeling

indirect waiting time is challenging for various reasons. Firstly, unlike direct waiting time for which the

end of the day is a natural termination of the scheduling horizon, indirect waiting time is more realistically

an infinite-horizon problem. Secondly, the scheduling decisions on which day the surgeries will take place
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need to consider multiple stakeholders’ preferences, e.g., the patients and the surgeons. It would be valuable

to develop advanced models that solve these problems and that even consider both kinds of patient waiting

times together.

6.2. Methodologies and decision levels

Researchers need to be cautious in what research methodologies to apply because these methodologies

are more or less related to the decision level and the complexity of the scheduling problem. Simulation

(i.e., DES and Monte Carlo simulation) can be applied at different decision levels for different purposes,

e.g., scenario analysis and testing model solutions. When lower-level decisions (e.g., tactical and offline

operational level) have to be solved (sub-)optimally, mathematical programming is most used. In order

to solve real-life problems with uncertain patterns, stochastic programming and robust optimization are

useful as they are able to effectively incorporate stochasticity. Furthermore, the combinations of different

methodologies (e.g., simulation-optimization and distributionally robust optimization) are interesting to

study since the advantages of different methodologies can be integrated in order to better solve various

OR planning and scheduling problems. In addition, big data analytics (i.e., machine learning and data

mining) can provide an enhanced capability for the traditional operations research methodologies not only

to increase the accuracy of operations research model inputs (e.g., surgery duration), but also to predict the

performance of the model outputs (e.g., the impact of surgery decisions on downstream units). Research on

the intersection of the two disciplines constitutes a future field. This is noteworthy due to the advance in

hospital information systems from which much data can be stored and extracted.

Furthermore, the integration of multiple decision levels can be another interesting field. One example

that integrates the tactical level and the offline operational level is to assign surgery groups, which are

clusters of surgery types sharing comparable characteristics (e.g., discipline and surgery duration), to OR

blocks. The aim is to create a master surgery schedule that guides the lower-level scheduling decisions, i.e.,

where to schedule which surgery types (see [31, 160, 192]). This can help to improve the robustness of

planned OR schedules. Another example that integrates two higher decision levels (i.e., case mix planning

and master surgery scheduling) is to add some flexibility when dividing and allocating the OR capacity to

the surgical disciplines. Specifically, future research can build further on the research of several authors on

flexible block scheduling [62, 177], in which either some OR blocks are allocated and others are left flexible,

or the unused OR blocks are released some days (e.g., one week) before surgery. These flexible/unused OR

blocks can then be used by the disciplines that face the highest need for OR time in that week. If this is

the case, it is important to identify key indicators that can objectively measure this need and can guide the

allocation of the flexible ORs. These topics are receiving attention in recent years since they can capture

many benefits without much effort in theory and in practice.

6.3. Inpatient surgery scheduling in practice

From this literature review, it seems that the surgery activities in an outpatient setting could be planned

and scheduled more effectively, whereas it would be challenging to plan OR capacity in a more uncertain and

24



complex inpatient setting. Despite the different features, some of the beneficial practices in the outpatient

context may be borrowed and used in the inpatient setting. In this respect, we propose that a promising

practice is to perform a separate treatment of the more predictable inpatient surgeries that mainly consist

of more routine surgeries with less variable surgery durations. One practical motivation for this idea is

inspired by our university hospital which indicates that the scheduling of its inpatient operating theater

might be improved by treating some of the inpatient surgeries in the way its outpatients are treated.

Specifically, we recommend that the whole surgery population is partitioned into two homogeneous

groups, namely the more predictable surgeries (MPS) and the less predictable surgeries (LPS), and each of

the two surgery groups is scheduled in different ORs. In order to partition surgeries into the MPS group

and the LPS group, surgery duration characteristics (i.e., expected duration and duration variability) can be

considered as a useful basis. This is due to the fact that the estimated surgery durations are always used

in the process of surgery scheduling, on the one hand. On the other hand, our literature review indicates

that the shorter surgery duration and lower variability facilitate a better performance of surgery scheduling.

For instance, if we let the MPS inpatient group include surgeries that have a shorter surgery duration and a

lower CV in the duration, this would typically lead the MPS group to include less complex and less variable

surgeries, and the opposite for the LPS group.

This practice we propose relates to the work studying whether routine outpatient surgeries and complex

inpatient surgeries should be pooled or separated in ORs [38, 169, 173, 191]. The reason is that we partition

the more predictable inpatient surgeries, which in some way have resemblance to the outpatient surgeries,

from the less predictable inpatient surgeries. In reality, increasing outpatient surgery rates are enabling more

surgeries to be performed in the outpatient facilities, which to a large degree reveals the successful appli-

cation of the separation of outpatient surgeries and inpatient surgeries on hospital resources. In this case, it

seems that a higher scheduling efficiency for the more predictable inpatient surgeries can be guaranteed, and

we might be able to improve the overall performance of inpatient surgery scheduling. In addition, more at-

tention can be paid to the scheduling of the less predictable inpatient surgeries by using more flexible/robust

strategies in order to cope with the greater difficulty in predicting those surgery activities.

Given that inpatient surgeries could be divided into MPS and LPS groups, there would be different

policies to manage the access of both patient groups to the ORs at lower decision levels. We assume

a dynamic surgery scheduling environment where each patient is scheduled to a surgery date and OR at

consultation time. Then, these scheduling policies are defined as pooling policy, complete partitioning

policy and partial partitioning policy, which are illustrated in Figure 6. With the first policy, a pool of

ORs are shared between the MPS and LPS patient groups (e.g., within a surgical discipline). In this sense,

there is no distinction between both groups when scheduling surgeries, which is now common practice in

reality. With the complete partitioning policy, the MPS patients and the LPS patients can only be scheduled

in their own ORs. In contrast, the partial partitioning policy adds an overflow mechanism to the complete

partitioning policy, i.e., a patient group (e.g., MPS) can access the other group of ORs (e.g., LPS) if needed.

In this regard, different overflow directions are involved: MPS-to-LPS (A), LPS-to-MPS (B), and two-way

overflow (C).
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Pooling

OR 1

OR 2

OR 3

OR 4

MPS LPS

Complete partitioning

OR 1

OR 2

OR 3

OR 4

Partial partitioning (overflow)

OR 1

OR 2

OR 3

OR 4

A

B

C

Figure 6: An illustration of patient access to ORs policies

Therefore, it is interesting to investigate these policies in different hospital inpatient surgical depart-

ments by considering their patient characteristics and capacity characteristics. If there exist non-elective

surgeries that share OR capacity with the elective inpatient surgeries in the hospital, the non-elective surg-

eries are planned to use the LPS ORs due to their highly unpredictable nature.

7. Conclusion

In this paper, we provide the first thorough review of the papers published between 2000 and 2020 about

the similarities and differences between outpatient surgery scheduling and inpatient surgery scheduling in

hospitals. The literature is analyzed from three perspectives, i.e., the uncertainty incorporation, the re-

search methodology, and a performance comparison between the two scheduling settings. Even though the

inpatients and the outpatients experience the surgical services in a similar fashion in the hospital, the charac-

teristics of many specific activities for them are substantially different. Table 9 summarizes the comparison

between both scheduling settings. Specifically,

• The scheduling of inpatients suffers more from emergency patients, along with longer and more

variable surgery durations, although there is a higher likelihood of no-shows for outpatients.

• As a result, outpatient surgery can provide better results in many of the performance measures (i.e.,

OR utilization, overtime, and patient cancellation rate) as opposed to inpatient surgery.

• On an inpatient basis, the LOS in the ward bed/ICU is often considered in the integrated OR planning

and scheduling problem. In contrast, the PACU is a major bottleneck for the outpatient surgeries.

• There is no apparent trend on which methodologies are more popular in which setting (inpatient and

outpatient). In terms of the decision levels, the offline operational level is most studied in both settings

in the reviewed literature.

We also identify avenues for further research that provide opportunities for expanding existing method-

ologies and for narrowing the gap between theory and practice. A brief summary of them is shown in the

following:
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Table 9: Summary of comparisons between outpatient and inpatient surgery scheduling

Dimension Specifics Outpatient Inpatient

Activities

No-show/unpunctuality More Less
Emergency Less More
Surgery duration mean Shorter Longer
Surgery duration CV Smaller Larger
Length of stay < 1 day ≥ 1 day

Methodologies

Simulation Discrete-event simulation,
Monte Carlo simulation

Mathematical programming Deterministic/stochastic
models, robust optimization

Heuristics Constructive heuristics,
improvement heuristics

Analytical procedure Markov Decision Process,
queueing theory

Big data analytics Machine learning, data
mining

PMs

OR utilization Higher Lower
OR overtime Lower Higher
Cancellation Lower Higher
Patient waiting time Direct Indirect

Notes. There is no apparent trend on which methodologies are more popular in which schedul-
ing setting. Direct waiting time (on the day of surgery) is often considered on an outpatient
basis, while indirect waiting time (to be scheduled) is often considered on an inpatient basis.

• Outpatient surgery scheduling. There is a need for a more realistic representation of uncertain patterns

in outpatient surgery scheduling. In addition, the indirect patient waiting time in the scheduling of

outpatient surgery needs more attention.

• Methodologies and decision levels. Researchers need to be cautious in what research methodologies

to apply because these methodologies are more or less related to the decision level and the complex-

ity of the scheduling problem. Furthermore, the integration of multiple decision levels can be an

interesting field.

• Inpatient surgery scheduling in practice. A promising practice for efficiently scheduling the inpatient

surgical department is proposed which is to perform a separate treatment of the more predictable

inpatients. In addition, we suggest how to partition the more predictable inpatient surgeries from the

less predictable inpatient surgeries and how to schedule patients in the partitioning policies.
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Appendix A.

Table A.1: List of important abbreviations

Abbreviation Explanation

ASCs Ambulatory surgery centers
BDA Big data analytics
CV Coefficient of variation
DES Discrete-event simulation
DT Due time
EL/NE Elective/Non-elective
ICU Intensive care unit
IN/OUT Inpatient/Outpatient
LOS Length of stay
LPS Less predictable surgeries
MIP Mixed integer programming
MPS More predictable surgeries
MSSs Master surgery schedules
ORs Operating rooms
OT Operating theater
PACU Post-anesthesia care unit
PMs Performance measures
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